CPU Programmer Bs Refer

GFK-2950K
Feb 2023

PACSystems 3 CPUPr ogr ammer Bs
Reference Manual

="
"
.
o ——
s |
iz ‘

EMEIiSONn.

CPU Programmer Bs Reference Manual Contents

GFK-2950K

Contents

Contents

Section 1

1.1
1.2
1.3
1.4

Section 2

2.1

2.2
2.3

Section 3

Feb 2023

INtrOdUCtiON ..o 1
Revisions in thisS ManuUalcoouiiiiiiicie e 2
PACSystems Programming and Configuration ccccoeevviiveeeviiviessiiieeee e 2
Migrating Series 90 Applications to PACSYSIEMS cooccvveveeeviiiiiee e 3
PACSYStems DOCUMENTALIONcoiuviiiiiiiieiiiie et 3
1.4.1 PACSYStEMS MANUAISovvviieiiiiiiiee i ecee s e e e s ae e e e 3
1.4.2 RSTHEP ManUalScccoceiiiiiiiiiiic it B
1.4.3 RX3BIMBNUAIScooiiiiiiiiiiciee et 4
1.4.4 RXTIMABNUALSooiiiiiiiiiii et 4
1.4.5 Series 90 ManUAISccoviviiiiiiicniiinee e B
1.4.6 Distributed 1/0 Systems ManualSc.cccooiiiieiiiiieiier e 5
Program Organizationcccoeeeevveviiiiinnes eieenn. 6
Structure of a PACSystems Application Programcccccciviiieieeeeviesceiiinnnd 6
2,000 BIOCKS ... 6
2.1.2 Functions and Function BIOCKScccoouiiiiiiiiiiiie e 7
2.1.3 How BIOCKS Are Calledcoccuiiiiiiieiiiie et 7
2.1.4 NeSted CallScouiiiiiiiiie s 8
2.1.5 TypeS Of BIOCKSuviiiiiiiiiieeeeeeee ettt 8
2.1.6 LOCAI DALAvveeiiiiie et 20
2.1.7 Parameter Passing Mechanismscccccovviiriieiiriiieiiiiiieeeeeeee e 21
2.1.8 LANQUAGES ...ooiiiiiiiiiiiiiie ettt ee e 24
Controlling Program EXECULION uuiiiiiiiiiiiiiiieeee et 26
Interrupt -Driven BIOCKScuoiiiiiiiiicee e 27
2.3.1 Interrupt HANAIING oo e 27
2.3.2 TIimMed INTEITUPLS ..eeeeeiie ettt e e e e e e 29
2.3.3 1O INEITUPLS .eeieeiiee ettt ettt e e e e e e e e e e e e annes 29
2.3.4 MOdUIE INTEITUPLS oeeeeeiieiiee ettt 29
2.3.5 Interrupt Block Schedul NGccooiiiiiiiiiiiice e 30
Program Data ..o e 32

i

CPU Programmer Bs

GFK-2950K

Contents

3.1

3.2

3.3

3.4
3.5
3.6
3.7
3.8

3.9

3.10

3.11
3.12

Section 4

4.1

Ref erence Manual Contents

Feb 2023

VAIADIES ... 33
3.1.1 Mapped Variables ... 33
3.1.2 Symbolic Variables ... 33
3.1.3 1O VAIADIES ...t 35
L4 AITAYS oot 38
3.1.5 Variable INdeXes and AITAYSccccooiiiieiiiiieeiiee e 38
REFEIENCE MEIMOIY ..ttt 42
3.2.1 Word (Register) REfEreNCEeSccoeeiiiiiiiiiieeiiee e 42
3.2.2 Bit (Discrete) REfEreNCEScooiiiiiiiiiiiiiiie e 45
User Reference Size and Default ... 46
3.3.1 %G User References and CPU Memory Locationsccccceeeviveeenne a7
GeniuS GIODAI DALAcooviieiiiiieiiie e a7
Transitions and OVEITIAdESccccvvvveiiiiiiiiiiceecc e AT
Retentiveness of Lo gic and Dataccccvvveiiiiiiiiiieniicce e 48
DAL SCOPE .ottt 49
System Status REFEIENCESuuuiiiiiiiiiiiiiieee e 50
3.8.1 YOS RETEIENCES. ...cuviiiiiiiiie ittt 50
3.8.2 %SA, %SB, and %SC REfEIENCES......cccoieeeeieieeeeeeiceeeeee e e e eeaeens 52
3.8.3 FaUlt REFEIENCES ...cciuiiiiiiiiie et 56
How Program Functions Handle Numerical Data ccccccceeeeeeeiiiiiiiiiieeee, 58
3.9.1 DAA TYPES ..eeeteiieeeieiiie ittt 58
3.9.2 Floating Point NUMDEIS ...oiiiiiiiiiciiee e 59
User Defined TYPeS (UDTS) coviiiiiiiieieiie e e e 62
3.10.2WOrking With UDTS ...cciiuiiiiiiiiiiiiiie ittt 62
3.10.2UDT PIrOPEITIES ..uveeeeiitiieeiiieie ettt ettt 63
3.10.3UDT LIMIES uiiiiieeeieiiiiie e e iee et et e e e et ens e e e e e e snnteeeeeeeennnneeen 64
3.10.4RUN Mode Store Of UDTS ...ocoiiiiiiiiiiieiiiieeiiieieee e e 64
3.10.5UDT Operational NOLEScccoiiuiiiiieiiiiiiiieeeiiiee et e e seeea e 65
Operands for INSIIUCHIONS oiiiiiee e 66
Word -for -Word ChaNgEScoiiiiiiiiii e 68
3.12.1Exception: Symbolic Variablescccccccoeeiiiiiiiiiccieee e 68
Ladder Diagram (LD) Programming 69
Advanced Math FUNCHONScooiiiiiiii i 70
i

CPU Programmer Bs

GFK-2950K

Contents

4.2

4.3

4.4

4.5

Ref erence Manual Contents

Feb 2023
4.1.1 Exponential/Logarithmic FUNCLIONS ccccevvivieiiiiieiiniiec el 1
4.1.2 SQUAIE ROOLoeiiiiiiiiiiiiicee e 72
4.1.3 Trig FUNCLONS .iiiiiiiie it ccee e s e e ess e e e e s e nnnraeeeeeanns 74
4.1.4 Inverse Trig T ASIN, ACOS, and ATAN......cccoceiiiiieiiiie e 75
Bit Operation FUNCHIONS coiiiiiiiiiie it 76
4.2.1 Data Lengths for th e Bit Operation FUNCLIONS coccvveriiiiiiiiice, 78
4.2.2 Bit POSITION 1eiiuviiiiiciiieiee ettt 78
4.2.3 Bl SEOUENCET ..ccceeieiei e e ettt s e e s e e e e e e e e st e e e e e snrnneeaee s 80
4.2.4 Bit Set, Bit CIEAIcociviiiiiiiieiee e 83
A.2.5 BIl TESE 1ottt e 85
4.2.6 Logical AND, Logical OR, and Logical XORcoooiiiiiiiiiiiiene e 86
A.2.7 LOGICAI NOT oottt ettt et e b e e 89
4.2.8 MaSKed COMPAIE ...ouiiiiiiiie ettt ettt et e e e 90
4.2.9 ROLALE BIS ..iiteiiiiiiiiiiiiie et 95
A 0 1] 1 8 2 SRR 96
OIS et 99
4.3.1 COil CheCKING ..ot 99
4.3.2 Graphical Representation of COilSooiiiiiiiiiiiiiii e 99
4.3.3 Set Coil, RESEL COll.....uuueeeeeiieieeeeeeeeeeeee et 101
4.3.4 Transition COilSc..oeiiiiiiiiiiee e 102
(070] 31 r= [0 1< TP PP PP PPPPPRPPPPPRTP 106
4.4.1 ContinuAtion CONLACEccoiviiiiiiie et 107
A.4.2 FAUIt CONTACT ..oiviiiiiiiii ettt 108
4.4.3 High and Low Alarm CONtacCtScccccvvvviiiiiiiiiiieiecceiiiirieieree e e 109
4.4.4 NO FaUIt CONEACToiiiiiiiiiiiie ittt 110
4.4.5 Normally Closed and Normally Open Contacts —cccccceeviiiiieeeennnns 111
4.4.6 Transition CONACES c.eeviiiiiiiiiiiie ittt 112
CONIOl FUNCHIONS ittt bee e aneee e 118
A.5.1 DO O i 119
4.5.2 EAQE DEIECIOIS ...eeeiiiiiiiiiiiiie ettt e e e e b e e e e 123
4.5.3 DIUM o 127
A.5.4 FOF LOOP ittt ittt 133

ii

CPU Programmer Bs Reference Manual Contents

GFK-2950K

Contents

4.6

4.7

4.8

Feb 2023

4.5.5 MaSK /O INTEITUPL .eeeiiiiiieiiiee ettt 136
4.5.6 Read SWItCh POSItIONccociiiiiiiiiiii e 137
4.5.7 SCaN S IO......ciiiiiiiiiii e 138
4.5.8 SUSPENA /O .eriiiiee ittt e e 140
4.5.9 Suspend or Resume /O INterru Pt ...cccovccvieeeei i 142
CONVEISION FUNCHIONS ...viiiiiiiieiiiet ettt 143
4.6.1 CONVEIT ANGIES ..ovviieeeiiiiiiee e e e e e e e e s e e e e aan 144
4.6.2 Convert UINT or INT t0 BCD4ooiiiiiiiiiieiee et 145
4.6.3 Convert DINT t0 BCDS8ccociuiiiiiieiieiieeieiee e e 147
4.6.4 Convert BCD4, UINT, DINT, or REAL t0 INT ...ccoviiiiiiiiieieeie e 148
4.6.5 Convert BCD4, INT, DINT, or REAL t0 UINTcccooiiiiiiieieienieee, 150
4.6.6 Convert BCD8, UINT, INT, REAL or LREAL t0 DINTcccovviiiiiiinnnnnnnn. 152
4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL........... 154
4.6.8 Convert REAL t0 LREAL........oviiiiiiiiicc e 156
4.6.9 Convert DINT t0 LREALccuviiiiiiiec e 157
4.6, 10TTUNCALE ...eetiiiii ittt ettt et e e e e e e e 157
(07010] 01 (=] £ T PO PP PP PPPPPPRP PP 159
4.7.1 Data Required for Counter Function Blockscccccevviiiiiiiiiiens 159
4.7.2 DOWN COUNTET ..eiiiiiiiiiiiiie ettt et e e e e e e 160
A.7.3 UP COUNTET .ottt ettt e e e 162
Data MOVE FUNCLIONS ...eiiiiiiiiiiiiie ettt 164
A.8.1 AITAY SIZE ..eeiiiiiie ettt 165
4.8.2 Array Size Dimension Function BIOCKSccccociiiiiiiiiiiiees 166
4.8.3 BIOCK ClEAeeeiiiiiit ettt 169
4.8.4 BIOCK MOVEooiiiiiiiiiiiii ittt 171
4.8.5 BUS_ FUNCHONScoiiiiiiiieeeee et e vt ee e e e e e e e 172
4.8.6 Communication Request (COMMREQ)ccccevieiiiiiiiiiie e 179
4.8.7 Data INtialiZzationcocoiiiiiiiiiiecic e 184
4.8.8 Data INitialize ASCI ...cooviiiiiiiiee e 186
4.8.9 Data Initialize Communications Request ccccoocvveriiieeiiiinieeeennn 187
4.8.10Data Initialize DLANooiiiiiiieeiieie e 188
A.8.LLIMOVE ...ttt 189
iv

CPU Programmer Bs Reference Manual Contents

GFK-2950K

Contents

4.9

4.10

411

Feb 2023

4.8.12MOVE DALAcooiiriiiii it 191
4.8.13MoVe Data EXPICITeveiiiiieiiiiieiiie et 192
4.8.14MOVE From FIAtcooviiiiiiiii it 193
4.8.15MOVE 10 FIAL ...eeiviiiiiieiie e 195
T 1] i B =T 1] (T SRS 197
A.8.L7SIZE OF it 199
A.8.LBSWAD ...eeeeeeeeeeeeee et e e st es e ettt e et s aee st e et n et n e e, 200
Data Table FUNCHIONScccocviiiiiiiii i 202
4.9.1 AITAY MOVE ..ottt e e 204
4.9.2 AITaY RANGE ..ottt 207
4.9.3 FIFO REAM.....cci ittt 209
4.9.4 FIFO WIIE ooiiiii ittt ettt e e e et e e e e e e nnnneeeeeeann 211
4.9.5 LIFO REAM.....cciiieiiiie ettt ettt e et e e e ee e e e e enne 212
4.9.6 LIFO WIIE .oeieiiiiiiiiie ettt ettt e e et e e e e e nnneeeeeeeann 213
A.9.7 SEAICN.....uiii it 215
4.9.8 SO ittt 218
4.9.9 Table REAUcciiiiieiii e 219
4.9.10TADIE WITLE ..vveeeeeeeeeee oot eee et et eee s eee et se e eeneneeeeeees 220
Math FUNCHIONSooiiiiii e 222
A.10.LOVEITIOW ittt 223
4.10.2ADSOIULE VAIUE ..ot 223
A L0 BAAA e a e e 224
A L0 ADIVIOR ...ttt e e enre s 226
4. 10.5MOTUIUS .ot 228
A LOBMUIIPIY oottt n et s et s et ee et 228
A.10.7SCAIE. ...t 231
O 1S o1 = Lo SRR 232
Program FIOW FUNCHONS ueiiiiiiiiieiie e 233
4. 11 1AIgUMENTE PIESENT ettt ee e e eeaeeneaes 234
I 0 - V| SRS 236
4. 1T 3COMMENT Loeiiiiiiiiiit ettt e e e rme et e e e s e e e e aane 240
A 1L ATUMPN e e e e e ennnn 240
\

CPU Programmer Bs Reference Manual Contents

GFK-2950K Feb 2023

4.11.5Master Control Relay/End Master Co ntrol Relaycccccvevvinienne 241

A ATBWITES ..ttt ettt e e e e e ettt e e e e et e e e e e anta e e ennne s 243

4.12 Relational FUNCLIONSc.uiiiiiiiiiiiiic e 244

4,12 TCOMPAIE ..eveiiieiiiiiit e ettt ettt e e st e e e s e e e e eeeean 245
4.12.2Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than

246

4.12.3EQ _DAT A - 249

A L2, 4ARANGE ..ttt e e e et r et ab e 250

o B 0 1 =T £ TP PP PT PPN 251

4.13.1TIMEA CONTACESvveeiiiiie et 251

4.13.2Timer FUNCLION BIOCKScuvvviiiiiieiiiec e 252

Section 5 Function Block Diagram (FBD)cccccceeeeeee. 273

5.1 NOtE ON REENIIANCY .iiiiiiiiiiiiiiiiiie ettt aan e e e e e e e eereaneanes 274

5.2 Advanced Math FUNCHONScccooiiiiiiiiiieiiiee e 274

5.2.1 EXPT FUNCHON.uiiiiiiiiiiiit ettt e e 276

5.3 Bit Operation FUNCLIONS cuiiiiiiiiiiiiie et 276

5.3.1 Logical AND, Logical OR, and Logical XORccccccvrmirrirererieniinnns 278

LR F2A o To [o7 | I N[N P URURRRR 280

5.4 COMMENTS ..ttt ettt e st e e e e e s 281

5.4 1 TeXEBIOCK ..cciiiiiiiiie et 281

5.5 CompariSON FUNCHONS ...cueiiiiiiieiiiiieitie ettt 282

5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than

283
5.6 CONLrol FUNCLIONS ...o.iiiiiiiiiieiiie et 284
5.7 COUNTEIS .ottt ettt ettt et e e e e e e e s amr e e e e e e 286
5.8 Data MOVE FUNCHONSooiiiiiiiiiiieiiiiie ittt 287
5.8.1 FAN OUL ...ttt 290
5.8.2 MOVE DALA ...ttt 291
5.9 Math FUNCHONS ..coeiiiiiiiiici e 295
5.9.1 OVEIIOW ...t 296
ST T Ao [RS 297
5.9.3 DIVIAE .ttt 298
5.9.4 MOAUIUS ..ottt et 299

Contents Vi

CPU Programmer Bs Reference Manual Contents

GFK-2950K Feb 2023
5.9.5 MURIPIY oo e 300

5.9.6 NEQALE .ciiiiiiieii e 301

B5.9.7 SUDIACE ...t 302

5.10 Program FIOW FUNCLONS oiiiiiiiiiiiiie e 304
B.LT THMEIS oottt re bttt b et 305
5.11.1Built-in Timer FUNction BIOCKSccccoiiiiiiiiiiicincec e 305
5.11.2Standard Timer FUNction BIOCKS ccccoiiiiiiiiiic e 306

5.12 Type COoNVErsion FUNCLONScccciiiiiiiireeeiiiiiisisieir e e e s ssieee e e s e snsee e e esrneeeeeeenns 307
5.12.1Convert WORD tO INT ..ot 309
5.12.2Convert WORD t0 UINT ...ooiiiiiiiiiiieciie et 310
5.12.3Convert DWORD 10 DINT ...coooiiiiiiiiiiiiiie et 310
5.12.4Convert INT or UINT t0 WORDcooiiiiiiiiiiiiecc e 311
5.12.5Convert DINT t0 DWORD.......ccccotiiiiiiiiiee it 312
Section 6 Service Request FUNCLONcvvieeiiiiinnnnn. ..313
6.1 Operation of SVC_REQ FUNCHONccoiiiiiiiiiiiiiiieiiee e 314
6.1.1 Ladder DIAgramueeeeeeeiiiieieieeeeeeeieiieee e e aeaa e e e e e e e s s e sarereaaaaaaaaaaaaaes 314

6.1.2 Function BIOCK Diagramccccvviiiieiiiiieieeeeiiievsiee e e e e e e e e e e eeannens 316

6.2 SVC_REQ 1: Change/Read Constant Sweep TiMercccccveeeeiiviireeenienn. 317
6.2.1 To disable Constant SWeep MOAE:ccccvvvieveiiiieieieeeeeceiiiiereeeee e 317

6.2.2 To enable Constant Sweep mode and use the old timer value: ... 317

6.2.3 To enable Constant Sweep mode and use a new timer value: 318

6.2.4 To change the timer value without changing the selection for sweep mode

STAL. et 318
6.2.5 To read the current timer state and value without changing either: 318
6.3 SVC_REQ 2: Read Window Modes and Time Values................cccecvvvvvrnnnnn. 319
6.4 SVC_REQ 3: Change Controller Communications Window Mode 321
6.4.1 To disable the controller communications window: ccccoccveennne 321
6.4.2 To re-enable or change the controller communications window mode: 321

6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value

... 322
6.5.1 To disable the Backplane Communications window: ccccceeee 322
6.5.2 To enable the Backplane Communications window mode: 322

6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value .. 323

Contents vii

CPU Programmer Bs Reference Manual Contents

GFK-2950K Feb 2023
6.6.1 To disable the Background Task WindOW:ccccooiviiiiiieiniiniinens 323
6.6.2 To enable the Background Task window mode:cccoocvvieeeennnnne 323
6.7 SVC_REQ 6: Change/Read Number of Words to Checksum 325
6.7.1 Toread the WOrd CO UNT: ..oouiiiiiiiiiiiiiie e 325
6.7.2 To set a NeW WOrd COUNT: ...ooiiiiiiiiiie it 325
6.8 SVC_REQ 7: Read or Change the Timeof-Day CIOCKcccuveveeeiiiiiinnnnns 327
6.8.1 Parameter BIOCK FOrMALSccoeiiiiiiiiiiiieiiiieie e 327
6.9 SVC_REQ 8: Reset Watchdog Timer.........cceeiiiiiiiieee e 335
6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweepccccceevvvveennn. 336
6.11 SVC_REQ 10: Read Target Name.......cccviiiiiiiiiiiieiiee et 337
6.12 SVC_REQ 11: R&d Controller IDcooiiiiiiiiieiiiiee et 338
6.13 SVC_REQ 12: Read Controller Run State..........cccccceveveeeeeiiiiiiiiieieeeeeee e, 339
6.14 SVC_REQ 13: Shut DOWN (STOP) CPULL...c..eeveieeveeeeeeeeseesereeeveeesesereseennns 340
6.15 SVC_REQ 14: Clear Controller or I/O Fault Tableccccccoviveeiiiiiiirieieeen. 341
6.16 SVC_REQ 15: Read Lastogged Fault Table Entrycccccoiiiiiiiiiiiiennnn. 342
6.17 SVC_REQ 16: Read Elapsed Time CIOCK..........ccccvviiiiiiiiiiiirceciiiiiiiieeeeeeee 345
6.18 SVC_REQ 17: Mask/Unmask /O Interruptccoooeiiiinviiieiien s eeeeciininnns 348
6.18.1Masking/Unmasking Module Interrupts —ocooeeeeiiiiiiiiiiceee e, 348
6.19 SVC_RB 18: Read I/O Forced Statuscceeeeeeeeiiiiiiiiiieieeeeeee e 350
6.20 SVC_REQ 19: Set Run Enable/Disable............cccoouiiiiiiiiieiiiceee 351
6.21 SVC_REQ 20: Read Fault Tables.........coiiiiiiiiiiiiiieec s 352
6.21.1Non-Extended FOrMALSceeeiiiiiiiiiiee e 352
6.21.2Extended FOrMALSccccuiiiiiiiiiiiiiie ettt 356
6.22 SVC_REQ 21: UseDefined Fault LOGQINgcooviiieiiiiieiiieeeeiiiee e 361
6.23 SVC_REQ 22: Mask/Unmask Timed INterruptsccccceveeiiiiiiiiiiieneee e, 363
6.24 SVC_REQ 23: Read Master CheckSUmMccooiiiiiiiiiiiiiiee e 364
6.25 SVC_REQ 24: ReSEt MOAUIE........cocuiiiiiiiiiiiiic et 366
6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums 368
6.27 SVC_REQ 29: Read Elapsed Power DOWN TiMe........ccuueeieeiiiiiiieie e 369
6.28 SVC_REQ 32: Suspend/Resume I/O INterruptccooviiiieieeiiiiiiiniiiieeeeenne 370
6.29 SVC_REQ 45: SKip NeXt I/O SCAN......cciitiiieiiiiiaiiiie ettt 372
6.30 SVC_REQ 50: Read Elapsed Time CIOCK..........cccveiiiiiiiiiiiieeeiiee e 373
6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweepccccceeeenne 375
6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storagecccceeeeeneee. 376
6.32.1DISCrete MEMIOIY eeiieeiiiiiieie ettt eee e e e e e eee s 376

Contents Viii

CPU Programmer Bs

GFK-2950K

Contents

6.33

6.34

Section 7

7.1

Ref erence Manual Contents

Feb 2023
6.32.2Restoring data values on CPE200 SEreSccccuveeeeeiiiiiiiiiieeiceeeeeees 377
6.32.3Storage Disabled ConditioNS ccoiiiiiiiiiieiiie e 377
6.32.4Maximum of One Active INSIrUCHION oooviiiiiiiicee e 378
6.32.5ENO and Power Flow To The Rightccccoviiiiiieei e 378
6.32.6Parameter BIOCKccccoiiiiiiiiiieiiee e 378
SVC_REQ 57: Logic Driven Write to Nonvolatile Storagecccccoevvveeenen. 382
6.33.1Length of Data WIHEN vevvieiiiiieec e 382
6.33.2WIt€ FrEOUENCY ..coiieiieeie e ittt e e sttt e e et e e e e e st ne e e e e e 383
6.33.3Nonvolatil e Storage Life Spancccccccveeeeeiiiiii e, 383
6.33.4DISCIete MEMOIY ..ovviiiiiieeeee et e 384
6.33.5Creating a Removable Non volatile Storage Backupcccveveeee. 384
6.33.6REIENLIVENESS ...ooiiiiiiiiiiie et 385
6.33.7Maximum of One Active INSIFUCLION ooiiiiiiiiiie e 385
6.33.8Storage Disabled ConditioNScooiviiiiiiiieiiiee e 385
6.33.9Er0r CheCKING ..oovviieiiiiie e 385
6.33.10 FragmentatiOnccccooviiiiiiiiiiiiieee e 386
6.33.11 When nonvolatile storage is fullcooooiiiiiiiiiii e 386
6.33.12 EQUANIEY v.veeveeeeeeeeeeee et e e et eneee et eren e 387
6.33.13 REAUNTANCY ..uvvviiiiiiiiiiiiieiee ettt e e a e e e e e e e e 387
6.33.14 ENO and Power Flow toth e Rightcccvvviiiiiiiiiiiiiiccee, 387
6.33.15 Parameter Block for SVC_REQ 57........cooiiiiiiiiiiiiiiieee e, 388
SVC_REQ 63: Logic Driven Write of Reference Memorycoeeene 391
6.34. LWt FIEQUENCY ...eeiiiiiiiiiiiie ittt ete ettt 391
6.34.2Data DEIETIONccoiiiiiiiiiie et 392
B.34.BEQUANIY ..ottt ettt 392
6.34.4Function BIOCK OPErationccccooieeeiiieeeiiiieie e 392
6.34.5SHAtUS WOI ..ot 394
6.34.6SVC_REQ 63 EXaMPI@...couiiiiiiiiieiiiie e 394
PID Built-In Function Blockccccvvvienn. 396
Operands of the PID FUNCLON cooiiiiiiiii e 398
7.1.1 Operands for LD Version of PID Function BIOCK cccccvveviiinennnen. 398
7.1.2 Operands for FBD Version of PID Function Blockcccccoeiieeen. 399
ix

CPU Programmer Bs Reference Manual Contents

GFK-2950K Feb 2023
7.2 Reference Array for the PID FUNCLON ccooiiiiiiiec e 400
7.2.1 Scaling Input and OULPULS ...oeeeeiiiiiieiiiiee e 400

7.2.2 Reference Array Parameterscccoceioiieioiiiimiieeiiee e 401

7.3 Operation of the PID FUNCLONccoiiiiiiiiieiciiice et 407
7.3.1 AUtOMALIC OPETAtION ..ooeiiiiieiiiiie ittt 407

7.3.2 Manual OPEratioN ccueiiiiiiieiiiiie ettt 407

7.3.3 Time Interval for the PID FUNCLION ooiiiiiiiiiiiee e 408

7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations 408
7.4.1 DEriVatiVe TEIMM ..oiiiiiiii ittt 410

7.4.2 Error TerM MOOE ...oviiiiiiiii ettt 410

7.4.3 Derivative Action 0N PV Bitcccooiiiiiiiiiiiecece e 410

7.4.4 Combined Operation of Error Term and Derivative Action Modes 411

745 CV BIBS TEIM ittt 411
7.4.6 CV Amplitude and Rate LIMiItSccoeviviiiieeeiiiiii e, 411
7.4.7 Sample Period and PID Function Block Schedulingccccvvveeeee... 412
7.5 Determining the Process CharacteristiCS cccvvvveeiiiiiireeeeien e 413
7.6 Setting TuNING LOOP GAINS ...coiuviiiiiiiiieiiiie ettt 415
7.6.1 Basic lterative T uning ApProachcccccoeiiiieiniiniie e 415

7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach 416

7.6.3 Ideal Tuning Methodcooiiiiiiiiii e 416

7.7 PID EXGMPIE oottt 417
7.7.1 Reference Array Initialization using %M00006 ccccccvveriieeennnnn 417
Section 8 Structured Text (ST) Programming 419
8.1 LanQUAQE OVEIVIEWeeiiiiiiieiiiie ettt 419
8.1.1 StAtEMENIS ...ooiiiiiiiiiiiii e 419
8.1.2 EXPIESSIONS ...eeiiieiiuiiiiieee ettt ettt e ettt e e e e ettt e e e ee e e e e e et e e e e e e e anbeeeeas 421
8.1.3 OPEIALOIS ..eiiiiiiie ittt e bbb r e e e e e eeas 421
8.1.4 Structured TeXt SYNTAXeeeiieiiiiiiieieeiiieiieie e 422

8.2 SHAEMENT TYPES .ttt 425
8.2.1 ASSIgNMENt STAtEMENT viiiiiiiiiiiiee e 426

8.2.2 FUNCHON Call .. 427

8.2.3 RETURN Stal@MENL.....cciuiiiiiiieiiieiiieiteeieriee sttt see s venee e see e 431

Contents X

CPU Programmer Bs

GFK-2950K

Contents

Section 9

9.1

9.2

9.3

9.4

Ref erence Manual Contents

Feb 2023
8.2.4 IF STAEIMENT ..ottt 431
8.2.5 CASE StatemMeNnt........uviiiiiiiiiiiiiee et 433
826 FOR R DO St.at.emenl.S. ., 435
8.2.7 WHILE Statementcooociiiiiiiiiiiiiiin e 437
8.2.8 REPEAT STaeMENL......ccii e e 438
8.2.9 ARG_PRES Statement.......covviiiiiiiiiiiiiei i 439
8.2. LOEXIt STAEIMENT ..c.eviiiiiiiiiiie et 440
8.2.11Data_Qual Function Block s for Structured Textcccccvvvvvvveeeereenn. 441
DIagnNOSLICS ...oooevivieiiiiiie e cevviie e e e e 442
Fault Handling OVEIVIEWuuiiiiiiiiiiiiiieie e e e e e e e e e e e e e e aeanaeaeae s 445
9.1.1 System Response to FAUILSoocvieiiiiiiiiiiieiiee e 445
9.1.2 FAUIt TADIES .ooiiiiiiieiiee e 445
9.1.3 Fault Actions and Fault Action Configuration —..........cccccceeeviieerninene 446
Using the Fault TAbIESooiiiiiiiii e 447
9.2.1 Controller Fault Tablecooiiiiiii e 447
9.2.2 1/O FAUIE TADIE ..o 449
System Handling of FAUItSuvviiiiiiiiiiiic e 451
9.3.1 System Fault REfErENCEScocoiiiiiiiiiiie e 452
9.3.2 USING Fault CONACES ...vvviieiiiiiiiiie e eseee e e 455
9.3.3 USING POINt FAUILSooiiiiiiiiiiiecie et 457
9.3.4 Using Alarm CONACEScvivviiiieeeeee e 457
Controller Fault Descri ptions and Corrective ACtioONSccceevieeiiiieeennn 458
9.4.1 Controller FAult GrOUPS oveiiiiiiiieiiiie ettt 458
9.4.2 Loss of or Missing Rack (Group 1)ccceeeviveeiiiiieiiiiiere e 459
9.4.3 Loss of Option Module (Group 4)oooeeieeiiiieeee e 460
9.4.4 Addition of, or Extra Rack (Group 5)cccooviiiiieiiiiiiiiiiecieee e 461
9.4.5 Reset of, Addition of, or Extra Option Module (Group 8) cc...... 461
9.4.6 System Configuration Mismatch (Group 11) ...ccocceeeeiiiiiiiieeeiiiiieeee 462
9.4.7 System BuS Error (Group 12)c.eeeeeiiiiiiiiieeeiiiieeeiee e 470
9.4.8 CPU Hardware Failure (Group 13)ccccoiiieeiiiiieiiieeee e 470
9.4.9 Module Hardware Failure (Group 14)cooooeeiiiiieiieee e 471
9.4.100ption Module Software Failure (Group 16) ccccceeeviieeeiiieeeiiieene 472
Xi

CPU Programmer Bs

GFK-2950K

Contents

9.5

Ref erence Manual Contents
Feb 2023
9.4.11Program or Block Checksum Failure (Group 17) ...cccccovivieiiineeiiinens 473
9.4.12Battery Status (Group 18)c.cceeeiiiiieiiiiieiiiieiee e 474
9.4.13Constant Sweep Time Exceeded (Group 19) ...ccoccveeviviviereeeviiiiiennnns 475
9.4.14System Fault Table Full (Group 20)ccocveeeiiiiiiiee e 475
9.4.151/0 Fault Table FUll (Group 21)ccceiiciiiieee e 476
9.4.16User App lication Fault (Group 22)ccooccirereeeiiiiieieeeeeee e e seiiveea e 476
9.4.17CPU Over-Temperature (Group 24) ...ccccceeeeeeiiuieeeeeeiiieeensieeee e e s snnnes 478
9.4.18Power Supply Fault (Group 25)ccceeiiiiiiiiiiieeiiiiceee e 479
9.4.19No User Program on Power -Up (Group 129)ccccevviveeiiieeenninennn 479
9.4.20Corrupted User Program on Power -Up (Group 130)cccceevvveeennen 480
9.4.21Window Completion Failure (Group 131)cccocviiieeiiiiieiiiie e, 480
9.4.22Password Access Failure (Group 132)coocceeiiiieeiiiieeiiinieee e 481
9.4.23Null System Configuration for RUN Mode (Group 134) cccceveveeeee 481
9.4.24CPU System Software Failure (Group 135)cccccvvvvvvriiieeriiiereeeeiinnns 482
9.4.25Communications Failure During Store (Group 137) ..ccccccvvvvvveeenneenn. 483
9.4.26Non -Critical CPU Software Event (Group 140)ccooeeeivvvvvvnnennen, 485
I/O Fault Descriptions and Corrective ACtIONS c.evvvveeiiiiiiee e 487
9.5.1 Fault EXIra DAtAcceeiiviiiiiiiiciiiee et 487
9.5.2 1/O FAUIt GIOUPS ..viiiiiiiiiiieieeeee ettt 487
9.5.3 1/O Fault CateQOri€Suuuuriiiiiiiiiiiieeee et a e 488
9.5.4 Circuit Faults (Categ Ory 1) ..ooeveiiieeeee et 492
9.5.5 L0SS Of BIOCK (CAteQOrY 2) ...ccicueeieiiiiieiiiieeiiieeiiee e 497
9.5.6 Addition of Block (Category 3) ...ooiiiiiiiiiieeiieee et 498
9.5.7 1/O Bus Fault (Category 6)cccceeiiieieiiiieiiiiieiee e 498
9.5.8 Module Fault (Category 8)ccccveiiiiiiiiiieiiiiieiee e 499
9.5.9 Addition of IOC (Category 9)cocueeeiiiiieiiiie e 501
9.5.10Loss of or Missing IO Controller (Category 10)cccceevivveriiieeennnen 502
9.5.1110C (I/O Controller) Software Fault (Category 11)cccceveeriiiiinnnn. 503
9.5.12Forced and Unforced Circuit (Categories 12 and 13) ccccceeeenne 503
9.5.13Loss of or Missing I/0 Module (Category 14)ccccooeiiieeeeiiiiiiiieeenee 504
9.5.14Addition of I/O Module (Category 15) ..o 504
9.5.15Extra I/0 Module (Category 16)cccccceeeiiiiiiieeeeiiiee i e 505
Xii

CPU Programmer Bs Reference Manual Contents

GFK-2950K

Contents

Feb 2023

9.5.16Extra BlOCK (Category 17) ...eeoiiiieeiiiieeiiiee et 505
9.5.1710C Hardware Failure (Category 18)ccccveeeiiiieiiiieeiee e 505
9.5.18GBC Stopped Reporting Faults (Category 19)cccccvvveeeviiiinreeennn, 506
9.5.19GBC Software Exception (Category 21)cccccccvevvrreeeeeiiiiereinieeeeenns 506
9.5.20Block SWitch (Category 22) ..ueuvieeiiciieiee e eeeee e 507
9.5.21Reset Of IOC (CatEQOIY 27) ..vvuveeeiiciieiee e et eeeeee e e e a e e e 507

9.6 Diagnostic LOgiC BIOCKS (DLBS)cccuuriiiiiiiiiiiieiiieiie et 508
LS B A B T S T @] o =T = 11T ISR PRRR 509

9.6.2 EXECULING DLBSoiiiiiiiiiiiiiieieeee ettt e e e e e e 512

9.6.3 Diagnostic Logic Block (DLB) EXamplecccccveeeiiiiiiieieeiiiieiiieieeeee, 515
General Contact INfOrMAtION ooiiiiiiiii e 520
LT gL a1 or= S U o] o Lo SRS 520
xiii

CPU ProgrammerBs Ref erence Manual Warnings and Cautions
GFK-2950K Feb 2023

Warnings and Caution Notes as Used in this Publication

A WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents,
temperatures, or other conditions that could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inatte ntion could cause either personal injury or damage to equipment, a Warning
notice is used.

A CAUTION

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to understanding and
operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide

for every possible contingency to be met during installation, operation, and maintenance . The
information is supplied for informational purposes only, and Emerson makes no warranty as to

the accuracy of the information included herein. Changes, modifications, and/or improvements

to equipment and specifications are made periodically and these changes may or may not be
reflected herein. It is understood that Emerson may make changes, modifications, or

improvements to the equipment referenced herein or to the document itself at any time. This
document is intended for trained personnel familiar wi th the Emerson products referenced
herein.

Emerson may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not provide any license whatsoever to any of
these patents.

Emerson provides the following document and the information included therein as -is and
without warranty of any kind, expressed or implied, including but not limited to any implied
statutory warranty of merchantability or fithess for particular purpose.

Xiv

CPU Programmer Bs Reference Manual Section 1

GFK-2950K

Feb 2023

Section 1 Introduction

Introduction

This manual contains general information about programming a PACSystems CPU.
It also provides detailed descriptions of specific programming requirements.

For a general introduction to the PACSystems family of products, including new
features, product over views, and specifications, see PACSystems RX3i and RSTi-EP
CPU Reference Manual, GFK-2222.

Programming Features

Program Organization
Program Data

Ladder Diagram (LD) Programming

1
1
)l
1 Function Block Diagram (FBD)
1 Service Request Function

1 PID Built-In Function Block

1 Structured Text (ST) Programming
Diagnostics

9 Diagnostics

CPU Programmer Bs Reference Manual Section 1
GFK-2950K Feb 2023

1.1 Revisions in this Manual

Rev | Date Description

Updates to Section 6.33.3 to resolve issue with outdated data and
recommended SVC_REQ 57 usage.

K Feb Updates to Section 4.1.3 to fix the exponent values associated with the
2023 Trig functions input value ranges.
Added Section 6.34.
Updates to Section 3.8.1 to add new %S References.
Updates to support the release of RST{EP Backplane Controllers
(CPE200Series)
Nov . . .
J 2022 Updated fault entries for Section 9.5.3, /O Fault Categories .
Updates to %S0002 definition to provide clarity on when #LST_SCN
transitions from one to zero.
Updates to Section 4.2.3 Bit Sequencer
G June Updates to Section 6.9, SVC_REQ 8: Reset Watchdog Timer
2020 Updates to Section 6.33.2, Write Frequency
Secure Remote STOP-Halt Restart Mechanism.
Feb .
F Updates to the %S reference table, Section 3.8.1.
2020
1 Following EmersonBs acquisition of
£ Nov 2019 made to apply appropriate branding and registration of the product with
\"
required certification agencies. No changes to material, process, form, fit
or functionality.
1 CPE330/CPE400/CPL410 increased block count from 512 to 768 including
D Nov 2018

_Main
Updated for CPE302 throughout.

Updated SVC_REQ 20 for newly implemented feature that makes it

Cc Feb 2018 possible to uniquely identify remote PROFINET 10O faults recorded in the

10 Fault Table by Remote Rack, Remote Slot, Remote Sub -Slot, and Device
ID. Requires RX3i firmware version 9.40 or later.

Added Redundancy and FA_OK System Bits (%S) Section 3.8.1.

B Oct-2017

Changed the document Title and the contact information.

Updated the Titles of the GFKBs whe
PACSystems RX7i and RX3i CPU Reference Manual GFKk2222U Chapters 5 -
11 & Chapter 14 form the content of this new manual, the PACSystems

- May-2015 RX7i and RX3i CPU ProgrammeRdB& Ref e
GFK-2222V and later versions defer to GFK -2950 for CPU progra mming
content.

A May-2017

= | =4 =2 | =2

1.2 PACSystems Programming and
Configuration

Introduction 2

CPU Programmer Bs Reference Manual Section 1
GFK-2950K Feb 2023

PAC™ Machine Edition programming software provides a universal engineering
development environment for all programming, configuration and diagnostics of
PACSystems. A PACSystems CPU is programmed and configured using the
programming software to perform process and discrete automation for various
applications. The supported programming languages are documented in this

manual.

1.3 Migrating Series 90 Applications to
PACSystems

The PACSystems control system provides cost -effective expansion of existing
systems. Support for existing Series 90 modules, expansion racks and remote racks
protects your hardware investment. You can upgrade on your timetable without
disturbing panel wiring.

1 The RX3i supports most Se ries 90-30 modules, expansion racks, and remote
racks. For a list of supported 1/0, Communications, Motion, and Intelligent
modules, see the PACSystems RX3i System Manual, GFK -2314.

1 The RXYi supports most existing Series 90 -70 modules, expansion racks and
Genius networks. For a list of supported 1/0, Communications, and Intelligent
modules, see the PACSystems RX7i Installation Manual, GFK -2223.

1 Conversion of Series 90 -70 and Series 90-30 programs preserves existing
development effort.

9 Conversion of VersaPro and Logicmaster applications to Machine Edition allows
smooth transition to PACSystems.

1.4 PACSystems Documentation

1.4.1 PACSystems Manuals
PACSystemsRX3i and RSTiEP CPU Reference Manual GFK-2222
PACSystems RX3iand RSFTEP CPU Progr ammer Bs GFK-2950

Reference Manual

PACSystemsRX3i and RSTiEP TCP/IP Ethernet Communications
User Manual GFK-2224

PACSystems TCP/IP Ethernet Communications Station Manager User
Manual GFK-2225

C ProgrammerBs Tool kit for PACSystems GFK-2259
PACSystems Memory Xchange Modul es User BGFWW2800U a l

PACSystems Hot Standby CPU Redundancy User Manual GFK-2308

Introduction 3

CPU Programmer Bs Reference Manual

GFK-2950K

1.4.2

1.4.3

1.4.4

1.4.5

Introduction

PACSystems Battery and Energy Pack Manual

PAC Machine Edition Logic Developer Getting Started
Proficy Process Systems Getting Started Guide
PACSystems RXi, RX3i, RX7i and RSTEP Controller Secure
Deployment Guide

PACSystems RX3i & RSTEP PROFINET I/O Controller Manual

RST+EP Manuals

PACSystems RX3i & RSTEP FROFINET 1/O Controller Manual
PACSy st e m&REPREELOO Standalone CPU Quick Start Guide
PACSy st e m&R EPREPELL5 Standalone CPU Quick Start Guide

PACSy st e m&RCoRrSlI&rs Performance Evaluation Manual

RX3i Manuals

PACSystems RX3i System Manual
DSM324i Motion Controller for PACSystems RX3i and Series 90 -30

User Bs Manual

Section 1

Feb 2023
GFK-2741
GFK-1918
GFK-2487

GFK-2830

GFK-2571

GFK-2571
GFK-3012
GFK-3039

GFK-3086

GFK-2314

GFK-2347

PACSystems RX3i PROFIBUS Modul es User Bs GMa2680d a |

PACSystems RX3i MaxOn Hot Standby Redundancy User Bs Man GRK2409

PACSystems RX3i Ethernet Network Interf &GEk2439nit User Bs

PACMotion Multi -Ax i s Motion Controller UserBs
PACSystems RX3i PROFINET Scanner Manual

PACSystems RX3i CEFPROFINET Scanner User Manual

M &RKW2448

GFK-2737

GFK-2883

Ma 1

PACSystems RX3i Serial Communications M@G#KK2HEOs User Bs Manu:

PACSystems RX3i Genius Communications Gateway User Manual

PACSystems RX3i DNP3 Outstation Modul e
Manual

PACSystems RX3i Il EC 104 Server Modul e |

RX7i Manuals

PACSystems RX7i Installation Manual
PACSystems RX7i User's Guide to Integration of VME Modules

Series90-70 Geni us Bus Conmuatol | er User Bs Ma

Series 90 Manuals

GFK-2892

| C695EDS001 User Bs

GRK-2911

G6EHk2948 1 S001User Bs

GFK-2223

GFK-2235

GFK-2017

Series90-30 Genius Bus Controller User Bs ManG@GF&1034

M

CPU Programmer Bs Reference Manual Section 1

GFK-2950K

1.4.6

Introduction

Feb 2023

Distributed 1/O Systems Manuals

Genius |/ O System UserBs Manual GEK-90486-1

Genius |/ O Analog and Discrete Bl ocks USGEK-3436-Manual

In addition to these manuals, datasheets and product update documents describe
individual modules and product revisions. The most recent PACSystems

documentation is available on the Emerson support website
https://www.emerson.com/Industrial -Automation -Controls/support .

https://www.emerson.com/Industrial-Automation-Controls/support

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

Section 2 Program Organization

This chapter provides information about the operation of application programs in
a PACSystems CPU.

91 Structure of a PACSystems Application Program
1 Controlling Program Execution

91 Inter rupt -Driven Blocks

2.1 Structure of a PACSystems Application
Program

A PACSystems application consists of one block -structured application program.
The application program contains all the logic needed to control the operations of
the CPU and the modules in the system. Application programs are created using
the programming software and transferred to the CPU. Programs are stored in the

C P U B s -votatilenmemory.

During the CPU Sweep, the CPU reads input data from the m odules in the system
and stores the data in its configured input memory locations. The CPU then
executes the entire application program once, using this fresh input data. Executing

the application program creates new output data that is placed in the confi gured
output memory locations.

After the application program completes its execution, the CPU writes the output
data to modules in the system. This completes the CPU Sweep.

A block-structured program always includes a _MAIN block. Program execution
begins with the _MAIN block. Counting the _MAIN block, the CPE330, CPE400 and
CPL410 support up to 768 blocks with firmware release 9.70 or later. All other CPU
models support up to 512 blocks. Note that PAC Machine Edition 9.50 SIM 13 or
later is also require d for supporting a block count of up to 768.

2.1.1 Blocks

A block is a named section of executable logic that can be downloaded to and run
on the target controller. The logic in a block can include functions, function blocks
and calls to other blocks.

Program Organization 6

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

2.1.2 Function s and Function Blocks

A function is a type of instruction that has no internal storage (instance data).
Therefore, it produces the same result for the same set of input values every time
it executes.

A function block defines data as a set of inputs and out put parameters that can be
used as software connections to other blocks and internal variables. It has an
algorithm that runs every time the function block is executed. Because a function
block has instance data, that is it can store values, it has a defin ed state.

The following table describes the types of instructions that make up the
PACSystems instruction set.

Instruction Type Instance Data Examples

Functions None BIT_SEQ, ADD, RANGE
Built -in function blocks WORD array. TMR, PID_IND, PID_ISA
Standard function blocks Structure variable. Referto Instance TP, TOF, TON

Data Structures

Note : A user defined function block (UDFB) is a block of logic that can be
called in your program logic to create multiple instances of the block, allowing you
to create a block of logic once and reuse it as if it was a standard function block

instruction. For additional information, refer to

Types ofBlocks and UserDefined Function Blocks (UDFBs)

2.1.3 How Blocks Are Called

A block executes when called from the program logic in the _MAIN block or another
block. In this example, LD_BLK1 is always called. Conditional logic can be used to
control calling a block. For LD_BLK2 to be called, input %I00500 and output
%Q00100 must be ON. For details on using the Call function, refer to Section 4 (LD
programming), Section 5 (FBD programming) or Section 8 (ST programming).

Figure 1
LD_ELK1
" LD_ELK2
100500 Q00100

1| 1|
1t i | CALL)

Program Organization 7

Section 2
Feb 2023

CPU Progr ammereBlanudRef er enc
GFK-2950K

2.1.4 Nested Calls

The CPU allows nested block calls as long as there is enough execution stack space

to support the call. If there is not enough stack space to support a given block call,

an Application Stack Overflow fault is logged. In these circumstances, the CPU

the bl s eRABSEal | of
and resumes execution at the point after the block call instruction.

cannotexecut e ock. Il nstead, it

Note: To halt the CPU when there is not enough stack space to execute a block, there are two
choices. Thebest method is to add logic to detect the occurrence of any User Application
Fault by testing the diagnostic bit %SA38, and then call SVC_REQ 13 to halt the CPU. An
alternative method is to add logic that tests for a negative OK value coming out of the

block and then call SVC_REQ 13 to halt the CPU.

2.15

Program Organization

A call depth of eight levels or more can be expected, except in rare cases where

several of the called blocks have very large numbers of parameters. The actual call

depth achieved depends on several factors, including the amount of data (non

Boolean) flow used in the blocks, the functions called by the blocks, and the number

and types of parameters defined for the blocks. If blocks use less than the

maximum amount of stack resources, more than eight nested calls may be

possible. The call level nesting count s the _MAIN block as level °1.

Types of Blocks

PACSystems supports four types of blocks.

Programming : _
Block Type Local Data Size Limit Parameters
Languages
LD .
. 0 inputs
Block Has its own local data FBD 128 KB
1 output
ST
. . LD)
Parameterized Inherits local data 63 inputs
FBD 128 KB
Block from caller 64 outputs
ST
) 63 inputs
User Defined LD
64 outputs
Function Block Has its own local data FBD 128 KB
(UDFB) ST Unlimited internal
member variables
Inherits local data user memory size |63 inputs
External Block C o
from caller limit (10 MB) 64 outputs

All PACSystems block types automatically provide an OK output parameter. The

name used to reference the OK parameter within a block is YO. Logic within the

block can read and write the YO parameter. When a block is called, its YO parameter

is automatically initialized to TRUE. This will result in a positive power flow out of

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

the block call instruction when the block completes execution, unless YO is set to
FALSE within the logic of the block.

For all block types, the maximum number of input parameters is on e less than the
maximum number of output parameters. This is because the EN input to the block

call is not considered to be an input parameter to the block. It is used in LD
language to determine whether or not to call the block but is not passed into the
block if the block is called.

Program Blocks

Any block can be a program block. The _MAIN block is automatically declared when
you create a block -structured program. When you declare any other block, you
must assign it a unique block name. A block is automa tically configured with no
input parameters and one output parameter (OK).

When a block -structured program is executed, the _MAIN block is automatically
executed. Other blocks execute when called from the program logic in the _MAIN
block, another block, or itself. In the following example, if %M00001 is ON, the block
named ProcessEGD will be executed:

Figure 2 Conditional Block Call

‘ EgdAvailable CALL
1 1 ProcessEGD

L
+ M 00001

Program Blocks and Local Data

Program blocks support the use of %P global data. In addition, each b lock, except
_MAIN, has its own %L local data. Blocks do not inherit %L local data from their
callers.

Using Parameters with a Program Block

Every block is automatically defined to have o
parameter, named YO0. YO is a BO OL parameter of LENGTH 1, passed by initial -value

result. It indicates successful execution of the block. It can be read and written to

by the logic within the block.

Program Organization 9

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

Parameterized Blocks

Any block except _MAIN can be a parameterized block. When you declare a
parameterized block, you must assign it a unique block name. A parameterized
block can be configured with up to 63 input and 64 output parameters.

A parameterized block executes when called from the program logic in the _MAIN
block, another block , or itself. In the following example, if %I00001 is set, the
parameterized block named LOAD_41 will be executed.

Figure 3 Block Call with Parameters

100001 CALLLOAD 41 Qoooo1
h—y
100100 —ABC Y1 T00001
100200 —| X2 Ya— RO0200

Parameterized Blocks and Local Data

Parameterized blocks support the use of %P global data. Parameterized blocks do
not have their own %L data, but instead inherit the %L data of their calling blocks.
Parameterized blocks also inherit the FST_EXE system reference and time -stamp
data that is used to update timer functions from thei r calling blocks. If %L
references are used within a parameterized block and the block is called by _MAIN,
%L references will be inherited from the %P references wherever encountered in

the parameterized block (for example, %L0005 = %P0005).

Note: It is possible, by using Online Editing in the programming software to cause a
parameterized block to use %L higher than allowed because of the way it inherits data.
Using a word-for-word change to restore this reference to a valid address does not correct
the block because the variable still exists in the variable list. Deleting the variable from the
variable list does not cause an update to the CPU, so the parameterized block still sees the
reference out of range fault. To correct this condition, you must remove the unused
variables from the variable list after deleting them from the logic.

Using Parameters with a Parameterized Block

A parameterized block may be defined to have between 0 and 63 formal input

parameters, and between 1 and 64 formal output parameters . A 2Ppbwer out B
(or OK) parameter, named YO, is automatically defined for every parameterized

block. It is a BOOL parameter of LENGTH 1 and indicates the successful execution

of the parameterized block. It can be read and written to by the parameteriz ed

bl ockBs | ogic.

Program Organization 10

CPU Progr ammereBlanudRef er enc

GFK-2950K

Section 2

Feb 2023

The following table lists the TYPEs, LENGTHSs, and parameter -passing mechanisms

allowed for parameterized block parameters (For definitions of the parameter
passing types, refer to Parameter Passing Mechanisms .).

Type Length Default Parameter Passing Mechanism
INPUTS: by reference
BOOL 1to 256
OUTPUTS: by value result; except YO, which is by initial -value result
INPUTS: by reference
BYTE 1to 1024
OUTPUTS: by reference
INT, UINT, and INPUTS: by reference
1to 512
WORD OUTPUTS: by reference
DINT, REAL, and INPUTS: by reference
1to 256
DWORD OUTPUTS: by reference
INPUTS: by reference
LREAL 1to 128
OUTPUTS: byreference
INPUTS: by reference
function block * 1
OUTPUTS: not allowed
INPUTS: by reference
UDFB! 1
OUTPUTS: not allowed
User Defined INPUTS: by reference
1to 1024
Type (UDT) OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way

that parameterized subroutine block (PSB) parameters are passed on 90 -70

controllers. The parameter passing mechanisms of formal parameters cannot be
changed from their default value s.

Arguments, or actual parameters, are passed into a parameterized block whenever
a parameterized block call is executed. In general, arguments to formal parameters
may come from any memory type, may be data flow, and may be constants (when
the formalpar amet er Bs LENGTH is 1). The f ol
arguments relative to this general rule:

1 %S memory addresses cannot be used as arguments to any output parameter.

This is because user logic is not allowed to write to %S memory.

1 Indirect references used as arguments are resolved immediately before the

parameterized block is called, and the corresponding direct reference is passed
into the block. For example, where %R1 contains the value 10 and @R1 is used

as an argument to a call, imm ediately before calling the block, @R1 is resolved

t A maximum of 16 input parameters can be of type function block or UDFB.

Program Organization

owi

11

ng

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

to be %R10, and %R10 is passed in as the argument to the block. During
execution of the block, the argument remains as %R10, regardless of whether
the value in %R1 changes.

In general, formal parameters wi thin a parameterized block may be used with any
instruction or with any block call, if their TYPE and LENGTH are compatible with
what the instruction, function, or block call requires. The following list contains the

restrictions on formal parameters relat ive to this general rule:

1 Formal parameters cannot be used on legacy transitional contacts or coils, or on
FAULT, NOFLT, HIALM, or LOALM contacts. However, formal parameters can be
used on IEC transitional contacts and coils.

1 Formal BOOL input parameters ¢ annot be used on coils or as output arguments
to a function or to a block call.

1 Formal parameters cannot be used with the DO /O function.

1 Formal parameters cannot be used with indirect referencing.

User -Defined Function Blocks (UDFBSs)

Users can define their own blocks, which have parameters and instance data,
instead of being limited to the standard and built -in function blocks provided in the
PACSystems instruction set. In many cases, the use of this feature results in a
reduction in total progr am size.

Once defined, multiple instances of a UDFB can be created by calling it within the

program | ogi c. Each instance has its own uni
instance data, which consists of the function |
all of its input and output parameters except those that are passed by reference.

When a UDFB is <called on a given instance, t |
instanceBs copy of the instance dat a. The val u
one execution of the UDFB to the next.

Note: A member variable is not passed into or out of a UDFB as a parameter. A member variable
is used only within the logic of that function block.

A UDFB cannot be triggered by an interrupt.

UDFB logic is created using FBD, LD or ST. UDFB logic can make calls to all the other
types of PACSystems blocks (blocks, parameterized blocks, external blocks and

other UDFBs). Blocks, parameterized blocks, and other UDFBs can make calls to

UDFBs.

Unless otherwise stated, the PACSystems implemen tation of UDFBs meets the IEC
61131-3 requirements for user defined function blocks.

Program Organization 12

CPU Pro
GFK2950K

Program Organization

gr amme reBlanudRe f er enc Section 2
Feb 2023

Defining a UDFB

To create a UDFB in the programming software, create an LD, FBD or ST block in
the Program Blocks folder. In the Properties for the block, select Functio n Block.

To define instance data for a UDFB, sel ect
Input and output parameters are defined in the same way as for parameterized

blocks. In the following example, three internal member variables are defined:

temp, spee d, and modelno.

Figure 4 Defining Member Variables for a User -Defined Function Block
aramecers |
Inputs | Outputs Members |
Name Type | Length| Public |Ret| InitVal Description
temp BOOL 1 v (Vi1 over temperature
speed DWORD 1 v v motor speed
modelno DWORD 1 v model number

oK I Cancel >> Help

Creating UDFB Instances

You create an instance of a UDFB by calling it in your logic and assigning an instance
name in the function properties.

Figure 5 Creating a User -Defined Function Block

MOTORS

?292?

—IN1 OUT1—

In the following LD example, the first rung creates two inst ances of the UDFB,
Motors. The instance variables associated with the Motors instances are motorl
and motor2. The second rung uses the two instances of the internal variable temp
in logic.

13

Pa

CPU Progr ammereBlanudRef er enc

GFK-2950K

Program Organization

Section 2
Feb 2023

Figure 6 Use of User -Defined Function Block in Ladder Logic

MOTORS MOTORS
maclerd rretars
—{IN1 ouTi— —IN1 ouTi—
molardterp P motors_hot
] L] L ﬁ
LI LI} U |

Instance Data Structures

A variable with the format function_block_name.instance_name is automatically
created for each instance of a UDFB. The instance data makes up a single composite
variable that is of a structure type. The example to the right shows the variable
structures associated with two instances of the UDFB named Motors. Each instance
variable has elements corresponding to parameters In1, Outl ,and YO, and internal

variables model no, speed , and temp .

Instances are created as symbolic variables, never as mapped variables. This
ensures that instance data is only referenced by the instance name and not by a
memory address, which means that no aliases can be created for the UDFB data
elements. The indirect reference operator cannot be used on an instance variable

because indirect references are not permitted on symbolic variables.

Figure 7: Display of Instance Data Structures

o GS R¥7i.Motors.motorl

(_;IE{J Ini

G_E.P modelno
% Outl
GEF vom
JU ‘emp
S, o
= GS RX7i.Motors.motor2
GEF In1
G_E.P modelno
GEF) Out1
G_EP speed
(_;H:' temp
GEF
Tu Yo

speed

14

CPU Progr ammereBlanudRef er enc

GFK-2950K

UDFBs and Scope

Unlike a parameterized subroutine, a UDFB has it

Section 2
Feb 2023

s own %L memory.

By default, internal variables of a UDFB have local scope, making them visible only

to the logic inside the UDFB. They cannot be read or written by any external logic

or by the hardware configuration. An internal variable can be made visib

le outside

the UDFB by changing its scope to global. Logic outside the UDFB can read but

cannot write to internal variables whose scope is global.

Note :

requirements.

If you give internal variables global scope, your application will not conform to IEC

Using Parameters with UDFBs

UDFBs support up to 63 inputs and up to 64 outputs.

Each UDFB has a predefined Boolean output parameter, YO, which the CPU sets to

true upon each invocation of the block. YO can be controlled by logic within the

block and provides the output status of the block.

The following table lists the TYPEs, LENGTHSs, and parameter -passing mechanisms

allowed for UDFB parameters. For additional information

refer to Parameter Passing Mechanisms .

on parameter passing,

Type Length Parameter Passing Retentiveness of
Mechanism Instance Data for
Parameters
BOOL 1to 256 INPUTS: by reference, constant |Not Applicable if passed by
reference, value, or value result. |reference, since not stored in
(Default: value) instance data.
Can be retentive (default) or
non -retentive for value or value
result.
OUTPUTS: by result; except YO, | Retentive (default) or
which is by initial -value result Non -retentive
BYTE 1to 1024 INPUTS: by reference, constant |Retentive for value or value
reference, value, or value result. |result.
(Default: value) Not applicable for reference
OUTPUTS: by result
INT, UINT, and 1to 512 INPUTS: by reference, constant |Retentive for value or value
WORD reference, value, or value result. |result.
(Default: value) Not applicable for reference
OUTPUTS: by result

Program Organization

15

GFK-2950K

CPU Progr ammereBlanudRef er enc Section 2
Feb 2023

Type Length Parameter Passing Retentiveness of

Mechanism Instance Data for
Parameters

DINT, REAL, and |1 to 256 INPUTS: by reference, constant |Retentive for value or value

DWORD reference, value, or value result. |result.
(Default: value) Not applicable for reference
OUTPUTS: by result

LREAL 1to 128 INPUTS: by reference, constant |Retentive for value or value
reference, value, or value result. |result.
(Default: value) Not applicable for reference
OUTPUTS: by result

Function block 1 INPUTS: by reference, constant |Not applicable since passed by

(standard or reference, (Default: reference) reference

PACMotion) OUTPUTS: by result

UDFB? 1 INPUTS: by reference, constant |Not applicable since passed by
reference, friend reference
OUTPUTS: not allowed

ubDT 1to 1024 INPUTS: by reference, constant |Not applicable since passed by
reference reference
OUTPUTS: not allowed

If an input parameter is passed by reference or by value result, it requires an
argument. All other parameters of a UDFB are optional. That is, they do not have to

be given arguments on each instance of the UDFB. If no argument is given for an

optional parameter, the variable element associated with the parameter retains the
value it previously had.

UDFB outputs cannot be passed as arguments to input parameters that are passed
by reference or passed by value result. This restriction prevents modification of a
UDFB outp ut.

Using Internal Member Variables with UDFBs

A UDFB can have any number of internal member variables. The values of internal
variables are not passed via the input and output parameters. An internal variable
cannot have the same name as a parameter of th e UDFB it is defined in.

An internal variable can be:

1 Any basic type supported by PACSystems (BOOL, INT, UINT, DINT, REAL, LREAL,
BYTE, WORD, and DWORD).

2 A maximum of 16 input parameters can be of type UDFB.

Program Organization

16

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

1 A UDFB type. Such member variables are known as nested instances. For
example, the function block Motor can have an internal variable of type Valve
where Valveis a UDFB type. Note that defining a member variable as a UDFB
type does not create an instance.

A nested instance cannot be of the same type as the UDFB being defined
because this would set up an infinitely recursive definition. Nor can any level of

a nested instance be of the same type as the parent UDFB being defined. For
example, the UDFB Motor cannot have an internal variable of type Valve, if the
Valve UDFB contains an internal variable of type Motor.

1 A UDT: a structured, user -defined data type consisting of elements of other
selected data types.

1 A one-dimensional array.

Internal variables of TYP E BOOL can be retentive (default) or non -retentive. All other
TYPESs must be retentive.

Member variables corresponding to a UDFBBs inp
written outside of the UDFB (This is more restrictive than the IEC 61131 -3

requirements for user defined function blocks.) . Member variables corresponding

to the UDFBBs output parameters can be read bu

Internal member variables that have basic types may be given initial values. The

same initial values applytoall i nst ances of a UDFB. | f an initi
internal member variable is set to zero when the application transitions to RUN

mode for the first time.

An internal member variable that is a nested instance has initial values as specified
by its UDFB type definition.

Initial values are not stored during a RUN mode store. They will not take effect until
a STOP Mode Store is performed.

UDFB Logic

An instance of a BOOL parameter or internal variable can be forced ON or OFF, or
used with transition -detecting instructions. The exception to this is that BOOL input
parameters passed by reference cannot be forced or used with the Series 90 -70
legacy transition -detecting instructions (POSCOIL, NEGCOIL, POSCON and
NEGCON) because their value s are not stored in instance data.

All input parameters to a UDFB, and their corresponding instance data elements,
can be read by the logic of that particular UDFB.

Input parameters that are passed by reference or passed by value result to a UDFB
canbewri tten to by their UDFBBs | ogic.canhohput par

Program Organization 17

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

be written to by their UDFB logic. Note that the restriction on writing to input
parameters passed by value does not apply to other types of blocks.

All UDFB output parameters can be b oth read and written to by their logic.

UDFB Operation with Other Blocks

A UDFB instance that is of global scope can be
any other blockBs 1 ogic.

A UDFB instance that is passed (by reference) as an argument to a UDFB can b e
invoked by the UDFBBs |l ogic.

A UDFB instance that is passed (by reference) as an argument to a parameterized
bl ock can be invoked by the parameterized bl oc

The output parameters, and their corresponding instance data elements, of a UDFB

instan ce that is passed as an argument can be read but not modified by the

receiving blockBs Il ogic. The input parameters
an argument cannot be read or modified by the |
variables of a UDFB instance that are passed as argument s cannot be modified by

the receiving blockBs |l ogic. They can be read
scope is local.

External Blocks

External blocks are developed using external development tools as well as t he C
Programmer Bs Tool kit for PACSyst ems. Refer t o
PACSystems, GFKk2259 for detailed information regarding external blocks.

Any block except _MAIN can be an external block. When you declare an external
block, you must assign it a unique block name. It can be configured with up to 63
input parameters and 64 output parameters.

An external block executes when called from the program logic in the _MAIN block
or from the logic in another block, parameterized block, or UDFB. Externa | blocks
themselves cannot call any other block. In the following example, if %100001 is set,

the external block named EXT_11 is executed.

Program Organization 18

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

Figure 8: Calling an External Block in Ladder Logic

10000 CALLEXT 11 Qo000
11 £y
i | oy
100100 —X1 Y1— T00001
100200 —X2 Y2~ R00200

Note: Unlike other block types, external blocks cannot call other blocks.

External Blocks and Local Data

External blocks support the use of %P global data. External blocks do not have their
own %L data, but instead inherit the %L data of their calling blocks. They also inherit
the FST_EXE system reference and the time -stamp data that is used to update timer
function blocks from their calling blocks. If %L references are used within an
external block and the block is called by _MAIN, %L references will be inherited from
the %P references wherever encountered in the external block (for example,
%L0005 = %P0005).

Initialization of C Variables

When an external block is stored to the CPU, a copy of the initial values for its global

and static variables is saved. However, if st atic variables are declared without an

initial value, the initial value is undefined and must be initialized by the C application

(Refer to Global Variable Initialization and
Toolkit for PACSystems, GFK-2259). The saved initial values are used to re -initialize

the blockBs gl obal and static variables whene
Mode to RUN Mode.

Using Parameters with an External Block

An external block may be defined to have between zero and 63 formal input

par ameters and between one and 64 f offlmaw owttBut
(or OK) parameter, named YO, is automatically defined for every external block. YO

is a BOOL parameter of LENGTH 1 and indicates the successful execution of the

block. tcanberead and written to by the external bl oc¢
The following table gives the TYPEs, LENGTHSs, and parameter -passing mechanisms

allowed for external block parameters.

Program Organization 19

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

Type Length Default Parameter Passing Mechanism

BOOL 1to 256 INPUTS: by reference

OUTPUTS: by reference; except YO, which is by initial -value result

BYTE 1to 1024 INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and 1to 512 INPUTS: by reference
WORD OUTPUTS: by reference
DINT, REAL, and | 1to 256 INPUTS: by reference
DWORD

OUTPUTS: by reference

LREAL 1to 128 INPUTS: by reference

OUTPUTS: by reference

uDT® 1to0128 INPUTS: by reference

OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way
that external block parameters are passed on 90 -70 controllers. The parameter
passing mechanisms of formal parameters cannot be changed from their default
values.

You must define a name for each formal input and output parameter.

Arguments, or actual parameter s, are passed into an external block whenever an
external block call is executed.

Arguments may be any valid reference address including an indirect reference, may
be flow, or may be a constant if the correspon

2.1.6 Local Data

Each block or UDFB in a block -structured program has an associated local data
bl ock. _MAI NBs data block memory is referenc:
memories are referenced by %L.

The size of the data block is dependent on the highest reference in its bloc k for %L
and in all blocks for %P.

3 To use a UDT, you must include the UDT def inition as a C structure in the external block. For details, refer to Using a UDT as
a C block input parameter data type in the online help.
Program Organization 20

CPU Pro
GFK-2950K

2.1.7

Program Organization

gr amme reBlanudRe f er enc Section 2
Feb 2023

Figure 9: Relationship of %L & %P to Program Blocks

data — data
%P %L
—
-MAIN Block
block — 2
Data
%L
™ Block | |
3
Data
%L
= Block
4 —

All blocks within the program can use data associated with the _MAIN block (%P).
Blocks and UDFBs can use their own %L data as well as the % P data that is available
to all blocks. The _MAIN block cannot use %L.

External blocks and parameterized blocks can use the Local Data (%L) of their
calling block as well as the %P data of the _MAIN block. If a parameterized block or
external block is call ed by MAIN, all %L references in the parameterized block or
external block will be references to corresponding %P references (for example,
%L0005 = %P0005). In addition to inheriting the Local Data of their calling blocks,
parameterized blocks and external blocks inherit the FST_EXE status of their calling
blocks.

Figure 10: Local Data (%L) Usage by Program Blocks

data
%P

Inherits as %L PSB 1
_MAIN

or
Block e EB1

I data
%L
Inherits as %L PSB 2

BLOGK B2

Parameter Passing Mechanisms

All blocks (except _MAIN) have at least one parameter and thus are affected by
parameter passing mechanisms. A parameter passing mechanism describes the
way that data is passed from an argument in a calling block to a parameter in the
called block, and from the parameter in the called block back to the argument in
the calling block.

21

CPU Progr ammereBlanudRef er enc Section 2

GFK-2950K

Program Organization

Feb 2023

PACSystems supports the following parameter -passing mechanisms: pass by

reference, pass by constant reference, pass by value, pass by value result, pass by

result and pass by initial -value result. An additional type, pass by friend, is available
when the input Data Type is a UDFB. A parameter is defined by its TYPE, LENGTH,
and parameter passing mechanism.

il

When a parameter is passed by reference , the address of its argument is passed
into the function block instance or parameterized block. All logic within the
called block that reads or writes to the parameter directly reads or writes to the
actual argument.

When a parameter is passed by constantreference ,the CPU passes areference
address pointer, symbolic variable pointer, or I/O variable pointer into the
functio n block instance or parameterized block. The instance or block can only
read the reference address or variable.

When a parameter is passed by friend (UDFB inputs only), the CPU passes a
UDFB instance variable pointer into the function block instance or
parameterized block. The instance or block can write to any output or member,
whether public or private, of the UDFB instance variable passed as a friend.

22

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

Tip

In the logic of a UDFB, when you want to pass the UDFB as a friend, assign the pseudo -
variable #This to the input that expects an instance variable of that UDFB type. In the
following example, the In2 input of the LDPSB parameterized block expects a UDFB instance

variable friend of the ABC data type. Inside the logic of ABC, assign # This to In2 in the call to
LDPSB.

Figure 11: Parameter Passing Example

ErrOn
Fan
S

m

#This —{In2

LDPSB Parameters

Inputs | Outputs | Members I

Name Data Type | Length | Pass By | Retentive | Intial Value | Description

» sumnt|BooL w1 vae ||

& 2 ABC ~|1 Fiend |

- | -

1 When a parameter is passed by value (UDFB inputs only), the value of its
argument is copied into a local stack memory associated with the called block.
All logic within the called block that reads or writes to the parameter is reading
or writing to this stack memory. Thus, no changes are ever made to the actua I
argument.

1 When a parameter is passed by value result (UDFB inputs only) , the value of
its argument is copied into a local stack memory associated with the called block,
and the address of its argument is saved. All logic within the called block that
reads or writes to the parameter is reading or writing to this stack memory.
When the called block completes its execution, the value in the stack memory is
copied back to the actual argumentBs address.
actual argument while th e called block is executing, but when it completes
execution, the actual argument is updated.

Program Organization 23

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

2.1.8 Languages
Ladder Diagram (LD)

Logic written in Ladder Diagram language consists of a sequence of rungs that
execute from top to bottom. The logic executionist hought of as power flow, which
proceeds down along the left rail of the ladder, and from left to right along each

rung in sequence.

Figure 12: Explanation of Ladder Diagram Rung

Power . h . Coil
Rail Relay Power flow into function Power flow out of function

\ \ /MIJI.INT / \
100001 aoooot
I = . - - {)_|

ROO123 1IN1 O RODI24

000002 —IN2 \

Multiplication function

The flow of logical power through each rung is cont rolled by a set of simple
program instructions that work like mechanical relays and output coils. Whether or

not a relay passes logical power flow along the rung depends on the content of a
memory location with which the relay has been associated in the pr ogram. For
instance, a relay might pass positive power flow if its associated memory location
contains the value 1. The same relay passes negative power flow if the memory
location contains the value 0.

Usually an instruction that receives negative power f low does not execute and
propagates the negative power flow on to the next instruction in the rung.
However, some instructions such as timers and counters execute even when they
receive negative power flow and may even pass positive power flow out. Once a
rung completes execution, with either positive or negative power flow, power flows
down along the left rail to the next rung.

Within a rung, there are many complex functions that are part of the standard
function library and can be used for operations like moving data stored in memory,
performing math operations, and controlling communications between the CPU

and other devices in the system. Some program functions, such as the Jump
function and Master Control Relay, can be used to control the execution of t he
program itself. Together, this large group of Ladder Diagram instructions and
standard library functions makes up the instruction set of the CPU.

Program Organization 24

CPU Progr amme reBlanud e f
GFK-2950K

Function Block Diagram

erenc

Section 2
Feb 2023

Function Block Diagram (FBD) is an IEC 61131 -3 graphical programming language

that represents the behavior of functions, function blocks and programs as a set of

interconnected graphical blocks.

FBD depicts a system in terms of the flow of signals between processing elements,

in a manner very similar to signal flows depicted in electron

ic circuit diagrams.

Instructions are shown with inputs entering from the left and outputs exiting on

the right. A function block type name is always shown within the element and the

name of the function block instance is shown above the element.

Figure 13: lllustration of Function Block Diagram

Instance of

Wire indicates data flow
from output to input

UDFB, “Weight” 4 Solve Order
Weightf
Weigm/
1
-{EN ENO (= /
=t [NPUT1 OUTPUTH _—I—_
Instance of a
UDFB, "Weighl"\A 1]
Weight2 0
Weight
2
= EN ENO fm=
=1 INPLITH OUTPUT1
a

ADD

IN1

M2

3

Q

1M1

IN2Z

DIV

= Average
o

The order of execution of instructions in an FBD is determined by the following:

a. The display position of the instruction in the FBD editor

b. Whether the inputs to the FBD

instruction are resolved.

To determine the order of execution of FBD instructions in the FBD editor, the FBD

compiler performs the following steps:

1. The FBD compiler scans the instructions in the FBD editor, beginning from

left to right, and top to bottom. When an instruction is encountered, the

compiler attempts to resolve the instruction, that is, the inputs are known.

If the inputs are known, the instruction is solved, and scanning continues

for the next instruction.

2. If the current instruction can
known, then the compiler scans for the previous instruction, using the

not be resolved, that is, the inputs are not

wire connecting the output of the previous instruction to the input of the

current instruction.

Program Organization

25

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

3. If the previous instruction can be resolved, the compiler calculates the
output. The output of the previous instruction then becomes the input to
the current instruction, the current instruction is resolved, and scanning

continues for the next instruction.

4. If the previous instruction cannot be resol ved, that is, the inputs are not
known, then step 2 is repeated until an instruction is encountered, which
can be resolved.

Structured Text

The Structured Text (ST) programming language is an IEC 1131 -3 textual
programming language. A structured text progr am consists of a series of
statements, which are constructed from expressions and language keywords. A
statement directs the PLC to perform a specified action. Statements provide
variable assignments, conditional evaluations, iteration, and the ability to call other
blocks. For details on ST statements, parameters, keywords, and operators
supported by PACSystems, refer to Structured Text (ST) Programming in Section 8.

Blocks, parameterized blocks, and UDFBs can be programmed in ST. The _MAIN
program block can also be programmed in ST.

A block progr ammed in ST can call blocks, parameterized blocks, and UDFBs.

2.2 Controlling Program Execution

There are many ways in which program execution can be controlled to meet the

syst emBs timing requi rements. The PACSyst ems
several power ful control functions that can be included in an application program

to limit or change the way the CPU executes the program and scans 1/O. For details

on using these functions, referto Section 4.

The following is a partial list of the commonly used methods:

1 The Jump (JUMPN) function can be used to cause program execution to move
either forward or backward in the logic. When a JUMPN function is activ e, the
coils in the part of the program that is skipped are left in their previous states
(not executed with negative power flow, as they are with a Master Control Relay).

Jumps cannot span blocks.

1 The nested Master Control Relay (MCRN) function can be use d to execute a
portion of the program logic with negative power flow. Logic is executed in a
forward direction and coils in that part of the program are executed with
negative power flow. Master Control Relay functions can be nested to 255 levels

deep.

Program Organization 26

CPU Progr ammereBlanudRef er enc Section 2
GFK-2950K Feb 2023

1 The Suspend I/O function can be used to stop both the input scan and output
scan for one sweep. I/O can be updated, as necessary, during the logic execution
using DO 1/O instructions.

1 The Service Request function can be used to suspend or change the time al lotted
to the window portions of the sweep.

1 Program logic can be structured so that blocks are called frequently , depending
on their importance and on timing constraints. The CALL function can be used
to cause program execution to go to a specific block. C onditional logic placed
before the Call function controls the circumstances under which the CPU
executes the block logic. After the block execution is finished, program
execution resumes at the point in the logic directly after the CALL instruction.

2.3 Inter rupt -Driven Blocks
Three types of interrupts can be used to start

I Timed Interrupts are generated by the CPU based on a user -specified time
interval with an initial delay (if specified) applied on STOP Mode to RUN Mode
transition of the CPU.

1 1/O Interrupts are generated by 1/O modules to indicate discrete input state
changes (rising/falling edge), analog range limits (low/high alarms), and high -
speed signal counting events.

1 Module Interrupts are generated by VME modules. A single interr upt is
supported per module.

A CAUTION

Interrupt -driven block execution can interrupt the execution of non -interrupt -driven logic.
Unexpected results may occur if the interrupting logic and interrupted logic access the same
data. If necessary, Service Request #17 or Service Request #32 can be used to temporarily
mask I/O and Timed Interrupt -driven logic from executing when shared data is being
accessed.

2.3.1 Interrupt Handling

An 1/O, Module, or Timed interrupt can be associated with any block except _MAIN,
as long as the block has no parameters other than an OK output. After an interrupt
has been associated with a block, that block executes each time the interrupt
trigger occur s. A given block can have multiple timed, 1/0, and module interrupt
triggers associated with it. It is executed each time any one of its associated
interrupts triggers. For details on how interrupt blocks are prioritized, refer to

Program Organization 27

CPU Pro
GFK-2950K

Program Organization

gr amme reBlanudRe f er enc Section 2
Feb 2023

Interrupt Block Scheduling .

If a parameterized block or external block is triggered by an interrupt, it inherits %P

data as its %L local data. For example, a %L00005 reference in the parameterized
block or C block actually references %P00005. Interrupt blocks (C, LD, FDB or ST)
inherit FST_EXE from the _MAIN block.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a
result of an interrupt .

Blocks that are triggered by interrupts can make calls to other blocks. The
application stack used during interrupt -driven execution is different from the stack
used during normal block -structured program execution. In particular, the nested
call limit i s different from the limit described for calls from the _MAIN block. If a call
results in insufficient stack space to complete the call, the CPU logs an Application
Stack Overflow fault.

Note: We strongly recommend that interrupt -driven blocks not be called from the _MAIN block
or other non-interrupt driven blocks because the interrupt and non -interrupt driven
blocks could be reading and writing the same global memories at indeterminate times
relative to each other. In the following example (Figure 14) INT1, INT2, BLOCKS5, and PB1
should not be called from _MAIN, BLOCK2, BLOCK3, or BLOCK4.

Figure 14: Conflict Avoidance when using Interrupt -Driven Blocks

28

