CPU Programmer’s Reference Manual

GFK-2950G
June 2020

PACSystems ™ CPU Programmer’s
Reference Manual

=)
Egees
o —
o —
"

EMERSON.

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

Contents

Section 1

1.1
1.2
1.3
1.4

Section 2
2.1

2.2
2.3

Section 3
3.1

June 2020

INtroductioncccceeiiiiiiiiiiiniininiinnnnnnnnnnneee 1
Revisions in this Manualcoeoieiieee e 2
PACSystems Programming and Configurationcccceeveereenieniieniescieeseeeeenes 2
Migrating Series 90 Applications to PACSYStEMS.......ccereerienertenienienrenieeeesienaene 3
PACSystems DOCUMENTATIONueiiieiiiiieeee e 3
1.4.17 PACSYStEMS MANUAIS ..eeveeeieieiecie et et e ere ettt sre e e e s rnesreeeaneas 3
1.4.2 RX3IMANUAIS ettt sttt 4
1.4.3 RX7ZIMANUALS ottt st st 4
1.4.4 Series 90 ManUAIS......c.corierieriere ettt ettt st 4
1.4.5 Distributed I/O Systems Manuals..........ccecveeeciieecieeiieeecee e 4

Program Organizationcccceeeeeeccneccrnccrnccnnccenecenas 3
Structure of a PACSystems Application Programi..........ceceeeeveevieenieeneeneeneesieeneens 6
20T BIOCKS ettt 6
2.1.2 Functions and FUNCEION BIOCKS.........c.coeeriirierieniinieieneeeee e 6
2.1.3 How Blocks Are Calledcocereeieierieiiieteeeeeee et 7
2.7.4 NeSted CallS ..ottt ettt 7
2.7.5 TYPES OF BIOCKS...cuveetiireieiieeieeieesieeeteete ettt e e e saeesreesnaeens 8
2.7.6 LOCAIDALA ..ottt 19
2.1.7 Parameter Passing Mechanismsccccceeeverieeieerieesieneeneeseeseeeeeeeens 20
2.1.8 LANQUAGES...ceieuiiiieeeirieeeeittte e et te s ettt e e et te e s sbbee e s s ibteeesnbteeseanteeeeaeeeas 21
Controlling Program EXECULIONccveevierieereeree e ste e esie e ee e es 23
INtErTUPE-DriVEN BlOCKS. ...ccuiieiieiieiieeereece et 24
2.3.71 Interrupt Handling c...oooveeniiniiieeeeee e 24
2.3.2 Timed INTEITUPLES ...eeeeeiienieete ettt ettt ettt st e 25
2.3.3 1[O INEEITUPLES ettt ettt ettt st ettt et e st e st e saeeeneeas 25
2.3.4 MOdUle INTEITUPES .euveeeieiierie ettt ettt st 26
2.3.5 Interrupt Block Schedulingoooueeiiiiiiniiieeeee e, 26

Program Datac.ccceeceireeirnncnnncinnecinneccnnncenneness 28
VAEIADIES ..ttt sttt 29
3.7.17 Mapped Variables.........ooieieiieeeee ettt 29
3.7.2 Symbolic Variablescocoeeiiieieeee e 29
3.7.3 /O VARi@bles. ...t 31

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

3.2

3.3

34
3.5
3.6
3.7
3.8

3.9

3.10

3.1
3.12

Section 4
4.1

4.2

June 2020

N B N - 1YL SO PP PP PPPPPPPPPPTN 34
3.1.5 Variable INdexes and AMTaysc.eecueereereeneeeieerieesieesee s e s eeeveeseesvee e 34
N (T = el Y Ty T RSP 37
3.2.1 Word (Register) REfEreNCES.ccvevueereereerie et 37
3.2.2 Bit(Discrete) REfErENCESuicvieciieteeeeceecte et 39
User Reference Size and Defaultcooeoieiiiiiiiiieee e 40
3.3.1 %G User References and CPU Memory Locations..........ceeveevveeieecieeieenne. 40
GENIUS GlODAl DAta...ccueieieeeiieecee et e 41
Transitions aNd OVEITIAESccveeueerieririenienteieeit ettt ettt 41
Retentiveness of LOgic and Dataccccueeeiieeiieeeiiecie et 41
Data SCOPE ...ttt ettt e e e et e e e e e anreeeeeeas 42
SyStem STatus REfEIENCES.....eivuiieiieiieieeeeee ettt 43
3.8.1 %S REFEIENCES .ottt et 43
3.8.2 %SA, %SB, and %SC Referencesccooeeveerierieiiieniieeeeeeee e 45
3.8.3 FaUIt REfEreNCES....ceueeieieieieeie ettt 48
How Program Functions Handle Numerical Dataccccoeeveeeviecieenieeneeneenneenns 50
3.9.T DAta TYPES ceeeeeiiieeieeee ettt ettt e e e et e e e e e ee e e e e e 50
3.9.2 Floating POINt NUMDETS.......ciiiieeeieectee ettt 53
User Defined TYPES (UDTS) couuieeceieeeieeeiieeeiieeeieeeeiteesveeesseeesseesseeesnseessseeessseeas 55
3.10.TWOrking With UDTS ..cecueiieeiieciieeeieeeite et sve e vee et e et e e e e 56
3.T0.2UDT PrOPeItIeS....ueeeeeeieeeeeeeeeeietitee e e e e ettt e e e e s ettt e e e e e s eeesseeaeeeeeeenan 56
3.T0.3UDT LIMIES 1eeeutetereeeienieeteteeeeeteseeeeeeesseesaesseeseessesseeneesseensensesneensessesnnens 57
3.10.4RUN Mode Store Of UDTS.....cecuiereeeieeieenite ettt 57
3.10.5UDT Operational NOLESccccuieeeiieeciieeciee ettt 58
Operands for INSEFUCHIONScoouiiriiieieeeeee et 59
Word-for-Word Changesc..cooueeieenieeniee ettt 61
3.12.1Exception: Symbolic Variablescccceerieiieiiiniieereeseeeeeeeee e 61

Ladder Diagram (LD) Programmingccccceeeeeee.. 62
Advanced Math FUNCHIONSooiiiiiiiiieieeteeeeeetete et 63
4.1.1 Exponential/Logarithmic FUNCLIONSocoveeiieiieiereeceece e 64
4.1.2 SQUATE ROOT cetiiiiiieiiiiieeeee ettt ettt e e e e e e serae e e e e e e 65
4.1.3 Trig FUNCHIONS ceeiiieeeieeeee ettt e et ee e e e e e 66
4.1.4 Inverse Trig — ASIN, ACOS, and ATANcccuiieeiieeeeete et 67
Bit Operation FUNCHIONSeiiieiiieeeeeee et 68
4.2.1 Data Lengths for the Bit Operation FUNCLIONScccecvvevverieniieenieeneesienns 69
4.2.2 Bit POSITION c.ceviiiiiiiiiiiiiicccittccttce ettt 69

ii

CPU Programmer’s Reference Manual

GFK-2950G

Contents

4.3

4.4

4.5

4.6

4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9

Contacts
4.4.1 Continuation Contact

4.4.2 Fault Contact
4.4.3 High and Low Alarm Contacts
4.4.4 No Fault Contact
4.4.5 Normally Closed and Normally Open Contacts
4.4.6 Transition Contacts

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9

Conversion Functions

4.6.1 Convert Angles
4.6.2 Convert UINT or INT to BCD4
4.6.3 Convert DINT to BCD8
4.6.4 Convert BCD4, UINT, DINT, or REAL to INT
4.6.5 Convert BCD4, INT, DINT, or REAL to UINT

Bit Sequencer
Bit Set, Bit Clear
Bit TeSt. oo,
Logical AND, Logical OR, and Logical XOR

Logical NOT

Masked Compare

Rotate Bits w..cevveeeiiiiieeiiieeeeee,

FOrLOOP it
Mask 1/O Interrupt
Read Switch Position
Scan Set 10 . i

Suspend /O

Suspend or Resume |/O Interrupt

Contents
June 2020

CPU Programmer’s Reference Manual

GFK-2950G

Contents

4.7

4.8

4.9

4.6.6 Convert BCDS8, UINT, INT, REAL or LREAL to DINT
4.6.7 Convert BCD4, BCDS, UINT, INT, DINT, and LREAL to REAL
4.6.8 Convert REAL to LREAL
4.6.9 Convert DINT to LREAL
4.6.10Truncate

Counters

4.7.1 Data Required for Counter Function Blocks
4.7.2 Down Counter

4.7.3

Data Move Functions

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9

4.8.13Move Data Explicit
4.8.14Move From Flat
4.8.15Move to Flat

Up COUNLEr e

AITaY SIZe .o,
Array Size Dimension Function Blocks
Block Clear......ooueeieniiniiiiiieceee,
Block Move......cccooeieriiiiiiieeeeeee,
BUS_ Functions
Communication Request (COMMREQ)
Data Initialization
Data Initialize ASCII
Data Initialize Communications Request
4.8.10Data Initialize DLAN
4.8.11Move
4.8.12Move Data

4.8.16Shift Register

4.8.17Size Of
4.8.18Swap

Data Table Functions

4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
4.9.6
4.9.7

Array MOVe.......ooeeiieiiiiiiiiiciiieccne
Array Rangeccooeevveiiiineciiiiecinnns
FIFOREad...coceeeieieieeieeceeeee
FIFOWrIte .ooveieeieieneccececcee,
LIFOReadccooveeieienieeeeeeee
LIFO WIIte ..ovveeiiiiiiiiicciiicccieeee

Y=Y [el 1 DR

Contents
June 2020

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

4.10

4.11

4.12

4.13

Section 5

5.1
5.2

5.3

June 2020
e R Yo o TSRS 196
4.9.9 Table REAd ...ceeeeieieeee ettt 197
4.9.10TablE WL ..ottt ettt st 199
MAth FUNCEIONS. ¢ttt sttt 200
4.10.TOVETTIOW 1.ttt ettt eneen 201
4.10.2ADSOIULE ValUE ...ttt 201
T0.3AAA .ttt sttt 202
.10 ADIVIAR <.ttt ettt ettt et sttt eaeen 204
4.10.5MOAUIUS .ttt et sttt 205
410 EMUIIPIY ...ttt 206
B.10.7SCAIE ettt sttt eneen 208
4.10.8SUDLIACE c..eeutieeeeteeeee ettt ettt sttt 209
Program FIOW FUNCLIONS ...cc.vieeeeiieeiieccieeetee ettt e et esee e 210
477 TArGUMENT PreSeNt . ..t e 211
BT.2CAl ettt ettt aeeneens 212
A TT.3COMMENT ettt e e e e e e reee e e 216
B TAJUMPN ettt ettt ettt ee et e s ene e tesae et e saeeneans 217
4.11.5Master Control Relay/End Master Control Relay......ccccceeeuveevieeecevenennnn. 217
ZTT.BWITES ettt e e et et et e e st e e st et e sseentesseentenseeneensesneensensesneans 219
Relational FUNCHIONS ...oo.viiiiiiiiieeeeceeete et 220
AT 2. T COMPATE ettt ettt et e st e s e e s e e e e s st e e e mnereeeanneeeseanraeeenas 221
4.12.2Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than223
412.3EQ_DATA < ettt ettt ettt ettt ettt teene et e naeeneens 224
A T2 ARANGE ...ttt ettt e e e e et e e e e e e ettt e e e e e e e nnntaeeeeas 225
TITIEES ettt st e e e e e e e e e e e e raeeeeas 226
4131 TIMEd CONEACES ..eeeuveeeeeieeiteete ettt ettt st st 226
4.13.2Timer FUNCEION BIOCKSeeeiiiiiieeieeeeeeee e 227
4.13.3Standard Timer FUNCtion BIOCKScoovieeiieeieniieieeeeeeceee e 239
Function Block Diagram (FBD).......cccccceceeeennennee. 245
NOtE ON REENEFANCY ..eeiiiiiiieieee et e e e 246
Advanced Math FUNCHIONScooiiiiiiienieeieeeeeeee et 246
5.2.7 EXPT FUNCEION weetiiiiieee ettt ettt 248
Bit Operation FUNCHIONS c....eviiiiiiie ittt e 248
5.3.1 Logical AND, Logical OR, and Logical XOR.........cccervverrervierrieenieeseennenns 250
5.3.2 LOGICAINOT ..ottt sttt et 252

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

5.4

55

5.6
5.7
5.8

5.9

5.10
5.1

5.12

Section 6
6.1

6.2

June 2020
COMIMIENES .ttt e e ettt e e e e e e s e et e e e e e e e s ennneneeeeeeeenan 253
547 TXEBIOCK veueviiiieieeieecte ettt sttt 253
COmMPAriSON FUNCLIONSeiiiiiieeieiteee ettt ettt e e e e s e e s eere e e s 254

5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than255

CONLrOl FUNCHIONS 1.ttt sttt 256
COUNTRTS ettt ettt e e s ere e e s e e e sesaee e semneeeseanee 258
Data MOVe FUNCEIONS ...coieiiiiiiiiieeeiee ettt 259
5.8.T FAN OUL eiiiiiiiiiiiiictitt e 262
5.8.2 MOVE Data....coccviiiiiiiiiiiiiiiiicct e 263
MAth FUNCEIONS. ¢ttt sttt st 267
5.9.T OVEIIOW ..ttt 268
5.9.2 Add ittt sttt e snte e 269
5.9.3 DIVIAE weteeeiieieeieeieeseeste ettt ettt st et e e e e snne e 270
5.9:4 MOAUIUS ettt sttt sttt et e 271
5.9.5 MURIPIY ettt et e s ens 272
5.9.6 NEGATO c..eeiiiiieee ettt 273
5.9.7 SUDEIACT ettt 274
Program FIOW FUNCEIONS ..e.vveeeieeieeieciceieeee et 276
THMIETS 1ttt sn e e seaa s 277
5.11.1Built-in Timer FUNCtion BIOCkS ...cocueieuiiriieiieeeeeeeeee 277
5.11.2Standard Timer FUNCEion BIOCKScoouieeiiiiieiieieieeeeeeeceeeeeee 278
Type Conversion FUNCEIONSuuiiiiiiieieiieee ettt e e e e 279
5.12.1CoNVert WORD TO INT ..eeeeieeeeeee ettt ettt e e 281
5.12.2Convert WORD TO UINT ...ceeiiiiiieiieeeeeee ettt 282
5.12.3Convert DWORD t0 DINTuiiiieiiiiiiiteeee ettt ee e e e e 282
5.12.4Convert INT or UINT to WORD ...ttt 283
5.12.5CoNVert DINT t0 DWORDccoiiiiiiiiiiiteeee ettt e e 284
Service Request Function..........ccccceeeeenerencnenee.. 285
Operation of SVC_REQ FUNCHION c...ocvvieeiieiicieccceeee e eve e 286
6.1.1 Ladder DIagram ...c.ccceeeueereeseeereeteesieeseeesseesseesseesseesssesssessseessessseesseenns 286
6.1.2 Function BlOck Diagramccveeveecieesieesieerieenee e eresveesseesveeseeeseesnneens 288
SVC_REQ 1: Change/Read Constant SWeep TIMer.....cccccueeveerverreeseeseesieeneens 289
6.2.1 Todisable Constant Sweep Mode:.......ccceeveerienienieniieeieeeeeeeee e 289
6.2.2 To enable Constant Sweep mode and use the old timer value:............... 289
6.2.3 To enable Constant Sweep mode and use a new timer value:................. 290
vi

CPU Programmer’s Reference Manual Contents
GFK-2950G June 2020

6.2.4 To change the timer value without changing the selection for sweep mode state:

290
6.2.5 Toread the current timer state and value without changing either: 290
6.3 SVC_REQ 2: Read Window Modes and Time Valuesccccueeeeeeeiieccnveeeeeeeeenn. 291
6.4 SVC_REQ 3: Change Controller Communications Window Mode...................... 293
6.4.1 Todisable the controller communications window:..........cccccevvervennne 293

6.4.2 Tore-enable or change the controller communications window mode:.293

6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value294

6.5.1 Todisable the Backplane Communications window:.........cc.cceevvervennene 294
6.5.2 To enable the Backplane Communications window mode: 294
6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value............. 295
6.6.1 To disable the Background Task windOw:cccccevvverriernienneeneenienienns 295
6.6.2 To enable the Background Task window mode:ccceevvrveervenveninnns 295
6.7 SVC_REQ 6: Change/Read Number of Words to Checksum.........cccecvevevervennen. 297
6.7.1 Toread the Word COUNt:eeevieeiieeeeeeeee e 297
6.7.2 Toset aneW WOrd COUNE:.....cicciieeiieeeiieeeteeeiee e ste e ee e ste e e seaeesaee e 297
6.8 SVC_REQ 7: Read or Change the Time-of-Day ClocK........cocceereiieriiieieeeieens 299
6.8.1 Parameter BloCk FOrMALSscccveevcieeecieiciieeee et 299
6.9 SVC_REQ 8: Reset Watchdog TimMer.....cccueeeiieeiieecieeeieeetee e eee e 308
6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweepcccceevevververvennnen. 309
6.117 SVC_REQ 10: Read Target Name.....cccueeverrreesienreeieeieesieesieeseeeseeesseesseesnsesnsens 310
6.12 SVC_REQ 11:Read CoNtrollerIDeeeeeeeeieeieeeeeeeeee et 311
6.13 SVC_REQ 12: Read Controller RUN Stateocoeuvevereeiiiieceeeeeeee e 312
6.14 SVC_REQ 13: Shut DOWn (STOP) CPUovvviiiieiieeieeiieieesieesieeseeeseeesneeeseeneees 313
6.15 SVC_REQ 14: Clear Controller or IO Fault Table......c.oeeveeeceieeiieeeeeeeeeiees 314
6.16 SVC_REQ 15: Read Last-Logged Fault Table ENtrycccceeecvieeeiieniieeieeeieens 315
6.17 SVC_REQ 16: Read Elapsed Time ClOCK ...ccvvveerieeiieiieieeieeeece e 319
6.18 SVC_REQ 17: Mask/Unmask [/O INtEITUPLccveeeeveeieeieeieeieeieeseee e seee e 321
6.18.1Masking/Unmasking Module INterrupts........ccceeeveeeceeeecieesieeesieeseeeens 321
6.19 SVC_REQ 18:Read |/O FOrced STatuscceeecueeeeuieeciieeiieeeieeeere e e e eveeesvee s 323
6.20 SVC_REQ 19: Set Run Enable/Disable.........cccueeeieeiiieeiieeeiieeieeeiee e 324
6.21 SVC_REQ 20: Read FAUIt TabIEScovuveeeieeeeieeeeeeeeee et 325
6.271.1Non-Extended FOrMALSccueeecvieeiieecieeceeee ettt aae e 325
6.21.2EXtended FOMMALS ..occveeeiiecieeiecieeie ettt st re e reesae e e e s e sane e 329
6.22 SVC_REQ 21: User-Defined Fault LOGQiNgccceeveeieeiieiieieeieerieeseeseee e 334
6.23 SVC_REQ 22: Mask/Unmask Timed INterruptscccveeeeeeeciieeeieecieeecieeevee s 336
6.24 SVC_REQ 23:Read Master CheckSUmMcoiiiveeueeeiieeieeeeeeeeee e 337
6.25 SVC_REQ 24: ReSETMOAUIE ...cevvveeeeiiieeeetee et e 339

Contents vii

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

6.26
6.27
6.28
6.29
6.30
6.31
6.32

6.33

Section 7
7.1

7.2

7.3

June 2020

SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums341

SVC_REQ 29: Read Elapsed Power DOWN TIMecc.coeeeereerienienenieniencereenneenee 342
SVC_REQ 32: Suspend/Resume [/O INTEITUPLcccueruereenienieienieeiesieeceeeeeeee 343
SVC_REQ 45: SKip NeXt [/O SCAN .vveevveeeiieeieeieeeeeetee st ere e teesve e e ne e e 345
SVC_REQ 50: Read Elapsed Time ClOCKccueveereereeiiesee e e esee s 346
SVC_REQ 51: Read Sweep Time from Beginning of SWeepc.ccceeeevveriennene 348
SVC_REQ 56: Logic Driven Read of Nonvolatile Storageccceeveeveesvesvennnens 349
6.32.T1DiSCrete MEMIOTY . .ueeeieieeeieeeee ettt et e e e e e e e e e 350
6.32.2Storage Disabled CONAItioNScccveeeuieiieeiieiiesee e 352
6.32.3Maximum of One Active INSErUCHON ...c.ceeeriieieieeeiee e 352
6.32.4ENO and Power Flow To The Rightc.ceeevieeiiieiieeeeeeeeeee e 352
6.32.5Parameter BIOCKeoeuiiiiieiieiiiee ettt 352
SVC_REQ 57: Logic Driven Write to Nonvolatile Storagecccceeveveeecveeecieens 357
6.33.1Length of Data WritteN....ccvee et 357
6.33.2Write FreQUENCY ...eeeeeiiiee ettt e e e 358
o T o = T < ol [UR 358
6.33.4DiISCrete MEMIOTY . .ueeiiiieeeieeeeeeet ettt et e e e e e e e e e e e 358
6.33.5REtENTIVENESS ...t 358
6.33.6Maximum of One Active INSEruCtioncccceevieriiniinieneeeeeeeee 358
6.33.7Storage Disabled CoONditionsccceecveeeeiieeiiieeieeecee e 359
6.33.8ErmOr CheCKiNgGeecveeeeieeeiie ettt et et e e eae e eaaee e 359
6.33.9Fragmentation ...occeeeeiiee et e e e 359
6.33.10 When nonvolatile storage is full.........cccceveeriiriienienieerecceeeeeeees 359
6.33.1T EQUALILY cveeeeeeeieeieee ettt ettt e e ae et aaesneeens 360
6.33.12 ReAUNAANCY ceovvirieeiieiieeieeieeie ettt see e eressreesteessaesnea e 360
6.33.13 ENO and Power Flow to the RIghtcccevierierieniicieceeeecieee 360
6.33.14 Parameter Block for SVC_REQ 57 ...uuuueiiiieeiieeeeieeeeeeeeeeeeeeneeeee e 361
PID Built-In Function Block..........ccccccceeeeieeeeeene... 366
Operands of the PID FUNCLIONcvieruieriieieeieeiceitete ettt 368
7.1.1 Operands for LD Version of PID Function BlocKcccevveereesvenvennnns 368
7.1.2 Operands for FBD Version of PID Function BlocKccccvveeciieecieenieenns 369
Reference Array for the PID FUNCLIONoocvieeiieeeieecee et 370
7.2.1 Scaling INput and OULPULS ...evveeeiieiiciececeeree e 370
7.2.2 Reference Array Parametersc.cccueeeueerreereeneeseeseessuessseessessseeseeseenns 371
Operation of the PID FUNCLION ...ecvveeieeiecieciececieesee et ere e ne e e 376
7.3.T Automatic Operation ..ccocui e ceeeeeeee it 376
viii

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

7.4

7.5
7.6

7.7

Section 8
8.1

8.2

Section 9

June 2020

7.3.2 Manual OPerationccucceeceecieeieeieeieeseeseeseeseesreereesreesseesraessnesseenns 376
7.3.3 Time Interval for the PID FUNCEION ..cuvooiieieieiieieeeee e 377
PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations.................... 377
7.4.17 DerivatiVe TeIM....ci ittt 378
7.4.2 Error TErM MO ...ttt et 378
7.4.3 Derivative Action 0N PV Bit.....coccuiiiiiiiiiiiiiiiiieceeecceeec e 379
7.4.4 Combined Operation of Error Term and Derivative Action Modes........... 379
745 CVBIaS TN ceieiiiiiiieee ettt s e e e s 379
7.4.6 CVAmMplitude and Rate LIMItSeeveeeeereeiiereesie e e eie e ese e 379
7.4.7 Sample Period and PID Function Block Scheduling......cccceeeeieeiveenieennns 380
Determining the Process Characteristics........cvveeveercieeiieeeiie e 381
Setting TuNING LOOP GaiNS .eeeveiiieiiieiieiiee ettt 382
7.6.1 Basic Iterative TUNING APProachc.ccceevveieeneinienie e 382
7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach........ 383
7.6.3 Ideal TUNING MEthod ...c..eeevieeeieeiieieeieeecceee e s 383
PID EXAMIPIE weeeiieeiieeiieeiteteesttest ettt ettt stesntesaeeteesteessaesnaesnseenseenseennes 384
7.7.1 Reference Array Initialization using 4M00006cccereeveenerrceneennenne 384
Structured Text (ST) Programmingcccc....... 386
LaNGUAGE OVEIVIBWeeiiiiiiieieiiiiteeeeeeeeeeit ettt e e e e e eeeeeteee e e s e s e eansbeeeeeeeesssnnnnes 386
8.1.T StAateMENES .ot 386
8.1.2 EXPIESSIONS c.eeeeieeieiiteee ettt e ettt e et e e eitte e s stte e s st e e e s et e e e ssaneeeesaeeeas 387
8.1.3 OPEIALONS. .ceiiiuiieeieeetee ettt ettt e et e e st e e st e e e st e e e sabee e e s areeas 387
8.1.4 Structured TeXt SYNEAX c.vecveeiieerieereesieeieeteesieeseeseeseeeeeeseesreesseesneeens 390
STALEMENT TYPES ittt e e e e e ee e e e e e e 391
8.2.1 Assignment StatemMentciiviieiieiee e 392
8.2.2 FUNCHON Call oottt 393
8.2.3 RETURN Statementcoevuieriiiiiiiiiiieiitccieceeeee e 397
8.2.4 IFSEAatemMeNT c...eeiiiiiiieeeeee e 397
8.2.5 CASE Statement.c...ceiiiieieriieeeecee e 399
8.2.6 FOR... DO Statements...cccceereiiiiiiiiiiecieeriieeeeeee e 401
8.2.7 WHILE Statement...cc.ceii ettt et 403
8.2.8 REPEAT SEatemMEntceeiiiieiiiiee ettt 405
8.2.9 ARG_PRES Statement....cccviiiieeeieeeeeetieeeee et e e e e e e ee e 406
8.2 TOEXIT STAtEMENT ..eeeiiiieee ettt e 407

DiagnosStiCS...ccccereeirnneiireniirencnnncinnncinneecnnecnnnee.. 408

ix

CPU Programmer’s Reference Manual Contents

GFK-2950G

Contents

9.1

9.2

9.3

9.4

June 2020
Fault HandliNng OVEIVIEW.......ccuveeeiieeieeiieieeeesete ettt st 413
9.1.1 System Response tO FAUILScccueviirrieriiiiieree e 413
9.7.2 FAUIETADIES ..ttt 413
9.1.3 Fault Actions and Fault Action Configurationcccceevveeveeveeseescieniens 415
Using the FAult Tables......eiueeiiecieceeeeeeeeee et 416
9.2.1 Controller Fault Tablecoerieiieiieieeeeeeeeeeee e 416
9.2.2 1/OFAUIETADIE c..eeeiieeieeeeeeee ettt s 418
System Handling Of FAUILScccueeruiieieriieieeeeeeeeee e 420
9.3.1 System Fault REfEreNCES.ccveeiieiieieeieeeeree e 421
9.3.2 UsiNG Fault CONTACES ..eeveereieeieeiieieeieeeeeesce sttt ere e seee e 424
9.3.3 USING POINE FAUIES ...eeuvieiieiieeieeieeie ettt 426
9.3.4 UsiNg Alarm CONTACES .eeveervierieeieeieeieeeerieeseeste e ereesresseeesreesanesanaens 426
Controller Fault Descriptions and Corrective ACtiONSceevveeveereerieeniienienns 427
9.4.1 Controller FAult GrOUPS ...c.veeevieecieeeceeeeteee et ee e e e 427
9.4.2 Loss of or Missing RAack (GroupP 1) c..eeecveeeveereeneeneeniesieesieesieeseeeseesneens 428
9.4.3 Loss of or Missing Option Module (GroUP 4)cccvevverriernieereeneesieniens 429
9.4.4 Addition of, or Extra Rack (GroUP 5).cccueecveereereenienienieesieesieeseesee s 430
9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)ccccveevverunene 430
9.4.6 System Configuration Mismatch (Group 11)..ccccceercierrierierreeneeeieeienns 431
9.4.7 System Bus Error (GroUP 12)...uicvieieecieerieenieeneeseeeseeeeeessesssessseeseesseenns 439
9.4.8 CPU Hardware Failure (Group 13) ...icceecieeereesieseesieesveesieeseeeseesneaens 439
9.4.9 Module Hardware Failure (Group 14).....cccevveereereereerieriiesneeseesneseenns 440
9.4.100ption Module Software Failure (Group 16)ccccevverrverrerseereesieneens 441
9.4.11Program or Block Checksum Failure (Group 17)....ccceevveeveeneenveneennenns 442
9.4.12Battery Status (GrOUP T8) ...uecveeiieiieiieieerieenieeseeseeeseeesseesseeseeesseesneeens 443
9.4.13Constant Sweep Time Exceeded (Group 19)cccveeecreeeeieescieeecieeeieeens 444
9.4.14System Fault Table FUll (Group 20)eeeeveeeiieeeeeeee e 444
9.4.151/O Fault Table FUll (GroUP 271) ...ecceeeeeeeeeieeeee ettt 445
9.4.16User Application Fault (Group 22).....cceeceeveenienienienieeieeeeseeeie e 445
9.4.17CPU Over-Temperature (GroUP 24)coceereereerierienieessieesieesieeseeseenns 447
9.4.18Power Supply Fault (GrOUP 25) c..coevieiieieeieeieentesee e 447
9.4.19No User Program on Power-Up (Group 129)c.cceeceerviernieenenneenienienns 448
9.4.20Corrupted User Program on Power-Up (Group 130)......cccceevveeneenieneene 448
9.4.21Window Completion Failure (Group 137) ..eccceeeiiieecieeeieeciee e 449
9.4.22Password Access Failure (Group 132) ...cccveeecieeeiieeeieeeeeeeeiee e esvee s 449
9.4.23Null System Configuration for RUN Mode (Group 134)ccccveeeveeeveennee 450
X

CPU Programmer’s Reference Manual

GFK-2950G

Contents

Contents
June 2020
9.4.24CPU System Software Failure (Group 135) c..cccverierieeiieeieereeseeseeseenns 450
9.4.25Communications Failure During Store (Group 137) ...ccceeveeveesvesvennenns 451
9.4.26Non-Critical CPU Software Event (Group 140).......cccveevveeveereeseeseennenns 452
9.5 1/O Fault Descriptions and Corrective ACLIONScccveecveecieereeneeneeseeesre e 454
9.5.7 FaUlt EXEra Data..cc.cecueeeeeieieeeieie ettt sttt e 455
9.5.2 1/O FAUIE GrOUPS c..vveeeieeieecieeetteeteete ettt aesae e e sve e e s e e snne e 455
9.5.3 1/O Fault Categories.....ccverrrecieeeieeieeieeieesee e eteereereereeste e rae s e e snee e 456
9.5.4 Circuit Faults (Category 1) cummuieieeieeeereereesie et ere e ereesee e e ae e e 459
9.5.5 L0ss Of BIOCK (Category 2) .uvecueeeieeiieieeieeieesieesteere e ere e esveesnesene e 464
9.5.6 Addition of Block (Category 3)...cccueeeceeeciieeiee et e ee e 465
9.5.7 1O Bus Fault (Category 6).....cccuierieeeieeereeeiee et cee e seeesaee e 465
9.5.8 Module Fault (Category 8)cccuiecieeeceeeeieeeee ettt sae e 466
9.5.9 Addition of IOC (Category 9)eecueeeceeeeieeeiee et ee e eee e 467
9.5.10Loss of or Missing 10 Controller (Category 10)eeecveeeeeeescieeeiieeeieeens 468
9.5.1110C (I/O Controller) Software Fault (Category 11)ccceeveereerieenvennnnns 469
9.5.12Forced and Unforced Circuit (Categories 12and 13)ccccvevveereenvennnns 469
9.5.13Loss of or Missing I/O Module (Category 14)cccevcvevveeneereeneesieneens 470
9.5.14Addition of I/O Module (Category 15)...ccceveereerierierieeiieerieeseeseeseens 470
9.5.15Extra I/O Module (Category 16)c.eeceereereereeriesieerieesieesieeseeeseeseenns 471
9.5.16Extra Block (Cat@gory T17) cuuecueeieeiieieeieeieenieesete e eeeesressveeseeesnesnneens 471
9.5.1710C Hardware Failure (Category 18)cccveveereereereeriesireenieeseeseeseenns 472
9.5.18GBC Stopped Reporting Faults (Category 19) ...cccvvveeevieevievreeneesvenienns 472
9.5.19GBC Software Exception (Category 21)ccceereereerieriieesieesieeseeseeseenns 473
9.5.20Block SWitch (Category 22).....uievieiieiieieeieereesee e eeeesieeseeeseesaesneeens 474
9.5.21Reset Of IOC (CAtegOry 27) weceueeeieeieeieeeeeieenieesetesteeeeessessseesseesssessnaens 474
9.6 Diagnostic LogiC BIOCKS (DLBS)....uvtievieeieieeeiieeeiieesieeeieesteeeee e s e e esveeesvee e 475
9.6.T DLB OPeration.....cccceeevueeiiiieniieiiieeeitcrieeeree et 476
9.6.2 EXECULING DLBS....cciiiiiiiiiiiiiiiiiicccrcc ettt 479
9.6.3 Diagnostic Logic Block (DLB) EXamplecceeeeereniinienenienienceeeene 482
General Contact INFOrMAtIoNooveiuiiiiiee e 487
TeChNICAl SUPPOTE ...ttt ettt 487
Xi

CPU Programmer’s Reference Manual Warnings and Cautions
GFK-2950G June 2020

Warning, Caution Notes as Used in this Publication

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury to exist
in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
Warning equipment, a Warning notice is used.

Caution notices are used where equipment might be damaged if care is not taken.

Caution

Notes: Notes merely call attention to information that is especially significant to understanding and operating the
equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every
possible contingency to be met during installation, operation, and maintenance. The information is supplied
for informational purposes only, and Emerson makes no warranty as to the accuracy of the information
included herein. Changes, modifications, and/or improvements to equipment and specifications are made
periodically and these changes may or may not be reflected herein. It is understood that Emerson may make
changes, modifications, orimprovements to the equipment referenced herein or to the document itself at any
time. This document is intended for trained personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without warranty of

any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability
or fitness for particular purpose.

Xii

CPU Programmer’s Reference Manual Section 1

GFK-2950G

June 2020

Section 1 Introduction

Introduction

This manual contains general information about programming a PACSystems CPU. It also
provides detailed descriptions of specific programming requirements.

For a general introduction to the PACSystems family of products, including new features,
product overviews, and specifications, see PACSystems RX3i and RSTi-EP CPU Reference
Manual, GFK-2222.

Programming Features

e Program Organization

Program Data

e Ladder Diagram (LD) Programming

e Function Block Diagram (FBD)

e Service Request Function

e PID Built-In Function Block

e Structured Text (ST) Programming
Diagnostics

o Diagnostics

CPU Programmer’s Reference Manual Section 1

GFK-2950G

1.1

1.2

Introduction

June 2020

Revisions in this Manual

Rev | Date Description
G June Updates to Section 4.2.3 Bit Sequencer
2020 Updates to Section 6.9, SVC_REQ 8: Reset Watchdog Timer

Updates to Section 6.33.2, Write Frequency
Secure Remote STOP-Halt Restart Mechanism.

F Feb 2020 | Updates to the %S reference table, Section 3.8.1.

E Nov 2019 | Following Emerson’s acquisition of this product, changes have been made to
apply appropriate branding and registration of the product with required
certification agencies. No changes to material, process, form, fit or
functionality.

D Nov 2018 | CPE330/CPE400/CPL410 increased block count from 512 to 768 including
_Main

C Feb 2018 | Updated for CPE302 throughout.

Updated SVC_REQ 20 for newly implemented feature that makes it possible
to uniquely identify remote PROFINET IO faults recorded in the IO Fault Table
by Remote Rack, Remote Slot, Remote Sub-Slot, and Device ID. Requires RX3i
firmware version 9.40 or later.

B Oct-2017 | Added Redundancy and FA_OK System Bits (%S) Section 3.8.1.

A May- Changed the document Title and the contact information.
2017 Updated the Titles of the GFK’s wherever applicable.

- May- PACSystems RX7i and RX3i CPU Reference Manual GFK-2222U Chapters 5-11
2015 & Chapter 14 form the content of this new manual, the PACSystems RX7i and

RX3i CPU Programmer’s Reference Manual, GFK-2950.
GFK-2222V and later versions defer to GFK-2950 for CPU programming
content.

PACSystems Programming and Configuration

PAC™ Machine Edition programming software provides a universal engineering
development environment for all programming, configuration and diagnostics of
PACSystems. A PACSystems CPU is programmed and configured using the programming
software to perform process and discrete automation for various applications. The
supported programming languages are documented in this manual.

CPU Programmer’s Reference Manual Section 1
GFK-2950G June 2020

1.3 Migrating Series 90 Applications to
PACSystems

The PACSystems control system provides cost-effective expansion of existing systems.
Support for existing Series 90 modules, expansion racks and remote racks protects your
hardware investment. You can upgrade on your timetable without disturbing panel wiring.

e The RX3isupports most Series 90-30 modules, expansion racks, and remote racks. For a
list of supported I/O, Communications, Motion, and Intelligent modules, see the
PACSystems RX3i System Manual, GFK-2314.

e The RX7i supports most existing Series 90-70 modules, expansion racks and Genius
networks. For a list of supported /O, Communications, and Intelligent modules, see the
PACSystems RX7i Installation Manual, GFK-2223.

e Conversion of Series 90-70 and Series 90-30 programs preserves existing development
effort.

e Conversion of VersaPro and Logicmaster applications to Machine Edition allows smooth
transition to PACSystems.

1.4 PACSystems Documentation
1.4.1 PACSystems Manuals

PACSystems RX3i and RSTi-EP CPU Reference Manual GFK-2222
PACSystems RX3i and RSTi-EP CPU Programmer’s Reference Manual GFK-2950

PACSystems RX3i and RSTi-EP TCP/IP Ethernet Communications

User Manual GFK-2224
PACSystems TCP/IP Ethernet Communications Station Manager User

Manual GFK-2225
C Programmer’s Toolkit for PACSystems GFK-2259
PACSystems Memory Xchange Modules User’s Manual GFK-2300
PACSystems Hot Standby CPU Redundancy User Manual GFK-2308
PACSystems Battery and Energy Pack Manual GFK-2741
PAC Machine Edition Logic Developer Getting Started GFK-1918
Proficy Process Systems Getting Started Guide GFK-2487

PACSystems RXi, RX3i, RX7i and RSTi-EP Controller Secure
Deployment Guide GFK-2830
PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual GFK-2571

Introduction 3

CPU Programmer’s Reference Manual

GFK-2950G

1.4.2

1.4.3

1.4.4

1.4.5

Introduction

RX3i Manuals

PACSystems RX3i System Manual

DSM324i Motion Controller for PACSystems RX3i and Series 90-30
User’s Manual

PACSystems RX3i PROFIBUS Modules User’s Manual

PACSystems RX3i Max-On Hot Standby Redundancy User’s Manual
PACSystems RX3i Ethernet Network Interface Unit User’s Manual
PACMotion Multi-Axis Motion Controller User’s Manual
PACSystems RX3i PROFINET Scanner Manual

PACSystems RX3i CEP PROFINET Scanner User Manual
PACSystems RX3i Serial Communications Modules User’s Manual
PACSystems RX3i Genius Communications Gateway User Manual

PACSystems RX3i DNP3 Outstation Module IC695EDS001 User’s
Manual

PACSystems RX3i IEC 104 Server Module IC695EISO001User’s Manual

RX7i Manuals

PACSystems RX7i Installation Manual
PACSystems RX7i User's Guide to Integration of VME Modules

Series 90-70 Genius Bus Controller User’s Manual

Series 90 Manuals

Series 90-30 Genius Bus Controller User’s Manual

Distributed I/O Systems Manuals

Genius I/O System User’s Manual

Genius 1/O Analog and Discrete Blocks User’s Manual

Section 1
June 2020

GFK-2314

GFK-2347
GFK-2301
GFK-2409
GFK-2439
GFK 2448
GFK-2737
GFK-2883
GFK-2460
GFK-2892

GFK-2911
GFK-2949

GFK-2223
GFK-2235
GFK-2017

GFK-1034

GEK-90486-1
GEK-90486-2

In addition to these manuals, datasheets and product update documents describe
individual modules and product revisions. The most recent PACSystems documentation is
available on the Emerson support website https://www.emerson.com/Industrial-Automation-

Controls/support.

https://www.emerson.com/Industrial-Automation-Controls/support
https://www.emerson.com/Industrial-Automation-Controls/support

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

Section2 Program Organization

This chapter provides information about the operation of application programs in a
PACSystems CPU.

e Structure of a PACSystems Application Program
e Controlling Program Execution

e Interrupt-Driven Blocks

Program Organization 5

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

2.1 Structure of a PACSystems Application
Program

A PACSystems application consists of one block-structured application program. The
application program contains all the logic needed to control the operations of the CPU and
the modules in the system. Application programs are created using the programming
software and transferred to the CPU. Programs are stored in the CPU’s non-volatile memory.

During the CPU Sweep, the CPU reads input data from the modules in the system and stores
the data in its configured input memory locations. The CPU then executes the entire
application program once, using this fresh input data. Executing the application program
creates new output data that is placed in the configured output memory locations.

After the application program completes its execution, the CPU writes the output data to
modules in the system. This completes the CPU Sweep.

A block-structured program always includes a _MAIN block. Program execution begins with
the _MAIN block. Counting the _MAIN block, the CPE330, CPE400 and CPL410 support up
to 768 blocks with firmware release 9.70 or later. All other CPU models support up to 512
blocks. Note that PAC Machine Edition 9.50 SIM 13 or later is also required for supporting a
block count of up to 768.

2.1.1 Blocks

A block is a named section of executable logic that can be downloaded to and run on the
target controller. The logic in a block can include functions, function blocks and calls to
other blocks.

2.1.2 Functions and Function Blocks

A function is a type of instruction that has no internal storage (instance data). Therefore, it
produces the same result for the same set of input values every time it executes.

A function block defines data as a set of inputs and output parameters that can be used as
software connections to other blocks and internal variables. It has an algorithm that runs
every time the function block is executed. Because a function block has instance data, that
is it can store values, it has a defined state.

Program Organization 6

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

The following table describes the types of instructions that make up the PACSystems
instruction set.

Instruction Type Instance Data Examples
Functions None BIT_SEQ, ADD, RANGE
Built-in function blocks WORD array. TMR, PID_IND, PID_ISA

Standard function blocks Structure variable. (Refer to Instance TP, TOF, TON
Data Structures

)

Note: A user defined function block (UDFB) is a block of logic that can be called in your program logic
to create multiple instances of the block, allowing you to create a block of logic once and reuse
it as if it was a standard function block instruction. For additional information, refer to Types of
Blocks and User-Defined Function Blocks (UDFBs)

2.1.3 How Blocks Are Called

A block executes when called from the program logic in the _MAIN block or another block.
In this example, LD_BLKT1 is always called. Conditional logic can be used to control calling a
block. For LD_BLK2 to be called, input %100500 and output %Q00100 must be ON. For
details on using the Call function, refer to Section 4 (LD programming), Section 5 (FBD
programming) or Section 8 (ST programming).

Figure 1
LD_ELK1
" LD_ELK2
100500 QO0100

1| 1|
1t i | CALL)

2.1.4 Nested Calls

The CPU allows nested block calls as long as there is enough execution stack space to
support the call. If there is not enough stack space to support a given block call, an
Application Stack Overflow fault is logged. In these circumstances, the CPU cannot execute
the block. Instead, it sets all of the block’s Boolean outputs to FALSE and resumes execution
at the point after the block call instruction.

Note: To halt the CPU when there is not enough stack space to execute a block, there are two choices.
The best method is to add logic to detect the occurrence of any User Application Fault by testing
the diagnostic bit %SA38, and then call SVC_REQ 13 to halt the CPU. An alternative method is to
add logic that tests for a negative OK value coming out of the block and then call SVC_REQ 13 to
halt the CPU.

A call depth of eight levels or more can be expected, except in rare cases where several of
the called blocks have very large numbers of parameters. The actual call depth achieved
depends on several factors, including the amount of data (non-Boolean) flow used in the
blocks, the functions called by the blocks, and the number and types of parameters defined
for the blocks. If blocks use less than the maximum amount of stack resources, more than
eight nested calls may be possible. The call level nesting counts the _MAIN block as level°1.

Program Organization 7

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020
2.1.5 Types of Blocks
PACSystems supports four types of blocks.
Programmin
Block Type Local Data 9 9 size Limit Parameters
Languages
LD 0 inputs
Block Hasits own local data |FBD 128 KB P
1 output
ST
i . LD .
Parameterized | Inherits local data from 63 inputs
FBD 128 KB
Block caller 64 outputs
ST
63 inputs
User Defined LD
. . 64 outputs
Function Block |Hasitsown localdata |FBD 128 KB Unlimited internal
(UDFB) ST nlimite |n. erna
member variables
External Block Inherits local data from C gse.r memory size | 63 inputs
caller limit (10 MB) 64 outputs

All PACSystems block types automatically provide an OK output parameter. The name used
to reference the OK parameter within a block is YO. Logic within the block can read and write
the YO parameter. When a block is called, its YO parameter is automatically initialized to
TRUE. This will result in a positive power flow out of the block call instruction when the block
completes execution, unless YO is set to FALSE within the logic of the block.

For all block types, the maximum number of input parameters is one less than the maximum
number of output parameters. This is because the EN input to the block call is not
considered to be an input parameter to the block. It is used in LD language to determine
whether or not to call the block but is not passed into the block if the block is called.

2.1.5.1 Program Blocks

Any block can be a program block. The _MAIN block is automatically declared when you
create a block-structured program. When you declare any other block, you must assign it a
unique block name. A block is automatically configured with no input parameters and one
output parameter (OK).

When a block-structured program is executed, the _MAIN block is automatically executed.
Other blocks execute when called from the program logic in the _MAIN block, another
block, or itself. In the following example, if %M00001 is ON, the block named ProcessEGD
will be executed:

Program Organization 8

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

Figure 2 Conditional Block Call

EgdAvailable CALL
: } ProcessEGD |
00001
2.1.5.1.1 Program Blocks and Local Data

Program blocks support the use of %P global data. In addition, each block, except _MAIN,
has its own %L local data. Blocks do not inherit %L local data from their callers.

2.1.5.1.2 Using Parameters with a Program Block

Every block is automatically defined to have one formal ‘power flow’ (or OK) output
parameter, named Y0. YO is a BOOL parameter of LENGTH 1, passed by initial-value result.
Itindicates successful execution of the block. It can be read and written to by the logic within
the block.

2.1.5.2 Parameterized Blocks

Any block except _MAIN can be a parameterized block. When you declare a parameterized
block, you must assign it a unique block name. A parameterized block can be configured
with up to 63 input and 64 output parameters.

A parameterized block executes when called from the program logic in the _MAIN block,
another block, or itself. In the following example, if 100001 is set, the parameterized block
named LOAD_41 will be executed.

Figure 3 Block Call with Parameters

Iooom CAILLOAD 41 Qooo0
N)
100100 —ABC Y1— T00001
100200 —{X2 Y2F— R00200
2.1.5.2.1 Parameterized Blocks and Local Data

Parameterized blocks support the use of %P global data. Parameterized blocks do not have
their own %L data, but instead inherit the %L data of their calling blocks. Parameterized
blocks also inherit the FST_EXE system reference and time-stamp data thatis used to update
timer functions from their calling blocks. If %L references are used within a parameterized
block and the block is called by _MAIN, %L references will be inherited from the %P
references wherever encountered in the parameterized block (for example, %L0005 =
%P0005).

Program Organization 9

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

Note: Itis possible, by using Online Editing in the programming software to cause a parameterized block
to use %L higher than allowed because of the way it inherits data. Using a word-for-word change
to restore this reference to a valid address does not correct the block because the variable still exists
in the variable list. Deleting the variable from the variable list does not cause an update to the CPU,
so the parameterized block still sees the reference out of range fault. To correct this condition, you
must remove the unused variables from the variable list after deleting them from the logic.

2.1.5.2.2 Using Parameters with a Parameterized Block

A parameterized block may be defined to have between 0 and 63 formal input parameters,
and between 1 and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter,
named YO, is automatically defined for every parameterized block. It is a BOOL parameter
of LENGTH 1 and indicates the successful execution of the parameterized block. It can be
read and written to by the parameterized block’s logic.

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms allowed
for parameterized block parameters. (For definitions of the parameter passing types, refer
to Parameter Passing Mechanisms.)

Type Length | Default Parameter Passing Mechanism
INPUTS: by reference
BOOL 1to 256 OUTPUTS: by value result; except Y0, which is by initial-value
result
INPUTS: by reference
BYTE 1t0 1024
OUTPUTS: by reference
INT. UINT. and INPUTS: by reference
’ ’ 1t0512
WORD OUTPUTS: by reference
DINT. REAL. and INPUTS: by reference
’ ’ 1to 256
DWORD OUTPUTS: by reference
INPUTS: by reference
LREAL 1to 128
OUTPUTS: by reference
INPUTS: by reference
function block! | 1
OUTPUTS: not allowed
INPUTS: by reference
UDFB' 1
OUTPUTS: not allowed
Defi INPUTS: by reference
User Defined 1t0 1024
Type (UDT) OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that
parameterized subroutine block (PSB) parameters are passed on 90-70 controllers. The
parameter passing mechanisms of formal parameters cannot be changed from their default
values.

Arguments, or actual parameters, are passed into a parameterized block whenever a
parameterized block call is executed. In general, arguments to formal parameters may

' A maximum of 16 input parameters can be of type function block or UDFB.
Program Organization 10

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

come from any memory type, may be data flow, and may be constants (when the formal
parameter’s LENGTH is 1). The following list contains the restrictions on arguments relative
to this general rule:

e %S memory addresses cannot be used as arguments to any output parameter. This is
because user logic is not allowed to write to %S memory.

e Indirect references used as arguments are resolved immediately before the
parameterized block is called, and the corresponding direct reference is passed into the
block. For example, where %R1 contains the value 10 and @R1 is used as an argument to
a call, immediately before calling the block, @R1 is resolved to be %R10, and %R10 is
passed in as the argument to the block. During execution of the block, the argument
remains as %R10, regardless of whether the value in %R1 changes.

In general, formal parameters within a parameterized block may be used with any
instruction or with any block call, if their TYPE and LENGTH are compatible with what the
instruction, function, or block call requires. The following list contains the restrictions on
formal parameters relative to this general rule:

o Formal parameters cannot be used on legacy transitional contacts or coils, or on FAULT,
NOFLT, HIALM, or LOALM contacts. However, formal parameters can be used on IEC
transitional contacts and coils.

¢ Formal BOOL input parameters cannot be used on coils or as output arguments to a
function or to a block call.

e Formal parameters cannot be used with the DO 1/O function.

o Formal parameters cannot be used with indirect referencing.

2.1.5.3 User-Defined Function Blocks (UDFBs)

Users can define their own blocks, which have parameters and instance data, instead of
being limited to the standard and built-in function blocks provided in the PACSystems
instruction set. In many cases, the use of this feature results in a reduction in total program
size.

Once defined, multiple instances of a UDFB can be created by calling it within the program
logic. Each instance has its own unique copy of the function block’s instance data, which
consists of the function block’s internal member variables and all of its input and output
parameters except those that are passed by reference. When a UDFB is called on a given
instance, the UDFB’s logic operates on that instance’s copy of the instance data. The values
of the instance data persist from one execution of the UDFB to the next.

Note: A member variable is not passed into or out of a UDFB as a parameter. A member variable is used
only within the logic of that function block.

Program Organization 11

CPU Programmer’s Reference Manual

GFK-2950G

2.1.5.3.1

2.1.5.3.2

Program Organization

A UDFB cannot be triggered by an interrupt.

Section 2
June 2020

UDFB logic is created using FBD, LD or ST. UDFB logic can make calls to all the other types of
PACSystems blocks (blocks, parameterized blocks, external blocks and other UDFBs).
Blocks, parameterized blocks, and other UDFBs can make calls to UDFBs.

Unless otherwise stated, the PACSystems implementation of UDFBs meets the IEC61131-3

requirements for user defined function blocks.

Defining a UDFB

To create a UDFB in the programming software, create an LD, FBD or ST blockin the Program
Blocks folder. In the Properties for the block, select Function Block.

To define instance data for a UDFB, select Parameters in the block’s properties. Input and
output parameters are defined in the same way as for parameterized blocks. In the following
example, three internal member variables are defined: temp, speed, and modelno.

Figure 4 Defining Member Variables for a User-Defined Function Block

Parameters E: A

Inputs | Outputs Members |

Name Type Length | Public | Ret Init Val Description
temp BOOL 1 v (v over temperature
speed DWORD 1 v v motor speed
modelno DWORD 1 v model number

0K I Cancel

Creating UDFB Instances

You create an instance of a UDFB by calling it in your logic and assigning an instance name
in the function properties.

Figure 5 Creating a User-Defined Function Block

—IN1

MOTORS

?22?

ouTi—

12

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

In the following LD example, the first rung creates two instances of the UDFB, Motors. The
instance variables associated with the instances is motors. motor1 and motor2. The second
rung uses the two instances of the internal variable temp in logic.

Figure 6 Use of User-Defined Function Block in Ladder Logic

MOTORS MOTOERS
mofer! motars
— 1M1 QUT1I— —{IN1 OUT1p—
|
maciard tesp et es motors_hot \
2.1.5.3.3 Instance Data Structures

A variable with the format function_block_name.instance_name is automatically created
for each instance of a UDFB. The instance data makes up a single composite variable that is
of a structure type. The example to the right shows the variable structures associated with
two instances of the UDFB named Motors. Each instance variable has elements
corresponding to parameters In1, Out1, and Y0, and internal variables model no, speed, and
temp.

Instances are created as symbolic variables, never as mapped variables. This ensures that
instance data is only referenced by the instance name and not by a memory address, which
means that no aliases can be created for the UDFB data elements. The indirect reference
operator cannot be used on an instance variable because indirect references are not
permitted on symbolic variables.

Figure 7: Display of Instance Data Structures

= GS RX7i.Motors.motorl

IEIEIF_I Inl

G_EP modelno

GEF Oty

Ju
G_E.F speed
GJE[I temp

GEF
Tu Yo
= GS RX7i.Motors.motor2

SEF) Int

G_E.P modelno

SEF, outt
G_EP speed
(EF-L ternp
GEF

Tu Yo

Program Organization 13

CPU Programmer’s Reference Manual

GFK-2950G

2.1.5.34

2.1.5.3.5

Program Organization

UDFBs and Scope
Unlike a parameterized subroutine, a UDFB has its own %L memory.

By default, internal variables of a UDFB have local scope, making them visible only to the
logic inside the UDFB. They cannot be read or written by any external logic or by the
hardware configuration. An internal variable can be made visible outside the UDFB by
changing its scope to global. Logic outside the UDFB can read but cannot write to internal
variables whose scope is global.

Note: Ifyou give internal variables global scope, your application will not conform to IEC requirements.

Using Parameters with UDFBs
UDFBs support up to 63 inputs and up to 64 outputs.

Each UDFB has a predefined Boolean output parameter, YO, which the CPU sets to true upon
each invocation of the block. YO can be controlled by logic within the block and provides the
output status of the block.

The following table lists the TYPEs, LENGTHSs, and parameter-passing mechanisms allowed
for UDFB parameters. For additional information on parameter passing, refer to Parameter

Section 2
June 2020

Passing Mechanisms.

Type

Length

Parameter Passing
Mechanism

Retentiveness of Instance
Data for Parameters

BOOL

1to 256

INPUTS: by reference, constant
reference, value, or value result.
(Default: value)

Not Applicable if passed by
reference, since not stored in
instance data.

Can be retentive (default) or
non-retentive for value or value
result.

OUTPUTS: by result; except YO,
which is by initial-value result

Retentive
Non-retentive

(default) or

BYTE

1to 1024

INPUTS: by reference, constant
reference, value, or value result.
(Default: value)

OUTPUTS: by result

Retentive for value or value
result.

Not applicable for reference

INT, UINT, and
WORD

1to512

INPUTS: by reference, constant
reference, value, or value result.
(Default: value)

OUTPUTS: by result

Retentive for value or value
result.

Not applicable for reference

DINT, REAL, and
DWORD

1to 256

INPUTS: by reference, constant
reference, value, or value result.
(Default: value)

OUTPUTS: by result

Retentive for value or value
result.

Not applicable for reference

LREAL

1to 128

INPUTS: by reference, constant
reference, value, or value result.
(Default: value)

Retentive for value or value
result.

14

CPU Programmer’s Reference Manual Section 2

GFK-2950G June 2020
Type Length |Parameter Passing Retentiveness of Instance
Mechanism Data for Parameters
OUTPUTS: by result Not applicable for reference
Function block 1 INPUTS: by reference, constant |Not applicable since passed by
(standard or reference, (Default: reference) reference
PACMotion) OUTPUTS: by result
UDFB? 1 INPUTS: by reference, constant |Not applicable since passed by
reference, friend reference

OUTPUTS: not allowed

uDT 1t01024 |INPUTS: by reference, constant|Not applicable since passed by
reference reference

OUTPUTS: not allowed

If an input parameter is passed by reference or by value result, it requires an argument. All
other parameters of a UDFB are optional. That is, they do not have to be given arguments
on eachinstance of the UDFB. If no argument is given for an optional parameter, the variable
element associated with the parameter retains the value it previously had.

UDFB outputs cannot be passed as arguments to input parameters that are passed by
reference or passed by value result. This restriction prevents modification of a UDFB output.

2.1.5.3.6 Using Internal Member Variables with UDFBs

A UDFB can have any number of internal member variables. The values of internal variables
are not passed via the input and output parameters. An internal variable cannot have the
same name as a parameter of the UDFB it is defined in.

An internal variable can be:

e Any basic type supported by PACSystems (BOOL, INT, UINT, DINT, REAL, LREAL, BYTE,
WORD, and DWORD).

o A UDFB type. Such member variables are known as nested instances. For example, the
function block Motor can have an internal variable of type Valve, where Valve is a UDFB
type. Note that defining a member variable as a UDFB type does not create an instance.

A nested instance cannot be of the same type as the UDFB being defined because this
would set up an infinitely recursive definition. Nor can any level of a nested instance be
of the same type as the parent UDFB being defined. For example, the UDFB Motor
cannot have an internal variable of type Valve, if the Valve UDFB contains an internal
variable of type Motor.

e A UDT: a structured, user-defined data type consisting of elements of other selected
data types.

¢ Aone-dimensional array.

Internal variables of TYPE BOOL can be retentive (default) or non-retentive. All other TYPEs
must be retentive.

2A maximum of 16 input parameters can be of type UDFB.
Program Organization 15

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

Member variables corresponding to a UDFB’s input parameters cannot be read or written
outside of the UDFB. (This is more restrictive than the IEC 61131-3 requirements for user
defined function blocks.) Member variables corresponding to the UDFB’s output
parameters can be read but not written outside the UDFB.

Internal member variables that have basic types may be given initial values. The same initial
values apply to all instances of a UDFB. If an initial value isn’t given, the internal member
variable is set to zero when the application transitions to RUN mode for the first time.

An internal member variable that is a nested instance has initial values as specified by its
UDFB type definition.

Initial values are not stored during a RUN mode store. They will not take effect until a STOP
Mode Store is performed.

2.1.5.3.7 UDFB Logic

An instance of a BOOL parameter or internal variable can be forced ON or OFF, or used with
transition-detecting instructions. The exception to this is that BOOL input parameters
passed by reference cannot be forced or used with the Series 90-70 legacy transition-
detectinginstructions (POSCOIL, NEGCOIL, POSCON and NEGCON) because their values are
not stored in instance data.

All input parameters to a UDFB, and their corresponding instance data elements, can be
read by the logic of that particular UDFB.

Input parameters that are passed by reference or passed by value result to a UDFB can be
written to by their UDFB’s logic. Input parameters passed by value cannot be written to by
their UDFB logic. Note that the restriction on writing to input parameters passed by value
does not apply to other types of blocks.

All UDFB output parameters can be both read and written to by their logic.

2.1.5.3.8 UDFB Operation with Other Blocks

A UDFB instance that is of global scope can be invoked by another UDFB’s logic or any other
block’s logic.

A UDFB instance that is passed (by reference) as an argument to a UDFB can be invoked by
the UDFB’s logic.

A UDFB instance that is passed (by reference) as an argument to a parameterized block can
be invoked by the parameterized block’s logic.

The output parameters, and their corresponding instance data elements, of a UDFBinstance
that is passed as an argument can be read but not modified by the receiving block’s logic.
The input parameters of a UDFB instance that is passed as an argument cannot be read or
modified by the receiving block’s logic. The internal variables of a UDFB instance that is
passed as an argument cannot be modified by the receiving block’s logic. They can be read
if their scope is global, but not if their scope is local.

Program Organization 16

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

2.1.5.4 External Blocks

External blocks are developed using external development tools as well as the C
Programmer’s Toolkit for PACSystems. Refer to the C Programmer’s Toolkit for
PACSystems, GFK-2259 for detailed information regarding external blocks.

Any block except _MAIN can be an external block. When you declare an external block, you
must assign it a unique block name. It can be configured with up to 63 input parameters and
64 output parameters.

An external block executes when called from the program logic in the _MAIN block or from
the logicin another block, parameterized block, or UDFB. External blocks themselves cannot
call any other block. In the following example, if 4100001 is set, the external block named
EXT_11is executed.

Figure 8: Calling an External Block in Ladder Logic

10000 CALLEXT 11 Qo000
1L Y
i | o
100100 —X1 Y1— T00001
100200 —{X2 Y2f— R00200

Note: Unlike other block types, external blocks cannot call other blocks.

2.1.5.4.1 External Blocks and Local Data

External blocks support the use of %P global data. External blocks do not have their own %L
data, but instead inherit the %L data of their calling blocks. They also inherit the FST_EXE
system reference and the time-stamp data that is used to update timer function blocks from
their calling blocks. If %L references are used within an external block and the block is called
by _MAIN, %L references will be inherited from the %P references wherever encountered in
the external block (for example, %L0005 = %P0005).

2.1.54.2 Initialization of C Variables

When an external block is stored to the CPU, a copy of the initial values for its global and
static variables is saved. However, if static variables are declared without an initial value, the
initial value is undefined and must be initialized by the C application. (Refer to Global
Variable Initialization and Static Variable in the C Programmer’s Toolkit for PACSystems,
GFK-2259). The saved initial values are used to re-initialize the block’s global and static
variables whenever the CPU transitions from STOP Mode to RUN Mode.

2.1.543 Using Parameters with an External Block

An external block may be defined to have between zero and 63 formal input parameters and
between one and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter,
named YO0, is automatically defined for every external block. YO is a BOOL parameter of
LENGTH 1, and indicates the successful execution of the block. It can be read and written to
by the external block’s logic.

Program Organization 17

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

The following table gives the TYPEs, LENGTHs, and parameter-passing mechanisms allowed
for external block parameters.

Type Length | Default Parameter Passing Mechanism
BOOL 1to 256 INPUTS: by reference

OUTPUTS: by reference; except YO, which is by initial-value result
BYTE 1to 1024 | INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and 1to512 INPUTS: by reference

WORD OUTPUTS: by reference
DINT, REAL, and | 1to 256 INPUTS: by reference
DWORD OUTPUTS: by reference
LREAL 1t0 128 INPUTS: by reference
OUTPUTS: by reference
uDnT? 1to 128 INPUTS: by reference

OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that
external block parameters are passed on 90-70 controllers. The parameter passing
mechanisms of formal parameters cannot be changed from their default values.

You must define a name for each formal input and output parameter.

Arguments, or actual parameters, are passed into an external block whenever an external
block call is executed.

Arguments may be any valid reference address including an indirect reference, may be flow,
or may be a constant if the corresponding parameter’s LENGTH is 1.

3Touse a UDT, you mustinclude the UDT definition as a C structure in the external block. For details, refer to Using a UDT as a C block input
parameter data type in the online help.
Program Organization 18

CPU Programmer’s Reference Manual

GFK-2950G

2.1.6

Program Organization

Local Data

Each block or UDFB in a block-structured program has an associated local data block.
_MAIN’s data block memory is referenced by %P; all other data block memories are
referenced by %L.

Section 2
June 2020

The size of the data block is dependent on the highest reference in its block for %L and in all

blocks for %P.

Figure 9: Relationship of %L & %P to Program Blocks

data
%P

_MAIN
block

B ————

data
%L

=7 L

Block
2

Data
%L

Block

All blocks within the program can use data associated with the _MAIN block (%P). Blocks and
UDFBs can use their own %L data as well as the %P data that is available to all blocks. The
_MAIN block cannot use %L.

External blocks and parameterized blocks can use the Local Data (%L) of their calling block
as well as the %P data of the _MAIN block. If a parameterized block or external block is called
by MAIN, all %L references in the parameterized block or external block will be references to
corresponding %P references (for example, L0005 = %P0005). In addition to inheriting the
Local Data of their calling blocks, parameterized blocks and external blocks inherit the
FST_EXE status of their calling blocks.

Figure 10: Local Data (%L) Usage by Program Blocks

data
%P

_MAIN
Block

Inherits as %L

PSB 1
or
EB1
data
%L
Inherits as %L
8L100K —

PSB 2
or
EB2

19

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

2.1.7 Parameter Passing Mechanisms

All blocks (except _MAIN) have at least one parameter and thus are affected by parameter
passing mechanisms. A parameter passing mechanism describes the way that data is passed
from an argument in a calling block to a parameter in the called block, and from the
parameter in the called block back to the argument in the calling block.

PACSystems supports the following parameter-passing mechanisms: pass by reference,
pass by constant reference, pass by value, pass by value result, pass by result and pass by
initial-value result. An additional type, pass by friend, is available when the input Data Type
is a UDFB. A parameter is defined by its TYPE, LENGTH, and parameter passing mechanism.

e When a parameter is passed by reference, the address of its argument is passed into the
function block instance or parameterized block. All logic within the called block that
reads or writes to the parameter directly reads or writes to the actual argument.

e When a parameter is passed by constant reference, the CPU passes a reference address
pointer, symbolic variable pointer, or 1/O variable pointer into the function block
instance or parameterized block. The instance or block can only read the reference
address or variable.

e When a parameter is passed by friend (UDFB inputs only), the CPU passes a UDFB
instance variable pointer into the function block instance or parameterized block. The
instance or block can write to any output or member, whether public or private, of the
UDFB instance variable passed as a friend.

Tip

In the logic of a UDFB, when you want to pass the UDFB as a friend, assign the pseudo-
variable #This to the input that expects an instance variable of that UDFB type. In the
following example, the In2 input of the LDPSB parameterized block expects a UDFB instance
variable friend of the ABC data type. Inside the logic of ABC, assign #This to In2 in the call to
LDPSB.

Figure 11: Parameter Passing Example

Err
v: =
SALW_ON

ErrOn
Fan
L

m

#This —{In2

LDPSB Parameters

Inputs

Outputs | Members |

Name Data Type | Length | Pass By | Retentive | Intial Value = Description

» Ju in1| BOOL ﬂ 1 Value ﬂ-
S 2 ABC ~|1 Fiend |
] >

Program Organization 20

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

e When a parameter is passed by value (UDFB inputs only), the value of its argument is
copied into a local stack memory associated with the called block. All logic within the
called block that reads or writes to the parameter is reading or writing to this stack
memory. Thus, no changes are ever made to the actual argument.

e Whenaparameteris passed by value result (UDFB inputs only), the value of its argument
is copied into a local stack memory associated with the called block, and the address of
its argument is saved. All logic within the called block that reads or writes to the
parameter is reading or writing to this stack memory. When the called block completes
its execution, the value in the stack memory is copied back to the actual argument’s
address. Thus, no changes are made to the actual argument while the called block is
executing, but when it completes execution, the actual argument is updated.

2.1.8 Languages
2.1.8.1 Ladder Diagram (LD)

Logic written in Ladder Diagram language consists of a sequence of rungs that execute from
top to bottom. The logic execution is thought of as power flow, which proceeds down along
the left rail of the ladder, and from left to right along each rung in sequence.

Figure 12: Explanation of Ladder Diagram Rung

Power . . ; Coil
Rail Relay Power flow into function Power flow out of function

\ \ /MIJLINT / \
100001 Qoooot
I = . - - ()_|

ROO123 1IN1 O RODI24

000002 —IN2 \

Multiplication function

The flow of logical power through each rung is controlled by a set of simple program
instructions that work like mechanical relays and output coils. Whether or not a relay passes
logical power flow along the rung depends on the content of a memory location with which
the relay has been associated in the program. Forinstance, a relay might pass positive power
flow if its associated memory location contains the value 1. The same relay passes negative
power flow if the memory location contains the value 0.

Usually an instruction that receives negative power flow does not execute and propagates
the negative power flow on to the next instruction in the rung. However, some instructions
such as timers and counters execute even when they receive negative power flow and may
even pass positive power flow out. Once a rung completes execution, with either positive or
negative power flow, power flows down along the left rail to the next rung.

Within a rung, there are many complex functions that are part of the standard function
library and can be used for operations like moving data stored in memory, performing math
operations, and controlling communications between the CPU and other devices in the
system. Some program functions, such as the Jump function and Master Control Relay, can

Program Organization 21

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

be used to control the execution of the program itself. Together, this large group of Ladder
Diagram instructions and standard library functions makes up the instruction set of the CPU.

2.1.8.2 Function Block Diagram

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that
represents the behavior of functions, function blocks and programs as a set of
interconnected graphical blocks.

FBD depicts a system in terms of the flow of signals between processing elements, in a
manner very similar to signal flows depicted in electronic circuit diagrams. Instructions are
shown with inputs entering from the left and outputs exiting on the right. A function block
type name is always shown within the element and the name of the function block instance
is shown above the element.

Figure 13: lllustration of Function Block Diagram

Instance of
UDFB, "Weight” \\A Solve Order

Weight!

Weigm// Wire indicates data flow
1 from output to input

- EMN EMNOQ ju /
INPUT1 OUTPUTH _—I—_ A%D
Instance of o Nt @ ol

UDFB, “Weight” a0 0 4
\ M2 1M1 Q = fiverage
Weight2

0 0 0
Weight 2 = IN2

2
- EN ENO ju

INPUT1 OUTPUT1

The order of execution of instructions in an FBD is determined by the following:

a. Thedisplay position of the instruction in the FBD editor
b. Whether the inputs to the FBD instruction are resolved.

To determine the order of execution of FBD instructions in the FBD editor, the FBD compiler
performs the following steps:

1. The FBD compiler scans the instructions in the FBD editor, beginning from left to
right, and top to bottom. When an instruction is encountered, the compiler
attempts to resolve the instruction, that is, the inputs are known. If the inputs are
known, the instruction is solved, and scanning continues for the next instruction.

2. Ifthe currentinstruction cannot be resolved, that is, the inputs are not known,
then the compiler scans for the previous instruction, using the wire connecting
the output of the previous instruction to the input of the current instruction.

3. Ifthe previous instruction can be resolved, the compiler calculates the output. The
output of the previous instruction then becomes the input to the current

instruction, the current instruction is resolved, and scanning continues for the
nextinstruction.

Program Organization 22

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

4, Ifthe previous instruction cannot be resolved, that is, the inputs are not known,
then step 2 is repeated until an instruction is encountered, which can be resolved.

2.1.8.3 Structured Text

The Structured Text (ST) programming language is an IEC 1131-3 textual programming
language. A structured text program consists of a series of statements, which are
constructed from expressions and language keywords. A statement directs the PLC to
perform a specified action. Statements provide variable assignments, conditional
evaluations, iteration, and the ability to call other blocks. For details on ST statements,
parameters, keywords, and operators supported by PACSystems, refer to Structured Text
(ST) Programming in Section 8.

Blocks, parameterized blocks, and UDFBs can be programmed in ST. The _MAIN program
block can also be programmed in ST.

A block programmed in ST can call blocks, parameterized blocks, and UDFBs.

2.2 Controlling Program Execution

There are many ways in which program execution can be controlled to meet the system’s
timing requirements. The PACSystems CPU instruction set contains several powerful
control functions that can be included in an application program to limit or change the way
the CPU executes the program and scans I/O. For details on using these functions, refer to
Section 4.

The following is a partial list of the commonly used methods:

e The Jump (JUMPN) function can be used to cause program execution to move either
forward or backward in the logic. When a JUMPN function is active, the coils in the part
of the program that is skipped are left in their previous states (not executed with
negative power flow, as they are with a Master Control Relay). Jumps cannot span blocks.

e The nested Master Control Relay (MCRN) function can be used to execute a portion of
the program logic with negative power flow. Logic is executed in a forward direction and
coils in that part of the program are executed with negative power flow. Master Control
Relay functions can be nested to 255 levels deep.

e The Suspend I/O function can be used to stop both the input scan and output scan for
one sweep. I/O can be updated, as necessary, during the logic execution using DO 1/O
instructions.

e The Service Request function can be used to suspend or change the time allotted to the
window portions of the sweep.

e Program logic can be structured so that blocks are called frequently, depending on their
importance and on timing constraints. The CALL function can be used to cause program
execution to go to a specific block. Conditional logic placed before the Call function
controls the circumstances under which the CPU executes the block logic. After the
block execution is finished, program execution resumes at the point in the logic directly
after the CALL instruction.

Program Organization 23

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

2.3 Interrupt-Driven Blocks
Three types of interrupts can be used to start a block’s execution:

e Timed Interrupts are generated by the CPU based on a user-specified time interval with
an initial delay (if specified) applied on STOP Mode to RUN Mode transition of the CPU.

e 1/O Interrupts are generated by I/O modules to indicate discrete input state changes
(rising/falling edge), analog range limits (low/high alarms), and high-speed signal
counting events.

e Module Interrupts are generated by VME modules. A single interrupt is supported per
module.

A\CAUTION

Interrupt-driven block execution can interrupt the execution of non-interrupt-driven logic.
Unexpected results may occurif the interrupting logic and interrupted logic access the same
data. If necessary, Service Request #17 or Service Request # 32 can be used to temporarily
mask I/O and Timed Interrupt-driven logic from executing when shared data is being
accessed.

2.3.1 Interrupt Handling

An /0O, Module, or Timed interrupt can be associated with any block except _MAIN, as long
as the block has no parameters other than an OK output. After an interrupt has been
associated with a block, that block executes each time the interrupt trigger occurs. A given
block can have multiple timed, 1/O, and module interrupt triggers associated with it. It is
executed each time any one of its associated interrupts triggers. For details on how interrupt
blocks are prioritized, refer to Interrupt Block Scheduling.

If a parameterized block or external block is triggered by an interrupt, it inherits %P data as
its %L local data. For example, a %L00005 reference in the parameterized block or C block
actually references %P00005.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a result of an
interrupt.

Blocks that are triggered by interrupts can make calls to other blocks. The application stack
used during interrupt-driven execution is different from the stack used during normal block-
structured program execution. In particular, the nested call limit is different from the limit
described for calls from the _MAIN block. If a call results in insufficient stack space to
complete the call, the CPU logs an Application Stack Overflow fault.

Program Organization 24

CPU Programmer’s Reference Manual

GFK-2950G

2.3.2

2.3.3

Program Organization

Section 2
June 2020

Note: Westrongly recommend that interrupt-driven blocks not be called from the _MAIN block or other
non-interrupt driven blocks because the interrupt and non-interrupt driven blocks could be
reading and writing the same global memories at indeterminate times relative to each other. In
the following example (Figure 14) INT1, INT2, BLOCK5, and PB1 should not be called from _MAIN,
BLOCK2, BLOCK3, or BLOCK4.

Figure 14: Conflict Avoidance when using Interrupt-Driven Blocks

INT Block 1
_MAIN *| Block INT Block 2 |+
Block
Block
5
! Block
3
—_— PB
1
Block
4

Timed Interrupts

A block can be configured to execute on a specified time interval with an initial delay (if
specified) applied on a STOP Mode to RUN Mode transition of the CPU.

To configure a timed interrupt block, specify the following parameters in the scheduling
properties for the block:

Time Base | The smallest unit of time that you can specify for Interval and Delay. The time base can
be 1.0 second, 0.10 second, or 0.01 second, or 0.001 second.

Interval Specifies how frequently the block executes in multiples of the time base.

Delay (Optional) Specifies an additional delay for the first execution of the block in multiples
of the time base.

The first execution of a Timed Interrupt block will occur at
((delay * time base) + (interval * time base)) after the CPU is placed in RUN Mode.

/O Interrupts

Ablock can be triggered by an interrupt input from certain hardware modules. For example,
on the 32-Circuit 24 Vdc Input Module (IC697MDL650), the first input can be configured to
generate an interrupt on either the rising or falling edge of the input signal. If the interrupt
is enabled in the module configuration, that input can serve as a trigger to cause the
execution of a block.

25

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

To configure an 1/O interrupt, specify a trigger in the scheduling properties for the block.
The trigger must be a global variable in %I, %Al or %AQ memory, or an /O variable. (An 1/O
variable is a form of symbolic variable that is mapped to a module I/O point in hardware
configuration.)

PACSystems modules that can trigger user interrupt logic always send the interrupt to the
CPU when configured to do so. If the CPU is in STOP mode when it receives the interrupt, it
does not run the user interrupt block. The CPU does not run the user interrupt block when
it transitions from STOP Mode to RUN Mode.

2.3.4 Module Interrupts

A block can be triggered by an interrupt from a module that supports 1/O interrupts if the
Interrupt parameter is enabled in the module’s hardware configuration.

To configure a module interrupt, specify the module by rack/slot/interrupt ID as the Trigger
in the scheduling properties for the block.

2.3.5 Interrupt Block Scheduling

You can select one of two types of interrupt block scheduling at the target level:

¢ Normal block scheduling allows you to associate a maximum of 64 1/O and Module
Interrupts and 16 Timed Interrupts. With normal block scheduling, all interrupt-
triggered blocks have equal priority. This is the default scheduling mode.

e Preemptive block scheduling allows you to associate a maximum of 32 interrupt
triggers. With preemptive block scheduling, each trigger can be assigned a relative
priority.

2.3.5.1 Normal Block Scheduling

Interrupt-driven logic has the highest priority of any user logic in the system. The execution
of a block triggered from an interrupt preempts the execution of the normal CPU sweep
activities. Execution of the normal CPU sweep activities is resumed after the interrupt-driven
block execution completes.

If the CPU receives one or more interrupts while executing an interrupt block, it places the
incoming interrupts into the queue while it finishes executing the current interrupt block.
Timed interrupt driven blocks are queued ahead of 1/O or Module driven blocks. 1/O or
Module interrupt driven blocks are queued in the order in which the interrupts are received.
If an interrupt driven block is already in the queue, additional interrupts that occur for this
block are ignored.

2.3.5.2 Preemptive Block Scheduling

Preemptive scheduling allows you to assign a priority to each interrupt trigger. The priority
values range from 1 to 16, with 1 being the highest. A single block can have multiple
interrupts with different priorities or the same priorities.

Program Organization 26

CPU Programmer’s Reference Manual Section 2
GFK-2950G June 2020

An incoming interrupt is handled according to its priority compared to that of the currently
executing block as follows:

e Ifanincominginterrupt has a higher priority than the interrupt associated with the block
that is currently executing, the currently executing block is stopped and put in the
interrupt queue. The block associated with the incoming interrupt begins executing.

e Ifanincominginterrupt has the same priority as the interrupt trigger associated with the
block that is currently executing, that block continues to execute, and the incoming
interrupt is placed in the queue.

e Ifanincominginterrupt has a lower priority than the interrupt associated with the block
that is currently executing, the incoming interrupt is placed in the queue.

When the CPU completes the execution of an interrupt block, the block associated with the
interrupt trigger that has the highest priority in the queue begins execution — or resumes
execution if the block's execution was preempted by another interrupt block and was placed
in the queue.

If multiple blocks in the queue have the same interrupt priority, their execution orderis not
deterministic.

Note: Certain functions, such as DOIO, BUS_RD, BUS_WRT, COMMREQ, SCAN_SET_IO, and some
SVC_REQs may cause a block to yield to another queued block that has the same priority

Program Organization 27

CPU Programmer’s Reference Manual

GFK-2950G

Section 3

Program Data

Program Data

Section 3
June 2020

This chapter describes the types of data that can be used in an application program and

explains how that data is stored in the PACSystems CPU’s memory.

Variables

Reference Memory

User Reference Size and Default
Genius Global Data

Transitions and Overrides
Retentiveness of Logic and Data
Data Scope

System Status References

How Program Functions Handle Numerical Data
User Defined Types (UDTs)
Operands for Instructions

Word-for-Word Changes

28

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.1 Variables

A variable is a named storage space for data values. It represents a memory location in the
target PACSystems CPU.

Avariable can be mapped to a reference address (for example, %R00001). If you do not map
a variable to a specific reference address, it is considered a symbolic variable. The
programming software handles the mapping for symbolic variables in a special portion of
PACSystems user space memory.

The kinds of values a variable can store depend on its data type. For example, variables with
a UINT data type store unsigned whole numbers with no fractional part. Data types are
described in Section 3.9, How Program Functions Handle Numerical Data.

In the programming software, all variables in a project are displayed in the Variables tab of
the Navigator. You create, edit, and delete variables in the Variables tab. Some variables are
also created automatically by certain components (such as TIMER variables when you add a
Timer instruction to ladder logic). The data type and other properties of a variable, such as
reference address are configured in the Inspector.

For more information about system variables, which are created when you create a target
in the programming software, refer to Section 3.8, System Status References.

3.1.1 Mapped Variables

Mapped (manually located) variables are assigned a specific reference address. For details
on the types of Reference Memory and their uses, refer to Reference Memory.

3.1.2 Symbolic Variables

Symbolic variables are variables for which you do not specify a reference address (similar to
avariable in a typical high-level language). Except as noted in this section, you can use these
in the same ways that you use mapped variables.

In the programming software, a symbolic variable is displayed with a blank address. You can
change a mapped variable to a symbolic variable by removing the reference address from
the variable’s properties. Similarly, you can change a symbolic variable into a mapped
variable by specifying a reference address for the variable in its properties.

The memory required to support symbolic variables counts against user space. The amount
of space reserved for these variables is configured on the Memory tab in the CPU hardware
configuration.

Program Data 29

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.1.2.1 Restrictions on the Use of Symbolic Variables

e Symbolic variables cannot be used with indirect references (for example, @Name). For a
full description, refer to Indirect References.

e Only global scope Symbolic variables can be used in EGD pages.

e Avariable must be globally scoped and published (internal or external) to be used ina C
block.

e Symbolicvariables cannot be used in the COMMREQ status word.
e Use of symbolic variables is not supported on web pages.
e Symbolic Boolean variables are not allowed on non-BOOL parameters.

e Symbolic non-discrete variables cannot be used on Series 90-70 style Transition contacts
and coils. (Symbolic discrete variables are supported.)

e Overrides and Forces cannot be used on symbolic non-discrete variables. (Symbolic
discrete variables are supported.)

o Arrays of the following data types are not supported:

— Arrays of user defined function block (UDFB) instance variables.

— Arrays of PAC Motion function block instance variables.

- Arrays of TON, TOF, or TP instance variables.

- Arrays of reference ID variables (RIVs) that contain one or more linked RIV

elements.

Note: AnRIVarray is supported when none of its elements is linked.

Program Data 30

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.1.3 |/O Variables

An 1/O variable is a symbolic variable that is mapped to a terminal in the hardware
configuration. A terminal can be one of the following: Physical discrete or analog 1/O point
on a PACSystems module or on a Genius device, a discrete or analog status returned from a
PACSystems module, or Global Data. The use of I/O variables allows you to configure
hardware modules without having to specify the reference addresses to use when scanning
theirinputs and outputs. Instead, you can directly associate variable names with a module’s
inputs and outputs.

As with symbolic variables, memory required to support 1/O variables counts against user
space. You can configure the space available for 1/O variables in the Memory tab of the
PACSystems CPU.

For a given module or Genius bus, you must use either I/O variables or manually located
mapped variables: you cannot use both in combination. It is not necessary to map all points
on a module. Points that are disconnected or unused can be skipped. When points are
skipped, space is reserved in user memory for that point (that is, a 32-point discrete module
will always use 32 bits of memory).

The hardware configuration (HWC) and logic become coupled in a PACSystems target on
your computer as soon as you do one of the following: Enable I/O variables for a module or
Genius bus (even if you don't create any I/O variables), use one or more symbolic variables
in the Ethernet Global Data (EGD) component, or upload a coupled HWC and logic from a
PACSystems PLC. The HWC and logic become coupled in a PACSystems controller when
coupled HWC and logic are downloaded to it.

Effects of coupled HWC and logic:

o Whetherthe HWC and logic are coupled in the PACSystems target on your computer or
in the PACSystems controller, you cannot download or upload the HWC and logic
independently.

o Whenthe HWCand logic are coupled in the PACSystems controller, you cannot clear the
HWC and the logic independently.

e As for any download, you cannot RUN Mode Store (RMS) the HWC and logic
independently.

o The HWC must be completely equal for you to make word-for-word changes, launch the
Online Test mode of Test Edit, or accept the edits of Test Edit.

I/O variables can be used any place that other symbolic variables are supported, such as in
logic as parameters to built-in function blocks, user defined function blocks, parameterized
function blocks, C blocks, bit-in-word references, and transition contacts and coils.

Program Data 31

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.1.3.1 Restrictions on the Use of IO Variables

e Since I/O variables are a form of symbolic variable, the same restrictions that apply to
other symbolic variables of the same data type and array bounds apply to I/O variables.

e Onlyaglobalvariable can become an I/O variable. A local variable cannot become an I/O
variable.

e You can map only a discrete variable to a discrete terminal.
e You can map only a non-discrete variable to an analog terminal.

e Arrays and UDT variables must fit on the number of terminals in the reference address
node counting from and including the terminal where you enter the array head or UDT
variable. For example, if you have 32 analog terminals and you have a WORD array of 12
elements, you can map it to terminal 21 or any terminal before it (1 through 20).

¢ You can map a discrete array only to a terminal 8n+1, where n =0, 1, 2, and so on. The
"+1"isincluded because the terminals are numbered beginning with 1. If you mapittoa
terminal other than 8n+1, an error occurs upon validation.

¢ Anl/Ovariable cannot be mapped to more than one location in hardware configuration.

e Forthe DO_IO function block, if an I/O variable is assigned to the ST parameter, then the
same I/O variable must also be assigned to the END parameter, and the entire module is
scanned.

e Some I/O modules do not support the use of 1/O variables. For a list of modules that
support 1/O variables, please refer to the Important Product Information for Logic
Developer - PLC programming software.

3.1.3.2 1/O Variable Format

To map an I/O variable, use the format %vdr.s.[z.]g.t:
v=1(input) or Q (output)

d = data type: X (discrete) or W (analog).

r=rack number

s =slot number

[z] = sub-slot number. This element and the period that follows it appear only if there is a
sub-slot, for example, the SBA number of a Genius device. For an Ethernet daughterboard,
set this value to 0.

g = segment number or number of the reference address node. Set to O for the first
reference address node on the Terminals tab, 1 for the second reference node, and so on.

t = terminal number. One-based, that is, the numbering begins at 1.

Program Data 32

CPU Programmer’s Reference Manual

GFK-2950G

3.1.3.2.1

3.1.3.2.2

Program Data

Supported I/O Variable Types

Section 3
June 2020

I?Ilant:;?:l(iec Supported Data Types |Number of Consecutive Terminals Required
BOOL variable 1
BOOL array Number of elements in array.

X BYTE variable 8
BYTE array 8n, where n is the number of array elements.
DINT variable 2
DINT array Number of elements in array times 2
DWORD variable 2
DWORD array Number of elements in array times 2
INT variable 1
INT array Number of elements in array
LREAL variable 4

w
LREAL array Number of elements in array times 4
REAL variable 2
REAL array Number of elements in array times 2
UINT variable 1
UINT array Number of elements in array
WORD variable 1
WORD array Number of elements in array

I/O Variable Examples

Figure 15

-~ @AWl Sample_|0_Variable ~ %Qw0.8.0.1

The 1/O variable, Sample_lO_Variable is mapped to a non-discrete (W) output point (Q) on

group of non-discrete output reference addresses.

the module located in rack 0, slot 8. The variable is mapped to the first point in the first

Figure 16

...9|2

I0_VAR_EXAMPLE %1X0.5.2.2

The 1/O variable, IO_VAR_EXAMPLE, is mapped to a discrete (X) input point (I) on the

module located in rack 0, slot 5. The point is in the module’s third group of discrete input
points and is point 2 in that group.

33

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.1.4 Arrays

An array is a complex data type composed of a series of variable elements with identical data
types. Any variable can become an array, except for another array, a variable element, or a
UDFB. In Machine Edition, you can create single-dimensional arrays and two-dimensional
arrays.

In the controller CPU, each element of an array is treated as a separate variable with a
separate, read-only reference address. The root node of the array variable also has a
reference address that is editable. When you set or change the reference address of the root
node of an array variable, the reference addresses of its elements are filled in with a range of
addresses starting at that reference address and incremented for each element to create
contiguous non-overlapping memory.

3.1.5 Variable Indexes and Arrays

PACSystems CPUs with firmware version 6.00 or later support variable indexes for arrays.
With a variable index, when logic is executed, the value of the variable is evaluated, and the
corresponding array element is accessed.

Note: The numbering of array elements is zero-based.

For example, to access an element of the array named ABC, you could write ABC[DEF] in
logic. When logic is executed, if the value of DEF is 5, then ABC[DEF] is equivalent to ABC [5],
and the sixth element of array ABC is accessed.

If the value of the variable index exceeds the array boundary, a non-fatal fault is logged to
the CPU fault table. In LD, the instruction for which this occurred does not pass power to the
right.

3.1.5.1 Requirements and Support

An index variable must be of the INT, UINT, or DINT data type.

The valid range of values for an index variable is 0 through Y, where Y = [the number of array
elements in the array] - 1. Refer to Ensuring that a Variable Index does not Exceed the Upper
Boundary of an Array

An index variable can be one of the following:

e Symbolic variable

e |/Ovariable

e Variable mapped to % memory areas such as %R
e Structure element

o Array element with a constant index

o Array element with a variable index

e Aliasvariable

¢ Inthelogic of a UDFB or parameterized block: formal parameter

Program Data 34

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

The following support a variable index:
o Array elements of any data type except STRING
e Parameter array elements of any data type
o Aliasvariables

Dimensional support:

e One-dimensional (1D) formal parameter arrays in the logic of a UDFB or parameterized
block

e 2D support for the top level of an array of structures and 1D support for a structure
element that is an array. For example:

PQR[a, b].STRU[y].Zed,

where Zed is an element of the array of structures STRU, which itself is an element
of the 2D array of structures PQR.

e 1Dand 2D arrays for other variables

Other features:

e Anarray with a variable index supports a bit reference, for example
MyArray[nindex].X[4],

where .X[4] is the fifth bit of the value stored in MyArray[nindex]. The bit reference
itself, [4] in the example, must be a constant.

e In LD, the following word-for-word changes are supported for array elements with
variable indexes:

Replacing an index variable with another index variable
Replacing an index variable with a constant
Replacing a constant with an index variable

In LD, Diagnostic Logic Blocks support the use of array elements with variable indexes.

3.1.5.2 Where Array Elements with Variable Indexes are Not
Supported:

The following do not support array elements with variable indexes:
e Indirect references
e EGD variables

o Reference ID variables (RIVs) and I/O variables when accessed in the Hardware
Configuration

Note: Inlogic, RIVs and I/O variables support variable indexes.

e STRING variables

Program Data 35

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020
A variable index cannot be one of the following:
e A math expression. For example, ABC[GH+1] is not supported.
e Anindirect reference. For example, W[@XYZ] is not supported.
e Abitreferences. For example, ABC [DEF.X[3]] is not supported.
Note You can use a bit reference on an array element designated by a variable index. For
example, ABC[DEF].X[3] is supported.
e Anarray head. For example, if MNP and QRS are arrays, MNP[QRS] is not supported, but
MNP[QRS[3]] and MNP[QRS[TUV]] are, where TUV is an index variable.
e Anegative index. This generates a run-time non-fatal CPU fault.
e Avalue greater than Y, where Y = [number of array elements] - 1. This generates a run-
time non-fatal CPU fault.
3.1.5.3 Ensuring that a Variable Index does not Exceed the Upper
Boundary of an Array
3.1.5.3.1 One-Dimensional Array
1. Once per scan, execute ARRAY_SIZE_DIM1 to count the number of elements in
the array.

Note: The array size of a variable can be changed in a RUN Mode Store but it will not be changed while
logic is executing.

ARRAY_SIZE_DIM1 places the count value in the variable associated with its output Q.

2. Before executing an instruction that uses a variable index, compare the value of
the index variable with the number of elements in the array.

Tip

In LD, use a RANGE instruction.

Notes Checking before executing each instruction that uses an indexed variable is recommended in case
logic has modified the index value beyond the array size or in case the array size has been reduced
before the scan to less than the value of an index variable that has not been reduced accordingly
since.

Valid range of an index variable: 0 through (n-1), where n is the number of array elements. Array
indexes are zero-based.
3.1.5.3.2 Two-Dimensional Array

Program Data

e Execute both ARRAY_SIZE_DIM1 and ARRAY_SIZE_DIM2 to count the number of

elements in respectively the first and second dimensions of the array.

36

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.2 Reference Memory

The CPU stores program data in bit memory and word memory. Both types of memory are
divided into different types with specific characteristics. By convention, each type is
normally used for a specific type of data, as explained below. However, there is great
flexibility in actual memory assignment.

Memory locations are indexed using alphanumeric identifiers called references. The
reference’s letter prefix identifies the memory area. The numerical value is the offset within
that memory area, for example $AQ0056.

3.2.1 Word (Register) References

Type |Description

%Al The prefix %Al represents an analog input register. An analog input register holds the value
of one analog input or other non-discrete value.

%AQ | The prefix %AQ represents an analog output register. An analog output register holds the
value of one analog output or other non-discrete value.

%R Use the prefix %R to assign system register references that will store program data such as
the results of calculations.

FW Retentive Bulk Memory Area, which is referenced as %W (WORD memory).

%P Use the prefix %P to assign program register references that will store program data with
the _MAIN block. This data can be accessed from all program blocks. The size of the %P data
block is based on the highest %P reference in all blocks. %P addresses are available only to
the LD program they are used in, including C blocks called from LD blocks; they are not
system-wide.

Note: All register references are retained across a power cycle to the CPU.

3.2.1.1 Indirect References

An indirect reference allows you to treat the contents of a variable assigned to an LD
instruction operand as a pointer to other data, rather than as actual data. Indirect references
are used only with word memory areas (%R, %W, %Al, %AQ, %P, and %L). An indirect
reference in %W requires two %W locations as a DWORD indirect index value. For example,
@%W0001 would use the $W2:W1 as a DWORD index into the %W memory range. The
DWORD index is required because the %W size is greater than 65K.

Indirect references cannot be used with symbolic variables.

To assign an indirect reference, type the @ character followed by a valid reference address
or variable name. For example, if %R00101 contains the value 1000, @R00101 instructs the
CPU to use the data location of %R01000.

Indirect references can be useful when you want to perform the same operation to many
word registers. Use of indirect references can also be used to avoid repetitious logic within
the application program. They can be used in loop situations where each register is
incremented by a constant or by a value specified until a maximum is reached.

Program Data 37

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.2.1.1.1 Bit in Word References

Bit in word referencing allows you to specify individual bits in a word reference type asinputs
and outputs of Boolean expressions, functions, and calls that accept bit parameters (such as
parameterized blocks). This feature is restricted to word references in retentive memory.
The bit number in the bit within word construct must be a constant.

You can use the programmer or an HMI to set an individual bit on or off within a word or
monitor a bit within a word. Also, C blocks can read, modify, and write a bit within a word.

Bit in Word references can be used in the following situations:

e Inretentive 16-bit memory (Al, AQ, R, W, P, and L) and symbolics.

e On all contacts and coils except legacy transition contacts (POSCON/NEGCON) and
transition coils (POSCOIL/NEGCOIL).

¢ Onall functions and call parameters that accept single or unaligned bit parameters.

Functions that accept Parameters

unaligned discrete references

ARRAY MOVE (BIT) SR and DS

ARRAY RANGE (BIT) Q

MOVE (BIT) INand Q

SHFR (BIT) IN,STand Q
3.2.1.1.2 Restrictions

The use of Bit in Word references has the following restrictions:

e Bitin Word references cannot be used on legacy transition contacts (POSCON/NEGCON)
and transition coils (POSCON/NEGCON).

e The bit number (index) must be a constant; it cannot be a variable.
e Bitaddressingis not supported for a constant.
¢ Indirect references cannot be used to address bits in 16-bit memory.
¢ You cannot force a bit within 16-bit memory.
3.2.1.1.3 Examples:
%R2.X [0] addresses the first (least significant) bit of %R2
%R2.X [1] addresses the second bit of %R2. In the examples

In the examples [0] and [1] are the bit indexes. Valid bit indexes for the different variable

types are:
BYTE variable [0] through [7]
WORD, INT, or UINT variable [0] through [15]
DWORD or DINT variable [0] through [31]

Program Data 38

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.2.2 Bit (Discrete) References
Type |Description

%l Represents input references. %I reference are located in the input status table, which stores
the state of all inputs received from input modules during the last input scan. A reference
address is assigned to discrete input modules using your programming software. Until a
reference address is assigned, no data will be received from the module. %I memory is
always retentive.

%Q Represents physical output references. The coil check function checks for multiple uses of
%Q references with relay coils or outputs on functions. You can select the level of coil
checking desired (Single, Warn Multiple, or Multiple).

%Q references are located in the output status table, which stores the state of the output
references as last set by the application program. This output status table’s values are sent
to output modules at the end of the program scan. A reference address is assigned to
discrete output modules using your programming software. Until a reference address is
assigned, no data is sent to the module. A particular %Q reference may be either retentive
or non-retentive.

%M Represents internal references. The coil check function of your programming software
checks for multiple uses of %M references with relay coils or outputs on functions. A
particular %M reference may be either retentive or non-retentive.

%T Represents temporary references. These references are never checked for multiple coil use
and can, therefore, be used many times in the same program even when coil use checking
is enabled—this is not a recommended practice because it makes subsequent trouble-
shooting more difficult. %T may be used to prevent coil use conflicts while using the
cut/paste and file write/include functions. Because this memory is intended for temporary
use, itis cleared on STOP Mode to RUN Mode transitions and cannot be used with retentive

coils.
%S Represent system status references. These references are used to access special CPU data
%SA such as timers, scan information, and fault information. For example, the %SC0012 bit can

%SB be used to check the status of the CPU fault table. Once the bit is set on by an error, it will
%SC not be reset until after the sweep. %S, %SA, %SB, and %SC can be used on any contacts.

o %SA, %SB, and %SC can be used on retentive coils -(M)-.

Note: Although the programming software forces the logic to use retentive coils with %SA,
%SB, and %SC references, most of these references are not preserved across power
cycles regardless of the state of the battery or Energy Pack.

%S can be used as word or bit-string input arguments to functions or function blocks.

%SA, %SB, and %SC can be used as word or bit-string input or output arguments to
functions and function blocks.

For a description of the behavior of each bit, refer to System Status References.

%G Represents global data references. These references are used to access data shared among
several control systems.

Note: For details on retentiveness, refer to Retentiveness of Logic and Data.

Program Data 39

CPU Programmer’s Reference Manual

GFK-2950G

3.3

3.3.1

Program Data

User Reference Size and Default

Maximum user references and default reference sizes are listed in the table below.

Section 3
June 2020

(This is the total memory available for the
combined total of symbolic memory. This
also includes other user memory use,

program etc.)

Item Range Default
Reference Points
%| reference 32768 bits 32768 bits
%Q reference 32768 bits 32768 bits
%M reference 32768 bits 32768 bits
%S total (S, SA, SB, SC) 512 bits 512 bits
(128 each) (128 each)
%T reference 1024 bits 1024 bits
%G 7680 points 7680 points
Total Reference Points 107520 107520
Reference Words
%Al reference 0—32640 words 64 words
%AQ reference 0—32640 words 64 words
%R, 1K word increments 0—32640 words 1024 words
%W 0—maximum available user RAM 0 words
Total Reference Words 0—maximum available user RAM 1152 words
%L (per block) 8192 words 8192 words
%P (per program) 8192 words 8192 words
Managed Memory
Symbolic Discrete 0—83,886,080 (bits) 32768
Symbolic Non-Discrete 0—5,242,880 (words) 65536
I/O Discrete 0 through 83,886,080 0
I/O Non-Discrete 0 through 5,242,880. 0
Total Symbolic 0—42,088,704 bytes 143360

%G User References and CPU Memory Locations

The CPU contains one data space for all the global data references (%G). The internal CPU
memory for this data is 7680 bits long. For Series 90-70 systems, the programming software
subdivides this range using %G, %GA, %GB, %GC, %GD, and %GE prefixes—allowing each of
these prefixes to be used with bit offsets in the range 1-1280. For PACSystems, these ranges

are converted to %G.

40

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.4 Genius Global Data

PACSystems supports the sharing of data among multiple control systems that share a
common Genius I/O bus. This mechanism provides a means for the automatic and repeated
transfer of %G, %I, %Q, %Al, %AQ, and %R data. No special application programming is
required to use global data since it is integrated into the I/O scan. All devices that have
Genius I/O capability can send and receive global data from a PACSystems CPU.

Using I/O Variables, you can directly associate variable names to a module’s Genius global
data that is scanned as part of an input/output scan.

3.5 Transitions and Overrides

The %I, %Q, %M, and %G user references, and symbolic variables of type BOOL, have
associated transition and override bits. %T, %S, %SA, %SB, and %SC references have transition
bits but not override bits. The CPU uses transition bits for counters, transition contacts, and
transitional coils. Note that counters do not use the same kind of transition bits as contacts
and coils. Transition bits for counters are stored within the locating reference.

The transition bit for a reference tells whether the most recent value (ON, OFF) written to
the reference is the same as the previous value of the reference. Therefore, when areference
is written and its new value is the same as its previous value, its transition bit is turned OFF.
When its new value is different from its previous value, its transition bit is turned ON. The
transition bit for a reference is affected every time the reference is written to. The source of
the write is immaterial; it can result from a coil execution, an executed function’s output,
the updating of reference memory after an input scan, etc.

When override bits are set, the associated references cannot be changed from the program
or the input device; they can only be changed on command from the programmer.
Overrides do not protect transition bits. If an attempted write occurs to an overridden
memory location, the corresponding transition bit is cleared.

3.6 Retentiveness of Logic and Data

Data is defined as retentive if it is saved by the CPU when the CPU transitions from STOP
Mode to RUN Mode.

The following items are retentive:

e program logic

o fault tables and diagnostics

e checksums for program logic

e overrides and output forces

o word data (%R, %W, %L, %P, %Al, %$AQ)

e bitdata (%I, %G, fault locating references, and reserved bits)

e %Q and %M variables that are configured as retentive (%T data is non-retentive and
therefore not saved on STOP Mode to RUN Mode transitions).

e symbolic variables that have a data type other than BOOL
Program Data 41

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

e symbolic variables of BOOL type that are configured as retentive

e Retentive data is also preserved during power-cycles of the CPU with battery backup or
Energy Pack backup. Exceptions to this rule include the fault locating references and
most of the %S, %SA, %SB, and %SC references. These references are initialized to zero at
power-up regardless of the state of the battery or Energy Pack. (For a description of the
behavior of each, refer to System Status References

When %Q or %M variables are configured as retentive, the contents are retained through
power loss and Run-to-Stop-to-Run transitions.

3.7 Data Scope

Each of the user references has scope; that is, it may be available throughout the system,
available to all programs, restricted to a single program, or restricted to local use within a

block.

User Reference Type Range Scope

%, %Q, M, %T, %S, %SA, %SB, | Global From any program, block, or host computer. Variables

%SC, %G, %R, BW, %Al, %AQ, defined in these registers have system (global) scope

convenience references, fault by default. However, variables with local scope can

locating references also be assigned in these registers.

Symbolic variable Global From any program, block, or host computer. Symbolic
variables have system (global) scope by default.
However, symbolic variables with local scope can be
created using the naming conventions for local
variables.

I/O variable Global From any program, block, or host computer.

%P Program | From any block, but not from other programs (also
available to a host computer).

%L Local From within a block only (also available to a host
computer).

In an LD block:

e %P should be used for program references that are shared with other blocks.

o %L are local references that can be used to restrict the use of register data to that block.
These local references are not available to other parts of the program.

o %I, %Q, %M, %T, %S, %SA, %SB, %SC, %G, %R, %W, %Al, and %AQ references are available
throughout the system.

Program Data 42

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.8 System Status References

System status references in the CPU are assigned to %S, %SA, %SB, and %SC memory. The
four timed contacts (time tick references) include #T_10MS, #T_100MS, #T_SEC, and
#T_MIN. Examples of other system status references include #FST_SCN, #ALW_ON, and
#ALW_OFF

Note: %S bits are read-only bits; do not write to these bits. However, you can write to %SA, %SB, and %SC
bits.

Listed below are available system status references that can be used in an application
program. When entering logic, either the reference or the nickname can be used. Refer to
Section 9 for detailed fault descriptions and information on correcting faults.

3.8.1 %S References

Reference | System Variable |Definition

%S0001 #FST_SCN Current sweep is the first sweep in which the LD executed. Set
the first time the user program is executed after a STOP Mode
to RUN Mode transition and cleared upon completion of its
execution.

%S0002 #LST_SCN Set when the CPU transitions to RUN Mode; cleared when the
CPU is performing its final sweep. The CPU clears this bit and
then performs one more complete sweep before transitioning
to STOP or STOP Faulted mode. If the number of last scans set
to 0, %S0002 will be cleared after the CPU is stopped and user
logic will not see this bit cleared.

%S0003 #T_10MS 0.01 second timed contact.

%S0004 #T_100MS 0.1 second timed contact.

%S0005 #T_SEC 1.0 second timed contact.

%S0006 #T_MIN 1.0-minute timed contact.

%S0007 #ALW_ON Always ON.

%S0008 #ALW_OFF Always OFF.

%S0009 #SY_FULL Set when the CPU fault table fills up (size configurable with a

default of 16 entries). Cleared when an entry is removed from
the CPU fault table and when the CPU fault table is cleared.

%S0010 #1O_FULL Set when the 1/O Fault Table fills up (size configurable with a
default of 32 entries). Cleared when an entry is removed from
the 1/O Fault Table and when the I/O Fault Table is cleared.

%S0011 #OVR_PRE Set when an override exists in %I, %Q, %M, or %G, or symbolic
BOOL memory.

%S0012 #FRC_PRE Set when force exists on a Genius point.

%S0013 #PRG_CHK Set when background program check is active.

Program Data 43

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

Reference | System Variable |Definition

%S0014 #PLC_BAT CPUs with batteries, including CPU310, CPU315, CPU/CRU320
and NIU0O1

e Ifthe battery is disconnected, this contactis set to 1.

e Whenever a Smart Battery fails during operation, this
contact is set to 1. If used in conjunction with a legacy
(non-smart) battery, this indication is not reliable.

Battery-less CPUs, including CPE302, CPE305, CPE310 and
CPE330:
e Energy Packis connected and functioning =0

e Energy Packis not connected or has failed = 1

Set to 1 if the local unit is configured as the Primary CPU:
%S0033 #PRI_UNT otherwise it is cleared. For any given local unit, if PRI_UNT is set,
SEC_UNT cannot be set.

Set to 1 if the local unit is configured as the Secondary CPU:
%S0034 #SEC_UNT otherwise itis cleared. Forany given local unit, if SEC_UNT is set,
PRI_ UNT cannot be set.

Set to 1 if local unit is in Run mode with outputs enabled.

%S0035 #LOC_RDY
- Otherwise set to 0.

Set to 1 if local unit is currently the Active unit; otherwise it is
%S0036 #LOC_ACT cleared. For any given local unit, if LOC_ACT is set, REM_ACT
cannot be set.

Set to 1 if remote unit is in Run mode with outputs enabled.

%S0037 #REM_RDY
- Otherwise set to 0.

Setto 1if remote unitis currently the Active unit; otherwise it is
%S0038 #REM_ACT cleared. For any given local unit, if REM_ACT is set, LOC_ACT
cannot be set.

Set to 1 if the application logic for both units in the redundant

%S0039 #LOGICEQ) ;
system is the same. Otherwise set to 0.

%S0041 #RDN_COMM_AVAIL | Redundancy Communication Link Available: 1 indicates that
the two CPUs can communicate with each other and will be able
to synchronize when required.

%50042 #RDN_P1_LINK_UP |Redundancy Ethernet Port 1 on LAN3 has link on its PHY.

%50043 #RDN_P2_LINK_UP |Redundancy Ethernet Port 2 on LAN3 has link on its PHY.

%50049 #FA_OK Field Agent OK: 1 indicates Field Agent running and connected
to cloud.
%S0050 #LG_CFG_SRC Set to 1 if the CPU logic and hardware configuration is retrieved

(R9.98 and later) from Flash memory during last powerup. If set to 0, the CPU
logic and hardware configuration was retrieved from RAM or
was not retrieved.

%S0051 #DATA_SRC Set to 1 if the CPU reference data is retrieved from Flash
(R9.98 and later) memory during last powerup. If set to 0, the CPU reference data
was retrieved from RAM or was not retrieved.

Program Data 44

CPU Programmer’s Reference Manual Section 3

GFK-2950G

June 2020

Reference | System Variable |Definition

%S00052 | #DSPOVTMP Set to 1 if the OLED display is in an over temperature state and

(CPx4x0R9.99and | has turned itself off. The bit is self clearing when the CPU cools
later) and the OLED is able to turn itself back on. If set to 0, the OLED
display is not in an over temperature state.

Note:

The #FST_EXE name is not associated with a %S address, it must be referenced by the name
#FST_EXE only. This bit is set when transitioning from STOP Mode to RUN Mode and indicates that
the current sweep is the first time this block has been called.

3.8.2 %SA,

%SB, and %SC References

Note:

%SA, %SB, and %SC contacts are not set or reset until the input scan phase of the sweep following
the occurrence of the fault or a clearing of the fault table(s). %SA, %SB, and %SC contacts can also
be set or reset by user logic and CPU monitoring devices.

Referen

ce [System Definition
Variable

%SA0001

#PB_SUM Set when a checksum calculated on the application program does not
match the reference checksum. If the fault was due to a temporary
failure, the condition can be cleared by again storing the program to
the CPU. If the fault was due to a hard RAM failure, then the CPU must
be replaced.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0002

#OV_SWP Set when the CPU detects that the previous sweep took longer than
the time specified by the user. To clear this bit, clear the CPU fault
table or power cycle the CPU. Only occurs if the CPU is in Constant
Sweep mode.

%SA0003

#APL_FLT #SA0003 | #APL_FLT | Set when an application fault (Fault Group 22)
occurs. To clear this bit, clear the CPU fault table or power cycle the
CPU.

%SA0009

#CFG_MM Set when a configuration mismatch fault is logged in the fault tables.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0008

#OVR_TMP Set when the operating temperature of the CPU exceeds the normal
operating temperature, 58°C. To clear this bit, clear the CPU fault table
or power cycle the CPU.

%SA0010

#HRD_CPU Set when the diagnostics detects a problem with the CPU hardware.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0011

#LOW_BAT The low battery indication is not supported for all CPU modules. For
details, refer to

Battery Status (Group 18) in Section 9.

The CPU may set this contact when an I/O module or special-purpose
module has reported a low battery. In this case, a fault will be reported
in the 1/O Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

Program Data

45

CPU Programmer’s Reference Manual

GFK-2950G

Program Data

Section 3
June 2020
Reference [System Definition
Variable

%SA0012 #LOS_RCK Set when an expansion rack stops communicating with the CPU. To

clear this bit, clear the CPU fault table or power cycle the CPU.
%SA0013 #LOS_IOC Set when a Bus Controller stops communicating with the CPU.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.
%SA0014 #LOS_IOM Set when an 1/O module stops communicating with the CPU.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.
%SA0015 #LOS_SIO Set when an option module stops communicating with the CPU.

To clear this bit, clear the CPU fault table or power cycle the CPU.
%SA0017 #ADD_RCK Set when an expansion rack is added to the system.

To clear this bit, clear the CPU fault table or power cycle the CPU.
%SA0018 #ADD_IOC Set when a Bus Controller is added to a rack.

To clear this bit, clear the 1/O Fault Table or power cycle the CPU.
%SA0019 #ADD_IOM Set when an 1/O module is added to a rack.

To clear this bit, clear the 1/O Fault Table or power cycle the CPU.
%SA0020 [#ADD_SIO Set when an intelligent option module is added to a rack.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.
%SA0022 [#IOC_FLT Set when a Bus Controller reports a bus fault, a global memory fault, or

an |0C hardware fault. To clear this bit, clear the IO Fault Table or

power cycle the CPU.
%SA0023 #IOM_FLT Set when an 1/O module reports a circuit or module fault.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.
%SA0027 [#HRD_SIO Set when a hardware failure is detected in an option module.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.
%SA0029 [#SFT_IOC Set when there is a software failure in the /O Controller.

To clear this bit, clear the 1/O Fault Table or power cycle the CPU.
%SA0030 #PNIO_ALARM |A PROFINET alarm has been received and an /O fault has been logged

in group 28. To clear this bit, clear the I/O Fault Table or power cycle

the CPU.
%SA0031 #SFT_SIO Set when an option module detects an internal software error.

To clear this bit, clear the I/O Fault Table or power cycle the CPU.
%SA0032 [#SBUS_ER Set when a bus error occurs on the VME bus backplane

To clear this bit, clear the 1/O Fault Table or power cycle the CPU.
%SA0081 - Set when a user-defined fault is logged in the CPU fault table.
%SA0112 To clear these bits, clear the CPU fault table or power cycle the CPU.

For more information, see discussion of

SVC_REQ 21: User-Defined Fault Logging in Section 7.
%SB0001 [#WIND_ER Set when there is not enough time to start the Programmer Window in

Constant Sweep mode.
To clear this bit, clear the CPU fault table or power cycle the CPU.

46

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

Reference [System Definition
Variable

%SB0009 #NO_PROG Set when the CPU powers up with memory preserved, but no user
program is present. Cleared when the CPU powers up with a program
present or by clearing the CPU fault table.

%SB0010 [#BAD_RAM Set when the CPU detects corrupted RAM memory at power-up.
Cleared when the CPU detects that RAM memory is valid at power-up
or by clearing the CPU fault table.

%SB0011 #BAD_PWD Set when a password access violation occurs. Cleared when
the CPU fault table is cleared or when the CPU is power cycled.

%SB0012 #NUL_CFG Set when an attempt is made to put the CPU in RUN Mode when there
is no configuration data present.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0013 [#SFT_CPU Set when the CPU detects an error in the CPU operating system
software.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0014 [#STOR_ER Set when an error occurs during a programmer store operation.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0016 [#MAX_IOC Set when more than 32 10Cs are configured for the system.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0017 [#SBUS_FL Set when the CPU fails to gain access to the bus.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SC0009 #ANY_FLT Set when any fault occurs that causes an entry to be placed in the CPU
or 1/O Fault Table. Cleared when both fault tables are cleared or when
the CPU is power cycled.

%SC0010 [#SY_FLT Set when any fault occurs that causes an entry to be placed in the CPU
fault table. Cleared when the CPU fault table is cleared or when the
CPU is power cycled.

%SC0011 #O_FLT Set when any fault occurs that causes an entry to be placed in the I/O
Fault Table. Cleared when the 1/O Fault Table is cleared or when the
CPU is power cycled.

%SC0012 [#SY_PRES Set as long as there is at least one entry in the CPU fault table. Cleared
when the CPU fault table is cleared.

%SC0013 [#IO_PRES Set if there is at least one entry in the 1/O Fault Table. Cleared when the
I/O Fault Table is cleared.

%SC0014 #HRD_FLT Set when a hardware fault occurs. Cleared when both fault tables are
cleared or when the CPU is power cycled.

%SC0015 [#SFT_FLT Set when a software fault occurs. Cleared when both fault tables are
cleared or when the CPU is power cycled.

Program Data 47

CPU Programmer’s Reference Manual

GFK-2950G

3.8.3

3.8.3.1

3.8.3.2

3.8.3.3

Program Data

Section 3
June 2020

Fault References

The fault references are discussed in Section 9 of this manual but are also listed here for your

convenience.

System Fault References

System Fault Ref | Description

#ANY_FLT Any new fault in either table since the last power-up or clearing of the fault
tables

#SY_FLT Any new system faultin the CPU fault table since the last power-up or clearing
of the fault tables

#IO_FLT Any new faultin the I/O Fault Table since the last power-up or clearing of fault
tables

#SY_PRES Indicates that there is at least one entry in the CPU fault table

#IO_PRES Indicates that there is at least one entry in the I/O Fault Table

#HRD_FLT Any hardware fault

#SFT_FLT Any software fault

Configurable Fault References

Configurable Faults
(Default Action)

Description

#SBUS_ER (diagnostic)

System bus error. (The BSERR signal was generated on the VME system
bus.)

#SFT_IOC (diagnostic)

Non-recoverable software error in a Genius Bus Controller.

#LOS_RCK (diagnostic)

Loss of rack (BRM failure, loss of power) or missing a configured rack.

#LOS_IOC (diagnostic)

Loss of Bus Controller missing a configured Bus Controller.

#LOS_IOM (diagnostic)

Loss of 1/O module (does not respond) or missing a configured 1/O
module.

#LOS_SIO (diagnostic)

Loss of intelligent option module (does not respond) or missing a
configured module.

#IOC_FLT (diagnostic)

Non-fatal bus or Bus Controller error—more than 10 bus errors in 10
seconds (error rate is configurable).

#CFG_MM (fatal)

Wrong module type detected during power-up, store of configuration,
or RUN Mode. The CPU does not check the configuration parameters set
up forindividual modules such as Genius 1/O blocks.

Non-Configurable Faults

Non-Configurable
Faults (Action)

Description

#SBUS_FL (fatal)

System bus failure. The CPU was not able to access the VME bus.
BUSGRT-NMI error.

#HRD_CPU (fatal)

CPU hardware fault, such as failed memory device or failed serial port.

48

CPU Programmer’s Reference Manual

GFK-2950G

Program Data

Non-Configurable
Faults (Action)

Description

#HRD_SIO (diagnostic)

Non-fatal hardware fault on any module in the system.

#SFT_SIO (diagnostic)

Non-recoverable software error in a LAN interface module.

#PB_SUM (fatal)

Program or block checksum failure during power-up or in RUN Mode.

#LOW_BAT (diagnostic)

The low battery indication is not supported for all CPU modules. For
details, refer to

Battery Status (Group 18) in Section 9.

The CPU may set this contact when an /O module or special-purpose
module has reported a low battery. In this case, a fault will be reported
in the 1/O Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

#0OV_SWP (diagnostic)

Constant sweep time exceeded.

#SY_FULL, I0_FULL
(diagnostic)

CPU fault table full
I/O Fault Table full

#IOM_FLT (diagnostic)

Point or channel on an I/O module—a partial failure of the module.

#APL_FLT (diagnostic)

Application Fault (Fault Group 22)

#ADD_RCK (diagnostic)

New rack added, extra, or previously faulted rack has returned.

#ADD_IOC (diagnostic)

Extra 1/O Bus Controller or reset of I/O Bus Controller.

#ADD_IOM (diagnostic)

Previously faulted I/O module is no longer faulted or extra I/O module.

#ADD_SIO (diagnostic)

New intelligent option module is added, extra, or reset.

#NO_PROG (information)

No application program is present at power-up. Should only occur the
first time the CPU is powered up or if the user memory is not retained.

#BAD_RAM (fatal)

Corrupted program memory at power-up. Program could not be read
and/or did not pass checksum tests.

#WIND_ER (information)

Window completion error. Servicing of Programmer or Logic Window
was skipped. Occurs in Constant Sweep mode.

#BAD_PWD (information)

Change of privilege level request to a protection level was denied; bad
password.

#NUL_CFG (fatal)

No configuration present upon transition to RUN Mode. Running
without a configuration is similar to suspending the I/O scans.

#SFT_CPU (fatal)

CPU software fault. A non-recoverable error has been detected in the
CPU. May be caused by Watchdog Timer expiring.

#MAX_IOC (fatal)

The maximum number of bus controllers has been exceeded. The CPU
supports 32 bus controllers.

#STOR_ER (fatal)

Download of data to CPU from the programmer failed; some data in
CPU may be corrupted.

49

Section 3
June 2020

CPU Programmer’s Reference Manual

GFK-2950G

3.9

Section 3
June 2020

How Program Functions Handle Numerical
Data

Regardless of where data is stored in memory - in one of the bit memories or one of the

word memories — the application program can handle it as different data types.

3.9.1

Data Types

Type Name Description Data Format

BOOL Boolean The smallest unit of memory. It has
two states: 1 or 0. ABOOL array may
have length N.

BYTE Byte Has an 8-bit value. Has 256 values
(0-255). ABYTE array may have
length N.

WORD Word Uses 16 consecutive bits of data Register
memory. The valid range of word l;g—_J (16 bit states)
values is 0000 hex to FFFF hex.

DWORD |Double Word | Has the same characteristics as a Register 2 Register 1
single word data type, except that it | 2 17' l 16 1'
uses 32 consecutive bits in data (32 bit states)
memory instead of only 16 bits.

UINT Unsigned Uses 16-bit memory data locations. | Register

Integer They have a valid range of 0 to I;g—_J (Binary value)
+65535 (FFFF hex).

INT Signed Integer | Uses 16-bit memory data locations, | Register! (Two's
and are represented in 2’s Complement
complement notation. The valid| 16 1 value)
range of an INT data type is -32768 s=sign bit
to+32767. (0O=positive, 1=negative)

DINT Double Stored in 32-bit data memory| Register2 Register 1

Precision locations (two consecutive 16-bit |§£ 17' | 6 1'
Integer memory locations). Always signed (Binary value)
values (bit 32 is the sign bit). The | s=sign bit
Valid range Of a DINT data type (0=positive’]=negative)
is-2147483648 to +2147483647

REAL Floating Point |Uses 32 consecutive bits (two| Register 2 Register 1
consecutive 16-bit memory |32 17] [= 1]
locations). (IEEE format)

The range of numbers that can be
stored in this format is from
+1.401298E-45 to +3.402823E+38.
For the IEEE format, refer to

Floating Point Numbers.

Program Data

50

CPU Programmer’s Reference Manual

GFK-2950G

Program Data

Section 3
June 2020

Type

Name

Description

Data Format

LREAL

Double
Precision
Floating Point

Uses
consecutive
locations).

64 consecutive bits (four
16-bit memory

The range of numbers that can be
stored in this format is from
+2.2250738585072020E-308 to
+1.7976931348623157E+308.

For the IEEE format, refer to

Floating Point Numbers.

Register 2 Register 1

[| | |
32 17 16 1

Register 4 Register 3

I | | |
64 49 48 33

(IEEE format)

BCD-4

Four-Digit BCD

Uses 16-bit data memory locations.
Each binary coded decimal (BCD)
digit uses four bits and can represent
numbers between 0 and 9. This BCD
coding of the 16 bits has a legal value
range of 0 to 9999.

Register 1

139 51

(4 BCD digits)

BCD-8

Eight-Digit
BCD

Uses two consecutive 16-bit data
memory locations (32 consecutive
bits). Each BCD digit uses 4 bits per
digit to represent numbers from 0 to
9. The complete valid range of the 8-
digit BCD data type is 0 to
99999999.

Register 2 Register 1
[817]6]5] [4]3]8]1]
3220252117 1613 9 5 1

(8 BCD digits)

MIXED

Mixed

Available only with the MUL and DIV
functions. The MUL function takes
two integer inputs and produces a
double integer result. The DIV
function takes a double integer
dividend and an integer divisor to
product an integer result.

ASClII

ASCll

Eight-bit encoded characters. A
single word reference is required to
make two (packed) ASClI characters.
The first character of the pair
corresponds to the low byte of the
reference word. The remaining 7 bits
in each section are converted.

Note:

Using functions that are not explicitly bit-typed will affect transitions for all bits in the written
byte/word/dword. For information about using floating point numbers, refer to

51

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

Floating Point Numbers.

Program Data 52

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.9.2 Floating Point Numbers

Floating point numbers are stored in one of two IEEE 754 standard formats that uses
adjacent 16-bit words: 32-bit single precision or 64-bit double precision.

The REAL data type represents single precision floating point numbers. The LREAL data type
represents double precision floating point numbers. REAL and LREAL variables are typically
used to store data from analog I/O devices, calculated values, and constants.

3.9.2.1 Types of Floating-Point Variables

Data Type Precision and Range

REAL Limited to 6 or 7 significant digits, with a range of approximately
+1.401298x10* through +3.402823x10%.

LREAL Limited to 17 significant digits, with a range of approximately
+2.2250738585072020x103% to0 +1.7976931348623157x103%,

Note: The programming software allows 32-bit and 64-bit arguments (DWORD, DINT, REAL, and LREAL)
to be placed in discrete memories such as %I, %M, and %R in the PACSystems target. This is not
allowed on Series 90-70 targets. (Note that any bit reference address that is passed to a non-bit
parameter must be byte-aligned. This is the same as the Series 90-70 CPU.)

3.9.2.2 Internal Format of REAL Numbers

Figure 17
#————— Bit 17-22 | Bits 1-18 —b{
Bzl [[[[T T T[T T [hzhel [[[T TTTTTTTTTIal
- 23-bit mantiss a
- b 8-l exponent
il 1-bil sign (Bi 32)

Register use by a single floating-point number is diagrammed below. For example, if the
floating-point number occupies registers R5 and R6, R5 is the least significant register and
R6 is the most significant register.

Figure 18
Most Significant Register ————» Least Significant Register ———
Bits 17-32 —— P Bits 1-16 ————— P
B2l [T T T T TTVTTTYTH Bl [T T T TITTIIIIT
v
Most Significant Bit Least Signfficant Bit Most Significant Bit Least Significant Bit

Program Data 53

CPU Programmer’s Reference Manual Section 3

GFK-2950G

3.9.2.3

3.9.24

3.9.2.4.1

3.9.2.4.2

Program Data

June 2020

Internal Format of LREAL Numbers

Figure 19

Bits 49-64 —p4— Bits 33-48 —p4— Bits 17-32 —Mm4— Bits 1-16 —

L e e e e e e e e e e

ot 52-bit mantissa »

o — 11-bit exponent
|@———— 1-bit sign (Bit 64)

Errors in Floating Point Numbers and Operations

Overflow occurs when a REAL or LREAL function generates a number outside the allowed
range. When this occurs, the Enable Out output of the function is set Off, and the result is
set to positive infinity (for a number greater than the upper limit) or negative infinity (for a
number less than the lower limit). You can determine where this occurs by testing the sense
of the Enable Out output.

Binary representations of Infinity and NaN values have exponents that contain all 1s.

|EEE 754 Infinity Representations

REAL LREAL
POS_INF (positive infinity) = 7F800000h =7FF0000000000000h
NEG_INF (negative infinity) = FF800000h =7FF0000000000001h

If the infinities produced by overflow are used as operands to other REAL or LREAL functions,
they may cause an undefined result. This undefined result is referred to as an NaN (Not a
Number). For example, the result of adding positive infinity to negative infinity is undefined.
When the ADD_REAL function is invoked with positive infinity and negative infinity as its
operands, it produces an NaN. If any operand of a function is a NaN, the result will be some
NaN.

Note: For NaN, the Enable Out output is Off (not energized).

IEEE 754 Representations of NaN values:

REAL LREAL
7F800001 through 7FFFFFFF | 7FF8000000000001 through 7FFFFFFFFFFFFFFF
FF800001 through FFFFFFFF | FFFO000000000001 through FFFFFFFFFFFFFFFF

Note: for releases 5.0 and greater, the CPU may return slightly different values for NaN compared to
previous releases. In some cases, the result is a special type of NaN displayed as #IND in Machine
Edition. In these cases, for example, EXP(-infinity), power flow out of the function is identical to
that in previous releases.

54

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.10 User Defined Types (UDTs)

A UDT is a structured data type consisting of elements of other selected data types. Each
top-level UDT element can be one of the following:

Top-level UDT Element Example

Simple data type, except STRING INT

Another UDT, except any in which the current | A UDT named UDT_ABC has a top-level element
UDT is nested at any level. whose data type is another UDT, named UDT_2.

Note: A UDT cannot be nested within itself.

Array of a simple data type LREAL array of length 8.

Array of UDTs A UDT named UDT_ABC has a top-level element
that is an array whose data type is another UDT,
named UDT_row.

Note: A UDT cannot be nested within itself.

Program Data 55

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.10.1 Working with UDTs

Figure 20
=B Logic
+ T:g Program Blocks
=- g} User Defined Types
b Cmdsicks
ob Cmdsicks

1. In Machine Edition, add a UDT as a node under a target in the Project tab of the
Navigator. A UDT will be saved with the target in which it is used.

2. Editthe UDT properties and define the elements in the UDT’s structure.

3. Create avariable whose data type is the UDT. By default, the variable resides in
symbolic memory. You can convert the symbolic variable to an I/O variable by
assigning it to an 1/O terminal.

4. Use the variable in logic.

3.10.2 UDT Properties

Name: The UDT’s name. Maximum length: 32 characters.
Description: The user-defined description of the UDT.

Memory Type: The type of symbolic or I/O variable memory in which a variable of this UDT
resides.

Non-Discrete: (Default) Word-oriented memory organized in groups of 16
contiguous bits.

Discrete: Bit-oriented memory.

Notes: You cannot nest a UDT of one memory type in a UDT of a different memory type. Changing the
memory type propagates to existing variables of this UDT only after target validation.

Is Fixed Size: If set to True, you can increase the Size (Bytes) value to a maximum of 65,535
bytes to create a bufferat the end of the UDT. The bufferis included in the memory allocated
to every downloaded variable of that UDT data type. Use of a buffer may allow RUN Mode
store of a UDT when the size of the UDT definition has changed. For details, refer to RUN
Mode Store of UDTs.

If set to False (default), the Size (Bytes) value is read-only and does not include a buffer at
the end of the UDT.

Size (bytes): (Read-only when Is Fixed Size is set to False.) The total number of bytes required
to store a structure variable of the user-defined data type (UDT).

Bytes Remaining: (Read-only; displayed if Is Fixed Size is set to True.) The UDT's buffer size;
the number of bytes available before the actual size of the UDT reaches the value of the Size
(bytes) property.

Program Data 56

CPU Programmer’s Reference Manual
GFK-2950G

3.10.3

3.10.4

Program Data

UDT Limits

e Maximum number of UDTs per target: 2048
e Maximum UDT size: 65,535 bytes

Note: Bit spares created to line up the end of a section of BOOL variables or arrays with the end of a byte
will count toward the maximum size.

e Maximum number of top-level UDT elements: 1024
e Maximum array size of a top-level UDT element: 1024 array elements
e UDTsdo not support the following:
- Two-dimensional arrays
- Function block data types
- Enumerated data types
¢ You cannot nest a UDT of one memory type in a UDT of a different memory type.
e You cannot alias a variable to a UDT variable or UDT variable element.

e AFAULT contact supports aBOOL element of aUDT /O variable, but not aBOOL element
of a UDT parameterin a UDFB or parameterized block.

e POSCON and NEGCON do not support BOOL elements of UDT parameters in
parameterized blocks or UDFBs.

RUN Mode Store of UDTs

An RMS can be performed on a target that contains a variable of a UDT, unless:

¢ Anoperationin the UDT editor modifies the offset or bit mask of an element that has the
same name before and after the operation.

e The size of the UDT definition increases.
e Array length increases.
e The memory type of the UDT definition changes.

e There is a data type change in the UDT definition, except for the following
interchangeable data types:

— WORD, INT, UINT
— DWORD, DINT

e The UDT definition is renamed.

57

Section 3
June 2020

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.10.5 UDT Operational Notes

e By default, a UDT variable resides in symbolic memory. You can convert the symbolic
variable to an I/O variable.

e AllUDT elements are public and, therefore, readable and writeable.
o Properties of elements of UDT variables:

The Input Transfer List and Output Transfer List properties are read-only and set to False.
The Retentive property is editable only for BOOLs and only if the UDT Memory Type is

discrete. For UDTs whose Memory Type is non-discrete, a BOOL variable has its Retentive
property set to True during validation.

e UDT variables are supported in LD, FBD, and ST blocks, as well as in Diagnostic Logic
Blocks.

For additional operational notes, refer to the programmer Help.

3.10.5.1.1 Example

You want to set up six COMMREQ commands to send values to a series of six identical
intelligent modules that require individualized data of the same data types in the same
format, specified by the manual for the intelligent module. This data contains header
information and several words of data. You could proceed as follows:

1. AddaUDT named COMMREQ6 and edit it to contain the data in the required data
types and sequence.

2. Create an array of length 6, named ABC, of the COMMREQ6 data type.

3. The array resides in symbolic memory. You can convert the symbolic variable to an
I/O variable.

4. Populate the variable. If the value of an element needs to be the same for all six
COMMREQG6 elements, you can set up an ST for loop that uses a variable index to
populate each element with the same data, for example:

fori=1to6do
ABC[i].WaitFlag := 0;
end_for;

5. Just before issuing one or more COMMREQs, use the Move to Flat instruction to
flatten the COMMREQS6 array or one or more of its top-level elements from a
structure to a flat series of contiguous registers in an area of % memory supported
by COMMREQ.

6. Issue the COMMREQs based on the % memory registers that you just populated
with the Move to Flat instruction.

Although you can populate the memory registers directly without a UDT and Move to Flat,
there are advantages when working with UDT variables:

e UDT variables reside in symbolic or I/O variable memory, which protects them from
memory overlaps and offers more protection against overwriting, whereas reference

Program Data 58

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

memory areas offer no such protection. It is best to use reference memory just before
issuing a COMMREQ.
e You can work with meaningful structure variable names and structure element names.

e You can set up loops with variable indexes to populate some of the values.

3.11 Operands for Instructions
The operands for PACSystems instructions can be in the following forms:

e Constants

e Variables that are located in any of the PACSystems memory areas (%I, %Q, %M, %T, %G,
%S, %SA, %SB, %SC, %R, %W, %L, %P, %Al, 6AQ)

e Symbolic variables, including I/O variables

e Parameters of a Parameterized block or C block

e Powerflow

e Dataflow

¢ Computed references such as indirect references or bit-in-word references
e BOOL arrays

An operand’s type and length must be compatible with that of the parameter it is being
passed into. PACSystems instructions and functions have the following operand
restrictions:

e Constants cannot be used as operands to output parameters because output values
cannot be written to constants.

e Variables located in %S memory cannot be used as operands to output parameters
because %S memory is read-only.

e Variables located in %S, %SA, %SB, and %SC memories cannot be used as operands to
numerical parameters such as INTs, DINTs, REALs, LREALs, etc.

e Data flow is prohibited on some input parameters of some functions. This occurs when
the function, during the course of its execution, actually writes a value to the input
parameter. Data flow is prohibited in these cases because data flow is stored in a
temporary memory and any updated value assigned to it would be inaccessible to the
user application.

e The arguments to EN, OK, and many other BOOLEAN input and output parameters are
restricted to be power flow.

e Restrictions on using Parameterized block or External block parameters as operands to
instructions or functions are documented in Section 2.

o Referencesin discrete memory (I, Q, M, and T) must be byte-aligned.

Program Data 59

CPU Programmer’s Reference Manual

GFK-2950G

Note the following:

Indirect references, which are available for all WORD-oriented memories (%R, %W, %P,
%L, %Al, %AQ), can be used as arguments to instructions wherever located variables in
the corresponding WORD-oriented memory are allowed. Note that indirect references
are converted into their corresponding direct references immediately before they are
passed into an instruction or function.

Bit-in-word references are generally allowed on contact and coil instructions other than
legacy transition contacts and coils (POSCON, NEGCON, POSCOIL and NEGCOIL). They
are also allowed as arguments to function parameters that accept single or unaligned
bits.

BOOL arrays can be used as parameters to an instruction instead of variables of other data
types. The array must be of enough length to replace the given data type. For example,
instead of using a 16-bit INT variable, you could use a BOOL array of length 16 or more.

The following conditions must be met:

Program Data

The BOOL array must be byte-aligned, that is, the reference address of the first element
of the BOOL array must be 8n+ 1, wheren=0, 1, 2, 3, and so on. For example, sM00033
is byte-aligned, because 33 = (8 x4) + 1.

The parameter in question must support discrete memory reference addresses.

The instruction in question must not have a Length parameter. (The Length parameter
is displayed as ?? in the LD editor until a value has been assigned.)

The data type to be replaced with a BOOL array must be one of the following:

Data Type Minimum Length
BYTE 8

INT, UINT, WORD 16

DINT, DWORD, REAL 32

REAL 64

Excess bits are ignored. For example, if you use a BOOL array of length 12 instead of an
8-bit BYTE, the last four bits of the BOOL array are ignored.

60

Section 3
June 2020

CPU Programmer’s Reference Manual Section 3
GFK-2950G June 2020

3.12 Word-for-Word Changes

Many changes to the program that do not modify the size of the program are considered
word-for-word changes. Examples include changing the type of contact or coil or changing
areference address used for an existing function block.

The following are word-for-word changes:

e Switching between two symbolic variables
e Switching between a symbolic variable and a mapped variable

e Switching between a constant and a symbolic variable

3.12.1 Exception: Symbolic Variables

Creating, deleting, or modifying a symbolic variable definition is not a word-for-word
change.

Program Data 61

CPU Programmer’s Reference Manual Section 4

GFK-2950G

Section 4

June 2020

Ladder Diagram (LD)
Programming

This chapter describes the programming instructions that can be used to create ladder logic
programs for the PACSystems control system.

For an overview of the types of operands that can be used with instructions, refer to
Operands for Instructions in Section 3.

The ladder logic implementation of the PACSystems instruction set includes the following
categories:

Advanced Math Functions
Bit Operation Functions
Coils

Contacts

Control Functions
Conversion Functions
Counters

Data Move Functions
Data Table Functions
Math Functions

Program Flow Functions
Relational Functions
Timers

Motion Functions and Function Blocks

o RX3i CPUs support PLCopen compliant motion functions and function
blocks. Details of these function blocks can be found in the PACMotion Multi-
Axis Motion Controller User’s Manual, GFK-2448.

PROFINET 1/O Communication

o Consists of the PNIO_DEV_COMM function. For details, refer to the
PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual, GFK-2571.

Ladder Diagram (LD) Programming 62

CPU Programmer’s Reference Manual

GFK-2950G

4.1

Section4
June 2020

Advanced Math Functions

The Advanced Math functions perform logarithmic, exponential, square root,
trigonometric, and inverse trigonometric operations.

Function Mnemonic Description
Exponential [EXP_REAL Raises e to the value specified in IN (e'V). Calculates the inverse

EXP_LREAL natural logarithm of the IN operand.

EXPT_REAL Calculates INT to the IN2 power (IN1'™2),

EXPT_LREAL

Inverse Trig [ACOS_REAL Calculates the inverse cosine of the IN operand and expresses the

ACOS_LREAL resultin radians.

ASIN_REAL Calculates the inverse sine of the IN operand and expresses the

ASIN_LREAL resultin radians.

ATAN_REAL Calculates the inverse tangent of the IN operand and expresses

ATAN_LREAL the result in radians.

Logarithmic [LN_REAL Calculates the natural logarithm of the operand IN.

LN_LREAL

LOG_REAL Calculates the base 10 logarithm of the operand IN.

LOG_LREAL

Square Root [SQRT_DINT Calculates the square root of the operand IN, a double-precision
integer, and stores in Q the double-precision integer portion of
the square root of the input IN.

SQRT_INT Calculates the square root of the operand IN, a single-precision
integer, and stores in Q the single-precision integer portion of the
square root of the input IN.

SQRT_REAL Calculates the square root of the operand IN, a real number, and

SQRT_LREAL stores the real-number result in Q

Trig COS_REAL Calculates the cosine of the operand IN, where IN is expressed in

COS_LREAL radians.

SIN_REAL Calculates the sine of the operand IN, where IN is expressed in

SIN_LREAL radians.

TAN_REAL Calculates the tangent of the operand IN, where IN is expressed in

TAN_LREAL radians.

Ladder Diagram (LD) Programming

63

Section 4
June 2020

CPU Programmer’s Reference Manual
GFK-2950G

4.1.1 Exponential/Logarithmic Functions

When an exponential or logarithmic function receives power flow, it performs the
appropriate operation on the REAL or LREAL input value(s) and places the resultin output Q.

The inverse natural log (EXP) function
raises e to the power specified by IN.

m

AF LREAL

[

m

P REAL

The Power of X (EXPT) function raises
the value of input INT to the power
specified by the value IN2.

—{I1

—qINZ

EXPT REAL

—{IN2

EXPT LR

i
|

The Base 10 Logarithm (LOG)
function calculates the base 10
logarithm of IN.

LOG LREAL

*)

(&

The Natural Logarithm (LN) function
calculates the logarithm of IN.

=

LH REAL

-
-

i

The power flow output is energized when the function is performed, unless or one of the
following invalid conditions occurs:

IN <0, for LOG or LN
IN1 <0, for EXPT
IN is negative infinity, for EXP

IN, IN1, or IN2 is a NaN (Not a Number)

Ladder Diagram (LD) Programming

64

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.1.1.1 Operands of the Exponential/Logarithmic Functions
Parameter (Description Allowed Operands |Optional
INorIN1 For EXP, LOG, and LN, IN contains the REAL or[All except variables|No
LREAL value to be operated on. located in %S—%SC

The EXPT function has two inputs, INT and IN2.
For EXPT, INT is the base value and IN2 is the

exponent.
IN2 (EXPT) The REAL or LREAL exponent for EXPT. All except variables|No
located in %5—%SC
Q Contains the REAL or LREAL|AIl except constants|No
logarithmic/exponential value of IN or of INT|and variables located in
and IN2. %S—7%SC
4.1.2 Square Root
SORT DINT Mnemonics:
— — SQRT_DINT
SQRT_INT
SQRT_REAL
= “I~ SQRT_LREAL

When the Square Root function receives power flow, it finds the square root of IN and stores
the resultin Q. The output Q must be the same data type as IN.

The power flow output is energized when the function is performed without Overflow,
unless one of these invalid REAL operations occurs:

e IfIN<O,Qissetto0andENOisset FALSE.
e IfINisaNaN (NotaNumber), Q will also be a NaN value and ENO will be set false.

4.1.2.1.1 Example

The square root of the integer number located at %AI0001 is placed into %R00003 when
%100001 is ON.

Figure 21

SQRT INT
100004

] |
LI}

Moooi —IN QI RO0003

Ladder Diagram (LD) Programming 65

CPU Programmer’s Reference Manual

GFK-2950G

4.1.2.2

4.1.3

4.1.3.1

4.1.3.1.1

Section 4
June 2020
Operands for the Square Root Function
Parameter |Description Allowed Operands Optional
IN The value to calculate the square root|All except variables located in %S(No
of. If IN<0, the function does not pass|- $SC
power flow.
Q The calculated square root. Al except constants and(No
variables located in %S - %SC

Trig Functions

HE
=

iX

Mnemonics:
SIN_REAL
SIN_LREAL
COS_REAL
COS_LREAL
TAN_REAL
TAN_LREAL

The SIN, COS, and TAN functions are used to find the trigonometric sine, cosine, and

tangent, respectively, of an input whose units are radians. When one of these functions

receives power flow, it computes the sine (or cosine or tangent) of IN and stores the result

in output Q.

The SIN, COS, and TAN functions accept a broad range of input values, where —2% <IN < 2%,
(2% is approximately 9.22x10'®). Input values outside this range will produce
incorrect results.

The power flow output is energized unless the following invalid condition occurs:

IN or Qis a NaN (Not a Number)

Operands of Trig Functions

Parameter (Description Allowed Operands Optional
IN Number of radians. All except variables located in %5—%SC No

—283<IN<2%
Q Trigonometric value of IN [All except constants and variables located [No

(REAL or LREAL) in %6S—%SC
Example
The COS of the value in V_R00001 is placed in V_R00033.
Figure 22

RO0QO ol— mooo22
66

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.1.4 Inverse Trig — ASIN, ACOS, and ATAN

ASIN LREAL Mnemonics:

—] L ASIN_REAL
ASIN_LREAL
ACOS_REAL

[ACOS_LREAL
ATAN_REAL

ATAN_LREAL

[

When an Inverse Sine (ASIN), Inverse Cosine (ACOS), or Inverse Tangent (ATAN) function
receives power flow, it respectively computes the inverse sine, inverse cosine or inverse
tangent of IN and stores the result in radians in output Q.

The ASIN and ACOS functions accept a narrow range of input values, where -1 <IN < 1. Given
avalid value for the IN parameter, the ASIN function produces a result Q such that:

ASIN(IN):—%SQ sg

The ACOS function produces a result Q such that:
ACOS(IN)=-0<Q<Tr

The ATAN function accepts the broadest range of input values, where —e < IN < +eo, Given a
valid value for the IN parameter, the ATAN function produces a result Q such that:

ATAN(IN)= -

(N

<q<™
2

The power flow output is energized unless one of the following invalid conditions occurs:

o INisoutside the valid range for ASIN, ACOS, or ATAN
e INisaNaN (NotaNumber)

4.1.4.1 Operands of Inverse Trig Functions
Parameter [Description Allowed Operands Optional
IN The REAL or LREAL value to process. All except variables located in |No
ASINand ACOS: -1<IN< 1 %S - %SC
ATAN: —co < IN < +eo
Q Trigonometric value of IN. REAL or LREAL |All except constants and No
value expressed in radians. variables located in %S - %SC
ASIN: (-n/2) < Q < (n[2)
ACOS: 0<Q<~

ATAN: (-n/2) < Q < (n[2)

Ladder Diagram (LD) Programming 67

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.2 Bit Operation Functions
The Bit Operation functions perform comparison, logical, and move operations on bit
strings.
Function Mnemonics Description
Bit Position BIT_POS_DWORD Bit Position. Locates a bit set to 1 in a bit string.
BIT_POS_WORD
Bit Sequencer [BIT_SEQ Bit Sequencer. Sequences a string of bit values, starting at ST.
Performs a bit sequence shift through an array of bits. The
maximum length allowed is 256 words.
Bit Set, Clear |BIT_SET_DWORD Bit Set. Sets a bitin a bit stringto 1.
BIT_SET_WORD
BIT_CLR_DWORD Bit Clear. Clear a bit within a string by setting that bit to 0.
BIT_CLR_WORD
Bit Test BIT_TEST_DWORD Bit Test. Tests a bit within a bit string to determine whether
BIT_TEST_WORD that bit is currently 1 or 0.
Logical AND |AND_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair
AND_WORD of corresponding bits are both 1, places a 1 in the
corresponding location in output string Q; otherwise, places
a0inthe corresponding locationin Q.
Logical NOT INOT_DWORD Logical invert. Sets the state of each bit in output bit string Q
NOT_WORD to the opposite state of the corresponding bit in bit string
INT.
Logical OR OR_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair
OR_WORD of corresponding bits are both 0, places a 0 in the
corresponding location in output string Q; otherwise, places
a 1inthe corresponding locationin Q.
Logical XOR | XOR_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair
XOR_WORD of corresponding bits are different, places a 1 in the
corresponding location in the output bit string Q; when a pair
of corresponding bits are the same, placesa 0in Q.
Masked MASK_COMP_DWORD [Masked Compare. Compares the contents of two separate
Compare MASK_COMP_WORD |bit strings with the ability to mask selected bits.
Rotate Bits ROL_DWORD Rotate Left. Rotates all the bits in a string a specified number
ROL_WORD of places to the left.
ROR_DWORD Rotate Right. Rotates all the bits in a string a specified
ROR_WORD number of places to the right.
Shift Bits SHIFTL_DWORD Shift Left. Shifts all the bits in a word or string of words to the
SHIFTL_WORD left by a specified number of places.
SHIFTR_DWORD Shift Right. Shifts all the bits in a word or string of words to
SHIFTR_WORD the right by a specified number of places.

Ladder Diagram (LD) Programming 68

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.1 Data Lengths for the Bit Operation Functions

The Bit Operation functions operate on a single WORD or DWORD of data or up to 256
WORDs or DWORDs that occupy adjacent memory locations.

Bit Operation functions treat the WORD or DWORD data as a continuous string of bits, with
bit 1 of the first WORD or DWORD being the Least Significant Bit (LSB). The last bit of the
last WORD or DWORD is the Most Significant Bit (MSB). For example, if you specify three
WORD:s of data beginning at reference %R0100, they are treated as 48 contiguous bits.

Figure 23

WBROIOO| 1B (1S (14 (13 [12 |11 |10 9| 8| 7| 6| S| 4| 3| 2| 1 |hit1(LSBE)
P%RO10T (3231 (3029|258 |27 |26|125|24 |23 (22|21 |20(19(18 |17

%RO102| 45 | 47 |46 | 45 (44 | 43 |42 (41 | 40 |39 (38 | 37 |36 | 35 | 34 | 33

.T
(MSB)

Overlapping input and output reference address ranges in multiword functions is not
recommended, as it can produce unexpected results

Note that for all functions (Bit Test, Bit Set, Bit Clear, and Bit Position) that return a bit
position indicator as an output parameter (POS), bit position numbering starts at 1, not 0,
as shown in the diagram above.

4.2.2 Bit Position
Figure 24

BIT BIT

| POS | - POS |
DWORD HORD

?? ??
—IN aF —IN oF
FOSH POSH

The Bit Position function locates a bit set to 1 in a bit string.

Each scan that power is received, the function scans the bit string starting at IN. When the
function stops scanning, either a bit equal to 1 has been found or the entire length of the
string has been scanned.

POS is set to the position within the bit string of the first non-zero bit; POS is set to zero if no
non-zero bit is found.

A string length of 1 to 256 WORDs or DWORDs can be selected. The function passes power

flow to the right whenever it receives power.
Ladder Diagram (LD) Programming 69

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.2.1 Operands of Bit Position

Parameter Description Allowed Operands Optional

Length The number of WORDs or DWORDs in |Constants No
(displayed as ??) [the bit string. 1 < Length < 256.

IN The data to operate on All. Constants may only be [No
used when Length is 1.

Q Energized if a bit set to 1 is found Flow Yes
POS An unsigned integer giving the position |All except constantsand |No
of the first nonzero bit found, or zero if |variables located in %S -
no non-zero bit is found %SC
4.2.2.1.1 Examples

When V_I00001 is set, the bit string starting at V_M00001 is searched until a bit equal to 1
is found, or 6 words have been searched. Coil V_Q00001 is turned on. If a bit equal to 1 is
found, its location within the bit string is written to V_AQO0001 and V_Q00002 is turned on.
For example, if V_00001 is set, bit V_MO00001 is 0, and bit V_M0002 is 1, the value written
to V_AQO0001 is 2.

Figure 25
V_I00001 EITFOs | V_Q00001
1| WORD { —
3 ¥_000002

v_Mo0001 —I¥ of—— »—i

POS— ¥_AQ0001

Ladder Diagram (LD) Programming 70

Section4
June 2020

CPU Programmer’s Reference Manual
GFK-2950G

4.2.3 Bit Sequencer

The Bit Sequencer (BIT_SEQ) function performs a bit sequence shift through a series of
contiguous bits.

The operation of BIT_SEQ depends on the value of the reset input (R), and both the current
value and previous value of the enabling power flow input (EN):

Figure 26
BIT SEQ
2222
??
“Ir
—DIR
—¥
—5T
R Current [ENPrevious [EN Current [Bit Sequencer Execution
Execution [Execution Execution
ON ON/OFF ON/OFF Bit sequencer resets
OFF OFF ON Bit sequencer increments/decrements by 1
OFF Bit sequencer does not execute
ON ON/OFF Bit sequencer does not execute

The reset input (R) overrides the enabling power flow (EN) and always resets the sequencer.
When R is active, the current step number is set to the value of the optional N operand. If
you did not specify N, the step number s set to 1. All bits in the bit sequencer, ST, are set to
0, except for the bit pointed to by the current step, which is set to 1.

When EN is active and R is not active, and the previous EN was OFF, the bit pointed to by the
current step number is cleared. The current step number is incremented or decremented,
based on the direction (DIR) operand. Then the bit pointed to by the new step number is set

to1.

e When the step number is being incremented and it goes outside the range of
(1 < step number < Length), itis set back to 1.

e When the step number is being decremented and it goes outside the range of
(1 < step number < Length), it is set to Length.

The parameter ST is optional. If it is not used, BIT_SEQ operates as described above, except
that no bits are set or cleared. The function just cycles the current step number through its
allowed range.

Ladder Diagram (LD) Programming

71

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

BIT_SEQ passes power to the right whenever it receives power.

Note:

o Before using the BIT_SEQUENCER function block, the current step number (Word 1 in the control
block) must be set to an integer value between 1 and the length, as defined in the function block
properties. Failure to properly initialize the step number in the BIT_SEQUENCER function block may
result in the CPU stopping and going to an error state.

o Asserting the Reset parameter (R), before using the BIT SEQUENCER function block assures that
the current step number is set to a valid value.

4.2.3.1 Memory Required for Bit Sequencer

Each bit sequencer uses a three-word array of control block information. The control block
can be a symbolic variable, or it can be located in %R, %W, %L, or %P memory:

Word 1 current step number
Word 2 length of sequence (in bits)
Word 3 control word
Note: Do not write to the control block memory registers from other functions.

Word 3 (the control word) stores the state of the Boolean inputs and outputs of its
associated function in the following format:

Figure 27
[5]14]13]12]11]10] 9 [8] [71eflsf4fa3f2]1]0]
L L
Reserved
Reserved

OK (status input

EN (enable input
Note:

e Bits 0 through 13 are not used.

e Inthe N operand, bits are entered as 1 through 16, not 0 through 15.

4.2.3.2 Operands for Bit Sequencer

Do not write to the Control Block memory with other instructions. Overlapping references
may cause erratic operation of BIT_SEQ.

Ladder Diagram (LD) Programming 72

CPU Programmer’s Reference Manual

GFK-2950G

Section4
June 2020

Parameter

Description

Allowed
Operands

Optional

Address (?27?)

Beginning address of the Control Block, which
is a three-word array:

Word 1: current step number
Word 2: length of sequence in bits
Word 3: control word, which tracks the status
of the last enabling power flow and the status
of the power flow to the right.

Symbolic variables,
variables located in
%R, %W, %P, or %L

No

Length (??)

The number of bits in the bit sequencer, ST,
that BIT_SEQ will step through. 1 < Length <
256.

Constants

No

When R is energized, the step number of
BIT_SEQ is set to the value in N (default = 1),
and the bit sequencer, ST, is filled with zeroes,
except for the current step number bit.

Flow

No

DIR

(Direction) When DIR is energized, the step
number of BIT_SEQ is incremented prior to the
shift. Otherwise, it is decremented.

Flow

No

The value that the step number is set to when
R is energized. Default value is 1. 1 < N <
Length. If N < 1, the step number will be reset
to 1 when Ris energized. If N> Length, the step
number will be reset to Length. Must be an
integer variable or constant.

All except variables
located in %S - %SC

Yes

ST

Contains the first word of the bit sequencer.

If ST is not used, the Bit Sequencer function
operates as described above, except that no
bits are set or cleared. The function just cycles
the current step number (in word 1 of the
control block) through its allowed range.

If ST is in %M memory and the Length is 3, the
bit sequencer occupies 3 bits; the other 5 bits
of the byte are not used. If ST is in %R memory,
and the Length is 17, the bit sequencer uses 4

All except constants,
flow, and variables
located in %S

bytes, all of %R1 and %R2.

Yes

Ladder Diagram (LD) Programming

73

CPU Programmer’s Reference Manual

GFK-2950G

4.2.3.2.1

4.2.4

Example

In the following example, a #FST_SCN system variable is used to set CLEAR to ON for one
scan. This sets the step number in Word 1 of the Bit Sequencer’s control block to an initial
value of 3.

The Bit Sequencer operates on register memory %R00001. Its control block is stored in
registers %R0010, %R0011, and %R0012. When CLEAR is active, the sequencer is reset and
the current step is set to step number 3, as specified in N. The third bit of %¥R0001 is set to
one and the other seven bits are set to zero.

When NXT_CYC is active and CLEAR is not active, the bit for step number 3 is cleared and
the bit for step number 2 or 4 (depending on whether DIRECTION is energized) is set.

Figure 28
#FST_SCN CLEAR
11 iy
L S
NXT_CYC BIT SEQ
11 -
11
CLEAR ROOZ00
11 g
17 R
DIRECTION
{ | DIR
3 —N
ROODO1 —ST

Bit Set, Bit Clear

Section4
June 2020

BIT BIT Mnemonics
| SET | 4 CLE |
DWORD DHORD BIT_SET_DWORD BIT_SET_WORD
7 7 BIT_CLR_DWORD
—HIN —HIN
BIT_CLR_WORD
—{BIT —{BIT

The Bit Set (BIT_SET_DWORD and BIT_SET_WORD) function sets a bit in a bit string to 1.
The Bit Clear (BIT_CLR_DWORD and BIT_CLR_WORD) function clears a bit in a string by
setting the bit to 0.

Each scan that power is received; the function sets or clears the specified bit. If a variable
rather than a constant is used to specify the bit number, the same function can set or clear
different bits on successive scans. Only one bit is set or cleared, and the transition
information for that bit is updated. The transition status of all the other bits in the bit string
is not affected.

The function passes power flow to the right, unless the value for BIT is outside the specified
range.

Ladder Diagram (LD) Programming 74

CPU Programmer’s Reference Manual

GFK-2950G

4.2.4.1

4.2.4.1.1

4.2.4.1.2

Section 4
June 2020
Operands for Bit Set, Bit Clear
Parameter [Description Allowed Operands Optional
Length (??) |The number of WORDs or DWORDs in|Constants No
the bit string. 1 <Length <256.
IN The first WORD or DWORD of the data|All except constants, flow, and|No
to process variables located in %S
BIT The number of the bit to set or clear in|All except variables located in %S|No
IN. 1 <BIT < (16 x Length) for WORD. |- %SC
1 <BIT < (32 x length) for DOWORD
Example 1
Figure 29
V_I00001 BIT SET
|} WORD |
|} £
V_R00040 —IN
12 —BIT

Whenever input V_I0001 is set, bit 12 of the string beginning at reference %R00040 (as
specified by variable V_R0040) is set to 1.

Example 2

Figure 30

V_Io0om

] |
LI |

V_MO00041 —

3—!

BIT SET
WORD

IN

BIT

Whenever V_l00001 is set, ¥M00043, the third bit of the string beginning at #M00041, is
set to 1. Note that neither the status nor the transition value of any of the other bits in the
same byte as %M00043 (e.g., %M00041, %¥M00042, %M00044, etc.) is affected by the

BIT_SET function

Ladder Diagram (LD) Programming

75

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.2.5 Bit Test
Figure 31
BIT BIT
- TEST - TEST
DWORD WORD
?? ??
<IN OF-IN QfF
—EIT —EIT
When the Bit Test function receives power flow, it tests a bit within a bit string to determine
whether that bit is currently 1 or 0. The result of the test is placed in output Q.
Each scan that power is received, the Bit Test function sets its output Q to the same state as
the specified bit. If a register rather than a constant is used to specify the bit number, the
same function can test different bits on successive sweeps. If the value of BIT is outside the
range (1 <BIT < (16 x length) fora WORD and 1 <BIT < (32 x length) for a DWORD), then Q
is set OFF.
You can specify a string length of 1 to 256 WORDs or DWORDs.
Note: When using the Bit Test function, the bits are numbered 1 through 16 for a WORD, not 0 through
15. They are numbered 1 through 32 for a DWORD.
4.2.5.1 Operands for Bit Test
Parameter |Description Allowed Optional
Operands
Length (??) The number of WORDs or DWORD:s in the data|Constant No
string to test. 1 <Length < 256.
IN The first WORD or DWORD in the data to test All No
BIT The number of the bit to test in IN. 1 < BIT <|All exceptvariables [No
(16xLength). located in %S - %SC
Q The state of the specific bit tested; Q is energized|Flow No
if the bit testedisa 1.
Ladder Diagram (LD) Programming 76

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.2.5.1.1 Example 1
Figure 32
W_I00am EIT TEST
[WORD |
1 ATD
PED CDE —{IN O DINT
PICEBIT —BIT FND 0N 1M1 O END_ON

1 —INz

When input V_I0001 is set, the bit at the location contained in reference PICKBIT is tested.
The bit is part of string PRD_CDE

If it is 1, output Q passes power flow to the ADD function, causing 1 to be added to the
current value of the ADD function input IN1.

4.2.5.1.2 Example 2
Figure 33
_100001 BIT
1} TEST
WORD
43 v_aQoooo1

PRD_CDE —IN a—— —

PICKBIT —|EIT

When input V_I0001 is set, the bit at the location contained in reference PICKBIT is tested.
The bit is part of string PRD_CDE.

Ifitis 1, output Q passes power flow and the coil V_QO0001 is turned on

4.2.6 Logical AND, Logical OR, and Logical XOR
Figure 34
AND AND OR OR XOR XOR
_|IDWORD| _| WORD L _|DWORD| _| WORD L _|DHORD|_. _| WORD |
29 29 22 29 29 22
—IM1 OF —INt or —{IN1 oF —INt or —IN1 aF —IMt ar
—IN2 —IN2 —{IN2 —IN2 —IN2 —{IN2

Each scan that power is received, the Logical function examines each bit in bit string IN1 and
the corresponding bit in bit string IN2, beginning with the least significant bit in each. You
can specify a string length of 1 to 256 WORDs or DWORDs. The IN1 and IN2 bit strings
specified may overlap.

Ladder Diagram (LD) Programming 77

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.6.1 Logical AND

If both bits examined by the Logical AND function are 1, AND places a 1in the corresponding
location in output string Q. If either bit is 0 or both bits are 0, AND places a 0 in string Q in
that location.

AND passes power flow to the right whenever it receives power.

Tip
You can use the Logical AND function to build masks or screens, where only certain bits are
passed (the bits opposite a 1 in the mask), and all other bits are set to 0.

4.2.6.2 Logical OR

If either bit examined by the Logical OR function is 1, OR places a 1 in the corresponding
location in output string Q. If both bits are 0, Logical OR places a 0 in string Q in that location.
The function passes power flow to the right whenever it receives power.

Tip
e You can use the Logical OR function to combine strings or to control many outputs

with one simple logical structure. The Logical OR function is the equivalent of two
relay contacts in parallel multiplied by the number of bits in the string.

e You can use the Logical OR function to drive indicator lamps directly from input
states or to superimpose blinking conditions on status lights.

4.2.6.3 Logical XOR

When the Exclusive OR (XOR) function receives power flow, it compares each bit in bit string
INT with the corresponding bit in string IN2. If the bits are different, a 1 is placed in the
corresponding position in the output bit string.

For each pair of bits examined, if only one bitis 1, then XOR places a 1 in the corresponding
location in bit string Q. XOR passes power flow to the right whenever it receives power.

Tip for Logical XOR

e If string IN2 and output string Q begin at the same reference, a 1 placed in string
INT will cause the corresponding bit in string IN2 to alternate between 0 and 1,
changing state with each scan if power is received.

e You can program longer cycles by pulsing the power flow to the function at twice
the desired rate of flashing. The power flow pulse should be one scan long (one-
shot type coil or self-resetting timer).

e You can use XOR to quickly compare two bit strings, or to blink a group of bits at
the rate of one ON state per two scans.

e XORis useful for transparency masks.

Ladder Diagram (LD) Programming 78

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.6.4 Operands for Logical AND, OR, and XOR

Parameter Description Allowed Operands |Optional

Length (??) The number of words in the bit string|Constant No
on which to perform the logical
operation. 1 <Length < 256.

INT The first WORD or DWORD of the first|All No
string operate on.

IN2 (Must be the same |The first WORD or DWORD of thelAll No

datatype asIN1.) second string to operate on.

Q (Must be the same [The first WORD or DWORD of the|All except constants and|No

data type asIN1.) operation’s result. variables located in %S

memory
4.2.6.4.1 Example: Logical AND

When input v_I0001 is set, the 16-bit strings represented by variables WORD1 and WORD?2
are examined. The logical AND places the results in output string RESULT.

Figure 35

V_I0000 AND
11 WORD

WORD1 —|IN1 OF RESULT

WORD2 —|IN2

WORD1 (0 |0 (O |1 |1 (1 |1 |1 (1|1 |0 (0|1 |0 (0O |0
WORD2 (1 |1 (0|1 |1 (1|0 |0 (0|0 |0 (O |1 |1 (1|1

RESULT In |o |o |1 |1 |1 |n |n |n |n |n |u |1 |u |n |n |

4.2.6.4.2 Example: Logical XOR

Whenever V_I0001 is set, the bit string represented by the variable WORD3 is cleared (set
to all zeroes).

Ladder Diagram (LD) Programming 79

CPU Programmer’s Reference Manual

GFK-2950G

4.2.7

4.2.7.1

Section4
June 2020

Figure 36

_I00001 Y¥OR

[u]

WORD3 —|IN1

WORD3 —IN2

1 1 WORD |

~ WORD3

II(WORD3) (0| 0

R2(WORD3) (0| 0

Q (WORD3) |o|o|n[nIu|u|n|n|o|o|n[n|o|u|n|n|

Logical NOT
Figure 37
NOT NOT
JDWOERD|_ | WORD |
22 22
—{IN aF —{IN aF

When the Logical Not or Logical Invert (NOT) function receives power flow, it sets the state
of each bit in the output bit string Q to the opposite of the state of the corresponding bit in

bit string IN1.

All bits are altered on each scan that power is received, making output string Q the logical
complement of input string IN1. Logical NOT passes power flow to the right whenever it
receives power. You can specify a string length of 1 to 256 WORDs or DWORDs

Operands for Logical NOT

Parameter Description Allowed Operands |Optional
Length (??) The number of WORDs or DWORDs in the|Constant No

bit string to NOT. 1 < Length < 256.
INT The first WORD or DWORD of the input|All No

string to NOT.
Q (Must be the same |The first WORD or DWORD of the NOT's|All except constants|No
datatype asINT) result. and variables located

in %S memory

Ladder Diagram (LD) Programming

80

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.7.1.1 Example

When input V_I0001 is set, the bit string represented by the variable A is negated. Logical
NOT stores the resulting inverse bit string in variable B. Variable A retains its original bit
string value.

Figure 38
V_I00001 NOT
| — WORD |

A —IN oF B

4.2.8 Masked Compare

Figure 39
MASK MASK
| comp | comp
DWORD WORD
rd'd rd'd
HiMt MCcH I McH
Hivz oM -~z ap
HM BNH M BNl
Hem —Bmr

The Masked Compare (MASK_COMP_DWORD and MASK_COMP_WORD) function
compares the contents of two-bit strings. It provides the ability to mask selected bits

Tip
Input string 1 might contain the states of outputs such as solenoids or motor starters. Input
string 2 might contain their input state feedback, such as limit switches or contacts.

When the function receives power flow, it begins comparing the bits in the first string with
the corresponding bits in the second string. Comparison continues until a miscompare is
found or until the end of the string is reached.

The BIT input stores the bit number where the next comparison should start. Ordinarily, this
is the same as the number where the last miscompare occurred. Because the bit number of
the last miscompare is stored in output BN, the same reference can be used for both BIT and
BN. The comparison begins 1bit following BIT; therefore, the initial value of BIT should be 1
less first bit to be compared (for example, zero (0) to begin comparison at %$100001). Using
the same reference for BIT and BN causes the compare to start at the next bit position after
amiscompare; or, if all bits compared successfully upon the next invocation of the function,
the compare starts at the beginning.

Tip
Ladder Diagram (LD) Programming 81

CPU Programmer’s Reference Manual

GFK-2950G

Section 4

June 2020

If you want to start the next comparison at some other location in the string, you can enter
different references for BIT and BN. If the value of BIT is a location that is beyond the end of
the string, BIT is reset to 0 before starting the next comparison.

The function passes power flow whenever it receives power. The other outputs of the
function depend on the state of the corresponding mask bit.

If all corresponding bits in strings IN1 and IN2 match, the function sets the miscompare
output MC to 0 and BN to the highest bit number in the input strings. The comparison then
stops. On the next invocation of a Masked Compare, it is reset to 0.

If a Miscompare is found, that is, if the two bits being compared are not the same, the
function checks the correspondingly numbered bit in string M (the mask).

If the mask bitis a 1, the comparison continues until it reaches another miscompare or the
end of the input strings.

If a miscompare is detected and the corresponding mask bit is a 0, the function does the

following:
1. Sets the corresponding mask bitin M to 1.
2. Sets the miscompare (MC) output to 1.
3. Updates the output bit string Q to match the new content of mask string M.
4. Sets the bit number output (BN) to the number of the miscompared bit.
5. Stops the comparison.
4.2.8.1 Operands for Masked Compare Function
Parameter |Description Allowed Operands Optional
Length (??) |The number of DWORDs or WORDs in|Constant No
the two compared strings.
DWORD: 1 < Length <2,048
WORD: 1 <Length <4,096
IN1 The first bit string to be compared All. Constants are legal only when|{No
Lengthis 1
IN2 The second bit string to be compared |All. Constants are legal only when|No
Lengthis 1
M The bit string mask containing the|All except flow or variables in %S|No
ongoing status of the compare memory. Constants are legal only
when Lengthis 1
BIT BIT+1=the bit number where the next|All except variables in %S - %SC|No
comparison starts memories
Q The output copy of the compare mask|All except constants No
bit string
BN The number of the bit where the latest|All except constants and variables|No
miscompare occurred, or the highest|in %S memory
bit number in the inputs if no
miscompare occurred

Ladder Diagram (LD) Programming

82

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Parameter |Description Allowed Operands Optional

MC Can be used to determine if alflow Yes
miscompare has occurred.

4.2.8.1.1 Masked Compare Example 1

Figure 40
_100001 Mask | V_Q00001

|} COMF () 1
WORD

25 v_Qoooo2

VALUES —{IM1 MCl——{ »—i

EXPECT —INZ O NEWVALS

RESULT |{M BN~ BITNOM

BITNOM —{BIT

When %100001 is set, MASK_COMP_WORD compares the bits represented by the reference
VALUES against the bits represented by the reference EXPECT. Comparison begins at
BITNUM+1. If an unmasked miscompare is detected, the comparison stops. The
corresponding bit is set in the mask RESULT. BITNUM is updated to contain the bit number
of the miscompared bit. In addition, the output string NEWVALS is updated with the new
value of RESULT, and coil %Q00002 is turned on. Coil Q00001 is turned on whenever
MASK_COMP_WORD receives power flow.

Ladder Diagram (LD) Programming 83

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.2.8.1.2 Masked Compare Example 2

Figure 41

MASK COMP
H#FST_SCN WORD
_| |— -
1
Qooood

Moooo1 —INi MC @.

Moo017 —IN2 Q- Mooz
MO00Z3 —M BN — Rooon1

ROOO0Y —(BIT

On the first scan, the Masked Compare Word function executes. $M0001 through %M0016
is compared with $M0017 through %$M0032. %M0033 through %M0048 contains the mask
value. The value in %R0001 determines the bit position in the two input strings where the
comparison starts.

Before the function is executed, the contents of the above references are:

Figure 42

{I1) - %MO0001 = 6C6Ch =

(o1 [1fof1[1[ofofof1[1]of[1]1][0f]co]
(12) — %0017 = 606Fh=
fof1J1fofa1f1fof1foeja1]1fo]af1]1]1]
(IVIIQ) —%:IVI0033 = D00Fh =
(ofofJofoJofofofofoJo|ofo]1[1]1]1]
(BIT/BN) - %R0001 =0

{VIC) -%Q0001 = OFF

The contents of these references after the function block is executed are as followrs:

{I1) = %0001 =
fof1J1fof1f1fofofoeoj1]1fof]a[1]0]c0]
(12) - %0017 =
fof1J1foj1f1fof1foef1]1fo]1f1]1]1]
(MIQ) —%NM0033 =
(ofofJofoJofofo[1[]ofof[ofo[1]1][1]1]

(BIT/BN) -%R0001 =28

{MC) -%Q0001 =ON

Ladder Diagram (LD) Programming 84

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

The #FST_SCN contact forces one and only one execution; otherwise, the function would
repeat with possibly unexpected results.

4.2.9 Rotate Bits
ROL Mnemonics:
|DHORD |
ROL_DWORD
7 ROL_WORD
~IN af
ROR_DWORD
dx ROR_WORD

When receiving power flow, the Rotate Bits Right (ROR_DWORD and ROR_WORD) and
Rotate Bits Left (ROL_DWORD and ROL_WORD) functions rotate all the bits in a string of
WORDs or DWORDs N positions respectively to the right or to the left. When rotation
occurs, the specified number of bits is rotated out of the input string respectively to the right
or to the left and back into the string on the other side.

The Rotate Bits function passes power flow to the right, unless the number of bits to rotate
is less than 0 or is greater than the total length of the string. The result is placed in output
string Q. If you want the input string to be rotated, the output parameter Q must use the
same memory location as the input parameter IN. The entire rotated string is written on
each scan that power is received.

A string length of 1 to 256 words or double words can be specified.

4.2.9.1 Operands for Rotate Bits
Parameter|Description Allowed Operands Optional
Length (??) |The number of WORDs or DWORDs |Constant No
in the string to be rotated. 1 <
Length <256.
IN The string to rotate All. Constants are legal when No
Lengthis 1
N The number of positions to rotate. |All except variables in %S - %SC No
0 < N < Length. memories
Q The resulting rotated string All except constants and variables [No
in %S memory

Ladder Diagram (LD) Programming 85

CPU Programmer’s Reference Manual Section 4

GFK-2950G

4.2.9.1.1

4.2.10

4.2.10.1

June 2020

Example

Figure 43

V_100001 ROL
- WORD

LI |

—

V_R00001 —IN QF V_R00002

3—N

Whenever input V_I0001 is set, the input bit string in location %R0001 is rotated left 3 bits
and the result is placed in %R00002. The actual input bit string %R0001 is left unchanged. If
the same reference had been used for IN and Q, a rotation would have occurred in place.

Figure 44
MSB
%R0001 (_[1|1|1|1}1|o|o|o|n|n|u|s}o|o|n|u[(-
MSB
%R0002 (after %100001 is set) [1]1]o]oJoJoJoJofoofoJofo]1]1]1]
Shift Bits
] f,‘:,};:; i Mnemonics:
» SHIFTL_DWORD
™ = SHIFTL_WORD
¥ ar SHIFTR_DWORD
da SHIFTR_WORD
Shift Left

When the Shift Left (SHIFTL_WORD) function receives power flow, it shifts all the bits in a
word or group of words to the left by a specified number of places, N. When the shift occurs,
the specified number of bits is shifted out of the output string to the left. As bits are shifted
out of the high end of the string (Most Significant Bit (MSB)), the same number of bits is
shifted in at the low end (Least Significant Bit (LSB)). The SHIFTL_DWORD function operates
in a similar manner on DWORDs instead of WORDs.

Figure 45

B2 [1|1]of1]1[1]1]1]1]1]oJo[1][o]0]0]|B1

Ladder Diagram (LD) Programming 86

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.10.2 Shift Right

When the Shift Right (SHIFTR_WORD) function receives power flow, it shifts all the bits in a
word or group of words a specified number of places to the right (N). When the shift occurs,
the specified number of bits is shifted out of the output string to the right. As bits are shifted
out of the low end of the string (LSB), the same number of bits is shifted in at the high end
(MSB).

Figure 46

MSB LSB
En—>|1|1|0|1|1|1|1|1|1|1|ﬂ|0|1|0|n|0|—>92

4.2.10.3 Shift Left and Shift Right

A string length (Length) of 1 to 256 words can be specified.

The bits being shifted into the beginning of the string are specified via input parameter B1.
If the value of N is greater than 1, each bit is filled with the same value (0 or 1). This can be:

e The Boolean output of another program function.

e All1s. Todo this, use the #AWL_ON (always on) system bit (in memory location %57), as
a permissive to input B1.

e All 0s. To do this, use the #ALW_OFF (always off) system bit (in memory location %S8),
as a permissive to input B1.

The Shift Bits function passes power flow to the right, unless the number of bits specified to
shift is zero or is greater than the array size.

Output Q is the shifted copy of the input string. If you want the input string to be shifted,
the output parameter Q must use the same memory location as the input parameter IN. The
entire shifted string is written on each scan that power is received. Output B2 is the last bit
shifted out. For example, if four bits were shifted, B2 would be the fourth bit shifted out.

Ladder Diagram (LD) Programming 87

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.2.104 Operands for Shift Left, Shift Right, Shift Left and Shift Right

Parameter |Description Allowed Operands |Optional
Length (??) The number of WORDs or DWORDs inthe |Constants. No

string. 1 < Length <256.
IN The string of WORDs or DWORD:s to shift ~ |All. Constants are legal |No

only when Length=1.

N The number of places (bits) to shift the All except variablesin ~ [No
array. 0 < N < Length %S— %SC memories
If N'is 0, no shift occurs, but power flow is
generated.

If N is greater than the number of bits in the
string (Length), all bits in Q are set to the
value B1, OKis set FALSE, and B2 is set to B1.

B1 The bit value to shift into the array flow No

B2 The bit value of the last bit shifted out of the |flow Yes
array.

Q The first WORD or DWORD of the shifted All except constants and |No

(Must be the |array variables in %S memory.

same data type
as IN)

4.2.10.4.1 Example

Figure 47
V_I00001 [SHIFTL
|} HOED |
??

g —N O WORD2
V_100002
— | Bl

Wheneverinput V_I0001 is set, the bits in the input string that begins at WORD1 are copied
to the output bit string that starts at WORD2. WORD?2 is left-shifted by 8 bits, as specified
by the input N. The resulting open bits at the beginning of the output string are set to the
value of V_I0002.

Ladder Diagram (LD) Programming 88

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.3 Coils

Coils are used to control the discrete (BOOL) references assigned to them. Conditional logic
must be used to control the flow of power to a coil. Coils cause action directly. They do not
pass power flow to the right. If additional logic in the program should be executed as a result
of the coil condition, you can use an internal reference for the coil or a continuation
coil/contact combination.

A continuation coil does not use aninternal reference. It must be followed by a continuation
contact at the beginning of any rung following the continuation coil.

Coils are always located at the rightmost position of a line of logic.

4.3.1 Coil Checking

The level of coil checking is set to Show as error by default. If you want a coil conflict to result
in a warning instead of this error, or if you want no warning at all, edit the Controller option:
Multiple Coil Use Warning in the programming software.

The Show as warning option enables you to use any coil reference with multiple Coils, Set
Coils, and Reset Coils, but you will be warned at validation time every time you do so. With
both the Show as warning and the no warning options, a reference can be set ON by either
a Set Coil or a normal Coil and can be set OFF by a Reset Coil or by a normal Coil.

43.2 Graphical Representation of Coils

The programming software displays the COIL, NCCOIL, SETCOIL, and RESETCOIL
instructions differently depending on the retentive state of the BOOL variables assigned to
them. Examples are provided in the discussion of each type of coil. For a discussion of
retentiveness, refer to Retentiveness of Logic and Data in Section 3.

4.3.2.1 Coil (Normally Open)

Figure 48
A retentive variable is assigned to the coil A non-retentive variable is assigned to the coil

When a COIL receives power flow, it sets its associated BOOL variable ON (1). When it
receives no power flow, it sets the associated BOOL variable OFF (0). COIL can be assigned a
retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables are
permitted. Bit-in-word references on any word-oriented memory except %Al, including
symbolic non-discrete memory, are also permitted.

Ladder Diagram (LD) Programming 89

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.3.2.2 Continuation Coil

Figure 49

2O

A continuation coil instructs the PLC to continue the present rung's LD logic power flow
value (TRUE or FALSE) at the continuation contact on a following rung.

The flow state of the continuation coil is passed to the continuation contact.

Notes:
o If the flow of logic does not execute a continuation coil before it executes a continuation
contact, the state of the continuation contact is no flow (FALSE).
° The continuation coil and the continuation contact do not use parameters and do not
have associated variables.
° You can have multiple rungs with continuation contacts after a single continuation coil.
° You can have multiple rungs with continuation coils before one rung with a continuation
contact.
4.3.2.3 Negated Coil
Figure 50
~(wy 2Gn
p—

A retentive variable is assigned to the negated A non-retentive variable is assigned to the negated
coil coil

When it does not receive power flow, a negated coil (NCCOIL) sets a discrete reference ON.
When it does receive power flow, NCCOIL sets a discrete reference OFF. NCCOIL can be
assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables are
permitted. Bit-in-word references on any word-oriented memory except %Al, including
symbolic non-discrete memory, are also permitted.

Ladder Diagram (LD) Programming 90

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.3.3 Set Coil, Reset Coil

Figure 51

@@ oo

Set Coil and Reset Coil with a retentive variable Set Coil and Reset Coil with a non-retentive variable
assigned assigned

The SET and RESET coils can be used to keep (i.e. latch) the state of a reference either ON or
OFF.

SET | RESET coils write an undefined result to the transition bit for the given reference. This
result differs from that written by Series 90-70 CPUs and could change for future
PACSystems CPU models.

Because they write an undefined result to transition bits, do not use SET or RESET coils with
references used on POSCON or NEGCON transition contacts.

When a SET coil receives power flow, it sets its discrete reference ON. When a SET coil does
not receive power flow, it does not change the value of its discrete reference. Therefore,
whether or not the coil itself continues to receive power flow, the reference stays ON until
the reference is reset by other logic, such as a RESET coil.

When a RESET coil receives power flow, it resets a discrete reference to OFF. When a RESET
coil does not receive power flow, it does not change the value of its discrete reference.
Therefore, its reference remains OFF until it is set ON by other logic, such as a SET coil.

The last solved SET coil or RESET coil of a pair takes precedence.
The SET and RESET coils can be assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables are
permitted. Bit-in-word references on any word-oriented memory except %Al, including
symbolic non-discrete memory, are also permitted.

Ladder Diagram (LD) Programming 91

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.3.3.1.1 Example of Set Coil, Reset Coil
Figure 52

E2 E1

| | {8}—

EB

ES E1

i | {R}—1

E3

The coil represented by E1 is turned ON when reference E2 or E6 is ON and is turned OFF
when reference E5 or E3 is ON

4.3.4 Transition Coils

PACSystems controllers provide four transition coils: PTCOIL, NTCOIL, POSCOIL, and
NEGCOIL.

POSCOIL and NEGCOIL are updated every time they are called.
PTCOIL and NTCOIL are updated once per CPU scan.

For examples showing the differences in the operation of the two types of transition coils,
see Examples Comparing PTCOIL and POSCOIL

Ladder Diagram (LD) Programming 92

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.3.4.1 POSCOIL and NEGCOIL

A WARNING

e These transition coil instructions should not be used in a parameterized block or user-
defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG
or F_TRIG should be used instead.

e Do not override a transition coil by putting a force on its reference bit. If a transition
coil is overridden, the coil has no effect on the bit, and if the override is then removed,
the coil might be set ON for one sweep. . This can cause unexpected behavior in the
Controller logic and in field devices attached to the Controller.

¢ Do notwrite to the reference bit of a transition coil using any other instruction or from
an external device. Doing so will destroy the coil’s one-shot nature and the coil may
not behave as described.

o Do not use a transition contact with the same reference address used on a transition
coil because the value of the transition bit, which stores the power flow value into the
coil, will be affected.

Positive Transition Coil (POSCOIL) —{ 1 }— Negative Transition Coil (NEGCOIL) —{ L }—

If: If:
e the transition bitis OFF, and e the transition bitis OFF, and
o theinput power flow is ON, o theinput power flow input is OFF,
the POSCOIL sets the reference bit of its the NEGCOIL sets the reference bit of its associated

associated variable ON until the coil is executed [variable ON until the coil is executed again. When
again. When the coil is executed again, it sets its |the coil is executed again, it sets its reference bit

reference bit OFF. OFF.

Note: ~ When the Positive Transition Coil sets | Note: ~ When the Negative Transition Coil sets
its reference bit ON, it also sets its its reference bit ON, it also sets its
transition bit to ON. The next time the transition bit to ON. The next time the
Positive Transition coil executes, it Negative Transition Coil executes, it finds
finds its transition bit set to ON and the transition bit set to ON and sets its
sets its reference bit to OFF. reference bit to OFF.

4.3.4.1.1 Operands for POSCOIL and NEGCOIL
Parameter |Description Allowed Operands Optional

BOOL_V The variable associated|BOOLvariable: 1, Q, M, T, G, SA, SB, SC, symbolic|No
with POSCOIL or|discrete variables, and 1/O variable.

NEGCOIL Bit reference in BOOL variable: I, Q, M, T, G, SA,
SB, SC
4.3.4.1.2 Example for POSCOIL and NEGCOIL

When reference E1 goes from OFF to ON, coils E2 and E3 receive power flow, turning E2 ON.
When E1 goes from ON to OFF, power flow is removed from E2 and E3, turning coil E3 ON.

Figure 53
Ladder Diagram (LD) Programming 93

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
E1l E2
|} {(D—
El E3

4.3.4.2 PTCOIL and NTCOIL

Because the behavior of PTCOILs and NTCOILs is determined only by the current power flow
into the coil and the previous power flow into the coil (i.e., the transition bit), it is not
affected by writes to its associated BOOL variable by other coils or instructions in the logic.
Therefore, many of the cautions that apply to POSCOILs and NEGCOILs do not apply to
PTCOILs and NTCOlILs.

A WARNING

e PTCOIL and NTCOIL instructions should not be used in a parameterized block or user-
defined function block (UDFB) with a parameter or member. In these cases, an R_TRIG
or F_TRIG should be used instead.

e The transition bit of a given PTCOIL or NTCOIL is changed only once per CPU scan.
Therefore, using a PTCOIL or NTCOIL in a block that can be called multiple times per
scan can have adverse effects on all calls after the first one because the PTCOIL or
NTCOIL cannot detect the transition on the second and subsequent calls.

e Do not override a transition coil by putting a force on its reference bit. If a transition
coilis overridden, the coil has no effect on the bit, and if the override is then removed,
the coil might be set ON for one sweep. . This can cause unexpected consequences in
the Controller logic and in field devices attached to the Controller.

e Do not use a transition contact with the same reference address used on a transition
coil because the value of the transition bit, which stores the power flow value into the
coil, will be affected.

(_‘3 Positive Transition Coil (PTCOIL) (} Negative Transition Coil (NTCOIL)
If: If:

e the transition bit is OFF, and e thetransition bit is OFF, and

e theinput power flowis ON e theinput power flow is OFF
the PTCOIL sets the reference bit and transition [the NTCOIL sets the reference bit and transition bit
bit of its associated variable ON. of its associated variable ON.

The transition bit depends on the value of the input power flow the last time the PTCOIL or NTCOIL
was executed.

Ladder Diagram (LD) Programming 94

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Notes:
e Assoon asaPTCOIL or NTCOIL is set to ON or OFF, it updates its transition bit.

e Multiple instances of PTCOIL and/or NTCOIL can be associated with the same BOOL variable,
but the transition status of each instance of the PTCOIL or NTCOIL associated with the BOOL
variable is unique, that is, it is tracked independently.

e The transition bit is non-retentive, that is, it is cleared to OFF when the CPU transitions from
STOP Mode to RUN Mode. As a result, the first time a PTCOIL executes with its input power
flow set to ON its associated BOOL variable will be set to ON.

4.3.4.2.1 Operands for PTCOIL and NTCOIL

Parameter |Description Allowed Operands Optional

BOOL_V The variable associated with |Variables in I, Q, M, T, SA, SB, SC, or G|No
PTCOIL or NTCOIL memories as well as symbolic discrete
variables. In addition, bit-in-word
references on any non-discrete memory
(e.g., %R) or on symbolic non-discrete
variables are allowed.

4.3.4.3 Examples Comparing PTCOIL and POSCOIL

4.3.4.3.1 PTCOIL

In the example below, the power flow into the PTCOIL alternates between OFF and ON. On
the first sweep the power flow in is OFF, on the second sweep it is ON, and so forth. Each
time the power flow into the PTCOIL changes from OFF to ON, the value of Xsition is turned
ON. Therefore, on the first sweep, the PTCOIL turns Xsition OFF, on the second sweep it
turns it ON, on the third sweep it turns it OFF, and so forth. Notice that the behavior of the
PTCOIL is not affected by the presence of the fourth rung, which also writes to Xsition.
PTCOIL behaves the same way when the fourth rung is removed.

4.34.3.2 POSCOIL

If a POSCOIL is used in place of the PTCOIL in the example below (keeping the rest of the
logic identical and same alternation of power flow into the POSCOIL), the behavior of the
logic will be different. The behavior of the POSCOIL is affected by the execution of the fourth
rung, which writes to Xsition and changes both its value and its transition bit. In this
example, the POSCOIL never turns Xsition ON. If the fourth rung is removed, POSCOIL will
behave exactly as the PTCOIL behaves, turning Xsition OFF on the first sweep, ON on the
second sweep, and so forth.

Ladder Diagram (LD) Programming 95

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
Figure 54
" PFlowIn) ' ' ' ') ’ " Xsition |
{ | ®_
" CopyPFI|

' Flip the value of Pflowln. If it was ON twrn it OFF. If it was OFF turn it ON.

PFlowIn PFlowIn
X o
" CopyPFI) ')) ’) " PFlowIn|
171 O_
" Xsition |

O_

4.4 Contacts

A contact is used to monitor the state of a reference address. Whether the contact passes
power flow depends on positive power flow into the contact, the state or status of the
reference address being monitored, and the contact type.

A reference address is ON if its state is 1; it is OFF if its state is 0.

Contact Display Mnemonic |Contact Passes Power to Right...

Continuation ——+— |CONTCON if the preceding continuation coil is set ON

Contact

Fault Contact BHVAR FAULT if its associated BOOL or WORD variable has a
—F— point fault

High Alarm HORDY HIALR if the high alarm bit associated with the analog

Contact —EA— (WORD) reference is ON

Low Alarm WORDV LOALR if the low alarm bit associated with the analog

Contact —Lat— (WORD) reference is ON

No Fault Contact | BHVAR NOFLT if its associated BOOL or WORD variable does not
—NF— have a point fault

Normally Closed | BOOLW¥ NCCON if associated BOOL variable is OFF

Contact d

Normally Open BOOLY NOCON if associated BOOL variable is ON

Contact

Transition BOOLY NEGCON (negative transition contact) if BOOL reference

Contacts — transitions from ON to OFF. Updated every time it

is called.
BOOL_¥ NTCON (negative transition contact) if BOOL reference
—i¥— transitions from ON to OFF. Updated once per
scan.

Ladder Diagram (LD) Programming 96

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
Contact Display Mnemonic |Contact Passes Power to Right...
BOOLY POSCON (positive transition contact) if BOOL reference
— it transitions from OFF to ON. Updated every time it
is called.
BOOL_¥ PTCON (positive transition contact) if BOOL reference
P transitions from OFF to ON. Updated once per
scan.
4.4.1 Continuation Contact
Figure 55

—s—

A continuation contact continues the LD logic from the last previously-executed rung in the
block that contained a continuation coil.

The flow state of the continuation contact is the same as the preceding executed
continuation coil. A continuation contact has no associated variable.

Notes:

o Ifthe flow of logic does not execute a continuation coil before it executes a continuation contact,
the state of the continuation contact is no flow.

e The state of the continuation contact is cleared (set to no flow) each time a block begins
execution.

e The continuation coil and the continuation contact do not use parameters and do not have
associated variables.

e You can have multiple rungs with continuation contacts after a single continuation coil.

e You can have multiple rungs with continuation coils before one rung with a continuation
contact.

4.4.2 Fault Contact

Figure 56
BHVAR
—AFF—

A Fault contact (FAULT) detects faults in discrete or analog reference addresses, or locates
faults (rack, slot, bus, module).

e To guarantee correct indication of module status, use the reference address (%I, %Q,
%Al, %AQ) with the FAULT/NOFLT contacts.

e To locate a fault, use the rack, slot, bus, module fault locating system variable with a
FAULT/NOFLT contact.

Note: The fault indication of a given module is cleared when the associated fault is cleared from the
fault table.

Ladder Diagram (LD) Programming 97

CPU Programmer’s Reference Manual

GFK-2950G

Section4
June 2020

e For I/O point fault reporting, you must enable point fault references in Hardware

Configurati

FAULT passes power flow if its associated variable or location has a point fault.

4.4.2.1 Operands

on.

Parameter

Description Allowed Operands

Optional

BWVAR

The variable associated|variables in %I, %Q, %Al, and %AQ memories,

with the FAULT contact |and predefined fault-locating references

No

4.4.3 High and Low Alarm Contacts

Figure 57

HORDV
—{HAl—

HORDV
—LA—

The high alarm contact (HIALR) is used to detect a high alarm associated with an analog
reference. Use of this contact and the low alarm contact must be enabled during CPU

configuration.

A high alarm contact passes power flow if the high alarm bit associated with the analog
reference is ON.

The low alarm contact (LOALR) detects a low alarm associated with an analog reference. Use
of this contact must be enabled during CPU configuration.

A low alarm contact passes power flow if the low alarm bit associated with the analog

reference is ON.

4.4.3.1 Operands

Parameter |Description Allowed Operands Optional
WORDV The variable associated with the variables in Al and AQ memories |No
HIALR or LOALR contact
Ladder Diagram (LD) Programming 98

CPU Programmer’s Reference Manual

Section 4
GFK-2950G June 2020
4.4.4 No Fault Contact
Figure 58
BHVAER
—{NFI—
A No Fault (NOFLT) contact detects faults in discrete or analog reference addresses, or
locates faults (rack, slot, bus, module). NOFLT passes power flow if its associated variable or
location does not have a point fault.
e To guarantee correct indication of module status, use the reference address (%I, %Q,
%Al, %AQ) with the FAULT/NOFLT contacts.
e To locate a fault, use the rack, slot, bus, module fault locating system variables with a
FAULT/NOFLT contact.
e Forl/O point fault reporting, you must configure your Hardware Configuration (HWC) to
enable the PLC point faults.
Note: Thefaultindication of a given module is cleared when the associated fault is cleared from the fault
table.
4.4.4.1 Operands
Parameter|Description Allowed Operands Optional
BWVAR The variable associated|variables in %I, %Q, %Al, and $AQ memories,|No
with the NOFLT contact |and predefined fault-locating references
4.4.5 Normally Closed and Normally Open Contacts
Figure 59
BOOLV BOOLV
i1 { |

A normally closed contact (NCCON) acts as a switch that passes power flow if the BOOLV
operand is OFF (false, 0).

A normally open contact (NOCON) acts as a switch that passes power flow if the BOOLV
operand is ON (true, 1).

Ladder Diagram (LD) Programming 99

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.4.5.1 Operands

Parameter | Description Allowed Operands | Optional
BOOLV BOOLV may be a predefined system | discrete variables in I, | No
variable or a user-defined variable. Q, M, T,S, SA, SB, SC
NCCON: and G memories;
If BOOLV is ON, the normally closed | Symbolic discrete
contact does not pass power flow. variables; bit-in-word
If BOOLV is OFF, the contact passes references on variables
power flow in any non-discrete
NOCON: memory (e.g., %L) or
i . on symbolic non-
If BOOLV is ON, the normally open | . .
discrete variables.
contact passes power flow.
If BOOLV is OFF, the contact does not
pass power flow.

4.4.6 Transition Contacts

PACSystems controllers provide four transition contacts: POSCON, NEGCON, PTCON and
NTCON.

e The power flow out of the POSCON and NEGCON transition contacts is determined by
the last write to the BOOL variable associated with the contact. The associated transition
bit is updated every time the function is called.

e The power flow out of the PTCON and NTCON transition contacts is determined by the
value that the associated BOOL variable had the last time the contact was executed. The
associated transition bit is updated once per scan.

For an example showing the differences in the operation of the two types of transition
contacts, see Examples Comparing PTCON and POSCON.

Ladder Diagram (LD) Programming 100

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.4.6.1 POSCON and NEGCON

A WARNING

e These transition contact instructions should not be used in a parameterized block or
user-defined function block (UDFB) with a parameter or member. In these cases, an
R_TRIG or F_TRIG should be used instead.

e Do not use POSCON or NEGCON transition contacts for references used with
transition coils (also called one-shot coils) or with SET and RESET coils.

e If a SETCOIL or RESETCOIL receives positive power flow and its associated variable is
not overridden, the SETCOIL or RESETCOIL writes the expected result to the transition
bit for the associated variable (that is, the transition bit is set if the variable’s value is
set from ON to OFF oris set from OFF to ON, and is cleared when its value remains the
same). However, if the SETCOIL or RESETCOIL receives positive power flow and its
associated variable is overridden, the SETCOIL or RESETCOIL causes the transition bit
to be cleared.

e Do not use a transition contact with the same reference address used on a transition
coil because the value of the transition bit, which stores the power flow value into the
coil, will be affected.

BOOLY BOOLY
—t— —
Positive Transition Contact POSCON Negative Transition Contact NEGCON

POSCON starts passing power flow and{NEGCON starts passing power flow and continues
continues passing power flow to the right only|passing power flow to the right only when all of the
when all of the following conditions are met: |following conditions are met:

e theinput power flow to POSCON is ON, e theinput power flow to NEGCON is ON

e the value of the associated variable is e thevalue of the associated variable is OFF,
ON, and and

e the transition bit for the associated e the transition bit for the associated
variable is ON variable is ON

The POSCON’s transition bit is set to ON when
the variable associated with the POSCON|The NEGCON’s transition bit is set to ON when the
transitions from OFF to ON. variable associated with the NEGCON transitions
from ON to OFF.

The transition bit is set to OFF when the associated variable is written to while the POSCON or
NEGCON contact is passing power flow, regardless of whether the value written is ON or OFF. Power
flow stops when the transition bit is set to OFF.

Depending on the logic flow, writes to the POSCON’s or NEGCON's associated variable can
occur at different intervals within the Controller scan:

o multiple times during a Controller scan, resulting in the transition bit being ON for only
a portion of the scan.

o several Controller scans apart, resulting in the transition bit being ON for more than one
scan.

Ladder Diagram (LD) Programming 101

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

e once per scan, for example if the POSCON or NEGCON's associated variable is a %l input
bit.

The source of the write is immaterial; it can be an output coil, a function block output, the

input scan, an input interrupt, a data change from the program, or external

communications. When the variable is written, the transition bit is immediately affected.

The scan does not affect the transition bit. The only way to clear the transition bit is to write

to the associated variable.

4.4.6.1.1 Overrides

Overrides do not protect transition bits. If a write is attempted to an overridden point, the
point’s transition bitis cleared. As a result, any associated POSCON or NEGCON contacts will
stop passing power flow.

4.4.6.1.2 Transition to RUN Mode
e Variables that are non-retentive and not overridden will have values and transitions
cleared to 0.

e Variables that are non-retentive and overridden will retain their values and transition
bits.

e Variables that are retentive will retain their values and transition bits.

44.6.1.3 Operands for POSCON and NEGCON
Parameter |Description Allowed Operands Optional
BOOLV The variable associated|BOOL variable: I, Q, M, T, S, SA, SB, SC, and G,|No
with the transition|symbolic discrete variables, I/O variables
contact Bit reference in BOOL variable: I, Q, M, T, S, SA,
SB, SC.
4.46.1.4 POSCON and NEGCON Example 1
Figure 60
E1 E2
{1t {
E3 E4
{4l {

Coil E2 is turned ON when the value of the variable E1 transitions from OFF to ON. It stays
ON until E1 is written to again, causing the POSCON to stop passing power flow.

Coil E4 is turned ON when the value of the variable E3 transitions from ON to OFF. It stays
ON until E3 is written to again, causing the NEGCON to stop passing power flow.

Ladder Diagram (LD) Programming 102

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

POSCON and NEGCON Example 2

Figure 61

xi BIT SET E2

I WORD { —

MO00017 —{IN
1—BIT
X2 BIT CLE E4

14} WOED () 4
M00017 —|IN

1—EBIT

Bit %M00017 is set by a BIT_SET function and then cleared by a BIT_CLR function. The
positive transition contact X1 activates the BIT_SET, and the negative transition X2 activates
the BIT_CLR.

The positive transition associated with bit %M00017 will be on until ¥M00017 is reset by the
BIT_CLR function. This occurs because the bitis only written when contact X1 goes from OFF
to ON. Similarly, the negative transition associated with bit $M00017 will be ON until
%M00017 is set by the BIT_SET function.

4.4.6.2 PTCON and NTCON

A WARNING

PTCON or NTCON instructions should not be used in a parameterized block or user-defined
function block with a parameter or member. In these cases, an R_TRIG or F_TRIG should be
used instead.

The transition bit of a given PTCON or NTCON is updated only once per CPU scan. Therefore,
using a PTCON or NTCON in a block that can be called multiple times per scan may have
adverse effects on all calls after the first one because the PTCON or NTCON cannot detect
the transition on the second and subsequent calls.

EOOL_W BOOL_V
—F— — H—
Positive Transition Contact PTCON Negative Transition Contact NTCON
PTCON passes power flow to the right only|[NTCON passes power flow to the right only when all
when all the following conditions are met: the following conditions are met:
e Theinput power flow to PTCON is ON. e Theinput power flow to NTCON is ON.
e The value of the BOOL variable e Thevalue of the BOOL variable associated
associated with PTCON is ON. with NTCON is OFF.
e The transition bit associated with the e The transition bit associated with the
PTCON is OFF NTCON is ON

Ladder Diagram (LD) Programming 103

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

The transition bit depends on the value of the BOOL variable associated with this PTCON or NTCON
when it was last executed.

Notes:
° As soon as a PTCON or NTCON is set to ON or OFF, it updates its transition bit.

e Multiple instances of PTCON and/or NTCON can be associated with the same BOOL variable, but
the instance data of each instance of the PTCON or NTCON associated with the BOOL variable is
unique, that is, it is tracked independently.

e Transition data is non-retentive, that is, it is cleared to OFF when the CPU transitions from STOP
Mode to RUN Mode. As a result, the first time a PTCON executes with its input power flow set to
ON and its associated BOOL variable also set to ON, it passes power flow to the right.

4.4.6.2.1 Operands for PTCON and NTCON

Parameter (Description Allowed Operands Optional

BOOL_V The variable associated with |BOOL variable: 1, Q, M, T, S, SA, SB,SC, |No
PTCON or NTCON contact and G memories, symbolic discrete
variables, 1/O variables.

Bit reference in non-BOOL variable: R, Al,
AQ, L, P, W, and on symbolic
non-discrete variables.

4.4.6.2.2 Examples Comparing PTCON and POSCON
44.6.2.3 PTCON

The logic in the following example starts execution with all variables set to 0. Before the

second sweep begins, the Xsition variable used on the PTCON instruction is set to 1. It
retains that value for sweeps 2, 3, and 4. Then it is reset back to 0 before sweep 5 begins and
retains its 0 value for sweeps 5, 6, and 7. This pattern repeats. The PTCON instructionin rung
two passes power flow on the 2nd sweep, the 8% sweep, the 14" sweep, and so on. These
are sweeps where the Xsition variable’s value becomes a 1, after having been a 0 on the
previous sweep. On all other sweeps, the PTCON instruction does not pass power flow.

4.4.6.24 POSCON

If a POSCON is used in place of the PTCON in the following example (keeping the rest of the
logic identical), the same alternation of the Xsition variable’s value occurs. The POSCON
instruction passes power flow on sweeps 2, 3, and 4; then again on sweeps 8, 9, and 10; and
so forth. The POSCON’s behavior is dependent on Xsition’s transition bit. Since Xsition’s
value is written once and then simply retained for three sweeps, its transition bit retains its
same value for three sweeps. Thus, the POSCON will pass or not pass power flow for three
sweeps in a row. Note that if Xsition’s value is written on each sweep, the POSCON and the
PTCON behave identically.

Ladder Diagram (LD) Programming 104

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.4.6.2.5 Logic Example Using PTCON
Figure 62
RPST_SCH " MHMovE
 f =
Bettoiwhe..

I Q= SoamCoume

Wsitim i ’ ’)) ’ ’ "PFlowDut|
[p} O

' Onthe 2nd sweep, turn Xsition ON for 3 sweeps; onthe 5" sweep, tum it OFF for 3 sweeps, etc.

MOD NE INT

INT B

ovef
SeamCowmt —{IN1 O I o JOMEH]
3 —{INz2 01z
Wsitian ’ ’ ’ ’ ’ ’ " ¥sition

1.} M

@nver
ATDINT

1INl O ScanCount

SeanCount —{ INZ

Ladder Diagram (LD) Programming 105

CPU Programmer’s Reference Manual

GFK-2950G

4.5

Section4
June 2020

Control Functions

The control functions limit program execution and change the way the CPU executes the
application program.

Function Mnemonic [Description
Dol/O DO_IO For one scan, immediately services a specified range of inputs or
outputs. (All inputs or outputs on a module are serviced if any
reference locations on that module are included in the DO 1/O
function. Partial 1/0 module updates are not performed.)
Optionally, a copy of the scanned I/O can be placed in internal
memory, rather than at the real input points.
Drum DRUM Provides predefined On/Off patterns to a set of 16 discrete outputs
in the manner of a mechanical drum sequencer.
Edge Detectors |F_TRIG Detect the changing state of a Boolean signal.
R_TRIG
For Loop FOR_LOOP For loop. Repeats the logic between the FOR_LOOP instruction and
EXIT_FOR END_FOR instruction a specified number of times or until EXIT_FOR
END_FOR is encountered.
Mask 1/O MASK_IO_INTR[Mask or unmask an interrupt from an 1/O module when using 1/O
Interrupt variables. If not using I/O variables, use
SVC_REQ 17: Mask/Unmask I/O Interrupt, described in Section 6.
Proportional PID_ISA Provides two PID (Proportional/Integral/Derivative) closed-loop
Integral PID_IND control algorithms:
Derivative Standard ISA PID algorithm (PID_ISA)
Control Independent term algorithm (PID_IND)
Note: for details, refer to Section 7.
Read Switch SWITCH_POS |[Reads position of the Run/Stop switch and the mode for which the
Position switch is configured.
Scan Set 10 SCAN_SET_IO |Scans the 10 of a specified scan set.
Service Request [SVC_REQ Requests a special PLC service.
Note: For details, refer to Section 6.
Suspend 10 SUS_IO Suspends for one sweep all normal I/O updates, except those
specified by DO I/O instructions.
Suspend or SUSP_IO_INTR [Suspend or resume an I/O interrupt when using I/O variables. If not
Resume /O using 1/O variables, use
Interrupt SVC_REQ 32: Suspend/Resume 1/O Interrupt, described in Section

6.

Ladder Diagram (LD) Programming

106

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.1 Dol/O

Figure 63

DO IO

—END

—ALT

When the DO 1/O (DO_IO) function receives power flow, it updates inputs or outputs for one
scan while the program is running. You can also use DO_ |0 to update selected I/O during
the program in addition to the normal I/O scan.

You can use DO_IO in conjunction with a Suspend 10 (SUS_IO) function, which stops the
normal I/O scan. For details, refer to Suspend I/O.

If input references are specified, DO_IO allows the most recent values of inputs to be
obtained for program logic. If output references are specified, DO I/O updates outputs
based on the most current values stored in I/O memory. I/O is serviced in increments of
entire 1/O modules; the PLC adjusts the references, if necessary, while DO_IO executes.
DO_IO does not scan I/O modules that are not configured.

DO_IO continues to execute until all inputs in the selected range have reported or all
outputs have been serviced on the I/O modules. Program execution then returns to the
function that follows the DO_IO.

If the range of references includes an option module (HSC, APM, etc.), all the input data (%I
and %Al) or all the output data (%Q and %AQ) for that module are scanned. The ALT
parameter is ignored while scanning option modules.

DO_IO passes power to the right whenever it receives power unless:

o Not all references of the type specified are present within the selected range.
e The CPUis not able to properly handle the temporary list of I/O created by the function.

e Therange specified includes I/O modules that are associated with a Loss of I/O fault.

A\ WARNING

If DO_IO is used with timed or I/O interrupts, transition contacts associated with scanned
inputs may not operate as expected.

Ladder Diagram (LD) Programming 107

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Note: The Do I/O function skips modules that do not support DO_IO scanning:

IC693BEM331 90-30 Genius Bus Controller

IC694BEM331 RX3i Genius Bus Controller

IC693BEM341 90-30 2.5 GHz FIP Bus Controller
IC693DNM200 90-30 DeviceNet Master

IC695PBM300 RX3i PROFIBUS Master

1C695PBS301 RX3i PROFIBUS Slave

IC687BEM731 90-70 Genius Bus Controller

IC697BEM731 90-70 Standard Width Genius Bus Controller

4.5.1.1 Do I/O for Inputs

When DO_IO receives power flow and input references are specified, the PLC scans input
points from the starting reference (ST) to the ending reference (END). If a reference is
specified for ALT, a copy of the new input values is placed in memory beginning at that
reference, and the real input values are not updated. ALT must be the same size as the
reference type scanned. If a discrete reference is used for ST and END, ALT must also be
discrete.

If no reference is specified for ALT, the real input values are updated. This allows inputs to
be scanned one or more times during the program execution portion of the CPU scan.

4.5.1.2 Do 1/O for Outputs

When DO_IO receives power flow and output references are specified, the PLC writes to the
output points. If no value is specified in ALT, the range of outputs written to the output
modules is specified by the starting reference (ST) and the ending reference (END). If
outputs should be written to the output points from internal memory other than %Q or
%AQ, the beginning reference is specified for ALT and the end reference is automatically
calculated from the length of the END—ST range.

Ladder Diagram (LD) Programming 108

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.1.3 Operands

Parameter|Description Allowed Operands (Optional

ST The starting address of the set of input or output |I, Q, Al, AQ, I/O No
points or words to be serviced. ST and END must be [Variable
in the same memory area.

e IfSTand END are placed in BOOL memory, ST
must be byte-aligned. That is, its reference
address must start at (8n+1), for example,
%101, %Q09, %Q49.

e If ST and END are mapped to analog memory,
they can have the same reference address.

e If STis mapped to an1/O variable, the same

1/O variable must also be assigned to the END
parameter, and the entire module is scanned.

END The address of the end bit of input or output points|l, Q, Al, AQ, I/O No
or words to be serviced. Must be in the same|Variable
memory area as ST.

e If ST and END are placed in BOOL memory,
END's reference address must be 8n, for
example, %108, %Q16.

e If ST and END are mapped to analog memory,
they can have the same reference address.

e IfSTismappedtoanl/Ovariable, the samel/O
variable must also be assigned to the END
parameter, and the entire module is scanned.

ALT For an input scan, ALT specifies the address to storefl, Q, M, T, G, R, Al, AQ |Yes
scanned input point/word values. For an output
scan, ALT specifies the address to get output
point/word values from, to send to the I/O modules.

Note: ALT can be a WORD only if ST and END are
in analog memory.

Ladder Diagram (LD) Programming 109

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.5.1.3.1 Example - Do I/O for Inputs
Figure 64
Vv 100001 [poio | V_Q00001
i} —
¥_100001 —|5T
V_100064¢ —END
V_M00001 —{ALT
When DO_IO receives power flow, the PLC scans references %10001—64 and %Q0001 is
turned on. A copy of the scanned inputs is placed in internal memory from %M0001-64.
Because a reference is specified for ALT, the real inputs are not updated. This allows the
current values of inputs to be compared with their values at the beginning of the scan. This
form of DO_IO allows input points to be scanned one or more times during the program
execution portion of the CPU scan.
4.5.1.3.2 Example - Do I/O for Outputs

Figure 65

V_100000 [DoIo| V_000001

W_AQ0001 —ST

V_AQ0004 —END

W_R00001 — ALT

{ —{ 1

Because areference is entered for ALT, the values at XAQ001—004 are not written to output
modules. When DO_IO receives power flow, the PLC writes the values from references

%R0001-0004 to the analog output modules and %Q0001 is turned on.

Ladder Diagram (LD) Programming

110

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.2 Edge Detectors

Figure 66
F TRIG R TRIG
—HCLK Qr ek QF
Falling Edge Trigger Rising Edge Trigger

These function blocks detect the changing state of a Boolean signal and produce a single
pulse when an edge is detected.

When transitional instructions, such as Transition Coils or Transition Contacts, are used
inside a function block, there is a problem when the same function block is called more than
once per scan. The first call executes the transition correctly, but subsequent calls do not
because they see the state as adjusted from the first call. The rising and falling edge trigger
instructions solve this problem. These instructions have their own instance data that can be
a member or an input of the function block so that the transition state follows that of the
function block instance and not the function block.

If an edge detector function blockis used within a UDFB, its instance data must be amember
variable of the UDFB.

4.5.2.1 Operands

Parameter |Description Allowed Operands Optional
7 Instance data for function block. This is [F_TRIG, R_TRIG No
a structure variable, described below.
CLK Input to be monitored for a changein |All Yes
state.
Q Edge detection output. Must be flow in LD. In other Yes

languages all types allowed
except S, SA, SB, SCand

constants.
4.5.2.1.1 Instance Data Structure
These elements cannot be published or written to.
Element Name | Type Description
CLK BOOL Edge detection input. Not accessible in user logic.
Q BOOL Edge detection output. Accessible in user logic. Read only.
STATE BOOL Internal value. Not accessible in user logic.
ENO BOOL Enable Output. User logic can access as read-only.

Ladder Diagram (LD) Programming 111

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.2.2 F_TRIG Operation

Figure 67

CLK J

-7

Function Block Execution

When the CLK input goes from true to false, the output Q is true for one function block
instance execution. The output Q then remains false until a new falling edge is detected.

When the Controller transitions from STOP Mode to RUN Mode and the CLK input is false
and the instance memory is non-retentive, the output Q is true after the function block’s
first execution. After the next execution, the output is false.

The F_TRIG output Q will be true for one function block instance execution at a STOP Mode
to RUN Mode transition after the first download, whether instance memory is retentive.

4.5.2.3 R_TRIG Operation

Figure 68

CLK _J I_

Function Block Execution

When the CLK input transitions from false to true, the output Q is true for one function block
execution. The output Q then remains false until a new rising edge is detected.

When the Controller transitions from STOP Mode to RUN Mode and the CLK input is true and
the instance memory is non-retentive, the output Q is set to true after the function block’s
first execution. After the second execution, the output is false.

If the CLK input is initialized on, the R_TRIG output Q will be true for one function block
instance execution at a STOP Mode to RUN Mode transition after the first download,
whether instance memory is retentive.

Ladder Diagram (LD) Programming 112

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.2.3.1 Example

In the following example, when Input1 transitions from false to true, the coil, Detected, is
set ON for one function block execution. The output Q remains false until a new rising edge
is detected.

Figure 69

R TRIG

Monitor Detected

- - My
Inputi R e p—y

45.3 Drum

Figure 70

DRUM
N 2707 B
— P -

3 a

—E DERC|—
— TN OO f—
—IT TFT—
—{FTT FF—

The Drum function operates like a mechanical drum sequencer, which steps through a set
of potential output bit patterns and selects one based on inputs to the function. The
selected value is copied to a group of 16 discrete output references.

When the Drum function receives power flow, it copies the contents of a selected reference
to the Q reference.

Power flow to the R (Reset) input or to the S (Step) input selects the reference to be copied.

The function passes power to the right only if it receives power from the left and no error
condition is detected.

The DTO (Dwell Timeout Output) bit is cleared the first time the drum is in a new step. This
is true:

e Whether the drum is introduced to a new step by changing the Active Step or by using
the S (Step) Input.

e Regardless of the DT (Dwell Time array) value associated with the step (even if it is 0).

o During the first sweep the Active Step is initialized.

Ladder Diagram (LD) Programming 113

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.3.1 Using Drum in Parameterized Blocks

The Drum dwell and fault timer features use an internal timer that is implemented in the
same manner as for the OFDT, ONDTR, and TMR timers. Therefore, special care must be
taken when programming Drum in parameterized blocks. Drum functions in parameterized
blocks can be programmed to track true real-time if the guidelines and rules below are
followed. If the guidelines and rules described here are not followed, the operation of the
Drum function in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to ensure these
rules are followed.

The best use of a Drum function is to invoke it with a particular reference address exactly
one time each scan. With parameterized blocks, it is important to use the appropriate
reference memory with the Drum function and to call the parameterized block an
appropriate number of times.

4.5.3.1.1 Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that
appears above the parameterized block in the call tree. To determine the source block for a
given parameterized block, determine which block invoked that parameterized block. If the
calling block is _MAIN or of type Block, it is the source block. If the calling block is any other
type (parameterized block or function block), apply the same test to the block that invoked
this block. Continue back up the call tree until the _MAIN block or a block of type Block is
found. This is the source block for the parameterized block.

4.5.3.1.2 Programming Drum in Parameterized Blocks
Different guidelines and rules apply depending on whether you want to use the
parameterized block in more than one place in your program logic.

45.3.1.3 Parameterized block called from one block

If your parameterized block that contains a Drum function will be called from only one logic
block, follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose areference address for the Drum control block that will not be
manipulated anywhere else. The reference address may be %R, %P, %L, %W, or
symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L memory
corresponds to %P memory when the source block is _MAIN.

Ladder Diagram (LD) Programming 114

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.53.1.4 Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate the
Drum reference memory used by each call to the parameterized block. Follow these rules
and guidelines:

1. Call the parameterized block exactly one time per execution of each source block
thatit appearsin.

2. Choose a %L reference or parameterized block formal parameter for the Drum
control block. Do not use a %R, %P, %W, or symbolic memory reference.

Notes:

° The strongly recommended choice is a %L location, which is inherited from the parameterized
block’s source block. Each source block has its own %L memory space except the _MAIN block,
which has a %P memory area instead. When the _MAIN block calls another block, the %P
mappings from the _MAIN block are accessed by the called block as %L mappings.

° If you use a parameterized block formal parameter (word array passed-by-reference), the actual
parameter that corresponds to this formal parameter must be a %L, %R, %P, %W, or symbolic
reference. If the actual parameter is a %R, %P, %W, or symbolic reference, a unique reference
address must be used by each source block.

45.3.1.5 Recursion

If you use recursion (that s, if you have a block call itself either directly orindirectly) and your
parameterized block contains a Drum function, you must follow two additional rules:

¢ Program the source block so that it invokes the parameterized block before making any
recursive calls to itself.

¢ Do not program the parameterized block to call itself directly.

4.5.3.2 Using Drum in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details on
these and other types of blocks, refer to Section 2.

When a Drum function is present inside a UDFB, and a member variable is used for the
control block of a Drum function, the behavior of the Drum function may not match your
expectations. If multiple instances of the UDFB are called during a logic sweep, only the first-
executed instance will update the timer in the Drum function. If a different instance is then
executed, the timer value will remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add elapsed
time to its timer functions. This behavior matches the behavior of the Drum function timer
in a normal program block.

4.5.3.2.1 Example

A UDFB is defined that uses a member variable for a Drum function block. Two instances of
the function block are created: Drum_A and Drum_B. During each logic scan, both Drum_A
and Drum_B are executed. However, only the member variable in Drum_A is updated and
the member variable in Drum_B always remains at 0.

Ladder Diagram (LD) Programming 115

CPU Programmer’s Reference Manual

GFK-2950G

4.5.3.3 Operands for Drum

Section4
June 2020

Parameter

Description

Allowed Operands

Optional

77?

(Control Block) The beginning address of a five-
word array that contains the Drum Sequencer's
control block. The contents of the control block
are described below.

R, P, L, W, Symbolic

No

7?

(Length) Value between 1 and 128 that specifies
the number of steps.

Constant

No

Step input. Used to go one step forward in the
sequence. When the function receives power
flow and S makes an OFF to ON transition, the
Drum Sequencer moves one step. When R
(Reset) is active, the function ignores S.

flow

No

Reset input. Used to select a specific step in the
sequence. When the DRUM function and Reset
both receive power flow, DRUM copies the Preset
Step value in the Control Block to the Active Step
reference in the Control Block. Then the function
copies the value in the Preset Step reference to
the Q reference bits. When R is active, the
functionignoresS.

flow

No

PTN

(Pattern) The starting address of an array of
words. The number of words is specified by the
Length (??) operand. Each word represents one
step of the Drum Sequencer. The value of each
word represents the desired combination of
outputs for a particular value of the Active Step
word in the control block. The first element
corresponds to an Active Step value of 1; the last
element corresponds to an Active Step value of
Length. The programming software does not
create an array for you. You must ensure you
have enough memory for PTN.

All except constant
and S, SA—SC
numerical data.

No

DT

(Dwell Time) If you use the DT operand, you must
also use the DTO operand and vice-versa. The DT
operand is the starting address of Length words
of memory, where Length is the number of steps.
Each DT word corresponds to one word of PTN.
The value of each word represents the dwell time
for the corresponding step of the Drum
Sequencerin 0.1 second units. When the dwell
time expires for a given step the DTO bit is set.
If a Dwell Time is specified, the drum cannot
sequence into its next step until the Dwell Time
has expired. The programming software does not
create an array for you. You must ensure you
allocate enough memory for DT.

All except S, SA, SB,
SC and constant

Yes

Ladder Diagram (LD) Programming

116

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
Parameter Description Allowed Operands | Optional
FTT (Fault Timeout) If you use the FTT operand, you | All exceptS, SA, SB, | Yes
must also use the TFT operand, and vice-versa. | SCand constant

The FTT operand is the starting address of Length
words of memory, where Length is the number
of steps. Each FTT word corresponds to one word
of PTN. The value of each word represents the
fault timeout for the corresponding step of the
Drum Sequencer in 0.1 second units.

When the fault timeout has expired the Fault
Timeout bit is set.

The programming software does not create an
array for you. You must ensure you allocate
enough memory for FTT.

Q A word of memory containing the element of the | All except S and No
PTN that corresponds to the current Active Step. | constant

DRC (Drum Coil) Bit reference that is set whenever the | All except S Yes
function is enabled, and Active Step is not equal
to Preset Step.

DTO (Dwell Timeout) If you use the DTO operand, you | All except S and Yes
must also use DT and vice-versa. This bit constant

reference is set if the dwell time for the current
step has expired.

TFT (Timeout Fault) If you use the TFT operand, you | All except S and Yes
must also use the FTT operand and vice-versa. Bit | constant
reference that is set if the drum has beenin a
particular step longer than the step’s specified
Fault Timeout.

FF (First Follower) The starting address of All except S and Yes
(Length/8+1) bytes of memory, where Lengthis | constant
the number of steps. If MOD (Length/8+1)>0, FF
has (Length/8+1) bytes. Each bit in the bytes of
FF corresponds to one word of PTN. No more
than one bit in the FF bytes is ON at any time, and
that bit corresponds to the value of the Active
Step. The first bit corresponds to an Active Step
value of one. The last used bit corresponds to an
Active Step value of Length.

4.5.3.4 Control Block for the Drum Sequencer Function

The control block for the Drum Sequencer function contains information needed to operate
the Drum Sequencer.

address Active Step
address + 1 Preset Step
address + 2 Step Control
address +3 Timer Control

Ladder Diagram (LD) Programming 117

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Active Step The active step value specifies the element in the Pattern array to copy to the
output memory location. This is used as the array index into the Pattern, Dwell Time, Fault
Timeout, and First Follower arrays.

Preset Step A word input that is copied to the Active Step output when the Reset is On.

Step Control A word thatis used to detect Off to On transitions on both the Step input and
the Enable input. The Step Control word is reserved for use by the function and must not be
written to.

Timer Control Two words of data that hold values needed to run the timer. These values are
reserved for use by the function and must not be written to.

454 For Loop

Figure 71

FOR
| roop | "EXIEE

= INDEX

77| 1

= END

— INC

A FOR loop repeats rung logic a specified number of times while varying the value of the
INDEX variable in the loop.

A FOR loop begins with a FOR_LOOP instruction and ends with an END_FOR instruction.
The logic to be repeated must be placed between the FOR and END_FOR instructions.

The optional EXIT_FOR instruction enables you to exit the loop if a condition is met before
the FOR loop ends normally.

When FOR_LOOP receives power flow, it saves the START, END, and INC (Increment)
operands and uses them to evaluate the number of times the rungs between the FOR_LOOP
and its END_FOR instructions are executed. Changing the START and END operands while
the FOR loop is executing does not affect its operation.

When an END_FOR receives power flow, the FOR loop is terminated and power flow jumps
directly to the statement following the END_FOR instruction.

There can be nothing after the FOR_LOOP instruction in the rung and the FOR_LOOP
instruction must be the last instruction to be executed in the rung. An EXIT_FOR statement
can be placed only between a FOR instruction and an END_FOR instruction. The END_FOR
statement must be the only instruction in its rung.

A FOR_LOOP can assign decreasing values to its index variable by setting the increment to

a negative number. For example, if the START value is 21, the END value is 1, and the
Ladder Diagram (LD) Programming 118

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

increment value is -5, the statements of the FOR loop are executed five times, and the index
variable is decremented by 5 in each pass. The values of the index variable will be 21, 16, 11,
6,and 1.

When the START and END values are set equal, the statements of the FOR loop are executed
only once.

When START cannot be incremented or decremented to reach the END, the statements
within the FOR loop are not executed. For example, if the value of START is 10, the value of
ENDis 5, and the INCREMENT is 1, power flow jumps directly from the FOR statement to the
statement after the END_FOR statement.

Note: Ifthe FOR_LOOP instruction has power flow when it is first tested, the rungs between the FOR and
its corresponding END_FOR statement are executed the number of times initially specified by
START, END, and INCREMENT. This repeated execution occurs on a single sweep of the PLC and
may cause the watchdog timer to expire if the loop is long.

Nesting of FOR loops is allowed, but it is restricted to five FOR/END_FOR pairs. Each FOR
instruction must have a matching END_FOR statement following it.

Nesting with JUMPs and MCRs is allowed, if they are properly nested. MCRs and ENDMCRs
must be completely within or completely outside the scope of a FOR_LOOP/END_FOR pair.
JUMPs and LABEL instructions must also be completely within or completely outside the
scope of a FOR_LOOP/END_FOR pair. Jumping into or out of the scope of a FOR/END_FOR is
not allowed.

4.5.4.1 Operands

Only the FOR_LOOP function requires operands.

Parameter [Description Allowed Operands Optional
INDEX The index variable. When the loop has |All except constants, flow, and |No
completed, this value is undefined. variables in %S - %SC

Note: Changing the value of the
index variable within the
scope of the FOR loop is not

recommended.
START The index start value. All except variables in %S - %SC [No
END The index end value. All except variables in %S - %SC [No
INC The increment values. (Default: 1.) Constants Yes

Ladder Diagram (LD) Programming 119

CPU Programmer’s Reference Manual

GFK-2950G

4.54.1.1

4.54.1.2

For Loop Example 1

Section 4
June 2020

Figure 72

_100001

FOR
LOOF

Y_RO00OO1 —

V_M00001 —

V_MO000M7 —

V_I0000

INDEX

START

INC
ADDINT

Y_RO00OO1 —

M a

IN2

V_R00002 —

— V_R00002

The value for $M00001 (START) is 1 and the value for %M00017 (END) is 10. The INDEX
(%R00001) increments by the value of the INC operand (which is assumed to be 1 when
omitted) starting at 1 until it reaches the ending value 10. The ADD function of the loop is
executed 10 times, adding the current value of 11 (%R00001), which will vary from 1 to 10,
to the value of 12 (%R00002).

For Loop Example 2

Figure 73

V_I00001

V_R00001 —

¥_T00001 —

V_T00017 —

10—

FOR

Loop

INDEX

START

END

INC

V_100001
_' '—

¥_R00001 —

0=

EQINT

M Q—{EXITFON

INZ

B2

The value for %T00001 (START) is -100 and the value for %T00017 (END) is 100. The INDEX
(%R00001) increments by tens, starting at 100 until it reaches it end value of +100. The EQ
function of the loop tries to execute 21 times, with the INDEX (%R00001) being equal to
100, -90, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100. However, when the INDEX (%R00001) is 0, the EXIT statement is enabled, and power

flow jumps directly to the statement after the END_FOR statement.

Ladder Diagram (LD) Programming

120

CPU Programmer’s Reference Manual

GFK-2950G

4.5.5

Mask 1/O Interrupt

Section4
June 2020

Figure 74

MASE 1D
INTR

—MASK

—]IH1

Mask or unmask an interrupt from an 1/O board when using I/O variables. If not using 1/O
variables, use SVC_REQ 17.

When the interrupt is masked, the CPU processes the interrupt but does not schedule the
associated logic for execution. When the interrupt is unmasked, the CPU processes the
interrupt and schedules the associated logic for execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked

4.5.5.1 Operands
Parameter |Description Allowed Allowed Optional
Types Operands
MASK Selects unmask or mask operation. |BOOL variable |data flow, I, Q, M, [No
Unmask=0; Mask=1 or Bit reference |T, G, S, SA, SB,
in non-discrete [SC,R, P, L, Al, AQ,
memory W, symbolic, I/O
variable
INT The interrupt trigger to be masked or [BOOL or WORD |, Q, M, T, G, R, P, |No
unmasked. variable L, Al, AQ, W, I/O
e Thel/Oboard mustbe a variable
supported input module.
e Thereference address specified
must correspond to a valid
interrupt trigger reference.
e Theinterrupt for the specified
channel must be enabled in the
configuration.
Ladder Diagram (LD) Programming 121

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.5.1.1 Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware
module and is configured as an 1/O interrupt to a program block. When the BOOL variable
MaskOn_Off transitions from OFF to ON and A1l is set to ON, the interrupt Mod_lInt is
masked (not executed) for one scan.

Figure 75
MaskOn_Off MaskOn_Of
] @
Al MASK 10

11 INTR -

MaskOn_0Off —|MASK

Mod_Int —{IN1

4.5.6 Read Switch Position

Figure 76

Read Switch Position (SWITCH_POS) allows the logic to read the current position of the
RUN/STOP switch, as well as the mode for which the switch is configured.

Ladder Diagram (LD) Programming 122

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.5.6.1 Operands
Parameter|Description Allowed Operands |Optional
POS Memory location at which to write current|All exceptS, SA, SB,SC |No
switch position value.
1-°RUNI/O Enabled
2 - °RUN Outputs Disabled
3-°STOP Mode
MODE Memory location to which switch configuration|All except S, SA, SB, SC |No

value is written.

0 - Switch configuration not supported

1 - Switch controls RUN/STOP mode

2 - Switch not used, or is used by the user
application

3 - Switch controls both memory protection and
RUN/STOP mode

4 - Switch controls memory protection

45.7 Scan Set 10O

Figure 77

—{0UT

—5ET

SCAN SET 1D

The Scan_Set_lO function scans the /O of a specified scan set number. (Modules can be
assigned to scan sets in hardware configuration.) You can specify whether the Inputs and/or

Outputs of the associated scan set will be scanned.

Execution of this function block does not affect the normal scanning process of the
corresponding scan set. If the corresponding scan set is configured for non-default Number
of Sweeps or Output Delay settings, they remain in effect regardless of how many

executions of the Scan Set IO function occur in any given sweep.

The Scan Set IO function skips those modules that do not support scanning.

Ladder Diagram (LD) Programming

123

CPU Programmer’s Reference Manual

GFK-2950G

4.5.7.1

4.5.7.1.1

Section 4
June 2020

Operands for SCAN_SET_IO
Parameter |Description Allowed Types |Allowed Operands |Optional
IN If true, the inputs will be [BOOL variable or bit |Power flow No

scanned. reference in a non-

BOOL variable

ouT If true, the outputs will [BOOL variable or bit |Power flow No

be scanned. reference in a non-

BOOL variable

SET Number of the scan set |UINT All except %S memory |No

to be scanned. Scan sets types.

are specified in the CPU

hardware configuration

and assigned to modules

in the module hardware

configuration.
ENO Energized when all BOOL variable or bit |Power flow. Yes

arguments to the reference in a non-

function are valid and BOOL variable

there are no errors in

scanning.
Example
Figure 78

SCAN SET IO

Scaninputs

ScanOutputs

1 I 1N

| | ouT

]
i
m
—

By using the Scan Set IO function block in an interrupt block, you can create a custom 1/O
scan. For example, two Scan Set 10 function blocks can be used in an interrupt block to scan
the inputs of a scan set at the beginning of the block and the outputs of the same scan set
at the end of the block.

In the example at right:

e When Scanlnputsis ON, input data for all /O modules assigned to Scan Set 2 is updated.

e When ScanOutputs is ON, output data for all /O modules assigned to Scan Set 2 is

updated

Ladder Diagram (LD) Programming

124

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.5.8 Suspend 1/O

Figure 79

SUs 10

The Suspend 1/O (SUS_IO) function stops normal 1/O scans from occurring for one CPU
sweep. During the next output scan, all outputs are held at their current states. During the
next input scan, the input references are not updated with data from inputs. However,
during the input scan portion of the sweep, the CPU verifies that Genius bus controllers have
completed their previous output updates.

Note: The PACSystems SUS_IO function suspends analog and discrete /O, whether integrated /O or
Genius I/O. It does not suspend Ethernet Global Data. For details, refer to PACSystems RX7i, RX3i
and RSTi-EP TCP/IP Ethernet Communications User Manual, GFK-2224.

When SUS_IO receives power flow, all IO servicing stops except that provided by DO_IO
functions.

If SUS_IO were placed at the left rail of the ladder, without enabling logic to regulate its
execution, no regular 1/O scan would ever be performed.

SUS_IO passes power flow to the right whenever it receives power

Ladder Diagram (LD) Programming 125

CPU Programmer’s Reference Manual

GFK-2950G

4.5.8.1.1

Section 4
June 2020
Example
Figure 80
|:5tart-:uEProrjf.3m
V_100010 V_I10000 [SpsI0 | V_MO00001
1 1 ——{ —i
V_M00001

¥_M00001 [DoIo | V_MO00551

{ { —

V_100001 —|ST
V_I00016 — END

—ALT

||:|:1--..;-.- logic goes here,
V_Moooo1 DoIo V_MO00551 v_000002

i | 1} {

¥_000001 —{ST

V_Qoo030 —END

—ALT

| End of program,

The example at right shows a SUS_IO function and a DO_IO function used to stop /O scans,
then cause certain I/O to be scanned from the program.

Inputs %l100010 and %100011 form a latch circuit with the contact from %MO00001. This
keeps the SUS_IO function active on each sweep until %100011 goes on. If this input were
not scanned by DO_IO after SUS_IO went active, SUS_IO could only be disabled by powering
down the PLC.

Output %Q00002 is set when both DO_IO functions execute successfully. The rung is
constructed so that both DO_IO functions execute even if one does not set its OK output.
With normal 1/O suspended, output Q00002 is not updated until a DO_IO function with
%Q00002 in its range executes. This does not occur until the sweep after the setting of
%Q00002. Outputs that are set after a DO_IO function executes are not updated until
another DO_IO function executes, typically in the next sweep. Because of this delay, most
programs that use SUS_IO and DO_IO place the SUS_IO function in the first rung of the
program, the DO_IO function that processes inputs in the next rung, and the DO_IO
function that processes outputs in the last rung.

The range of the DO_IO function doing outputs is %Q00001 through %Q00030. If the
module in this range were a 32-point module, the DO_IO function would actually perform a
scan of the entire module. A DO_IO function will not break the scan in the middle of an 1/O
module.

Ladder Diagram (LD) Programming 126

CPU Programmer’s Reference Manual

GFK-2950G

4.5.9

Suspend or Resume 1/O Interrupt

Section4
June 2020

Figure 81

SUSP 10
INTFR

SUsF

IR

Suspend or resume an I/O interrupt when using 1/O variables. If not using 1/O variables, use

SVC_REQ 32.

The function executes successfully and passes power to the right unless:

e Thel/O module associated with the interrupt trigger specified in IN1 is not supported.

o The reference address specified does not correspond to a valid interrupt trigger

reference.

e The specified channel does not have its interrupt enabled in the configuration.

4.5.9.1 Operands
Parameter |Description Allowed Types |Allowed Optional
Operands
SUSP Selects a suspend or resume |BOOL variable or [dataflow, |, Q,M, T, |No
operation. bit referenceina |G, S, SA, SB,SC,R, P,
1 (ON)=suspend |non-BOOL variable |L, discrete symbolic,
0 (OFF)=resume 1/O variable
INT The interrupt triggertobe |BOOL or WORD LQ,M,T,G,R,P, L, |No
suspended or resumed. variable Al, AQ, W, 1/O
variable
4.5.9.1.1 Example

In the following example, the variable Mod_Int is mapped to an 1/O point on a hardware
module and is configured as an I/O interrupt to a program block. When the BOOL variable
SuspOn_Off is set to ON and A1 is set to ON, interrupts from Mod_Int are suspended until

SuspOn_Offis

Ladder Diagram (LD) Programming

reset.

127

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
Figure 82
SuspOn_Off SuspOn_Off

11 £

T T U

Al SUSP |0

I : INTR |

SuspOn_0Of —|SUSF
Maod_Int —{IN1

4.6 Conversion Functions

The Conversion functions change a data item from one number format (data type) to
another. Many programming instructions, such as math functions, must be used with data

of one type. As a result, data conversion is often required before using those instructions.

Function Description

Convert Angles

DEG_TO_RAD Converts degrees to radians

RAD_TO_DEG Converts radians to degrees

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_TO_BCD4 Converts UINT (16-bit unsigned integer) to BCD4

INT_TO_BCD4 Converts INT (16-bit signed integer) to BCD4

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BCD8 Converts DINT (32-bit signed integer) to BCD8

Convert to INT (16-bit signed integer)

BCD4_TO_INT Converts BCD4 to INT
UINT_TO_INT Converts UINT to INT
DINT_TO_INT Converts DINT to INT
REAL_TO_INT Converts REALto INT

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT Converts BCD4 to UINT
INT_TO_UINT Converts INT to UINT

DINT_TO_UINT Converts DINT to UINT
REAL_TO_UINT Converts REAL to UINT

Convert to DINT (32-bit signed integer)

BCD8_TO_DINT Converts 8-digit Binary-Coded-Decimal (BCD8) to DINT
UINT_TO_DINT Converts UINT to DINT
INT_TO_DINT Converts INT to DINT

Ladder Diagram (LD) Programming

128

CPU Programmer’s Reference Manual

GFK-2950G

4.6.1

4.6.1.1

4.6.1.1.1

Section4
June 2020

Function

Description

REAL_TO_DINT

Converts REAL (32-bit signed real or floating-point values) to DINT

LREAL_TO_DINT

Converts REAL (64-bit signed real or floating-point values) to DINT

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL

Converts BCD4 to REAL

BCD8_TO_REAL

Converts BCD8 to REAL

UINT_TO_REAL Converts UINT to REAL
INT_TO_REAL Converts INT to REAL
DINT_TO_REAL Converts DINT to REAL

LREAL_TO_REAL

Converts LREAL to REAL

Convert to LREAL(64-bit signed real or floating-point values)

DINT_TO_LREAL

Converts DINT to LREAL

REAL_TO_LREAL Converts REAL to LREAL

Truncate

TRUNC_DINT Rounds a REAL number down to a DINT (32-bit signed integer) number
TRUNC_INT Rounds a REAL number down to an INT (16-bit signed integer) number

Convert Angles

m

Mnemonics:

— DEG_TO_RAD_REAL

DEG_TO_RAD_LREAL

- RAD_TO_DEG_REAL

RAD_TO_DEG_LREAL

When the Degrees to Radians (DEG_TO_RAD) or the Radians to Degrees (RAD_TO_DEG)
function receives power flow, it performs the appropriate angle conversion on the REAL or
LREAL value ininput IN and places the result in output Q.

DEG_TO_RAD and RAD_TO_DEG pass power flow to the right when they execute, unless IN
is NaN (Not a Number).

Operands

Parameter

Description

Allowed Operands Optional

IN The value to convert.

All except S, SA, SB, and SC No

Q The converted value.

All except S, SA, SB, and SC No

Ladder Diagram (LD) Programming

129

CPU Programmer’s Reference Manual

GFK-2950G

4.6.1.1.2 Example

Section4
June 2020

Figure 83

RAD
TO

DEG

1500 —{IN QF V_R00001

A value of +1500 radians is converted to degrees. The result is placed in %R00001 and

%R00002.

4.6.2 Convert UINT or INT to BCD4

Figure 84

UINT
T0
BCDd

— 1IN o

INT TO
_| BCD4 [

—IN ar

When this function receives power flow, it converts the input unsigned (UINT) or signed
single-precision integer (INT) data into the equivalent 4-digit Binary-Coded-Decimal (BCD)
values, which it outputs to Q.

This function does not change the original input data. The output data can be used directly
as input for another program function.

The function passes power flow when power is received, unless the conversion would result
in a value that is outside the range 0 to 9,999.

Tip

Data can be converted to BCD format to drive BCD-encoded LED displays or presets to
external devices such as high-speed counters.

4.6.2.1 Operands

the original UINT or INT value
in IN.

Parameter (Description Allowed Operands Optional

IN The UINT or INT value to All except S, SA, SB, and SC |No
convert to BCDA4.

Q The BCD4 equivalent value of |All exceptsS, SA, SB,and SC |No

4.6.2.1.1

Ladder Diagram (LD) Programming

130

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.6.2.1.2 Example - UINT to BDC4

Figure 85

V_I100002 [UINTTO] V_MO01432

 E— BCD4 ()—I

v_100017 <IN O ¥_Qo0033

Whenever input %100002 is set and no errors exist, the UINT at input location %100017
through %100032 is converted to four BCD digits and the result is stored in memory locations
%Q00033 through %Q00048. Coil M01432 is used to check for successful conversion.

4.6.2.1.3 Example - INT to BCD4
Figure 86
V_10002 INTTO V_0Q1432

|} BCD4 { —

V_I0017 —IN Q—Vv_Q0033

Whenever input %10002 is set and no errors exist, the INT values at input locations %0017
through %10032 are converted to four BCD digits, and the result is stored in memory
locations %Q0033 through %Q0048. Coil Q1432 is used to check for successful conversion.

4.6.3 Convert DINT to BCDS8

Figure 87

DINT
-4 TO
BCDS8

— 1IN Qr

When DINT_TO_BCDS receives power flow, it converts the input signed double-precision
integer (DINT) data into the equivalent 8-digit Binary-Coded-Decimal (BCD) values, which it
outputs to Q. DINT_TO_BCD8 does not change the original DINT data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the conversion would result
in a value that is outside the range 0 to 99,999,999.

Ladder Diagram (LD) Programming 131

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.6.3.1 Operands

Parameter [Description Allowed Operands Optional
IN The DINT value to convert to BCD8 All except S, SA, SB, and SC No
Q The BCD8 equivalent value of the original|All except S, SA, SB, and SC No
DINT valuein IN
4.6.3.1.1 Example
Figure 88

V_I00002 DINTTO
— BCDe |

V_AI0003 —|IN QF & Zaveer

Whenever input %100002 is set and no errors exist, the double-precision signed integer
(DINT) at input location %AIl0003 is converted to eight BCD digits and the result is stored in
memory locations %L00001 through %L00002.

4.6.4 Convert BCD4, UINT, DINT, or REAL to INT

Figure 89

BCD4 UINT DINT REAL
JToiwr | TOINT| _TOINT| _TOINT|
—{IN aF —IN ar —IN ar —IN] g

4.6.4.1 BDC4, UINT, and DINT

When this function receives power flow, it converts the input data into the equivalent single-
precision signed integer (INT) value, which it outputs to Q. This function does not change
the original input data. The output data can be used directly as input for another program
function, as in the examples.

The function passes power flow when power is received, unless the data is out of range.

4.6.4.2 REAL

When REAL_TO_INT receives power flow, it rounds the input REAL data up or down to the
nearest single-precision signed integer (INT) value, which it outputs to Q. REAL_TO_INT
does not change the original REAL data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the data is out of range or
NaN (Not a Number).

Ladder Diagram (LD) Programming 132

CPU Programmer’s Reference Manual

GFK-2950G

4.6.4.3

4.6.4.3.1

4.6.4.3.2

A\ WARNING

Converting from REAL to INT may result in Overflow. For example, REAL 7.4E15, which
equals 7.4 x 1015, converts to INT OVERFLOW.

Tip
To truncate a REAL value and express the result as an INT, i.e., to remove the fractional part
of the REAL number and express the remaining integer value as an INT, use TRUNC_INT.

Operands

Parameter |Description Allowed Operands Optional

IN The value to convert to INT. All except S, SA, SB, and SC [No
Q The INT equivalent value of the original value |All except S, SA, SB, and SC|No
inIN.

Example: BCD4 to INT

Figure 90

V_100002 [BCD4 4 DD INT|
I TO INT

PARTS —|IN QF V_R00001 V_Ro0oo1 —{IN1 O TOTAL

ROMNI.. —IN2

Whenever input %10002 is set, the BCD-4 value in PARTS is converted to a signed integer
(INT) and passed to the ADD_INT function, where it is added to the INT value represented
by the reference RUNNING. The sum is output by ADD_INT to the reference TOTAL.

Example: UINT to INT

Figure 91
V_M00344 [UINTTO ADD INT
|1 INT L
LI |
V_R00234 —{IN Q INt QO CARGO
V_R06438 —INZ

Whenever input ¥M00344 is set, the UINT value in %R00234 is converted to a signed integer
(INT) and passed to the ADD function, where it is added to the INT value in %R06488. The
sum is output by the ADD function to the reference CARGO.

Ladder Diagram (LD) Programming 133

Section4
June 2020

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.64.3.3 Example: DINT to INT
Figure 92
V_M00031 [DINTTO] [ADD INT|
|} INT L
V_R000SS —{IN O INt OF v_R08004
V_R02345 —{IN2

Wheneverinput ¥M00031 is set, the DINT value in %R00055 is converted to a signed integer
(INT) and passed to the ADD function, where it is added to the INT at %R02345. The sum is
output by the ADD function to %R08004.

4.6.5 Convert BCD4, INT, DINT, or REAL to UINT
Figure 93
BCD4 INT TO DINT REAL
4 TO L[- UINT | 4 TO | | TO |
UINT UINT UINT
—I¥ Q- HI¥ OF HIN QO SN aF

When this function receives power flow, it converts the input data into the equivalent single-
precision unsigned integer (UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used
directly as input for another program function, as in the example.

The function passes power flow when power is received, unless the resulting data is outside
the range 0 to +65,535.

Converting from REAL to UINT may result in Overflow. For example, REAL 7.2E17, which
equals 7.2 x 1017, converts to UINT OVERFLOW.

4.6.5.1 Operands

Parameter (Description Allowed Operands Optional

IN The value to convert to UINT. All except S, SA, SB, and SC No

Q The UINT equivalent value of the [All except S, SA, SB,and SC |No
original input value in IN.

Ladder Diagram (LD) Programming 134

CPU Programmer’s Reference Manual

GFK-2950G

4.6.5.1.1

4.6.5.1.2

4.6.5.1.3

Example: BCD4 to UINT

Tip
One use of BCD4_TO_UINT is to convert BCD data from the I/O structure into integer data

and store it in memory. This can provide an interface to BCD thumbwheels or external BCD
electronics, such as high-speed counters and position encoders.

Figure 94
WV_100002 [ECD4TO ADD
| UINT UINT |
PARTS —IN a I O TOTAL

RUNMING —IN2

In the example at right, whenever input %10002 is set, the BCD4 value in PARTS is converted
to an unsigned single-precisioninteger (UINT) and passed to the ADD_UINT function, where
it is added to the UINT value represented by the reference RUNNING. The sum is output by
ADD_UINT to the reference TOTAL.

Example: INT to UINT

Figure 95
V_I00002 INTTO ADD
|} UINT UINT
& Logase —|IN u] M OF TOTAL
_R08833 —{IN2

Whenever input %10002 is set, the INT value in %$L00050 is converted to an unsigned single-
precision integer (UINT) and passed to the ADD_UINT function, where it is added to the
UINT value in %R08833. The sum is output by ADD_UINT to the reference TOTAL.

Example: DINT to UINT

Figure 96
V_100002 DINTTO SO0E UINT
|1 UINT |
1 T
V_ER00007 —{IN] IN1 O ¥_0o0033
145 —IM2

Whenever input %100002 is set and no errors exist, the double precision signed integer
(DINT) at input location %R00007 is converted to an unsigned integer (UINT) and passed to
the SUB function, where the constant value 145 is subtracted from it. The result of the
subtraction is stored in the output reference location %Q00033.

Ladder Diagram (LD) Programming 135

Section4
June 2020

CPU Programmer’s Reference Manual
GFK-2950G

4.6.5.1.4

4.6.6

4.6.6.1

4.6.6.2

Section 4
June 2020

Example: REAL to UINT

Figure 97
W_I00045 REALTO ADD
[E—— UINT UINT |
i Lerrss —|IN Q I O TOTAL
¥_R00045 —|IN2

Whenever input %100045 is set, the REAL value in %L00045 is converted to an unsigned
single-precision integer (UINT) and passed to the ADD_UINT function, where it is added to
the UINT value in %R00045. The sum is output by ADD_UINT to the reference TOTAL.

Convert BCDS8, UINT, INT, REAL or LREAL to DINT

Figure 98

REAL TO DINT BCDS TG DINT UINT TC DINT REAL TO DINT LREAL TO DINT
—IN 2 —IN Qf— Q= —in Q= AN Q-
BCDS, UINT, and INT

When this function receives power flow, it converts the data into the equivalent signed
double-precision integer (DINT) value, which its outputs to Q. The conversion to DINT does
not change the original data.

The output data can be used directly as input for another program function. The function
passes power flow when power is received, unless the data is out of range.

REAL and LREAL

When REAL_TO_DINT or LREAL_TO_DINT receives power flow, it rounds the input data to
the nearest double-precision signed integer (DINT) value, which it outputs to Q. These
functions do not change the original REAL or LREAL data.

The output data can be used directly as input for another program function. The function
passes power flow when power is received, unless the conversion would result in an
out-of-range DINT value.

Converting from LREAL or REAL to DINT may result in Overflow. For example, REAL 5.7E20,
which equals 5.7 x 1020, converts to DINT OVERFLOW.

Ladder Diagram (LD) Programming 136

CPU Programmer’s Reference Manual

GFK-2950G

4.6.6.3

4.6.6.3.1

4.6.6.3.2

4.6.6.3.3

Tip
To truncate a REAL value and express the result as a DINT, i.e., to remove the fractional part
of the REAL number and express the remaining integer value as a DINT, use TRUNC_DINT.

Operands

Parameter (Description Allowed Operands Optional

IN The value to convert to DINT. All except S, SA, SB, and SC No

All except S, SA, SB, and SC No

Q The DINT equivalent value of the
original input value in IN.

Example: UINT to DINT

Figure 99

V_MO01478 [UmmTTo| V_MO00065

I DINT ()—I

V_R00654 —IN QF ¥ Zooeds

Wheneverinput %M01478 is set, the unsigned single-precision integer (UINT) value at input
location %R00654 is converted to a double-precision signed integer (DINT) and the result is
placed in location %L00049. The output ¥M00065 is set whenever the function executes
successfully.

Example: BCD8 to DINT
Figure 100
¥_100025 [BCDSTO ADD
i DINT DINT |
v loaegs —IN 0 M OF TOTAL

V_R00797 —IN2

Wheneverinput %100025 is set, the BCD-8 value in %L00046 is converted to a signed double-
precision integer (DINT) and passed to the ADD_DINT function, where it is added to the
DINT value in %R00797. The sum is output by ADD_DINT to the reference TOTAL.

Example: INT to DINT

Figure 101

V_100002 INTTO | ¥_000001

1} DINT {)_'

V_I00017 —IN QF ¥ Zaoaos

Whenever input %100002 is set, the signed single-precision integer (INT) value at input
location %100017 is converted to a double-precision signed integer (DINT) and the result is
placed in location %L00001. The output %Q01001 is set whenever the function executes
successfully.

Ladder Diagram (LD) Programming 137

Section4
June 2020

CPU Programmer’s Reference Manual Section 4

GFK-2950G

June 2020

4.6.6.3.4 Example: REAL to DINT

Figure 102

V_I0002

REAL TO
DINT

V_Q0001
{ 3 1

A L}

V_R0017 —IN Qf v_R0001

Whenever input %10002 is set, the REAL value at input location %R0017 is converted to a
double precision signed integer (DINT) and the result is placed in location %R0001. The
output Q1001 is set whenever the function executes successfully.

4.6.7 Convert BCD4, BCDS, UINT, INT, DINT, and LREAL to

REAL

Figure 103
BCD4 TO BCDE TO UINT TO INT TO DINT TO QRD TO LREAL
REAL DINT REAL | _| REAL | _| REAL | _| REAL | _|TOREAL|
—IIN Q- IN QF IN ar —IIN Q- N QF —IN oF —IN Q-

When this function receives power flow, it converts the input data into the equivalent 32-

bit floating-point (REAL) value, which its outputs to Q. The conversion to REAL does not
change the original input data.

The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the conversion would result
in a value that is out of range.

Ladder Diagram (LD) Programming

138

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

A WARNING

e Converting from BCD8 to REAL may result in the loss of significant digits.

This is because a BCD8 value is stored in a DWORD, which uses 32 bits to store a value,
whereas a REAL (32-bit IEEE floating point number) uses 8 bits to store the exponent
and the sign and only 24 bits to store the mantissa.

e Converting from DINT to REAL may result in the loss of significant digits for numbers
with more than 7 significant base-10 digits.

This is because a DINT value uses 32 bits to store a value, which is the equivalent of
up to 10 significant base-10 digits, whereas a REAL (32-bit IEEE floating point
number) uses 8 bits to store the exponent and the sign and only 24 bits to store the
mantissa, which is the equivalent of 7 or 8 significant base-10 digits. When the REAL
result is displayed as a base-10 number, it may have up to 10 digits, but these are
converted from the rounded 24-bit mantissa, so that the last 2 or 3 digits may be
inaccurate.

4.6.7.1 Operands

Parameter |Description Allowed Operands Optional
IN The value to convert to REAL. All except S, SA, SB, and SC No
Q The REAL equivalent value of the |All except S, SA, SB, and SC No
original input value in IN.
4.6.7.1.1 Example: UINT to REAL
Figure 104
UINT TO
REAL
£L00001 —IN Q|- £00016

The unsigned integer value in %L00001 is 825. The value placed in %L00016 is 825.000.

4.6.7.1.2 Example: INT to REAL
Figure 105
INT TO
REAL |
878 —{IN Qf— RODO10D

The integer value of input IN is -678. The value placed in %R00010 is -678.000.

Ladder Diagram (LD) Programming 139

CPU Programmer’s Reference Manual
GFK-2950G

4.6.7.1.3

4.6.8

4.6.8.1

4.6.8.1.1

Example: LREAL to REAL

Figure 106

e real —IN = RO0D200

The double-precision floating point value of the square root of 2 is rounded to the nearest
single-precision floating point value and placed in RO0300.

Convert REAL to LREAL

Figure 107

REAL TO
LREAL

When REAL_TO_LREAL receives power flow, it converts the 32-bit single precision floating
point REAL data to the equivalent 64-bit double-precision floating point data.
REAL_TO_LREAL does not change the original REAL data.

Section4
June 2020

Operands
Parameter | Description Allowed Operands Optional
IN The REAL value to convert to All except S, SA, SB, and SC No
LREAL.
Q The LREAL equivalent value of | All exceptS, SA, SB, and SC No
the original REAL value.
Example

The REAL value of the square root of 2 is converted to the LREAL data type and placed in
R00200. Because the actual precision of the data in Result Real is seven decimal places, the
additional decimal places in the data in R00200 are not valid.

Figure 108

REAL TC LREAL

Ladder Diagram (LD) Programming 140

Section4
June 2020

CPU Programmer’s Reference Manual
GFK-2950G
4.6.9 Convert DINT to LREAL
Figure 109
DINT TC LREAL

_.l"‘

-

When DINT_TO_LREAL receives power flow, it converts the double-precision input data to

64-bit double-

4.6.10 Truncate

precision floating point data.

Figure 110
TRUNC TEUNC
| DINT || _| IMNT [

—IN oF —IN oF

When power is received, the Truncate functions TRUNC_DINT and TRUNC_INT round a
floating-point (REAL) value down respective to the nearest signed double-precision signed
integer (DINT) or signed single-precision integer (INT) value. TRUNC_DINT and TRUNC_INT
output the converted value to Q. The original data is not changed.

Note: The output data can be used directly as input for another program function.

TRUNC_DINT and TRUNC_INT pass power flow when power is received, unless the specified
conversion would result in a value that is out of range or unless IN is NaN (Not a Number).

4.6.10.1 Operands

Parameter (Description Allowed Operands Optional
IN The REAL value whose copy isto be |All except S, SA, SB, and SC |No
converted and truncated. The original
is left intact.
Q The truncated value of the original All except S, SA, SB,and SC |No
REAL value in IN.

4.6.10.1.1 Example

The displayed constant is truncated, and the integer result 562 is placed in %$T0001.

Ladder Diagram (LD) Programming

141

CPU Programmer’s Reference Manual

GFK-2950G

4.7

4.7.1

Section 4
June 2020
Figure 111
1] INT |
LI}
%I00002

5.62987E+02 —IN QFV_T0001

Counters

Function
Down Counter [DNCTR

Mnemonic |Description

Counts down from a preset value. The output is ON whenever the
Current Value is <0.

Up Counter UPCTR Counts to a designated value. The output is ON whenever the

Current Value is > the Preset Value.

Data Required for Counter Function Blocks

Do not use two consecutive words (registers) as the starting addresses of two counters.
Logic Developer PLC does not check or warn you if register blocks overlap. Timers will not
work if you place the current value of a second timer on top of the preset value for the
previous timer.

Each counter uses a one-dimensional, three-word array of %R, %W, %P, %L, or symbolic
memory to store the following information:

Current value (CV) Word 1

The first word (CV) can be read but should not be written to, or the function may not work
properly.

Presetvalue (PV)Word2 When the Preset Value (PV) operand is a variable, it is normally
set to a different location than word 2 in the timer’s or

counter’s three-word array.

e If you use a different address and you change word 2
directly, your change will have no effect, as PV will
overwrite word 2.

Ladder Diagram (LD) Programming 142

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

o If you use the same address for the PV operand and word
2, you can change the Preset Value in word 2 while the
timer or counter is running, and the change will be
effective.

Controlword Word 3 The control word stores the state of the Boolean inputs and
outputs of its associated timer or counter, as shown in the
following diagram:

The third word (Control) can be read but should not be written to; otherwise, the function
will not work.

4,7.1.1.1 Word 3: Control Word Structure
Figure 112
L1sf14]12]12]11]10[9] 8| [7lels]af2l2]1]0]
IIIIREEMIIEIIIIII
Res et input
Enable input, previous execution

Q (counter/timer status output)

EN (enable input

Note: Bits 0 through 13 are not used for counters.

4.7.2 Down Counter

Figure 113

DMCTR

22?27

R

-V CWE

The Down Counter (DNCTR) function counts down from a preset value. The minimum
Preset Value (PV) is zero; the maximum PV is +32,767 counts. When the Current Value (CV)
reaches the minimum value, 32,768, it stays there until reset. When DNCTR is reset, CV is
set to PV. When the power flow input transitions from OFF to ON, CV is decremented by
one. The output is ON whenever CV < 0

The output state of DNCTR is retentive on power failure; no automatic initialization occurs
at power-up.

Ladder Diagram (LD) Programming 143

CPU Programmer’s Reference Manual

GFK-2950G

4.7.2.1

4.7.2.1.1

4.7.3

Section 4
June 2020

Do not use the Address of the down counter with other instructions. Overlapping references
cause erratic counter operation.

Note: For DNCTR to function properly, you must provide an initial reset to set the CV to the value in PV.
If DNCTR is not initially reset, CV will decrement from 0 and the output of DNCTR will be set to ON
immediately.

Operands

Parameter |Description Allowed Operands Optional
Address The beginning address of a three-word|R, W, P, L, symbolic No
(2222) WORD array:
Word 1: Current Value (CV)
Word 2: Preset Value (PV)%
Word 3: Control word
R When R receives power flow, it resets the|Power flow No
counter's CV to PV.
PV Preset Value to copy into word 2 of the|All exceptS, SA, SB, SC No
counter's address when the counter is
enabled or reset. 0 <PV < 32,767. If PV is
out of range, word 2 cannot be reset.
cv The current value of the counter All except S, SA, SB, SC and |No
constant

Example — Down Counter

DNCTR counts 5000 new parts before energizing output %Q00005.

Figure 114
MEW_PRT [DncrR| V_Q00005
—] —{
MXT_BAT |V_R00100
— ——R
5000 PV CV[~ Current_V

Up Counter

Figure 115

UPCTR

22?2?

-k

-PV CV

Ladder Diagram (LD) Programming

144

CPU Programmer’s Reference Manual

GFK-2950G

4.7.3.1

4.7.3.1.1

Section4
June 2020

The Up Counter (UPCTR) function counts to the Preset Value (PV). The range is 0 to +32,767
counts. When the Current Value (CV) of the counter reaches 32,767, it remains there until
reset. When the UPCTR reset is ON, CV resets to 0. Each time the power flow input
transitions from OFF to ON, CV increments by 1. CV can be incremented past the Preset
Value (PV). The output is ON whenever CV > PV. The output (Q) stays ON until the R input
receives power flow to reset CV to zero.

The state of UPCTR is retentive on power failure; no automatic initialization occurs at power-
up.

A WARNING

Do not use the Address of the up counter with other instructions. Overlapping references
cause erratic counter operation.

Operands
Parameter|Description Allowed Operands |Optional
Address The beginning address of a three-word WORD|R, W, P, L, symbolic |No
(222?) array:
Word 1: Current Value (CV)
Word 2: Preset Value (PV)
Word 3: Control word
R When R is ON, it resets the counter's CV to 0. Power flow No
PV Preset Value to copy into word 2 of the counter's|All exceptS, SA, SB, |No
address when the counter is enabled or reset. 0 <[and SC
PV <32,767.If PVis out of range, it does not affect
word 2.
v The current value of the counter All except S, SA, SB, SC|No
and constant

Example - Up Counter

Every time input %l0012 transitions from OFF to ON, the Up Counter counts by 1; internal
coil $M0001 is energized whenever 100 parts have been counted. Whenever %M0001 is
ON, the accumulated count is reset to zero.

Figure 116
V_I00012 UPCTE | V_MO00001
i —
V_Mo00001 |V_R0O001D
{ | R

100 PV CV~ Current_V

Ladder Diagram (LD) Programming 145

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.7.3.1.2 Example - Up Counter and Down Counter

This example uses an up/down counter pair with a shared register for the accumulated or
current value. When the parts enter the storage area, the up-counter increments by 1,
increasing the current value of the parts in storage by a value of 1. When a part leaves the
storage area, the down counter decrements by 1, decreasing the inventory storage value by
1. To avoid conflict with the shared register, both counters use different register addresses,
but each has a current value (CV) address that is the same as the accumulated value for the
other register.

Figure 117
v_100003
— |
V_100001 OFCTR | V_Q00001
— | —
V_100009 V_R00100
— | R
s —{PV CWV[|- V_R0O0104
V_I100003
— |
V_100002 DNCTRE | V_Q00002
— | —
V_R0O0104
—R
s —PV CWV[— ¥_R00100[0)

Ladder Diagram (LD) Programming 146

CPU Programmer’s Reference Manual

GFK-2950G

4.8

Section4
June 2020

Data Move Functions

The Data Move functions provide basic data move capabilities.

Function Mnemonics Description
Array Size ARRAY_SIZE Counts the number of elements in an array.
Array Size ARRAY_SIZE_DIM1 |Returns the value of the Array Dimension 1 property of a
Dimension 1 one- or two-dimensional array.
Array Size ARRAY_SIZE_DIM2 |Returns the value of the Array Dimension 2 property of a
Dimension 2 two-dimensional array.
Block Clear BLK_CLR_WORD Replaces all the contents of a block of data with zeroes. Can
be used to clear an area of WORD or analog memory.
Block Move BLKMOV_DINT Copies a block of seven constants to a specified memory
BLKMOV_DWORD [location. The constants are input as part of the function.
BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD
Bus Read BUS_RD_BYTE Reads data from a module on the bus.
BUS_RD_DWORD
BUS_RD_WORD

Bus Read Modify
Write

BUS_RMW_BYTE
BUS_RMW_DWORD
BUS_RMW_WORD

Uses a read/modify/write cycle to update a data element in
amodule on the bus.

BUS_WRT_DWORD
BUS_WRT_WORD

Bus Testand Set |[BUS_TS_BYTE Handles semaphores on the bus.
BUS_TS_WORD
Bus Write BUS_WRT_BYTE Writes data to a module on the bus.

Communication
Request

COMMREQ

Allows the program to communicate with an intelligent
module, such as a Genius Bus Controller or a High-Speed
Counter.

Data Initialization

DATA_INIT_DINT
DATA_INIT_DWORD
DATA_INIT_INT
DATA_INIT_REAL
DATA_INIT_LREAL
DATA_INIT_UINT
DATA_INIT_WORD

Copies a block of constant data to a reference range. The
mnemonic specifies the data type.

Data Initialize
ASClI

DATA_INIT_ASCII

Copies a block of constant ASCII text to a reference range.

Data Initialize
DLAN

DATA_INIT_DLAN

Used with a DLAN Interface module.

Data Initialize
Communications
Request

DATA_INIT_COMM

Initializes a COMMREQ function with a block of constant
data. The length should equal the size of the COMMREQ
function’s entire command block.

Ladder Diagram (LD) Programming

147

CPU Programmer’s Reference Manual

GFK-2950G

4.8.1

Section4
June 2020

Function

Mnemonics

Description

Move

MOVE_BOOL
MOVE_DATA
MOVE_DINT
MOVE_DWORD
MOVE_INT
MOVE_REAL
MOVE_LREAL
MOVE_UINT
MOVE_WORD

Copies data as individual bits, so the new location does not
have to be the same data type. Data can be moved into a
different data type without prior conversion.

Move Data Explicit

MOVE_DATA_EX

Provides an input that allows for data coherency by locking
symbolic memory being written to during the copy
operation.

Move from Flat

MOVE_FROM_FLAT

Copies reference memory data to a UDT variable or UDT
array. Provides the option of locking the symbolic or I/O
variable memory area being written to during the copy
operation.

Move to Flat MOVE_TO_FLAT Copies data from symbolic or I/O variable memory to
reference memory. Copies across mismatching data types.

Shift Register SHFR_BIT Shifts one or more data bits, data WORDs or data DWORDs
SHFR_DWORD from a reference location into a specified area of memory.
SHFR_WORD Data already in the area is shifted out.

Size Of SIZE_OF Counts the number of bits used by a variable.

Swap SWAP_DWORD Swaps two BYTEs of data within a WORD or two WORDs
SWAP_WORD within a DWORD.

Array Size

Figure 118

Counts the number of elements in the array assigned to input IN and writes the number to

output Q.

In an array of structure variables, the number of structure variables is written to Q; the
elements in the structure variables are not counted.

Tip

If the array assigned to input IN of ARRAY_SIZE is passed to a parameterized C block for
processing, also pass the value of output Q to the block. In the C block logic, use the value
of output Q to ensure all array elements are processed without exceeding the end of the
array. For a two-dimensional array, this method works only if all elements are treated
identically; for example, all are initialized to the same value.

Ladder Diagram (LD) Programming

148

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.1.1 Operands

Parameter|Description Allowed Operands Optional
IN Array of any data type whose |Dataflow, 1, Q, M, T, S, SA, SB, SC, G, |No
elements are counted. discrete symbolic, I/O variable

If a non-array variable is
assigned to IN, the value of Q is
1.

Q Number of elements in the DINT or DWORD variable. No
array assigned to input IN. Data flow,1,Q,M, T, G,R, P, L, Al
AQ, W, symbolic, I/O variable

4.8.1.1.1 Example

The two-dimensional array Test Array has its Array Dimension 1 property set to 4 and its
Array Dimension 2 property set to 3. ARRAY_SIZE calculates 4 x 3 and writes the value 12 to
the variable Elements.

Figure 119

Testarray —IN — Elemeants

4.8.2 Array Size Dimension Function Blocks
4.8.2.1 Array Size Dimension 1

Figure 120

ARRAY SIZE DIM2

Returns the value of the Array Dimension 2 property of an array and writes the value to
output Q. If a non-array variable is assigned to IN, the value of Qis 0.

In an LD or ST block that is not a parameterized block or a User Defined Function Block
(UDFB), you can use the output Q value to ensure that a loop using a variable index to access
array elements does not exceed the array’s second dimension.

Ladder Diagram (LD) Programming 149

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.8.2.1.1 Operands

Parameter|Description Allowed Operands Optional

IN Array of any data type. Dataflow,1,Q, M, T, S, SA, SB,SC, |No

G, discrete symbolic, I/O variable

Q The value of the Array Dimension 1|DINT or DWORD variable. No
property of the array assigned to|Data flow, I, Q, M, T, G, R, P, L, Al,

input IN. The value is set to 0 if alAQ, W, symbolic, I/O variable
non-array is assigned to IN.

Note: Because the index of the
first element of an array is
zero, the index of the last
element is one less than
the value assigned to Q.

4.8.2.2 Array Size Dimension 2

Figure 121

Returns the value of the Array Dimension 2 property of an array and writes the value to
output Q. If a non-array variable is assigned to IN, the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User Defined Function Block
(UDFB), you can use the output Q value to ensure that a loop using a variable index to access
array elements does not exceed the array’s second dimension.

4.8.2.2.1 Operands
Parameter|Description Allowed Operands Optional
IN Array of any data type. Dataflow,l,Q, M, T,S, SA,SB,SC, |No
G, discrete symbolic, I/O variable
Q The value of the Array Dimension 2|DINT or DWORD variable. No

property of the array assigned to input|Data flow, I, Q, M, T, G, R, P, L, Al
IN. The value is set to 0 if a non-array is|AQ, W, symbolic, 1/O variable
assigned to IN.

Note: Because the index of the first
element of an array is zero, the
index of the last element is one
less than the value assigned to Q.

4.8.2.2.2 Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

To use a FOR_LOOP to access array elements by means of a variable index, you must ensure
that the FOR_LOOP does not iterate beyond the last element of the array.

Ladder Diagram (LD) Programming 150

CPU Programmer’s Reference Manual

GFK-2950G

In the following logic, MOVE_DINT initializes the variable D1_temp to 0. ARRAY_SIZE_DIM1
counts the number of elements of a one-dimensional array named D1_Array and outputs
the result to output Q. Because the index of the first element of an array is zero, the loop
must iterate (Q - 1) times. SUB_DINT performs the subtraction and the result is converted
to an INT value and assigned to variable D1_size.

Figure 122

RRAY SIZE SUB DINT UINT T INT

In the following rungs, the FOR_LOOP executes when DT1ON is set to On. The variable index
D1_Index increments by 1 from 0 through D1_size, the value calculated by
ARRAY_SIZE_DIM1 and SUB_DINT. In each loop, the value of D1_temp is assigned to the
element D1_Array[D1_Index] and D1_temp is increased by 1.

Figure 123

MOVE DINT ADD DINT

_tamp —{IN Q= D1_Arrsy(D

D
FOR)

You can use a FOR_LOOP to iterate through an array’s second dimension in a method similar
to this example. You can also use nested FOR_LOOPs to ensure that operations on elements
using two variable indexes each do not exceed their array dimension. For additional
examples, refer to the online help.

Ladder Diagram (LD) Programming 151

Section4
June 2020

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.3 Block Clear

Figure 124

ELE
CLE
WORD

k'

=N

When the Block Clear (BLKCLR_WORD) function receives power flow, it fills the specified
block of data with zeroes, beginning at the reference specified by IN. When the data to be
cleared is from BOOL (discrete) memory (%I, %Q, %M, %G, or %T), the transition information
associated with the references is updated. BLKCLR_WORD passes power to the right
whenever it receives power.

Note: Theinput parameter IN is not included in coil checking.

4.8.3.1 Operands

Parameter |Description Allowed Operands Optional
Length (??) |The number of words to clear, Constant No
starting at the IN location. 1 <Length
<256 words.
IN The first WORD of the memory block |All except %S and data flow. |No
toclearto 0.
4.8.3.1.1 Example

At power-up, 32 words of %Q memory (512 points) beginning at %Q0001 are filled with
zeroes. The transition information associated with these references will also be updated.

Figure 125

#FST_SCN BLE CLE
} WORD |

32

v_Qo0001 —{IN

Ladder Diagram (LD) Programming 152

CPU Programmer’s Reference Manual

GFK-2950G
4.8.4 Block Move
BLEMOV When the Block Move (BLKMOV) function receives
—| DINT | power flow, it copies a block of seven constants into
consecutive locations beginning at the destination
i al specified in output Q. BLKMOV passes power to the
right whenever it receives power.
—IN2
—IN3
—{IN4
—INS
—IN6
—IN7

4.8.4.1 Operands

Section4
June 2020

Mnemonics:
BLKMOV_DINT
BLKMOV_DWORD
BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD

Note: For each mnemonic, use the corresponding data type for the Q operand. For example,
BLKMOV_DINT requires Q to be a DINT variable.

Parameter

Description Allowed Operands

Optional

IN1T to IN7

The seven constant values to|Constants. Constant type must match|No

move. function type.

Q

The first memory location of|All except %S.

the destination for the moved|%SA, SB, SC are also prohibited on

values. IN1 is moved to Q. BLKMOV REAL, BLK_MOV_INT,
BLK_MOV_UINT.

No

and

Ladder Diagram (LD) Programming

153

CPU Programmer’s Reference Manual

GFK-2950G

4.8.4.1.1

4.8.5

4.8.5.1

Example

Section4
June 2020

When the enabling input represented by the name #FST_SCN is ON, BLKMOV_INT copies

the seven input constants into memory locations %$R0010 through %R0016.

Figure 126

#FST_SCN

BLEMOV
INT

32767 —{IN1

-32768 —{IN2

1—IN3

[=]

IN4

INS

ING

— ¥_R00010

IN7

BUS_ Functions

Four program functions allow the PACSystems CPU to communicate with modules in the

system.

e BusRead (BUS_RD)

Bus Write (BUS_WRT)
Bus Read/Modify/Write (BUS_RMW)
e BusTestand Set (BUS_TS)

These functions use the same parameters to specify which module on the bus will exchange
data with the CPU.

Note: Additional information related to addressing modules is required to use the BUS_ functions.
For open VME modules in an RX7i system, refer to the PACSystems RX7i User’s Guide to
Integration of VME Modules, GFK-2235. For other modules, refer to the product

documentation provided by the manufacturer.

Rack, Slot, Subslot, Region, and Offset Parameters

The rack and slot parameters refer to a module in the hardware configuration. The region

parameter refers to a memory region configured for that module. The sub-slot is ordinarily
setto 0. The offset is a 0-based number that the function adds to the module’s base address
(which is part of the memory region configuration) to compute the address to be read or

written.

Ladder Diagram (LD) Programming

154

CPU Programmer’s Reference Manual

GFK-2950G

4.8.5.2

BUS Read

BUS RD
EYTE

77

=RGN

—{oFF

The BUS_RD function reads data from the bus.

This function should be executed before the data is
needed in the program. If the amount of data to be read
is greater than 32767 BYTES, WORDS, or DWORDS, use
multiple instructions to read the data.

When BUS_RD receives power flow, it accesses the
module at the specified rack (R), slot (S), subslot (SS),
address region (RGN) and offset (OFF). BUS_RD copies
the specified number (Length) of data units (DWORDS,
WORDs or BYTEs) from the module to the CPU,
beginning at output reference (Q).

The function passes power to the right when its
operation is successful. The status of the operation is
reported in the status location (ST).

Note:

e For each BUS_RD function type, use the
corresponding data type for the Q operand. For
example, BUS_RD_BYTE requires Q to be a BYTE
variable.

e An interrupt block can preempt the execution of a
BUS_RD function. On the bus, only 256 bytes are read
coherently (i.e., read without being preempted by an

Section4
June 2020

Mnemonics:
BUS_RD_DINT
BUS_RD_DWORD
BUS_RD_WORD

4.8.5.2.1

interrupt).

Operands for BUS READ

Parameter

Description

Allowed Operands Optional

Length (??)

The number of BYTEs, DWORDs,
or WORDs. 1to0 32,767.

No
Constant

Rack number. UINT constant or
variable.

N
All except %5—%SC ©

Slot number. UINT constant or
variable.

All except %S—%SC No

SS

Subslot number (defaults to 0).
UINT constant or variable.

Y
All except %5—%SC e

RGN

Region (defaults to 1). WORD
constant or variable.

All except %S—%SC Yes

OFF

The offset in bytes. DWORD
constant or variable.

All except %S—%SC No

ST

The status of the operation.
WORD variable.

All except variables located in %S— |Yes
%SC, and constants

Reference for data read from the
module. DWORD variable.

All except variables located in %S— |No
%SC, and constants

Ladder Diagram (LD) Programming

155

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.8.5.2.2 BUS_RD Status in the ST Output
The BUS_RD function returns one of the following values to the ST output:

0 Operation successful.

1 Bus error

2 Module does not exist at rack/slot location.

3 Module at rack/slot location is an invalid type.

4 Start address outside the configured range.

5 End address outside the configured address range.

6 Absolute address even but interface configured as odd byte only

8 Region not enabled

10 Function parameter invalid.

4.8.5.3 BUS Read Modify Write

BUIS Rl The BUS_RMW function updates one byte, word, or ~ Other mnemonic:
BITE double word of data on the bus. This function locks BUS_RMW_WORD

the bus while performing the read-modify-write

operation.

When the BUS_RMW function receives power flow

through its enable input, the function reads a

o T dword, word or byte of data from the module at the
specified rack (R), slot (S), subslot (SS) and optional
address region (RGN) and offset (OFF). The original

T value is stored in parameter (OV).

The function combines the data with the data mask
(MSK). The operation performed (AND / OR) is
selected with the OP parameter. The mask value is
- dword data. When operating on a word of data, only
the lower 16 bits are used. When operating on a
byte of data, only the lower 8 bits of the mask data
are used. The result is then written back to the same
address from which it was read.

The BUS_RMW function passes power to the right
when its operation is successful, and returns a status
value to the ST output.

Ladder Diagram (LD) Programming 156

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.8.5.3.1 Operands for BUS_RMW
For BUS_RMW_WORD, the absolute bus address must be a multiple of 2. For
BUS_RMW_DWORD, it must be a multiple of 4.
The absolute bus address is equal to the base address plus the offset value.
Parameter|Description Allowed Operands Optional
opP Type of operation: No
0=AND Constant
1=0R
MSK . N
Thej data mask. DWORD constant or Al except %5—%SC)
variable.
R Rack number. UINT constant or variable. |All except %S—%SC No
S Slot number. UINT constant or variable. [All except %S—%SC No
SS Subslot number (optional, defaults to Yes
All t %S—%
0). UINT constant or variable. except 85S¢
RGN Region (defaults to 1). WORD constant |All except %S—%SC Yes
orvariable.
OFF The offset in bytes. DWORD constant or |All except %S—%SC No
variable.
ST The status of the operation. WORD All except variables located |Yes
variable. in %S—%SC, and constants
ov Original value. DWORD variable. All except variables located |Yes
in %S—%SC, and constants
4.8.5.3.2 BUS_RMW Status in the ST Output
The BUS_RMW function returns one of the following values to the ST output:
0 Operation successful.
1 Bus error
2 Module does not exist at rack/slot location.
3 Module at rack/slot location is an invalid type.
4 Start address outside the configured range.
5 End address outside the configured address range.
6 Absolute address even but interface configured as odd byte only
7 For WORD type, absolute bus address is not a multiple of 2. For DWORD type,
absolute bus address is not a multiple of 4.
8 Region not enabled
9 Function type too large for configured access type.
10 Function parameter invalid.

Ladder Diagram (LD) Programming

157

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.8.5.4 BUS Test and Set
BUSTS The BUS_TS function uses semaphores to Other mnemonic:
BYTE control access to specific memory in a module BUS_TS_WORD
— — located on the bus.
The BUS_TS function exchanges a Boolean
TRUE (1) for the value currently at the
semaphore location. If that value was already a
—R ST 1, then the BUSTST function does not acquire
the semaphore. If the existing value was 0, the
semaphore is set and the BUS_TS function has
the semaphore and the use of the memory area
—s al it controls. The semaphore can be cleared, and
ownership relinquished by using the BUSWRT
function to write a 0 to the semaphore location.
This function locks the bus while performing
i the operation.
When the BUS_TS function receives power flow
through its enable input, the function
exchanges a Boolean TRUE (1) with the address
—lron specified by the RACK, SLOT, SUBSLOT, RGN,
and OFF parameters. The function sets the Q
output on if the semaphore was available (0)
and was acquired. It passes power flow to the
_lore right whenever power is received, and no errors
occur during execution.
4.8.5.4.1 Operands for BUS Test and Set
BUS_TS can be programmed as BUS_TS_BYTE or BUS_TS_WORD. For BUS_TS_WORD, the
absolute address of the module must be a multiple of 2. The absolute address is equal to the
base address plus the offset value.
Parameter|Description Allowed Operands |Optional
R Rack number. UINT constant or variable. |All except %S—%SC No
S Slot number. UINT constant or variable. |All except %S—%SC No
SS Subslot number (defaults to 0). UINT All except %S—%SC Yes
constant or variable.
RGN Region (defaults to 1). WORD constant |All except %S—%SC Yes
or variable.
OFF The offset in bytes. DWORD constant or |All except %S—%SC No
variable.
ST The status of the bus test and set All except variables Yes
operation. WORD variable. located in %S—%SC, and
constant
Q Output set on if the semaphore was Power flow Yes
available (0). Otherwise, Q is set off.
4.8.5.5 BUS Write

Ladder Diagram (LD) Programming

158

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
BUS WAT When the BUS_WRT function receives power flow through Mnemonics:
BITE its enable input, it writes the data located at reference (IN) BUS_WRT_DINT
n B to the module at the specified rack (R), slot (S), subslot (SS) guys WRT DWORD
- and optional address region (RGN) and offset (OFF). BUS_WRT_WORD
BUSWRT writes the specified length (LEN) of data units
= V- (DWORDS, WORDs or BYTEs).
The BUS_WRT function passes power to the right when its
operation is successful. The status of the operation is
. reported in the status location (ST).
Note:
e foreach BUS_WRT function type, use the corresponding
T+ data type for the IN operand. For example,
BUS_WRT_BYTE requires IN to be a BYTE variable.
e An interrupt block can preempt the execution of a
s BUS_WRT function. On the bus, only 256 bytes are
written coherently (i.e., written without being
preempted by an interrupt).
RGN
—{OFF
4.8.5.5.1 Operands for Bus Write
Parameter |Description Allowed Optional
Length (??) Length. The number of BYTEs, No
Constant
DWORDs, or WORDs. 1 to 32,767.
IN Reference for data to be written to the |All except variables located |No
module. DWORD variable. in %S—%SC, and constant
R Rack ber. UINT tant No
ac. number constant or Al except %5—%5C
variable.
S Slot number. UINT constant or variable. |All except %S—%SC No
SS Subslot numbe'r (defaults to 0) UINT All except %5—%SC Yes
constant or variable.
RGN Region. (defaults to 1) WORD constant |All except %S—%SC Yes
or variable.
OFF The offset in bytes. DWORD constant or [All except %S—%SC No
variable.
ST The status of the operation. WORD All except variables located |Yes
variable. in %S—%SC, and constant

Ladder Diagram (LD) Programming

159

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.6 Communication Request (COMMREQ)

Figure 127

COMM
REQ

—IN T~

—SYSID

TASK

The Communication Request (COMMREQ) function communicates with an intelligent
module, such as a Genius Communications Module or High-Speed Counter.

Notes:

° The information presented in this section shows only the basic format of the COMMREQ
function. Many types of COMMREQs have been defined. You will need additional
information to program the COMMREQ for each type of device. Programming requirements
for each module that uses the COMMREQ function are described in the specialty module's
user documentation.

° Ifyou are using the COMMREQ to conduct serial communications, refer to the Serial /O, SNP
and RTU Protocols section in PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual,
GFK-2222.

° If you are using the COMMREQ to interface with an intelligent module (such as Genius
Communications Gateway), refer to that product’s user manual for operational details.

° A COMMREQ instruction inside an interrupt block being executed may cause the block to be

preempted when a new, incoming interrupt has the same priority.

When COMMREQ receives power flow, it sends the command block of data specified by the
IN operand to the communications TASK in the intelligent or specialty module, at the
rack/slot location specified by the SYSID operand. The command block contents are sent to
the receiving device and the program execution resumes immediately. (Because
PACSystems does not support WAIT mode COMMREQs, the timeout value is ignored.)

The COMMREQ passes power flow unless the following fault conditions exist. The Function
Faulted (FT) output may be set ON if:

e Control block s invalid
e Destination is invalid (target module is not present or is faulted)
e Target module cannot receive mail because its queue is full

The Function Faulted output may have these states:

Enable Error? Function Faulted Output
active no OFF
active yes ON
not active no execution OFF

Ladder Diagram (LD) Programming 160

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.6.1 Command Block

The command block provides information to the intelligent module on the command to be
performed. The command block starts at the reference specified by the operand IN. This
address may be in any word-oriented area of memory (%R, %P, %L, %W, %Al, %AQ, or
symbolic non-discrete variables). The length of the command block depends on the amount
of data sent to the device.

The Command Block contains the data to be communicated to the other device, plus
information related to the execution of the COMMREQ. Information required for the
command block can be placed in the designated memory area using a programming
function such as MOVE, BLKMOV, or DATA_INIT_COMM.

4.8.6.1.1 Command Block Structure
Address DataBlock Length (in [The number of data words starting with the data at
words) address+6 to the end of the command block, inclusive.
The data block length ranges from 1 to 128 words. Each
COMMREQ command has its own data block length.
When entering the data block length, you must ensure
that the command block fits within the register limits
Address + 1 Wait/No Wait Flag Must be set to 0 (No Wait)
Address + 2 Status Pointer Memory |Specifies the memory type for the location where the
Type COMMREQ status word (CSR) returned by the device
will be written when the COMMREQ completes.
Address + 3 Status Pointer Offset |The word at address + 3 contains the offset for the status
word within the selected memory type.
Note: The status pointer offset is a zero-based value.
For example, %R00001is at offset zero in the
register table.
Address + 4 Idle Timeout Value This parameter is ignored in No Wait mode.
Address + 5 Maximum This parameter is ignored in No Wait mode.
Communication Time
Address + 6 Data Block The data block contains the command's parameters.
to Address + 133 The data block begins with a command number in
address + 6, which identifies the type of
communications function to be performed. Refer to the
specific device manual for COMMREQ command
formats.

Ladder Diagram (LD) Programming 161

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.6.1.2 Status Pointer Memory Type

Status pointer memory type contains a numeric code that specifies the user reference
memory type for the status word. The table below shows the code for each reference type:

For this memory type Enter this decimal value

%l Discrete input table (BIT mode) 70

%Q Discrete output table (BIT mode) 72

%l Discrete input table (BYTE mode) 16

%Q Discrete output table (BYTE mode) 18

%R Register memory 8

%W Word memory 196

%Al Analog input table 10

%AQ Analog output table 12

Notes:

° The value entered determines the mode. For example, if you enter the %I bit mode is 70, then
the offset will be viewed as that bit. On the other hand, if the %I value is 16, then the offset will
be viewed as that byte.

° The high byte at address + 2 should contain zero.

4.8.6.1.3 Operands for COMMREQ
Parameter|Description Allowed Operands Optional
IN The reference of the first WORD of the|Variables in %R, %P, %L, %Al,|No
command block. %AQ, %W, and symbolic non-

discrete variables

SYSID The rack number (most significant byte)|All except flow and variables in|No
and slot number (least significant byte)|%S - %SC
of the target device (intelligent module).

Note: For systems that do not have
expansion racks, SYSID must be
zero for the main rack.

TASK The task ID of the process on the target|Constants; variables in %R, %P,|No
device %L, BAl, 5AQ, %W, and symbolic
non-discrete variables

Ladder Diagram (LD) Programming 162

CPU Programmer’s Reference Manual

GFK-2950G

Section4
June 2020

Parameter

Description

Allowed Operands

Optional

FT

Function Faulted output. FT is energized
if an error is detected processing the
COMMREQ:

This is a WAIT mode COMMREQ
and the CPU does not support it

The specified target address
(SYSID operand) is not present.

The specified task (TASK operand)
is not valid for the device.

The data length is 0.

The devices status pointer address
(part of the command block) does
not exist. This may be due to an
incorrect memory type selection,
or an address within that memory
type that is out of range.

Power flow

Yes

4.8.6.1.4 COMMREQ Status Word

Figure 128

Minor Error Code (high byte)
Success and Major Error Code (low byte)

CRS Word
(hexadecimal)
High Low

01

The CRS word consists of two-byte values, a major code and a minor code.

Refer to the specific device manual for CRS major and minor codes used by COMMREQ
commands at that device.

4.8.6.1.5 COMMREQ Example 1
Figure 129
V_M00020 COMM REQ

¥_Qo0010

_R00016 —IN FI——— ——

102 —SYSID

1—TASK

When enabling input %M0020 is ON, a command block starting at %R0016 is sent to
communications task 1 in the device located at rack 1, slot 2 of the PLC. If an error occurs
processing the COMMREQ, %Q0100 is set.

Ladder Diagram (LD) Programming

163

CPU Programmer’s Reference Manual

GFK-2950G

4.8.6.1.6 COMMREQ Example

2

Section4
June 2020

The MOVE function can be used to enter the command block contents for the COMMREQ

described in example 1.

Figure 130
MOVE LINT MOVE UINT
#FET_SCN
1— |
i i
100 —|N Qf— RO00{6 o —N Q= ROOOIT g
MOVE LINT
i
512 —N Q— RO0019
COMM REQ
MO0020
2— — =

RO0016 —IN FT

MOVE UINT

Q= RO0O01E

Q00

{0z —{S¥siD

1 —{TAsK

Input IN of the COMMREQ specifies 5R00016 as the beginning reference for the command
block. Successive references contain the following:

%R00016 Data Block Length

%R00017 Wait/No Wait Flag

%R00018 Status Pointer Memory Type

%R00019 Status Pointer Offset

%R00020 Idle Timeout Value (Because this parameter is ignored in NO WAIT
mode, no value is input).

%R00021 Maximum Communication Time Value (Because this parameter is
ignored in NO WAIT mode, no value is input).

%R00022 to end of data Data Block

MOVE functions supply the following command block data for the COMMREQ.

e Thefirst MOVE function places the length of the data being communicated in %R00016.

e The second MOVE function places the constant 0 in %R00017. This specifies NO WAIT

mode.

e The third MOVE function places the constant 8 in %R00018. This specifies the register
table as the location for the status pointer.

e Thefourth MOVE function places the constant 512 in reference %R00019. Therefore, the
status pointer is located at %R00513.

Ladder Diagram (LD) Programming

164

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

The programming logic displayed in example 2 can be simplified by replacing the six MOVE
functions with one DATA_INIT_COMM function.

Figure 131
H#FST_SCN DATAINT qoooo2 |’
| COMM I
. o,
124
QF— Mo0001
M00020 COMM REQ aoo100
| I
1 ()
Qoo010
] N
RO0O16 —{IN FT @
12 —{SYSID
1 —TASK
4.8.7 Data Initialization
DATA The Data Initialization (DATA_INIT) function copies a Mnemonics:
— IIIJII‘]II“II:‘ — block of constant data to a reference range. DATA_INIT_DWORD
1 When the DATA_INIT instruction is first programmed, DATA_INIT_DWORD
gl the constants are initialized to zeroes. To specify the paTA INIT_INT

constant data to copy, double-click the DATA_INIT
instruction in the LD editor.

DATA_INIT_UINT

DATA_INIT_REAL

Note: The mnemonics DATA_INIT_ASCII (refer to Data DATA_INIT_LREAL
Initialize ASCIl) and DATA_INIT_COMM (refer to DATA_INIT_WORD

Data Initialize Communications Request)
operate differently from the other six functions.

When DATA_INIT receives power flow, it copies the constant data to output Q. DATA_INIT's
constant data length (LEN) specifies how much constant data of the function type is copied
to consecutive reference addresses starting at output Q. DATA_INIT passes power to the
right whenever it receives power.

Notes:
° The output parameter is not included in coil checking.

° If you replace one DATA_INIT instruction (except DATA_INIT_ASCIl or DATA_INIT_COMM)
with another (except DATA_INIT_ASCII or DATA_INIT_COMM), Logic Developer - PLC attempts
to keep the same data. For example, configuring a DATA_INIT_INT with eight rows and then
replacing the instruction with a DATA_INIT_DINT would keep the data for the eight rows.
Some precision may be lost when replacing a DATA_INIT_ instruction, and a warning message
will be displayed when this case is detected.

Ladder Diagram (LD) Programming 165

CPU Programmer’s Reference Manual

GFK-2950G

4.8.7.1

4.8.7.1.1

4.8.8

Operands

Note: For each mnemonic, use the corresponding data type for the Q operand. For example,
DATA_INIT_DINT requires Q to be a DINT variable.

Parameter |Description Allowed Operands Optional
Length The quantity (default 1) of|Constants No

constant data copied to

consecutive reference addresses

starting at output Q.
Q The beginning address of the area|All, except %S. SA, SB, and SC are|No

to which the data is copied. not allowed for REAL, LREAL, INT,

and UINT versions.

Example
Figure 132
#FST_SCN DATA
| | INITINT [
00 | 0
Qr V_R0000S

On the first scan (as restricted by the #FST_SCN system variable), 100 words of initial data
are copied to %R00005 through %R00104.

Data Initialize ASCII

Figure 133

DATA
INIT
ASCII
1

u_

The Data Initialize ASCII (DATA_INIT_ASCII) function copies a block of constant ASCII text to
a reference range.

When DATA_INIT_ASCII is first programmed, the constants are initialized to zeroes. To
specify the constant data to copy, double-click the DATA_INIT_ASCII instruction in the LD
editor.

When DATA_INIT_ASCII receives power flow, it copies the constant data to output Q.
DATA_INIT_ASCII’s constant data length (LEN) specifies how many bytes of constant text
are copied to consecutive reference addresses starting at output Q. LEN must be an even
number. DATA_INIT_ASCII passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Ladder Diagram (LD) Programming 166

Section4
June 2020

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.8.1 Operands

Parameter |Description Allowed Operands |Optional

Length The number (default 1) of bytes of constant text|Constants No
copied to consecutive reference addresses
starting at output Q. LEN must be an even

number.
Q The beginning address of the area where the |All except %S. No
data is copied.
4.8.8.1.1 Example
Figure 134

HFST_SCN DATA | V_000002

I INIT ()—l

ASCII
100

QO ¥_R000S0

On the first scan (as restricted by the #FST_SCN system variable) the decimal equivalent of
100 bytes of ASCII text is copied to ¥R00050 through %R00149. %$Q00002 receives power.

4.8.9 Data Initialize Communications Request

Figure 135

DATA
INIT
COMM
7

u_

The Data Initialize Communications Request (DATA_INIT_COMM) function initializes a
COMMREQ function with a block of constant data. The IN parameter of the COMMREQ must
correspond with output Q of this DATA_INIT_COMM function.

When DATA_INIT_COMM is first programmed, the constants are initialized to zeroes. To
specify the constant data to copy, double-click the DATA_INIT_COMM instruction in the LD
editor.

When DATA_INIT_COMM receives power flow, it copies the constant data to output Q.
DATA_INIT_COMM’s constant data length operand specifies how many words of constant
data to copy to consecutive reference addresses starting at output Q. The length should be
equal to the size of the COMMREQ function’s entire command block. DATA_INIT_COMM
passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Ladder Diagram (LD) Programming 167

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.8.9.1 Operands
Parameter |Description Allowed Operands |Optional
Length The number of WORDs (default 7) of constant|Constant No
data copied to consecutive reference
addresses starting at output Q. Must equal
the size of the COMMREQ function’s entire
command block, including the header (words
0-5).
Q The beginning address of the area where the|[R, W, P, L, Al, AQ,and [No
data is copied. symbolic non-discrete
variables
4.8.9.1.1 Example
Figure 136
#FST_SCN DaTA | V_000002
INIT
1 corn [
100
QfF v_P0o0001

On the first scan (as restricted by the #FST_SCN system variable), a command block
consisting of 100 words of data, including the 6 header words, is copied to %P00001
through %P00100. %Q00002 receives power.

4.8.10 Data Initialize DLAN

The Data Initialize DLAN (DATA_INIT_DLAN) function is used with a DLAN Interface module,
which is a limited availability, specialty system. If you have a DLAN system, refer to the
DLAN/DLAN+ Interface Module User’s Manual, GFK-0729, for details.

4.8.10.1 Operands

Parameter |Description Allowed Operands Optional
Q The beginning address of the [Flow, R, W, P, L, Al, AQ, and symbolic [No
area where the datais copied. |non-discrete variables
Ladder Diagram (LD) Programming 168

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.8.11 Move
MOVE When the MOVE function receives power flow, it copies data Mnemonics:
- BOOL as individual bits from one location in PLC memory to MOVE_BOOL
27 another. Because the data is copied in bit format, the new MOVE_DINT
i ak location does not need to be the same data type as the MOVE_DWORD
original. MOVE_INT

The MOVE function copies data from input operand IN to MOVE_REAL
output operand Q as bits. If data is moved from one location MOVE_UINT
in BOOL (discrete) memory to another, for example, from %I MOVE_WORD
memory to %T memory, the transition information

associated with the BOOL memory elements is updated to

indicate whether the MOVE operation caused any BOOL

memory elements to change state. Data at the input

operand does not change unless there is an overlap in the

source and destination.

Note: Ifan array of BOOL-type data specified in the Q operand does not include all the bits in a byte, the
transition bits associated with that byte (which are not in the array) are cleared when the Move
function receives power flow. The input IN can be either a variable providing a reference for the
data to be moved or a constant. If a constant is specified, then the constant value is placed in the
location specified by the output reference. For example, if a constant value of 4 is specified for IN,
then 4 is placed in the memory location specified by Q. If the length is greater than 1 and a
constant is specified, then the constant is placed in the memory location specified by Q and the
locations following, up to the length specified. Do not allow overlapping of IN and Q operands.

The result of the MOVE depends on the data type selected for the function, as shown below.
For example, if the constant value 9 is specified for IN and the length is 4, then 9 is placed in
the bit memory location specified by Q and the three locations following:

Figure 137
MOAVE BOOL MOVE WERD
4 4
9N Q| Quiput a O Ouiput
MER L] 3
FED :
(Lenghh=4 bils) 3
gl = e}

The MOVE function passes power to the right whenever it receives power.

Ladder Diagram (LD) Programming 169

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.8.11.1 MOVE Operands
Parameter |Description Allowed Optional
Operands
Length (??) The length of IN; the number of bits, words, or |Constant No
double words to copy.
If INis a constant and Q is BOOL, then 1 < Length
< 16; otherwise, 1 < Length < 256.
1<Llength<32,767
IN The location of the first data item to copy. All. %S, %SA, %SB, |No
For MOVE_BOOL, any discrete reference may be [%SC allowed only
used. It does not need to be byte-aligned. for WORD,
However, 16 bits beginning with the reference |DWORD, BOOL
address specified are displayed online. types.
If INis a constant, it is treated as an array of bits.
The value of the least significant bit is copied into
the memory location specified by Q. If Length is
greater than one, the bits are copied in order
from the least significant to the most significant
into successive memory locations, up to the
length specified.
Q The location of the first destination dataitem. |All except %S. Also, |No
For MOVE_BOOL, any discrete reference may be |no %SA, SB, SC
used. It does not need to be byte-aligned. except for WORD,
However, 16 bits beginning with the reference |DWORD, BOOL
address specified are displayed online. types.
4.8.11.1.1 MOVE_BOOL Example
Figure 138
V_I100003 MOVE
} BOOL |
3
V_M00001 —{IN QF v_M00100

When %100003 is set, the three bits M00001, $M00002, and %$M00003 are moved to
%M00100, %M00101, and %M00102, respectively. Coil %Q00001 is turned on.

Ladder Diagram (LD) Programming

170

CPU Programmer’s Reference Manual

GFK-2950G

4.8.11.1.2

4.8.12

4.8.12.1

MOVE_WORD Example

Section4
June 2020

Figure 139

v_Qooo14

—

MOVE
HWORD | _

V_M00001 —|IN O v_M00033

V_MO00001 and V_MO00033 are both WORD arrays of length 3, for a total of 48 bits in each
array. Since PLCs do not recognize arrays, Length must be set at 3, for the total number of
WORDs to be moved. When enabling input V_Q0014 is ON, MOVE_WORD moves 48 bits
from the memory location %¥M00001 to memory location %M00033. Even though the
destination overlaps the source for 16 bits, the move is done correctly.

Move Data
MOVE The MOVE_DATA function copies the variable assigned to Mnemonic:
DATA theinput, IN to the variable assigned to the output, Q. Ifthe MOVE_DATA
constant O is assigned to IN, the variable assigned to Q is
initialized to its default value.
MOVE_DATA Operands
Parameter |Description Allowed Operands Optional
Length (??) The length of IN; the number of|Constant No
elements to copy.
1<length<32,767
IN The location of the data item to|Enumerated variable, structure|No
copy. variable, or array of these types;
IfINis 0, Qis set to its default the constant 0.
value. For details, refer to Data Types and
Structures in the PACMotion Multi-
Axis Motion Controller User’s
Manual, GFK-2448.
Q The location of the data copied |[Enumerated variable, structure |No

from IN.

Q must be the same data type as
IN, unless IN is the constant 0.

variable, or array of these types.

Ladder Diagram (LD) Programming

171

CPU Programmer’s Reference Manual

GFK-2950G

4.8.13

4.8.13.1

Move Data Explicit

Section4
June 2020

Figure 140

MOVE_DATA_EX provides optional data coherency by locking the symbolic memory being
written to during the copy operation. This allows data to be copied coherently when
accessed by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts

of data with coherency enabled canincrease interrupt latency.

MOVE_DATA_EX Operands

Parameter

Description

Allowed Operands

Optional

Length (??)

The length of IN; the number of elements to
copy.
1<Llength<32,767

Constant

No

DC

Data coherency.

If True memory being written to is locked,
enabling coherent copying of data from one
Controller memory area to another.

If False (default), data is copied normally
from one Controller memory area to
another without data coherency.

e The input DC should be used only
when using interrupt blocks and is
required only when the same memory
is used in more than one interrupt
block, or in the main program and an
interrupt block.

e IfDCisTrue, aninterrupt block cannot
preempt the copy operation.

e If DC is False or not present, then
interrupts can preempt the copy.

e Using DC can impact interrupt latency
if the amount of data copied is large.

Data flow.

Yes

The location of the data item to copy.

If IN is 0 (LD only), length is assigned the
constant 1 and the variable or structure
assigned to Qis set to its default value.

Enumerated variable or
structure variable, or array
of these types; the
constant 0.

No

Variable or array to which IN is copied.

Q must be the same data type as IN, unless
IN is the constant 0.

Enumerated variable or
structure variable, or array

of these types.

No

Ladder Diagram (LD) Programming

172

CPU Programmer’s Reference Manual

GFK-2950G

4.8.13.1.1

4.8.14

4.8.14.1

4.8.14.1.1

4.8.14.1.2

Section4
June 2020
Example
Figure 141
Q00014 SUEDATE
DC_select 3

| L e
LI | b

»]

Enum_Array —]IN

Enum_Array and Enum_Array_Out are arrays of enumerated variables, with three elements
each. To copy all elements in Enum_Array, input Length should be 3. When the enabling
input Q00014 is on, MOVE_DATA_EX copies three elements from memory location
Enum_Array to memory location Enum_Array_Out.

Move From Flat

Figure 142

MOVE FROM FLAT

MOVE_FROM_FLAT copies reference memory data to a User-defined Data Type (UDT)
variable or UDT array.

MOVE_FROM_FLAT provides optional data coherency by locking the data being written to
during the copy operation. This allows data to be copied coherently when accessed by
multiple logic threads (i.e. interrupt blocks). Note that copying large amounts of data with
coherency enabled canincrease interrupt latency.

Operation

Copying arrays and array elements

The constant value assigned to input LEN (Length) determines the number of UDT array
elements to be filled by copying data from reference memory to output Q.

Example:

If constant value 6 is assigned to input LEN (Length), there should be a UDT array of at least
six elements assigned to output Q. During logic execution, n bytes of data are copied from
reference memory to the first six UDT array elements, where nis the length of the UDT array
element (in bytes) times six.

Ladder Diagram (LD) Programming 173

CPU Programmer’s Reference Manual

GFK-2950G

4.8.14.1.3 Copying to specified array elements

Section4
June 2020

For output Q, a single element of a UDT array can be specified, for example,
myUDT_array[4] (5th element of myUDT_array). In this case, the input LEN (Length)
operand applies to the array elements starting from and including myUDT _array[4].

4.8.14.1.4 Example:

myUDT_array is a UDT array of ten elements, of which each element is a UDT variable, and
myUDT_array[4] is assigned to output Q. This restricts the value of input LEN (Length) to six
or less because there are six remaining UDT array elements that can be filled in
myUDT_array.

Notes:
° Length determines how many UDT variable elements to overwrite in Q.
° If an array head is assigned to input IN, the Length determines how many UDT array

elements assigned to Q are filled by copying data from reference memory.

4.8.14.2 MOVE_FROM_FLAT Operands

Parameter|Description Allowed Operands |Optional
Length (??) |Determines the number of UDT array elements to|Constant No
be filled by copying data from reference memory
to output Q.
1<length<32,767
DC Data coherency. Data flow. Yes
If True, memory being written to is locked,
enabling coherent copying of data from one
Controller memory area to another.
If False (default), data is copied normally from one
Controller memory area to another; that is without
data coherency.
e The input DC should be used only when
using interrupt blocks and is required only
when the same memory is used in more than
one interrupt block, or in the main program
and an interrupt block.
e If DC is True, an interrupt block cannot
preempt the copy operation.
e If DCis False or not present, then interrupts
can preempt the copy.
e Using DC can impact interrupt latency if the
amount of data copied is large.
IN Reference memory data being copied to UDT|All except %S, No
variable elements in output Q as determined by|symbolic, or1/O
the Length. variable.
Ladder Diagram (LD) Programming 174

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Parameter|Description Allowed Operands |Optional

Q UDT variable or UDT array to which IN is copied. |Discrete or non- No
discrete symbolic,
discrete or non-
discrete I/O variable.

4.8.14.2.1 Example

A WORD variable mapped to %R1 is assigned to input IN and a value of 1 is assigned to
Length. A UDT variable or UDT array is assigned to output Q.

When MOVE_FROM_FLAT executes, n bytes of data are copied, starting at %R1 to a UDT
variable or UDT array, where n is the UDT array element length (in bytes). If a UDT array is
assigned to output Q, n bytes of data are copied to the first UDT array element.

4.8.15 Move to Flat

Figure 143

MOVE TO FLAT

—{IH

MOVE_TO_FLAT instruction copies data from symbolic or I/O variable memory to reference
memory. MOVE_TO_FLAT copies across mismatched data types for an operation such as a
Modbus transfer.

MOVE_TO_FLAT provides optional data coherency by locking the reference memory being
written to during the copy operation. This allows data to be copied coherently when
accessed by multiple logic threads (i.e. interrupt blocks). Note that copying large amounts
of data with coherency enabled can increase interrupt latency.

Notes:

° The Data Coherency (DC) input should be used only when using interrupt blocks and is
required only when the same memory is used in more than one interrupt block, or in the
main program and an interrupt block.

° If DCis True, an interrupt block cannot preempt the copy operation.

° If DCis False or not present, then interrupts can preempt the copy.

° Using DC can impact interrupt latency if the amount of data copied is large.

Ladder Diagram (LD) Programming 175

CPU Programmer’s Reference Manual

GFK-2950G

4.8.15.1 Copying Arrays and Array Elements

Section4
June 2020

The Length determines the number of UDT array elements to be copied to the reference
memory of the variable assigned to output Q.

Example: If the value 6 is assigned to Length, there should be a UDT array of at least six

elements assigned to input IN. When logic executes, n bytes of data are copied from the
UDT array elements to the reference memory of the variable assigned to output Q, where n
is the length of the UDT array element (in bytes) times six.

4.8.15.2 MOVE_TO_FLAT Operands

Parameter

Description

Allowed Operands

Optional

Length (??)

The length of IN; the number of elements to

copy.
1<length<32,767

Constant

No

DC

Data coherency.

If True, the memory being written to is
locked. This enables a coherent copy of a
UDT to reference memory.

If False (default), data is copied normally
from one Controller memory area to another;
that is without data coherency.

e DCshould be used only when using
interrupt blocks and is required only
when the same memory is used in more
than one interrupt block, or in the main
program and an interrupt block.

e IfDCis True, an interrupt block cannot
preempt the copy operation.

e If DCis False or not present, interrupts
can preempt the copy.

e Using DC canimpactinterrupt latency if
the amount of data copied is large.

Data flow.

Yes

UDT variable or UDT array. The data copied
to the reference memory mapped to the
variable assigned to Q.

If INis 0, length is assigned the constant 1
and the variable or structure assigned to Q is
set to its default value.

Discrete or non-discrete
symbolic, discrete or
non-discrete I/O
variable.

No

Ladder Diagram (LD) Programming

176

CPU Programmer’s Reference Manual

GFK-2950G

amount of data copied is determined by the
constant value assigned to input LEN
(Length).

%S, discrete symbolic,
discrete I/O variable.

e Indirect referencing
is available for all
register references
(%R, %P, %L, BW,
%Al, and %AQ).

e BYTEarrays must
be packed; that s,
they must be in
discrete memory.

Section 4
June 2020
Parameter |Description Allowed Operands |Optional
Q Variable or array to which IN is copied. The |All memory areas except |No

4.8.15.2.1 Example

A UDT variable or UDT array is assigned to input IN.

The constant value 8 is assigned to input LEN (Length).

A DWORD variable mapped to %R1 is assigned to output Q.

If the constant value 8 is assigned to LEN (length), there should be a UDT array of at least
eight elements assigned to IN. When MOVE_TO_FLAT executes, n bytes of data are copied
from the UDT variable or array to %R memory, starting at %R1 in the example, where nis the
length of a UDT array element (in bytes) times eight.

4.8.16 Shift Register

SHFR
- BIT |

??

When the Shift Register (SHFR_BIT, SHFR_DWORD, or
SHFR_WORD) function receives power and the R operand
does not, SHFR shifts one or more data BITs, data
DWORDs, or data WORDs from a reference location into a

specified area of memory. A contiguous section of
memory serves as a shift register. For example, one word
might be shifted into an area of memory with a specified
length of five words. As a result of this shift, another word
of data would be shifted out of the end of the memory

darea.

A\ WARNING

Mnemonics:
SHFR_BIT
SHFR_DWORD
SHFR_WORD

The use of overlapping input and output reference address ranges in multiword functions is

not recommended, as it may produce unexpected results.

The reset input (R) takes precedence over the function enable input. When the reset is
active, all references beginning at the shift register (ST) up to the length specified, are filled

with zeroes.

If the function receives power flow and R is not active, each BIT, DWORD, or WORD of the
shift register is moved to the next highest reference. The elements shifted out of ST are
shifted into Q. The highest reference of IN is shifted into the vacated element starting at ST.

Ladder Diagram (LD) Programming

177

CPU Programmer’s Reference Manual

GFK-2950G

Section4
June 2020

Note: The contents of the shift register are accessible throughout the program because they are overlaid
on absolute locations in logic addressable memory.

The function passes power to the right whenever it receives power flow and the R operand

does not.

4.8.16.1 Operands for Shift Register

Parameter

Description

Allowed
Operands

Optional

Length (??)

The number of data items in the shift
register, ST.
1<Length<256

No

Reset. When R is ON, the shift register
located at ST is filled with zeroes.

Power flow

No

The number of data items to shift into ST.

Constants

No

The value to shift into the first data item of
ST.

SHFR_BIT: For %I, %Q, %M and %T memory,
any BOOL reference may be used; it does not
need to be byte-aligned. However, 1 bit,
beginning with the reference address
specified, is displayed online.

All

No

ST

The first data item of the shift register.

All except data

Note: For %I, %Q, %M and %T memory, any
BOOL reference may be used; it does
not need to be byte-aligned.
However, 16 bits, beginning with
the reference address specified, are
displayed online.

flow, constants, S

No

The data shifted out of ST. The same number
of data items will be shifted into Q as were
shifted out of ST.

SHFR_BIT: For %I, %Q, %M and %T memory,
any BOOL reference may be used; it does not
need to be byte-aligned. However, 1 bit,
beginning with the reference address
specified, is displayed online.

All except S

No

Ladder Diagram (LD) Programming

178

CPU Programmer’s Reference Manual

GFK-2950G

4.8.16.1.1

4.8.17

4.8.17.1

Section 4
June 2020
Example
Figure 144
NXT_CYC SHER WORD
| | B
CLEAR 00
1 } =] 2= M0O0005
Q00033 —{IN
B00001 —5T

SHFR_WORD operates on register memory locations %R0001 through %R0100. When the

reset reference CLEAR is active, the Shift Register words are set to zero.

When the NXT_CYC reference is active and CLEAR is not, the two words at the starting
address V_QO00033 are shifted into the Shift Register at %R0001. The words shifted out of
the Shift Register from %R0100 are stored in output ¥M0005. Note that, for this example,
the length specified and the amount of data to be shifted (N) are not the same.

Size Of

m

2]

Counts the number of bits used by the variable

Mnemonics:

assigned to input IN and writes the number of ~ S|ZE_OF

bits to output Q.

Operands
Parameter |Description Allowed Operands Optional
IN The variable whose size in|Variable of any data type except BYTE|No

bits is calculated.

arrays

in non-discrete memory and
double-segment structures.

The number of bits used by
the variable assigned to

input IN.

DINT or DWORD variable.
ST also supports INT and WORD variables.

No

Ladder Diagram (LD) Programming

179

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.8.17.1.1 Example

Figure 145

o
4
m
.

n

Var —IN Qf— R00001

The single-segment structure named Var assigned to input IN contains eight BOOL
elements (8 x 1 = 8 bits) and twelve WORD elements (12 x 16 = 192 bits). SIZE_OF outputs
the value 8 + 192 = 200 to the variable RO0001 assigned to output Q.

4.8.18 Swap

SHAP The SWAP function is used to swap two bytes withinaword ~ Other mnemonic:
— DWORD (SWAP WORD) or two words within a double word (SWAP SWAP_WORD
29 DWORD). The SWAP can be performed over a wide range
e ol of memory by specifying a length greater than 1. If that is

done, the data in each word or double word within the
specified length is swapped.

When the SWAP function receives power flow, it swaps the data in reference IN and places
the swapped datainto output reference Q. The function passes power to the right whenever
it receives power.

PACSystems CPUs use the Intel convention for storing word data in bytes. They store the
least significant byte of a word in address n and the most significant byte in address n+1.
Many VME modules follow the Motorola convention of storing the most significant byte in
address n and the least significant byte in address n+1.

The PACSystems CPU assigns byte address 1 to the same storage location regardless of the
byte convention used by the other device. However, because of the difference in byte
significance, word and multiword data, for example, 16-bit integers (INT, UINT), 32-bit
integers (DINT) or floating point (REAL) numbers, must be adjusted when being transferred
to or from Motorola-convention modules. In these cases, the two bytes in each word must
be swapped, either before or after the transfer. In addition, for multiword data items, the
words must be swapped end-for-end on a word basis. For example, a 64-bit real nhumber
transferred to the PACSystems CPU from a Motorola-convention module must be byte-
swapped and word-reversed, either before or after reading, as shown below:

Figure 146

| Bt [B2 || B3 [Bs || B5 [B6 ||BF |BEB |

I

Ladder Diagram (LD) Programming 180

CPU Programmer’s Reference Manual

GFK-2950G

Section4
June 2020

Character (ASCII) strings or BCD data require no adjustment since the Intel and Motorola
conventions for storage of character strings are identical.

4.8.18.1 Operands for Swap

The two parameters, IN and Q, must both be the same type, WORD or DWORD.

Parameter

Description

Allowed Operands Optional

Length (??)

The number of WORDs or DWORDs |Constant No

to operate on.
1<Llength<256

IN

Reference for data to be swapped. |All No
(must be the same type as Q)

Q

Reference for swapped data. (must |All except S No

be the same type as IN)

4.8.18.1.1 Example for Swap

Figure 147

SHAP
WORD |

W_100033 —|IN QF ¥ Iawas

Two bytes located in bits %100033 through %I00048 are swapped. The result is stored in

%L00007.
4.9 Data Table Functions

Function |Mnemonic Description

Array Move |ARRAY_MOVE_BOOL Copies a specified number of data elements from a
ARRAY_MOVE_BYTE source memory block to a destination memory block.
ARRAY_MOVE_DINT
ARRAY_MOVE_INT Note: The memory blocks do not need 'to be defined as

arrays. You must supply a starting address and
ARRAY_MOVE_WORD the number of contiguous registers to use for the
move.

Array Range [ARRAY_RANGE_DINT Determines if a value is between the range specified in
ARRAY_RANGE_DWORD |two tables
ARRAY_RANGE_INT
ARRAY_RANGE_UINT
ARRAY_RANGE_WORD

FIFO Read FIFO_RD_DINT Removes the entry at the bottom of the First In First Out
FIFO_RD_DWORD (FIFO) table, and decrements the pointer by one
FIFO_RD_INT
FIFO_RD_UINT
FIFO_RD_WORD

Ladder Diagram (LD) Programming

181

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
Function |Mnemonic Description
FIFO Write FIFO_WRT_DINT Increments the table pointer and writes data to the
FIFO_WRT_DWORD bottom of the FIFO table
FIFO_WRT_INT
FIFO_WRT_UINT
FIFO_WRT_WORD
LIFO Read LIFO_RD_DINT Removes the entry at the pointer location in the LIFO
LIFO_RD_DWORD (Last In First Out) table, and decrements the pointer by
LIFO_RD_INT one
LIFO_RD_UINT
LIFO_RD_WORD
LIFO Write LIFO_WRT_DINT Increments the LIFO table's pointer and writes data to the
LIFO_WRT_DWORD table
LIFO_WRT_INT
LIFO_WRT_UINT
LIFO_WRT_WORD
Search SEARCH_EQ_BYTE Searches for all array values equal to a specified value

SEARCH_EQ_DINT
SEARCH_EQ_DWORD
SEARCH_EQ_INT
SEARCH_EQ_UINT
SEARCH_EQ_WORD

SEARCH_GE_BYTE
SEARCH_GE_DINT
SEARCH_GE_DWORD
SEARCH_GE_INT
SEARCH_GE_UINT
SEARCH_GE_WORD

Searches for all array values greater than or equal to a
specified value

SEARCH_GT_BYTE
SEARCH_GT_DINT
SEARCH_GT_DWORD
SEARCH_GT_INT
SEARCH_GT_UINT
SEARCH_GT_WORD

Searches for all array values greater than a specified value

SEARCH_LE_BYTE
SEARCH_LE_DINT
SEARCH_LE_DWORD
SEARCH_LE_INT
SEARCH_LE_UINT
SEARCH_LE_WORD

Searches for all array values less than or equal to a
specified value

SEARCH_LT_BYTE
SEARCH_LT_DINT
SEARCH_LT_DWORD
SEARCH_LT_INT
SEARCH_LT_UINT
SEARCH_LT_WORD

Searches for all array values less than a specified value

Ladder Diagram (LD) Programming

182

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
Function |Mnemonic Description
SEARCH_NE_BYTE Searches for all array values not equal to a specified value
SEARCH_NE_DINT
SEARCH_NE_DWORD
SEARCH_NE_INT
SEARCH_NE_UINT
SEARCH_NE_WORD
Sort SORT_INT Sorts a memory block in ascending order
SORT_UINT
SORT_WORD
TableRead |TBL_RD_DINT Copies a value from a specified table location to an
TBL_RD_DWORD output reference
TBL_RD_INT
TBL_RD_UINT
TBL_RD_WORD
Table Write |TBL_WRT_DINT Copies avalue from an input reference to a specified table
TBL_WRT_DWORD location
TBL_WRT_INT
TBL_WRT_UINT
TBL_WRT_WORD
4.9.1 Array Move
-:'B[l)!‘;l;:! When the Array Move function receives power Mnemonics:
7| BooL | flow, it copies a specified number of elements from ARRAY_MOVE_BOOL
- ” sl a source memory block to a destination memory ARRAY_MOVE_BYTE
block. Starting at the indexed location (SR+SNX-1) ARRAY MOVE DINT
- of the input memory block, it copies N elements to ARRAY MOVE DWORD
the output memory block, starting at the indexed - -
—DNX location (DS+DNX-1) of the output memory block. ARRAY_MOVE_INT
ARRAY_MOVE_UINT
X ARRAY_MOVE_WORD

Note: For ARRAY_MOVE_BOOL, when 16-bit registers are selected for the operands of the source
memory block and/or destination memory block starting address, the least significant bit of the
specified 16-bit register is the first bit of the memory block. The value displayed contains 16 bits,
regardless of the length of the memory block.

The indices in an Array Move instruction are 1-based. In using an Array Move, no element
outside either the source or destination memory blocks (as specified by their starting
address and length) may be referenced.

The function passes power flow unless one of the following conditions occurs:

e lItreceives no power flow.

o (N +SNX-1)is greater than Length.

e (N +DNX-1)is greater than Length.

Note: For each mnemonic, use the corresponding data type for the SR and DS operands. For example,
ARRAY_MOVE_BYTE requires SR and DS to be BYTE variables.

Ladder Diagram (LD) Programming

183

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.9.1.1 Operands for Array Move
Parameter Description Allowed Optional
Operands
Length (??) The length of each memory block|Constant No
(source and destination); the number
of elements in each memory block. 1<
Length <32,767.
SR The starting address of the source|All except No
(must be the memory block. constants. %S -
same data type as %SC allowed onl
yp Note: For an Array Move with the Y
DS) for BYTE, WORD,
data type BOOL, any reference
may be used; it does not need DWORD types.
to be byte-aligned. Sixteen
bits, beginning with the
reference address specified,
are displayed online.
SNX The index of the source memory block [All except No
variablesin %S -
%SC.
DNX The index of the destination memory |All except No
block variables in %S -
%SC.
N Count indicator All except No
variablesin %S -
%SC
DS The starting address of the destination|All, except Sand [No
(must be the memory block. constants. %SA -
same data type as %SC allowed onl
yp Note: For an Array Move with the Y
SR) for BYTE, WORD,
data type BOOL, any reference
may be used; it does not need DWORD types
to be byte-aligned. Sixteen
bits, beginning with the
reference address specified,
are displayed online.
Ladder Diagram (LD) Programming 184

CPU Programmer’s Reference Manual Section 4

GFK-2950G

4.9.1.1.1

4.9.1.1.2

June 2020

Array Move Example 1

Figure 148

W_I00001 [ARRAY

1 MOVE |_

WORD
16

V_R00001 —{SE DS|~ V_R00100
V_R00100 —{SNX

5 —| DN

5N

To define the input memory block %R0001 - %R0016 and the output memory block %¥R0100
-%R0115, SR is set as 5R0001, DS is set as %R0100, and Length is set to 16.

To copy the five registers %R0003 - %R0007 to the registers %R0104 - %R0108, N is set to 5,
SNX=%R0100 is set to 3 (to designate the third register, R0003, of the block starting at
%R0001), and DNX is set to 5 (to designate the fifth register, %R0104, of the block starting
at %R0O100).

Array Move Example 2
Figure 149
V_I00001 ARBRAY
1 MOVE | _
BOOL

16
V_M00009 —SK DS ¥_0Q00022

3 —SNX

5 —DNX

7N

Using bit memory blocks, the input block starts at SR=%M0009, the output block starts at
%Q0022, and the length of both blocks is 16 one-bit registers (Length=16).

To copy the seven registers $M0011 - %M0017 to %Q0026 - %Q0032, N is set to 7, SNX is
set to 3 (to designate the third register, M0011, of the block starting at %M0009), and DNX
is set to 5 (to designate the fifth register, %Q0026, of the block starting at %Q0022).

Ladder Diagram (LD) Programming 185

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

49.1.1.3 Array Move Example 3

Figure 150
V_I00001 ARRAY
1} MOVE [_
BOOL
20

V_R00001 —|SK DS— W_R00100

3 —{SNX
5 —DNX
16 —N

Sixteen (=N) bits that are not byte-aligned are moved from the two 16-bit registers that start
at R00001 (SR) to the two 16-bit registers that begin at %R00100 (DS). For the purposes of
this Boolean move, Length is set to 20, because the other 12 bits in either memory block are
not considered.

By setting SNX to 3, N to 16, and DNX to 5, the third (SNX) least significant bit of %R0001
through the second least significant bit of %R0002 (for a total of 16 bits=N) are written into
the fifth (DNX) least significant bit of %R0100 through the fourth least significant bit of
%R0101 (for the same total of 16 bits).

4.9.2 Array Range

ARRAY The ARRAY_RANGE function compares a single Mnemonics:
—lelrﬁrﬁ — input value against two arrays of delimiters that ARRAY_RANGE_DINT
79 specify an upper and lower bound to determine if ARRAY RANGE DWORD

L gl theinput value falls within the range specified by ARRAY_RANGE_INT
the delimiters. The output is an array of bits that is
set ON (1) when the input value is greater than or
equal to the lower limit and less than or equal to the
upper limit. The output is set OFF (0) when the
input is outside this range or when the range is
invalid, as when the lower limit exceeds the upper

ARRAY_RANGE_UINT

oL ARRAY_RANGE_WORD

—IN

limit.
The ARRAY_RANGE function compares a single input value against two arrays of delimiters
that specify an upper and lower bound to determine if the input value falls within the range
specified by the delimiters. The output is an array of bits that is set ON (1) when the input
value is greater than or equal to the lower limit and less than or equal to the upper limit. The
output is set OFF (0) when the input is outside this range or when the range is invalid, as
when the lower limit exceeds the upper limit.

When ARRAY_RANGE receives power, it compares the value in input parameter IN against
each range specified by the array element values of LL and UL. Output Q sets a bit ON (1) for
each corresponding array element where the value of IN is greater than or equal to the value
of LL and is less than or equal to the value of UL. Output Q sets a bit OFF (0) for each
corresponding array element where the value of IN is not within this range or when the

Ladder Diagram (LD) Programming 186

CPU Programmer’s Reference Manual

GFK-2950G

4.9.2.1

4.9.2.1.1

Section4
June 2020

rangeisinvalid, as when the value of LL exceeds the value of UL. If the operation is successful,
ARRAY_RANGE passes power flow to the right.

Operands for Array Range

Notes:
° For each mnemonic, use the corresponding data type for the LL, UL, and Q operands. For
example, ARRAY_RANGE_DINT requires LL, UL, and Q to be DINT variables.
° Q is not aligned. It is displayed in bit format. It displays either a 1 (ON) or a 0 (OFF) for the

first array element. For BOOL references, it represents the reference displayed. For other
references, it represents the low order bit of the reference displayed.

Parameter|Description Allowed Operands Optional

Length (??) |The number of elementsin each array. |Constant No

LL The lower limit of the range All except constants and %S -|No

%SC for INT, DINT.
uL The upper limit of the range All except constants and %S -|No
%SC for INT, DINT.

IN The value to compare against each range|All except constants and %S -|No
specified by LL and UL %SC for INT, DINT.

Q Energized when the value in IN is within|All except S No
the range specified by LL and UL,
inclusive.

Array Range Example 1

Figure 151

V_100001 [ARBAY| V_000001
p RANGE
{ | e —
3
V_R00001 —LL Of ¥_R00020
V_R00100 —{ UL
40 —{IN

The lower limit (LL) values of %R00001 through %R00008 are 1, 20, 30, 100, 25, 50, 10, and
200. The upper limit (UL) values of %R00100 through %R00108 are 40, 50, 150, 2, 45, 90,
250, and 47. The resulting Q values will be placed in the first 8 bits of %R00200. The bit
values low order to high are: 1,1, 1,0, 1, 0, 1, and 0. The bit value displayed will be set ON
(1) for the low order bit of %¥R00200. The ok output will be set ON (1).

Ladder Diagram (LD) Programming

187

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

49.2.1.2 Array Range Example 2

Figure 152
V_100001 [ARBAY| V_MO00001
| raReE ()
3
V_T00001 —LL OF ¥_Q00001
V_T00049 —|(L
65 —|IN

The lower limit (LL) array contains %T00001 through %T00016, %$T00017 through %T00032,
and %T00033 through %T00048. The lower limit values are 100, 65, and 1. The upper limit
(UL) values are 29, 165, and 2. The resulting Q values of 0, 1, and 0 will be placed in %Q00001
through %Q00003. The bit value displayed will be 0 (OFF), representing the value of
%Q00001. The power output will be set ON (1).

49.3 FIFO Read

FIFO The First-In-First-Out (FIFO) Read (FIFO_RD) function Mnemonics:
= Dﬁ% — moves data out of tables. Values are always moved out FIFO_RD_DINT
?? of the bottom of the table. If the pointer reaches thelast Fjro_RD_DWORD
—TB EM|- Iocadtion and the t::ble become:‘ fuII,-FIFO_lRD rT1u5t bde FIFO_RD_INT
used to remove t ? entry at the pointer o.catlon an. FIFO_RD_UINT
—FTR Qf decrement the pointer by one. FIFO_RD is used in
FIFO_RD_WORD

conjunction with the FIFO_WRT function, which
increments the pointer and writes entries into the table.

1. FIFO_RD copies the top location (entry 0) of the table to output parameter Q.
Additional program logic must then be used to place the data in the input
reference.

2. Theremaining items in the table are copied to a lower numbered position in the
table.

FIFO_RD decrements the pointer by one.
4. Steps 1,2, and 3 are repeated each time FIFO_RD is executed, until the table is
empty (PTR =0).
The pointer does not wrap around when the table is full.

When FIFO_RD receives power flow, the data at the first location of the table is copied to
output Q. Next, each item in the table is moved down to the next lower location. This begins
with item 2 in the table, which is moved into position 1. Finally, the pointer is decremented.
If this causes the pointer location to become 0, the output EM is set ON, i.e., EM indicates
whether the table is empty.

FIFO_RD passes power to the right if the pointer is greater than zero and less than the value
specified for LEN.

Note: AFIFO table is a queue. A LIFO table is a stack.

Ladder Diagram (LD) Programming 188

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.9.3.1 Operands for FIFO Read

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For example,
FIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional
Length (??) 1<Llength<32,767. Constants No

TB (must be the The elements in the FIFO |All except constants No

same type as Q) table

PTR Pointer. Index of the last ~ |All except constants, data flow, and [No

element of the FIFO table. |variables in %S -%SC

EM Energized when the last Flow No
element of the table is read

Q (must be the same [The element read from the [All except constants, S; SA, SB, SC |No

type as TB) FIFO table allowed only for WORD, DWORD
4.9.3.1.1 Example for FIFO Read
Figure 153
PACE_IT FIFD
p RD |
o WORD
100 EMPTY

PRODUCT —TE EM|— }—

STE_PTR —|FTRE 0O CART

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input PACK_IT
is ON, the PRODUCT data item in the table location pointed to by STK_PTR is copied to the
reference location specified in CART. This table location pointed to would be the bottom, or
oldest data item in the table. The number in STK_PTR is then decremented. A copy of the
oldest data item in the PRODUCT table is left behind in each table location as the current
data is copied out during successive PACK_IT triggers. Output node EM passes power when
the PTR = 0, firing the coil EMPTY. No further data from the PRODUCT table can be read
without first copying data in using the FIFO_WRT function.

Ladder Diagram (LD) Programming 189

CPU Programmer’s Reference Manual

GFK-2950G

4.9.4

FIFO Write

FHI:"[:' The First-In-First-Out (FIFO) Write (FIFO_WRT) function
1 oier [moves data into tables. The function increments the
7 table pointer by one and adds an entry at the new
T Rr pointer location in a FIFO table. Values are always
pre moved in at the bottom of the table. If the pointer
reaches the last location and the table becomes full,
i FIFO_WRT can add no further values. The FIFO_RD
function must then be used to remove the entry at the

pointer location and decrement the pointer by one.

1. FIFO_WRT increments the pointer by one.

2.

Section4
June 2020

Mnemonics:
FIFO_WRT_DINT
FIFO_WRT_DWORD
FIFO_WRT_INT
FIFO_WRT_UINT
FIFO_WRT_WORD

FIFO_WRT copies data from input parameter IN to the position in the table
indicated by the pointer. (It writes over any value currently at that location.)
Additional program logic must then be used to place the data in the input

reference.

Steps 1 and 2 are repeated each time FIFO_WRT is executed, until the table is full

(PTR=0).

The pointer does not wrap around when the table is full.

When FIFO_WRT receives power flow, the pointer is incremented by 1. Then, input data is
written into the table at the pointer location. If the pointer was already at the last location
in the table, no data is written and FIFO_WRT does not pass power to the right. The pointer
always indicates the last item entered the table. If the table becomes full, it is not possible
to add more entries to it.

FIFO_WRT passes power to the right after a successful execution (PTR < LEN).

4.9.4.1 Operands for FIFO Write
Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For example,
FIFO_WRT_DINT requires TB and IN to be DINT variables.

Parameter |Description Allowed Operands Optional

Length (??) 1<length<32,767. Constants No

TB (mustbe |The elementsin the FIFO All except constants, data flow, and S. No

the same data |table SA - SC allowed only for WORD, DWORD

type as IN) types

PTR Pointer. Index of the last|All except constants, data flow, S - SC. No
element of the FIFO table.

IN (mustbe [The element to write to the|All. S - SC allowed only for WORD, No

the same data |FIFO table DWORD types.

type as TB)

FL Energized when IN is written|[Power flow No
to the last element of the
table

Ladder Diagram (LD) Programming

190

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.9.4.1.1 Example for FIFO Write
Figure 154
UNPACE FIFD
1| WET
WORD
100 FULL

PRODUCT —TB FLI—{ }—i

STE_PTR —{FIR

P_CODE —|IN

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input UNPACK
is ON, a data item from P_CODE is copied to the table location pointed to by the value in
STK_PTR. Output node FL passes power when PTR = LEN, firing the FULL coil. No further data
from P_CODE can be added to the table without first copying data out, using the FIFO_RD

function.
4.9.5 LIFO Read
l-;!l‘JD The Last-In-First-Out (LIFO) Read (LIFO_RD) function moves = Mnemonics:
| piwr [data out of tables. Values are always moved out of the topof LIFO_RD_DINT
7 the table. If the pointer reaches the last location and the | |rFo RD DWORD
-TB EM[| -

table becomes full, LIFO_RD must be used to remove the LIFO RD INT

I — entry at the p0|'nter Ioc'atlon a'nd d'ecrem.ent the pointer by LIFO_RD_UINT
one. LIFO_RD is used in conjunction with the LIFO_WRT LIFO RD WORD
function, which increments the pointer and writes entries - -

into the table.

1. LIFO_RD copies data indicated by the pointer to output parameter Q. Additional
program logic must then be used to place the data in the input reference.

2. LIFO_RD decrements the pointer by one.

3. Steps 1and 2 are repeated each time the instruction is executed, until the table is
empty (PTR = LEN).

The pointer does not wrap around when the table is full.

When LIFO_RD receives power flow, the data at the pointer location is copied to output Q,
then the pointer is decremented. If this causes the pointer location to become 0, the output
EM is set ON, i.e., EM indicates whether the table is empty. If the table is empty when
LIFO_RD receives power flow, no read occurs. The pointer always indicates the last item
entered into the table.

LIFO_RD passes power to the right if the pointer was in range for an element to be read.

Note: ALIFOtableis a stack. A FIFO table is a queue.

Ladder Diagram (LD) Programming 191

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.9.5.1 Operands for LIFO Read
Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For example,
LIFO_RD_DINT requires TB and Q to be DINT variables.
Parameter Description Allowed Operands Optional
Length (??) 1<Llength<32,767. Constant No
TB (must be the |The elements in the table All except constants No
same type as Q)
PTR Pointer. Index of the next|All except constants, S - SC, and|No
element to read. data flow
EM Energized when the last element|Power flow No
of the table is read
Q (must be the The element read from the table |All except constants and S. SA,|No
same type as TB) SB, SC allowed only for WORD,
DWORD.
4.9.5.1.1 Example for LIFO Read
Figure 155
PACK_IT LIFO
|| -
WORD
100 EMPTY
PRODUCT —TE EM|—— }—i
STE_PTIR —|FTR (O CART
PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input PACK_IT
is ON, the data item at the top of the table is copied into the reference indicated by the
nickname CART. The reference identified by STK_PTR contains the table pointer. Output coil
EMPTY indicates when the table is empty.
4.9.6 LIFO Write
LIFO The Last-In-First-Out (LIFO) Write (LIFO_WRT) function ~Mnemonics:
o I?Inlrl' — increments the table pointer by one and then adds an L |FO_WRT_DINT
22 entry at the new pointer location in a table. Values are | |ro WRT_DWORD
Jdre b always moved in at the top of the table. If the pointer LIFO WRT INT
reaches the last location and the table becomes full, LIFO_WRT_UINT
Jore LIFO_WRT cannot add further values. LIFO_RD must LIFO WRT WORD
then be used to remove the entry at the pointer - -
location and decrement the pointer by one.
—IN

1.

LIFO_WRT increments the table pointer by one.

LIFO_WRT copies data from input parameter IN to the position in the table

indicated by the pointer. (It writes over any value currently at that location.)
Additional program logic must then be used to place the data in the input
reference.

Ladder Diagram (LD) Programming

192

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

3. Steps1and 2 are repeated each time LIFO_WRT is executed, until the table is full
(PTR=LEN).

The pointer does not wrap around when the table is full.

When LIFO_WRT receives power flow, the pointer increments by 1; then the new data is
written at the pointer location. If the pointer was already at the last location in the table, no
datais written and LIFO_WRT does not pass power to the right. The pointer always indicates
the last item entered into the table. If the table is full, it is not possible to add more entries
to it.

LIFO_WRT passes power to the right after a successful execution (PTR < LEN).

Note ALIFO tableis a stack. A FIFO table is a queue.

4.9.6.1 Operands for LIFO Write

Note Foreach mnemonic, use the corresponding data type for the TB and IN operands. For
example, LIFO_WRT_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional
Length (??) 1<length<32,767. Constants No
TB (must bethe |The elements in the table |All except constants, S, data flow. SA |No
same type as IN) - SC allowed only for WORD,
DWORD.
PTR Pointer. Index of the next |All except constants, S - SC, and data [No
element to write. flow

IN (must be the The element towriteto |All. S - SC allowed only for WORD, |No

same type as TB) [the table DWORD
FL Energized when IN is All No
written to the last element
of the table
4.9.6.1.1 Example for LIFO Write
Figure 156
STORE LIFO
p WERT |
L WORD
100 FOLL

PRODUCT —TB FLI—{ }—i
STE_PTR —FIR

MEW_ITM —{IN

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input STORE is
ON, a data item from NEW_ITEM is copied to the table location pointed to by the value in
STK_PTR. Output FL passes power when PTR = LEN, firing the FULL coil. No further data from
NEW_ITEM can be added to the table without first copying data out, using the LIFO_RD
function.

Ladder Diagram (LD) Programming 193

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.9.7 Search

Figure 157

SEARCH
GE
BYTE

2

—AR FDf-

INX ONX[—

—IN

When the Search function receives power, it searches the specified memory block for a
value that satisfies the search criteria. For example, SEARCH_GE_DWORD searches for a
DWORD that is greater than or equal to the specified value (the IN operand).

Search can evaluate six different relationships for six data types, for a total of thirty-six

mnemonics.
4.9.7.1 Search Relationships:

SEARCH_EQ_ searches for a value of the specified data type equal to the IN operand.
SEARCH_GE_ searches for a value of the specified data type greater than orequal to IN.
SEARCH_GT_ searches for a value of the specified data type greater than IN.
SEARCH_LE_ searches for a value of the specified data type less than or equal to IN.
SEARCH_LT_ searches for a value of the specified data type less than IN.
SEARCH_NE_ searches for a value of the specified data type that is not equal to IN.

Data types:

BYTE, DINT, DWORD, INT, UINT, WORD

Searching begins at AR+INX, where AR is the starting address and INX is the index value into
the memory block. The search continues either until a register that satisfies the search
criteria is found or until the end of the memory block is reached.

o Ifaregisteris found, the Found Indication (FD) is set ON and the Output Index (ONX) is
set to the relative position of this register within the block.

e Ifnoregisteris found before the end of the block is reached, the Found Indication (FD) is
set OFF and the Output Index (ONX) is set to zero.

The input index (INX) is zero-based, that is, 0 the means first reference, whereas the output
index (ONX) is one-based, that is, 1 means the first reference.

The valid values for INX are 0 to (Length - 1). The valid values for ONX are 1 to Length.

INX should be set to zero to begin searching at the memory block's first register. This value
increments by one at the time of execution. If the value of input INX is out-of-range,
(<0or>Length-1), INXis set to the default value of zero.

Ladder Diagram (LD) Programming 194

CPU Programmer’s Reference Manual

GFK-2950G

4.9.7.2

Section4
June 2020

SEARCH passes power flow to the right when it performs without error. If INX is out of range,
SEARCH does not pass power flow to the right.

Operands for the Search Function

Note:

example, SEARCH_EQ_BYTE requires AR and IN to be BYTE variables.

For each mnemonic, use the corresponding data type for the AR and IN operands. For

Parameter

Description

Allowed
Operands

Optional

Length (??)

The number of registers starting at AR
that make up the memory block to
search. 1 <length < 32,767 8-bit or
16-bit registers.

Constants

No

AR (must be the same
type as IN)

The starting address of the memory
block to search; the address of the first
register in the memory block.

All except constants

No

INX

The zero-based index into the memory
block at which to begin the search.
Zero points to the first reference.

Valid range: 0 < INX < (Length-1).

If INXis out of range, it is set to the
default value of 0.

All except constants

No

IN (must be the same
type as AR)

The value that the search is based on.
For example:

SEARCH_GT_DINT searches for a DINT
value that is greater than IN.
SEARCH_NE_UINT searches for a UINT
value that is not equal to IN.
SEARCH_GE_WORD searches fora
WORD value that is greater than or
equal to IN.

All

No

ONX

The one-based position within the
memory block of the search target. A
value of 1 point to the first reference.

Valid range: 1 <ONX < Length

dataflow,,Q,M, T,
G,R,P, L, AlLAQ

No

FD

Found indicator. This power flow
indicator is energized when a register
that satisfies the search criteria is
found and the function was successful.

Power flow

No

Ladder Diagram (LD) Programming

195

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.9.7.2.1 Example for the Search Function
Figure 158
V_I00001 SEARCH
|} EQ INT
16 V_M00001

v_a10001 AR FD——{ }—1

V_A00001 —{INX ONXI— %_AQ0001

0 —IN

To search the memory block %AlI00001 - %AI00016, AR is set as %Al00001 and Length is set
as 16. The values of the 16 registers are 100, 20, 0, 5, 90, 200, 0, 79, 102, 80, 24, 34,987, 8,
0, and 500. Initially, the search index into AR, %¥AQ0001, is 5. When power flow input is ON,
each scan searches the memory block looking for a match to the IN value of 0. The first scan
starts searching at A100006 and finds a match at %Al00007, so FD turns ON and %AQ00001
becomes 7. The second scan starts searching at %AI00008 and finds a match at %Al00015,
so FD remains ON and %AQ0001 becomes 15. The next scan starts at %Al00016. Since the
end of the memory block is reached without a match, FD is set OFF and %$AQ0001 is set to
zero. The next scan starts searching at the beginning of the memory block.

4.9.8 Sort

SORT When it receives power flow, the SORT function sorts the Mnemonics:
—| INT | elements of the memory block 'IN' in ascending order. The SORT_INT
2 output memory block Q conte'uns integ']e'rs that give the index SORT_UINT
Jx ak- that the sorted elements had in the original memory block or SORT_WORD

list. Q is the same size as IN. It also has a specification (LEN) of
the number of elements to be sorted.

SORT operates on memory blocks of no more than 64 elements. When EN is ON, all the
elements of IN are sorted into ascending order, based on their data type. The array Q is also
created, giving the original position that each sorted element held in the unsorted array. OK
is always set ON.

Notes The SORT function is executed each scan it is enabled. Do not use the SORT function in a
timed or triggered input program block.

Ladder Diagram (LD) Programming 196

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.9.8.1 Operands

Note: For each mnemonic, use the corresponding data type for the IN and Q operands. For
example, SORT_INT requires IN and Q to be INT variables.

Parameter |Description Allowed Operands |Optional
Length (??) The number (1—64) of elements that Constants No
make up the memory block to sort.
IN The memory block that contains the All except data flow, S, No
elements to sort. After the sort, IN constants. SA - SCvalid

contains the elements in the sorted order. |only for WORD type

Q (must be the |An array of indexes that gives the position |All except S-SCand No
same type as IN) |of the sorted elements in the original constants
memory block

4.9.8.1.1 Example
Figure 159
V_Qooo14 LIFO
| WET |
UINT
5 SOET | V_000025
PLIST —TE FL UINT | (}—
5
¥ Logost —|PTR PLIST —{IN Q- PPOSK

V_100017 —|IN

New part numbers (%100017 - %100032) are pushed onto a parts array PLIST every time
%Q00014 is ON. When the array is filled, it is sorted and the output %$Q00025 is turned on.
The array PPOSN then contains the original position that the now-sorted elements held
before the sort was done on PLIST.

If PLIST were an array of five elements and contained the values 25, 67, 12, 35, 14 before the
sort, then after the sort it would contain the values 12, 14, 25, 35, 67. PPOSN would contain
thevalues 3,5, 1,4, 2.

49.9 Table Read

TBL RD The Table Read (TBL_RD) function sequentially reads values Mnemonics:

- DINT in a table. When the pointer reaches the end of the table, it TBL_RD_DINT

7 wraps around to the beginning of the table. (TBL_RD is like Tg| Rp pPWORD

™ EMF FFO_RD with a wrap-around.) TBL_RD_INT
Lo ol TBL_RD_UINT
TBL_RD_WORD

When TBL_RD receives power flow:

1. TBL_RD increments the pointer by one.

2. TBL_RD copies data indicated by the pointer to output parameter Q. Additional
program logic must then be used to capture the data from the output reference.

Ladder Diagram (LD) Programming 197

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

3. Steps 1and 2 are repeated each time the instruction is executed, until the end of
the table is reached (PTR=the length specified in Length). When the end of the
table is reached, the pointer wraps around to the beginning of the table.

When TBL_RD receives power flow, the pointer (PTR) increments by one. If this new pointer
location is the last item in the table, the output EM is set ON. The next time TBL_RD
executes, PTR is automatically set back to 1. After PTR is incremented, the content at the
new pointer location is copied to output Q.

TBL_RD always passes power to the right when it receives power.

Note: The TBL_RD and TBL_WRT functions can operate on the same or different tables. By
specifying a different reference for the pointer, these functions can access the same data
table at different locations or at different rates.

4.9.9.1 Operands

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For
example, TBL_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional
Length 1<Llength<32,767 Constants No
TB (must bethe |The elements in the All except constants No

sametypeasQ) [table

PTR Pointer. Index of the next|All except data flow, S - SC, No
element. constants

EM Energized when the last [Power flow No
element of the table is
read

Q (must be the The element read from |All except constants, S. SA, SB, |No

same type as TB) [the table SCallowed only for WORD,
DWORD
4.9.9.1.1 Table Read Example
Figure 160
V_M00346 TEL RD
|} INT -
2 V_M01001

WIDGETS —{TE EM——{ —1

v Lot — FTR O mEM_cT

WIDGETS is a table with 20 integer elements. When the enabling input %M00346 is ON, the
pointer increments and the contents of the next element of the table are copied into
ITEM_CT. %L00001 functions as the pointer into the data table. ¥M01001 is used to signal
when all items of the data table have been accessed.

Ladder Diagram (LD) Programming 198

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.9.10 Table Write

1o L The Table Write (TBL_WRT) function sequentially updates Mnemonics:

e values in a table that never becomes full. When the pointer TBL_WRT_DINT

e R (PTR) reaches the end of the table, it automatically returns to Tg| WRT DWORD

- the beginning of the table. TBL WRT INT

. TBL_WRT_UINT

TBL_WRT_WORD

1. TBL_WRT increments the pointer by one.

2. TBL_WRT copies data from input parameter IN to the position in the table
indicated by the pointer. (It writes over any value currently at that location.)
Additional program logic must then be used to place the datain the input

reference.

3. Steps1and 2 are repeated each time the instruction is executed, until the table is
full (PTR=LEN). When the table is full, the pointer wraps around to the beginning

of the table.

Note: The TBL_WRT and TBL_RD functions can operate on the same or different tables. By
specifying a different reference for the pointer, these functions can access the same data

table at different locations or at different rates.

When TBL_WRT receives power flow, the pointer (PTR) increments by 1. If this new pointer
location is the last item in the table, the output FL is set to ON. The next time TBL_WRT
executes, PTR is automatically set back to 1. After incrementing PTR, TBL_WRT writes the
content of the input reference to the current pointer location, overwriting data already

stored there.

TBL_WRT always passes power to the right when it receives power.

Note: TBL_WRT is like FIFO_WRT with a wrap-around.

4.9.10.1 Operands

Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For
example, TBL_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional
Length 1<Llength<32,767. Constants No
TB (must be the same |The elements in the table All except S, constants, data No
data type as IN) flow. SA - SC allowed only for
WORD, DWORD
PTR Pointer. Index of the next All except constants, data flow, [No
element. %S - %SC
IN (must be the same [The element to write tothe [All. %S - %SC allowed only for No
data type as TB) table WORD, DWORD
Ladder Diagram (LD) Programming 199

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
Parameter Description Allowed Operands Optional
FL Energized when IN is written |Power flow No
to the last element of the
table
4.9.10.1.1 Table Write Example
Figure 161
V_I0o012 TBL
|} WA -
INT

20 V_Mo01001

WIDGETS —TE FL}—{ }—i

¥ Laoea —FIR

V_P00077 —{IN

WIDGETS is a table with 20 integer elements. When the enabling input %100012 is ON, the
pointer increments and the contents of ¥P00077 are written into the table at the pointer
location. %L00001 functions as the pointer into the data table.

4.10 Math Functions

Your program may need to include logic to convert data to a different data type before using
a Math or Numerical function. The description of each function includes information about
appropriate data types. Refer to the Conversion Functions section to understand how to
convert one data type to a different data type.

Mnemonics

ABS_DINT, ABS_INT,
ABS_REAL, ABS_LREAL

Function Description

Absolute Value Finds the absolute value of a double- precision integer
(DINT), signed single-precision integer (INT), or
floating-point (REAL or LREAL) value. The mnemonic

specifies the value's data type.

MUL_LREAL, MUL_UINT

MUL_MIXED, MUL_REAL,

Add ADD_DINT, ADD_INT, Addition. Adds two numbers.
ADD_REAL, ADD_LREAL,
ADD_UINT
Divide* DIV_DINT, DIV_INT, Division. Divides one number by another and outputs
DIV_MIXED, DIV_REAL, the quotient.
DIV_LREAL, DIV_UINT
Note: Take care to avoid Overflow conditions when
performing divisions.
Modulus MOD_DINT, MOD_INT, Modulo Division. Divides one number by another and
MOD_UINT outputs the remainder.
Multiply* MUL_DINT, MUL_INT, Multiplication. Multiplies two numbers.

Note: Take care to avoid Overflow conditions when
performing multiplications.

4To avoid Overflows when multiplying or dividing 16-bit numbers, use the Conversion Functions to convert the numbers to a 32-bit data

type.
Ladder Diagram (LD) Programming

200

CPU Programmer’s Reference Manual

GFK-2950G

4.10.1

4.10.2

4.10.2.1

4.10.2.1.1

Section 4
June 2020
Function Mnemonics Description
Scale SCALE Scales an input parameter and places the resultin an
output location.
Subtract SUB_DINT, SUB_INT, Subtraction. Subtracts one number from another.
SUB_REAL, SUB_LREAL,
SUB_UINT

Overflow

When an operation results in overflow, there is no power flow.

If an operation on signed operands (INT, DINT, REAL) results in overflow, the output
reference is set to its largest possible value for the data type. For signed numbers, the sign
is set to show the direction of the overflow. If signed or double precision integers are used,
the sign of the result for DIV and MUL functions depends on the signs of 11 and I12.

Maximum | MAXINT16 Maximum signed 16-bit 7FFF hex 32,767

Values MAXUINT16 | Maximum unsigned 16-bit | FFFF hex 65,535
MAXINT32 Maximum signed 32-bit 7FFFFFFF hex 2,147,483,647

Minimum | MININT16 Minimum signed 16-bit 8000 hex -32,768

Values MININT32 Minimum signed 32-bit 80000000 hex | -2,147,483,648

If an operation on unsigned operands (UINT) results in overflow or underflow, the output
value wraps around. For example, the ADD_UINT operation, 65535+16, yields a result of 15.

Absolute Value

ABS When the function receives power flow, it places the Mnemonics:
-| DINT | absolute value of input IN into output Q. ABS_DINT
ABS_INT
diw ok ABS_REAL
ABS_LREAL

The function outputs power flow, unless one of the following conditions occurs:
e ForINT type, INis -32,768.

e ForDINT type, INis -2,147,483,648.

o For REAL or LREAL type, IN is NaN (Not a Number).

Operands
Parameter Description Allowed Operands Optional
IN (must be same type as Q) |The value to process. All except S, SA, SB, SC No

Q (must be same type as IN) |The absolute value of IN. [All except S, SA, SB, SCand |No
constant

Example
The absolute value of -2,976, which is 2,976, is placed in %R00010:

Figure 162

Ladder Diagram (LD) Programming 201

CPU Programmer’s Reference Manual

GFK-2950G

4.10.3

4.10.3.1

Section4
June 2020
AES INT
2976 —{IN QF ¥_R00010
ADD When the ADD function receives power flow, it adds the two Mnemonics:
-{ DINT L operands IN1 and IN2 of the same data type and stores the sum ADD_DINT
in the output variable assigned to Q, also of the same data type. ADD_INT
=Nl afF ADD_REAL
ADD_LREAL
—{IN2 ADD_UINT

The power flow output is energized when ADD is performed, unless an invalid operation or

Overflow occurs. (For more information, refer to the section on Overflow

Mnemonic [Operation Displays as

ADD_INT Q(16-bit) = IN1(16-bit) + IN2(16-bit) |base 10 number with sign, up to 5 digits long

ADD_DINT |Q(32-bit) =IN1(32-bit) + IN2(32-bit) |base 10 number with sign, up to 10 digits long

ADD_REAL [Q(32-bit) =IN1(32-bit) + IN2(32-bit) |base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

ADD_LREAL [Q(64-bit) =IN1(64-bit) + IN2(64-bit) |base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

ADD_UINT |Q(16-bit) =IN1(16-bit) + IN2(16-bit) |base 10 number, unsigned, up to 5 digits long

Operands of the ADD Function

signed operands results in Overflow, Qis
set to the largest possible value and
there is no power flow.

If an ADD_UINT operation results in
Overflow, Q wraps around.

constant.

Operand |Description Allowed Operands Optional
INT The value to the left of the plus sign (+)|All except S, SA, SB, SC No
in the equation INT+IN2=Q.
IN2 The value to the right of the plus sign (+)|All except S, SA, SB, SC No
in the equation INT+IN2=Q.
Q The result of INT+IN2. If an ADD of|All exceptS, SA, SB, SCand [No

Ladder Diagram (LD) Programming

202

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.10.3.1.1 Example1 for ADD

Figure 163

| Y 100000 [ADD ¥_Q00001

{ | 1T {

¥_R00002 —{IN1 Qf %_R00002

1—IN2

The first example is a failed attempt to create a counter circuit that would count the number
of times switch %100001 closes. The running total is stored in register ¥R00002. The intent
of this design is that when %10001 closes, the ADD instruction should add one to the value
in %R00002 and place the new value right back into %R0002. The problem with this design
is that the ADD instruction executes once every PLC scan while %I0001 is closed. For
example, if %10001 stays closed for five scans, the output increments five times, even
though %100001 only closed once during that period.

4.10.3.1.2 Example2 for ADD

Figure 164
v_100001 V_M00001
| | {1)}—
V_M00001 [ADD V_Qo0001
|| TNt { }—

V_Ro0000z —IN1 OF ¥_R00002

1—IN2

To correct the above problem, the enable input to the ADD instruction should come from a
transition (one-shot) coil, as shown below. In the improved circuit, the %10001 input switch
controls a transition coil, ¥M0001, whose contact turns on the enable input of the ADD
function for only one scan each time contact %100001 closes. For the %M00001 contact to
close again, contact %10001 has to open and close again.

Note: IfINT and/or IN2 is NaN (Not a Number), ADD_REAL passes no power flow.

Ladder Diagram (LD) Programming 203

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.10.4 Divide
l?rlu"rr When the DIV function receives power flow, it divides the Mnemonics:

operand IN1 by the operand IN2 of the same datatypeasINTand DIv_DINT
stores the quotient in the output variable assigned to Q, also of DIV_INT

Hm1 af
the same data type as IN1 and IN2. DIV_MIXED
-z The power flow output is energized when DIV is performed, DIV_REAL
unless an invalid operation or Overflow occurs. (For more DIV_LREAL
information, refer to the section on Overflow.) DIV_UINT
Notes:
. DIV rounds down; it does not round to the closest integer. For example,
24DIV5=4.
° DIV_MIXED uses mixed data types.
. Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for DIV:

e Any number divided by 0. This operation yields a result of 65535.
e oodivided by«
e I1and/orl2is NaN (Not a Number)

Mnemonic |Operation Displays as

DIV_UINT Q(16-bit) =IN1(16-bit) [IN2(16-bit) [base 10 number, unsigned, up to 5 digits long
DIV_INT Q(16-bit) =IN1(16-bit) / IN2(16-bit) [base 10 number with sign, up to 5 digits long
DIV_DINT Q(32-bit) =IN1(32-bit) [IN2(32-bit) |base 10 number with sign, up to 10 digits long
DIV_MIXED |Q(16-bit) =IN1(32-bit) / IN2(16-bit) [base 10 number with sign, up to 5 digits long
DIV_REAL Q(32-bit) =IN1(32-bit) / IN2(32-bit) [base 10 number, sign and decimals, up to 8

digits long (excluding the decimals)

DIV_LREAL Q(64-bit) = IN1(64-bit) [IN2(64-bit) [base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

Ladder Diagram (LD) Programming 204

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.10.4.1 Operands for the DIV Function

Parameter |Description Allowed Operands |Optional

INT Dividend: the value to be divided; shown to|All except S, SA, SB,SC |No
the left of DIV in the equation INT DIV
IN2=Q.

IN2 Divisor: the value to divide into IN1; shown|All except S, SA, SB, SC |No
to the right of DIV in the equation IN1 DIV
IN2=Q.

Q The quotient of IN1/IN2. If a DIV operation|All except S, SA, SB,SC |No
on signed operands results in Overflow, Q is|and constant

set to the largest possible value and there is
no power flow.

If a DIV_UINT operation results in Overflow,
Q wraps around.

4.10.4.2 DIV_MIXED Operands

Parameter (Description Allowed Operands |Optional

IN1 Dividend: the value to be divided; shown tolAll except S, SA, SB, SC |No
the left of DIV in the equation IN1 DIV IN2=Q.

IN2 Divisor: the value to divide into IN1; shown to|All except S, SA, SB, SC |No
the right of DIV in the equation INT DIV
IN2=Q.

Q The quotient of IN1/IN2. If an Overflow|All exceptS, SA, SB, SC [No
occurs, the result is the largest value with thefand constant
proper sign and no power flow.

4.10.4.2.1 DIV_MIXED Example

DIV_DINT can be used in conjunction with a MUL_DINT function to scale a £10 volt input to
+25,000 engineering units. Refer to Example - Scaling Analog Input Values.

4.10.5 Modulus

MOD When the Modulo Division (MOD) function receives power Mnemonics:
-{ DINT flow, it divides input IN1 by input IN2 and outputs the MOD_DINT
remainder of the division to Q. MOD_INT
M ar MOD_UINT
—IN2

All three operands must be of the same data type. The sign of the result is always the same
as the sign of input parameter IN1. Output Q is calculated using the formula:

Q=IN1-((IN1DIVIN2) x IN2)
where DIV produces an integer number.

The power flow output is always ON when the function receives power flow, unless there is
an attempt to divide by zero. In that case, the power flow output is set to OFF.

Ladder Diagram (LD) Programming 205

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.10.5.1 Operands for Modulus Function

Parameter |Description Allowed Operands Optional

IN1 Dividend: the value to be divided to obtain|All except S, SA, SB, SC No
the remainder; shown to the left of MOD in
the equation INT MOD IN2=Q.

IN2 Divisor: the value to divide into IN1; shown|All except S, SA, SB, SC No
to the right of MOD in the equation IN1
MOD IN2=Q.
Q The remainder of INT/IN2. All except S, SA, SB, SCand |No
constant

4.10.6 Multiply

i il I When the MUL function receives power flow, it multiplies the Mnemonics:
two operands IN1 and IN2 of the same data type and stores the MUL_DINT

dmi ok resultin the output variable assigned to Q, also of the same data MUL_INT
type. MUL_MIXED

e The power flow output is energized when the function is MUL_REAL

performed, unless an invalid operation or Overflow occurs. (For MUL_LREAL
more information, refer to the section on Overflow) MUL_UINT

Note: MUL_MIXED uses mixed data types. Be careful to avoid overflows.
The following REAL and LREAL operations are invalid for MUL:

) OXoo

e I1and/or12is NaN (Nota Number).

Mnemonic |Operation Displays as
MUL_INT Q(16-bit) = INT(16-bit) x IN2(16-bit) |base 10 number with sign, up to 5 digits long
MUL_DINT Q(32-bit) =IN1(32-bit) x IN2(32-bit) [base 10 numberwith sign, up to 10 digitslong

MUL_REAL Q(32-bit) = IN1(32-bit) x IN2(32-bit) [base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

MUL_LREAL [Q(64-bit) = IN1(64-bit) x IN2(64-bit) |base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

MUL_UINT Q(16-bit) = IN1(16-bit) x IN2(16-bit) [base 10 number, unsigned, up to 5 digits long
MUL_MIXED |Q(32-bit) = IN1(16-bit) x IN2(16-bit) [base 10 numberwith sign, up to 10 digitslong

4.10.6.1 Operands for Multiply

Parameter |Description Allowed Operands Optional
IN1 The first value to multiply; the value to the|All except S, SA, SB, SC No

left of the multiply sign (x) in the equation

INT x IN2=Q.
IN2 The second value to multiply; the value to|All except S, SA, SB, SC No

the right of the multiply sign (x) in the

equation IN1T x IN2=Q.

Ladder Diagram (LD) Programming 206

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Parameter |Description Allowed Operands Optional

Q The result of INT x IN2. If a MUL operation on|All except S, SA, SB, SCand|No
signed operands results in Overflow, Q is set|constant
to the largest possible value and there is no
power flow.

If aMUL_UINT operation results in Overflow,
Q wraps around.

4.10.6.1.1 Example - Scaling Analog Input Values

A common application is to scale analog input values with a MUL operation followed by a
DIV and possibly an ADD operation. A 0 to +10 volt analog input will place values of 0 to
+32,000 in its corresponding %Al input register. Multiplying this input register using an
MUL_INT function will result in an Overflow since an INT type instruction has an input and
output range of 32,767 to -32,768. Using the %Al value as in input to a MUL_DINT also does
not work as the 32-bit IN1 will combine 2 analog inputs at the same time. To solve this
problem, you can move the analog input to the low word of a double register, then test the
sign and set the second register to 0 if the sign tests positive or -1 if negative. Then use the
double register just created with a MUL_DINT which gives a 32-bit result, and which can be
used with a following DIV_DINT function.

For example, the following logic could be used to scale a +10 volt input %Al1 to +25000
engineering units in %R5.

Figure 165
#ALW_ON [MOVE MOVE
|} INT INT - {.—1
1 1
AIOODN —{IN QF R0O0OO! 0—IN O Ro000Z
LT INT
1.1
1+T
MOVE
INT |

RO0OOD1 —IN1 O

0 —IN2 -1 —IN Q- RO0002
#ALW_ON MUL DIV
I} DINT DINT |
RO00O01 —{IN1 QF ROO0OO3 RO000OZ —{IN1 Qr RO000S
25000 —|IN2 32000 —{IN2

Ladder Diagram (LD) Programming 207

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

An alternate, but less accurate, way of programming this circuit using INT values involves
placing the DIV_DINT instruction first, followed by the MUL_DINT instruction. The value of
IN2 for the DIV instruction would be 32, and the value of IN2 for the MUL would be 25. This
maintains the scaling proportion of the above circuit and keeps the values within the
working range of the INT type instructions. However, the DIV instruction inherently discards
any remainder value, so when the DIV output is multiplied by the MUL instruction, the error
introduced by a discarded remainder is multiplied. The percent of error is non-linear over
the full range of input values and is greater at lower input values.

By contrast, in the example above, the results are more accurate because the DIV operation
is performed last, so the discarded remainder is not multiplied. If even greater precision is
required, substitute REAL type math instructions in this example so that the remainder is
not discarded.

4.10.7 Scale

[SCALE DINT | When the SCALE function receives power flow, it scales Mnemonics:
] N the input operand IN and places the result in the output SCALE_DINT
—m\ o variable assigned to output operand OUT. The power gcALE INT
o ﬂ(.)W output is energized when SCALE is performed SCALE_DINT
o without Overflow. SCALE_UINT
— oo
—IN

4.10.7.1 Operands

Parameter | Description Allowed Operands |Optional

IHI (Inputs High) Maximum input value |All exceptS, SA, SB,SC |No
(module-related). The upper limit of the
unscaled data. IHl is used with ILO, OHI and
OLO to calculate the scaling factor applied
to the input value IN.

ILO (Inputs Low) Minimum input value |All exceptS, SA, SB,SC |No
(module-related). The lower limit of the
unscaled data. Must be the same data type
as [HI.

OHlI (Outputs High) Maximum output value. | All except S, SA, SB, SC | No
The upper limit of the scaled data. Must be
the same data type as IHI. When the IN
inputis at the IHIvalue, the OUT value s the
same as the OHl value.

OoLO (Outputs Low) Minimum output value. The | All except S, SA, SB, SC | No
lower limit of the scaled data. Must be the
same data type as IHI. When the IN input is
at the ILO value, the OUT value is the same
as the OLO value.

Ladder Diagram (LD) Programming 208

CPU Programmer’s Reference Manual

GFK-2950G

4.10.7.1.1

4.10.8

Section 4

June 2020

Parameter |Description Allowed Operands | Optional
IN (INput value) The value to be scaled. Must | All except S, SA, SB, SC | No

be the same data type as IHI.
ouTt (OUTput value) The scaled equivalent of | All exceptS, SA, SB, SC | No

the input value. Must be the same data

type as [HI.
Example
Figure 166

V_Iooit [SCALE

— —— INT L

V_Fooz ={ILO
V_Riiizg —{ Ol

V_B00ir) < LL0

V_ALDOIT —IN

V_EoOE) —|1El OUT— WAoo

In the example at right, the registers %R0120 through %R0123 are used to store the high
and low scaling values. The input value to be scaled is analog input %AI0017. The scaled
output data is used to control analog output $AQ0017. The scaling is performed whenever

%10001 is ON.

Subtract

SOB
DINT

1
T

IM a

—IN2

When the SUB function receives power flow, it subtracts the
operand IN2 from the operand IN1 of the same data type as IN2
and stores the result in the output variable assigned to Q, also of

the same data type.

Mnemonics:
SUB_DINT
SUB_INT
SUB_REAL
SUB_LREAL
SUB_UINT

The power flow output is energized when SUB is performed, unless an invalid operation or
Overflow occurs. (For more information, refer to the section on Overflow)

If a SUB_UINT operation results in a negative number, Q wraps around, yielding a result that
is the highest possible value (65535) minus the absolute value of the difference -1.

The following REAL and LREAL operations are invalid for SUB:

o (o0)—(£e)
e I1and/or12isNaN (NotaNumber)
Mnemonic (Operation Displays as
SUB_INT Q(16-bit) = INT(16-bit) - IN2(16-bit) |base 10 number with sign, up to 5 digits long
SUB_DINT |Q(32-bit) =IN1(32-bit) - IN2(32-bit) |base 10 number with sign, up to 10 digits
long
SUB_REAL |Q(32-bit) =IN1(32-bit) - IN2(32-bit) |base 10 number, sign and decimals, up to 8

digits long (excluding the decimals)

Ladder Diagram (LD) Programming 209

CPU Programmer’s Reference Manual

GFK-2950G

4.10.8.1

4.11

Section 4
June 2020
Mnemonic |Operation Displays as
SUB_LREAL |Q(64-bit) = IN1(64-bit) — IN2(64-bit) |base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)
SUB_UINT |Q(16-bit) = IN1(16-bit) — IN2(16-bit) |base 10 number, unsigned, up to 5 digits
long
Operands for Subtract
Parameter |Description Allowed Optional
Operands
INT The value to subtract from; the value to the left of the|All except S, SA, SB, |No
minus sign (-) in the equation INT-IN2=Q. SC
IN2 The value to subtract from INT; the value to the right|All except S, SA, SB, [No
of the minus sign (-) in the equation IN1-IN2=Q. SC
Q The result of INT-IN2. If a SUB operation on signed|All except S, SA, SB, [No
operands results in underflow, Qs set to the smallest|SC and constant
possible value and there is no power flow.
If a SUB_UINT operation results in Overflow, Q wraps
around. For example,
The SUB_UINT operation 600 - 601 = -1 sets Q to
65535
The SUB_UINT operation 600 - 602 = -2 sets Q to
65534

Program Flow Functions

The program flow functions limit program execution or change the way the CPU executes
the application program.

Function Mnemonic |Description

Argument ARG_PRES Determines whether an input or output parameter value was present

Present when the function block instance of the parameter was invoked. For
example, a parameter can be optional (pass by value).

Call CALL Causes program execution to go to a specified block.

Comment COMMENT |Places a text explanation in the program.

End Master |[ENDMCRN [Nested End Master Control Relay. Indicates that the subsequent logic

Control Relay is to be executed with normal power flow.

End of Logic |END Provides an unconditional end of logic. The program executes from
the first rung to the last rung or the END instruction, whichever is
encountered first.

Jump JUMPN Nested jump. Causes program execution to jump to a specified
location indicated by a LABELN. JUMPN/LABELN pairs can be nested
within one another. Multiple JUMPNs can share the same LABELN.

Label LABELN Nested label. Specifies the target location of a JUMPN instruction.

Ladder Diagram (LD) Programming

210

CPU Programmer’s Reference Manual

GFK-2950G

4.11.1

4.11.1.1

4.11.1.1.1

Section 4
June 2020
Function Mnemonic |Description
Master MCRN Nested Master Control Relay. Causes all rungs between the MCR and
Control Relay its subsequent ENDMCRN to be executed without power flow. Up to
MCRN/ENDMCRN pairs can be nested within one another. All the
MCRNSs share the same ENDMCRN.
Wires H_WIRE Horizontally connects elements of a line of LD logic, to complete the
power flow.
V_WIRE Vertically connects elements of a line of LD logic, to complete the
power flow.

Argument Present

Figure 167

ARG FRES

The ARG_PRES function determines whether an input parameter value was present when
the function block instance of the parameter was invoked. This may be necessary if the

parameter is

optional.

This function must be called from a function block instance or a parameterized block.

The standard output parameter ENO is false only when EN is false.

Operands for ARG_PRES

Parameter

Description

Allowed Operands

Optional

IN

Parameter name. Must be a parameter
of the function block that contains the
ARG_PRES instruction. Cannot be an
array element or structure element. An
alias to a parameter should resolve only
to the parameter name.

All except flow and constants.

No

True if the parameter is present,
otherwise false.

Must be flow in LD. In other
languages all types allowed
except S, SA, SB, SC and
constants.

No

Ladder Diagram (LD) Programming

211

CPU Programmer’s Reference Manual

GFK-2950G

4.11.1.1.2 Example for ARG_PRES

The following sample rung calls the user defined function block, ReadTemp, which has two

parameters, TempVal and Temp1.

Section4
June 2020

Figure 168

CheckTemp

TankTemp ——{TEMPVAL TEM

B4

— TempOul

The function block ReadTemp contains the following logic, which uses an ARG_PRES
function to determine whether a value for TempVal is present. If TempVal does not have a
value, Temp_Pres is OFF and Idle is ON. If a value exists for TempVal, the ARG_PRES function
sets Temp_Pres ON. When Temp_Pres and Switch are both ON, Start is set ON.

Figure 169
Temp_Pres

TempVal —IN Q O

Temp_Pres Idle

7 O

Temp_Pres Switch Start

] |] | f-\

L L] _j

4.11.2 Call

CALL
_{SQUARED |

—m ol

=Nz 0z

Non-parameterized

Parameterized. May call a parameterized external block or a
parameterized block. May have up to 7 input and 8 output parameters.

When the CALL function receives power flow, it causes the logic execution to go
immediately to the designated program block, external C block (parameterized or not), or

parameterized block and execute it. After the block’s execution is complete, control returns
to the point in the logicimmediately following the CALL instruction.

Ladder Diagram (LD) Programming

212

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
Notes:
° A CALL function can be used in any program block, including the _MAIN block, or a
parameterized block. It cannot be used in an external block.
° You cannot call a _MAIN block.
° The called block must exist in the target before making the call.
° There is no limit to the number of calls that can be made from or to a given block.
° You can set up recursive subroutines by having a block call itself. When stack size is

configured to be the default (64K), the PLC guarantees a minimum of eight nested calls
before an Application Stack Overflow fault is logged.

° Each block has a predefined parameter, YO, which the CPU sets to 1 upon each invocation
of the block. YO can be controlled by logic within the block and provides the output status of
the block. When the YO parameter of a Program Block, parameterized block, or external C
block returns ON, the CALL passes power to the right; when it returns OFF, the CALL does not
pass power to the right.

4.11.2.1 Operands for Call

Parameter Description

Block Name (?27?) Block name; the name of the block to transfer to.
You cannot CALL the _MAIN block.
A program block or a parameterized block can call itself.

Ladder Diagram (LD) Programming 213

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Parameter Description

(Parameterized calls only) Notes for External (C) blocks:
e You must define the TYPE, LENGTH, and NAME for each
Input parameters (0 - 7) external C block parameter.

Output parameters (1 - 8) e The valid data type, value range, and memory area for

each parameter are stated in the external block's written
documentation.

eData flow is permitted for any parameter. For additional
information, see the section on External Blocks

e inSection 2.

Notes for Parameterized Blocks:

e You must define the TYPE, LENGTH, and NAME for each
parameter. Valid operands on the CALL instruction include
variables, flow, and indirect references. Input operands can also
be constants.

e If a formal parameter is an array of BOOL type and has a length
evenly divisible by 16, then a variable or array residing in word-
oriented memory can be passed on to the parameterized block as
an operand. For example, if a parameterized block has a formal
parameter Y1 of data type BIT and length 48, you can pass a
WORD array of length 3 to Y1.

e The BOOL parameter YO is automatically defined for all
parameterized blocks and can be used in the parameterized
block's logic. When the parameterized block stops executing and
Y0 is ON, the CALL passes power flow to the right. If YO is OFF, the
CALL passes no power flow.

e A parameterized block is not required to have the same number
of inputs and outputs.

e For additional information, refer to Using Parameters with a
Parameterized Block

e inSection 2.

Ladder Diagram (LD) Programming 214

CPU Programmer’s Reference Manual

GFK-2950G

4.11.2.1.1 Example 1 for Call

Section4
June 2020

Figure 170

caL

Enable c_123

— —

Datai —IN1

Data? —IN2

Date3 —JINZ

oud

ou2

ous

00001

— Datad

— Datas

— Datab

In the example at right, if Enable is set, the C block named C_123 is executed. C_123
operates on the input data located at reference addresses Datal, Data2, and Data 3, and

produces values located at reference addresses Data4, Data5, and Data6. Logic within

C_123 controls the power flow output.

4.11.2.1.2 Example 2 for Call

Figure 171

100004
—

RO0001 —|%

R00002 —8

R00003 —|¢

R00004 —[0

CALL AVG 4

E [— R0O000S

Parameterized blocks are useful for building libraries of user-defined functions. For example,

if you have an equation such as:

E=(A+B+C+D)/4, a parameterized block named AVG_4 could be called as shown in the
example to the right.

Ladder Diagram (LD) Programming

215

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

In this example, the average of the values in R0O0001, R00002, RO0003, and R00004 would
be placed in RO0005.

The logic within the parameterized block would be defined as shown below.

4.11.2.1.3 Logic for AVG_4 Parameterized Block

Figure 172
DD UINT ADD UINT DIVUINT
A —IN1 Q IN1 Q i QA E
B —{IN2 —{iN2 —{IN2
ADD UINT
o —Ni Q
o —{N2

4.11.3 Comment

Figure 173

?w?

The Comment function is used to enter a text explanation in the program. When you insert

first few words are displayed.

Figure 174

| IThis is a comment. Comments have no effect on program execution.

You can set the Comment mode option to Brief or Full.

Note:
e [diting a comment makes the Programmer lose equality.

e Comment text is downloaded to the controller and retrieved upon Logic Upload.

Ladder Diagram (LD) Programming 216

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.11.4 JumpN
@ s Description Always associated with... | Mnemonic
. Nested form of Jump a LABELN instruction JUMPN
instruction.

A JUMPN instruction causes a portion of the program logic to be bypassed. Program
execution continues at the LABELN specified in the same block. Power flow jumps directly
from the JUMPN to the rung with the named LABELN.

When the Jump is active, any functions between the jump and the label are not executed.
All coils between JUMPN and its associated LABELN are left at their previous states. This
includes coils associated with timers, counters, latches, and relays.

Any JUMPN can be either a forward or a backward jump, i.e., its LABELN can be either in a
further or previous rung. The LABELN must be in the same block.

Note: To avoid creating an endless loop with forward and backward JUMPN instructions, a
backward JUMPN should contain a way to make it conditional.

A JUMPN and its associated LABELN can be placed anywhere in a program, if the JUMPN |/
LABELN range:

¢ does not overlap the range of a MCRN | ENDMCRN pair.
e does not overlap the range of a FOR_LOOP [END_FOR pair.
Nothing can be connected to the right side of a JUMPN instruction.

4.11.4.1 Operands

Parameter Description Optional

Label (222?) Label name; the name assigned to the destination LABEL(N). No

411.5 Master Control Relay/End Master Control Relay

Figure 175
2777
| 7
MCRMN

Description Always associated with... Mnemonics
Nested form of the Master an ENDMCRN instruction MCRN
Control Relay
Nested End Master Control an MCRN instruction ENDMCRN
Relay

Ladder Diagram (LD) Programming 217

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.11.5.1 MCRN

An MCRN instruction marks the beginning of a section of logic that will be executed with no
power flow. The end of an MCRN section must be marked with an ENDMCRN having the
same name as the MCRN. ENDMCRNs must follow their corresponding MCRNSs in the logic.

All rungs between an active MCRN and its corresponding ENDMCRN are executed with
negative power flow from the power rail. The ENDMCRN function associated with the MCRN
causes normal program execution to resume, with positive power flow coming from the
power rail.

With a Master Control Relay, functions within the scope of the Master Control Relay are
executed without power flow, and coils are turned off.

Block calls within the scope of an active Master Control Relay will not execute. However, any
timers in the block will continue to accumulate time.

Arung may not contain anything after an MCRN.

Unlike JUMP instructions, MCRNs can only move forward. An ENDMCRN instruction must
appear after its corresponding MCRN instruction in a program.

The following controls are imposed by an MCRN:

e Timersdo notincrement or decrement. TMR types are reset. Foran ONDTR function, the
accumulator holds its value.

o Normal outputs are off; negated outputs are on.

Note: ~ When an MCRN is energized, the logic it controls is scanned and contact status is displayed,
but no outputs are energized. If you are not aware that an MCRN is controlling the logic
being observed, this might appear to be a faulty condition.

An MCRN and its associated ENDMCRN can be placed anywhere in a program, if the MCRN /
ENDMCRN range:

e Is completely nested within another MCRN /| ENDMCRN range, up to a maximum 255
levels of nesting, or is completely outside of the range of another MCRN /| ENDMCRN
range.

e Is completely nested within a FOR_LOOP [END_FOR range or is completely outside of
the range of a FOR_LOOP [END_FOR.

4.11.5.2 EndMCRN

The End Master Control Relay instruction marks the end of a section of logic begun with a
Master Control Relay instruction. When the MCRN associated with the ENDMCRN is active,
the ENDMCRN causes program execution to resume with normal power flow. When the
MCRN associated with the ENDMCRN is not active, the ENDMCRN has no effect.

ENDMCRN must be tied to the power rail; there can be no logic before it in the rung;
execution cannot be conditional.

Ladder Diagram (LD) Programming 218

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

ENDMCRN has a name that identifies it and associates it with the corresponding MCRN(s).
The ENDMCRN function has no outputs; there can be nothing after an ENDMCR instruction
inarung.

4.11.5.2.1 Operands for MCRN/ENDMCRN

The Master Control Relay function has a single operand, a name that identifies the MCRN.
This name is used again with an ENDMCRN instruction. The MCRN has no output.

Parameter |Description Optional
Name The name associated with the MCRN that starts the section of logic. [No
(222?)

4.11.5.2.2 Example of MCRN/ENDMCRN

Figure 176

V_I0002 First_MCRN
—

W_looong Sec_MCRN

— F———MCRN]

Y_10001 _Q0001

| | { —
Yv_10003 V_Q0003

i | {s}—1

I8 Sec_MCRN

it morn

The example at right an MCRN named Sec_MCRN nested inside the MCRN named
First_ MCRN. Whenever the V_I0002 contact allows power flow into the MCRN function,
program execution will continue without power flow to the coils until the associated
ENDMCRN is reached. If the V_I0001 and V_I0003 contacts are ON, the V_QO0001 coil is
turned OFF and the SET coil V_Q0003 maintains its current state.

4.11.6 Wires

Figure 177

Ladder Diagram (LD) Programming

219

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Horizontal and vertical wires (H_WIRE and V_WIRE) are used to connect elements of a line
of LD logic between functions. Their purpose is to complete the flow of logic (power) from
left to right in a line of logic.

A horizontal wire transmits the BOOLEAN ON/OFF state of the element on its immediate left
to the element on its immediate right.

Avertical wire may intersect with one or more horizontal wires on each side. The state of the
vertical wire is the inclusive OR of the ON states of the horizontal wires on its left side. The
state of the vertical wire is copied to all the attached horizontal wires on its right side.

Note: ~ Wires can be used for data flow, but you cannot route data flow leftwards. Nor can two
separate data flow lines come into the left side of the same vertical wire.

4.12 Relational Functions

Relational functions compare two values of the same data type or determine whether a
number lies within a specified range. The original values are unaffected.

Function Mnemonic Description

Compare CMP_DINT Compares two numbers, INT and IN2, of the data type
CMP_INT specified by the mnemonic.

CMP_REAL o IfINT<IN2, the LT output is turned ON.
CMP_LREAL e IfINT=IN2, the EQ output is turned ON.
CMP_UINT « IfINT>IN2, the GT output is turned ON.

Equal EQ_DATA Tests two numbers for equality
EQ_DINT
EQ_INT
EQ_REAL
EQ_LREAL
EQ_UINT

Greater or GE_DINT Tests whether one number is greater than or equal to another
Equal GE_INT
GE_REAL
GE_LREAL
GE_UINT

Greater Than |GT_DINT Tests whether one number is greater than another
GT_INT
GT_REAL
GT_LREAL
GT_UINT

Less or Equal |LE_DINT Tests whether one number is less than or equal to another
LE_INT
LE_REAL
LE_LREAL
LE_UINT

Ladder Diagram (LD) Programming 220

CPU Programmer’s Reference Manual

GFK-2950G

4.12.1

4.12.1.1

Section 4
June 2020
Function Mnemonic Description
Less Than LT_DINT Tests whether one number is less than another
LT_INT
LT_REAL
LT_LREAL
LT_UINT
Not Equal NE_DINT Tests two numbers for inequality
NE_INT
NE_REAL
NE_LREAL
NE_UINT
Range RANGE_DINT Tests whether one number is within the range defined by two
RANGE_DWORD other supplied numbers
RANGE_INT
RANGE_UINT
RANGE_WORD
Compare
Sllg When the Compare (CMP) function receives Mnemonics:
N i power flow, it compares the value IN1 to the value CMP_DINT
i - IN2. CMP_INT
e If IN1T <IN2, CMP energizes the LT (Less CMP_REAL
—IN2 EQ Than) output. CMP_LREAL
) CMP_UINT
oy o IfIN1=IN2, CMP energizes the EQ (Equal)
output.
e If INT > IN2, CMP energizes the GT
(Greater Than) output.
INT and IN2 must be the same data type.

CMP compares data of the following types: DINT, INT, REAL, LREAL, and UINT.

Tip

To compare values of different data types, first use conversion functions to make the types

the same.

When it receives power flow, CMP always passes power flow to the right, unless IN1 and/or

IN2 is NaN (Not a Number).
Operands
Parameter |Description Allowed Operands Optional
INT The first value to compare. All except S, SA, SB, SC No
IN2 The second value to compare. All except S, SA, SB, SC No
LT Output LT is energized when I1 < 12. Power flow No
EQ Output EQ is energized when 1 =12. Power flow No
221

Ladder Diagram (LD) Programming

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

GT Output GT is energized when 11 > 12. Power flow No

Ladder Diagram (LD) Programming 222

CPU Programmer’s Reference Manual

GFK-2950G

4.12.1.1.1

4.12.2

Section4
June 2020
Example
Figure 178
W T0000d CMF
|} UINT |
V_MO00001
SHIPS <IN LT——{ }—i
V_M00002
BOATS —{INz EO— +—1
V_MO0003
aT—i

When %100001 is ON, the integer variable SHIPS is compared with the variable BOATS.
Internal coils M0001, %M0002, and %M0003 are set to the results of the compare.

Equal, Not Equal, Greater or Equal, Greater Than, Less or
Equal, Less Than

Other data types:
EQ ¥E GE GI LE LT DINT
| pmer | _| piwr | _| DINT | DINT J{omer | | B INT
_REAL
-mt o Hm o i af m o -Hm o —qmt o
_LREAL
—Imz —INz —Iz Nz Iz —Inz _UINT

When the relational function receives power flow, it compares input IN1 to input IN2. These
operands must be the same data type. If inputs INT and IN2 are equal, the function passes
power to the right, unless IN1 and/or IN2 is NaN (Not a Number). The following relational
functions can be used to compare two numbers:

Function Definition Relational Statement
EQ Equal INT=IN2
NE Not Equal INT=IN2
GE Greater Than or Equal INT=IN2
GT Greater Than INT>IN2
LE Less Than or Equal INT<IN2
LT Less Than INT<IN2

Note: If an Overflow occurs with a _UINT operation, the result wraps around - refer to the
section on Overflow.

If the _DINT or _INT operations are fed the largest possible value with any sign, they cannot
determine if it is an overflow value. The power flow output of the previous operation would
need to be checked. If an overflow occurred on a previous DINT, or INT operation, the result
was the largest possible value with the proper sign and no power flow.

Ladder Diagram (LD) Programming 223

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
Tip
To compare values of different data types, first use conversion functions to make the types
the same. The relational functions require data to be one of the following types: DINT, INT,
REAL, LREAL, or UINT.
4.12.2.1 Operands
Parameter Description Allowed Operands |Optional
IN1 The first value to be compared; the|All except S, SA, SB,SC |No
value on the left side of the relational
statement.
IN2 The second value to be compared;|All exceptS, SA, SB,SC |No
the value on the right side of the
relational statement. IN2 must be
the same data type as IN1.
Q The power flow. If the relational No
statement is true, Q is energized,
unless IN1 or IN2 is NaN.
EQDATA The EQ_DATA function compares two input variables, INT ~ Mnemonic:
7] B and IN2 of the same data type. If IN1 and IN2 are equal, EQ_DATA
s ol output Q is energized. If they are not equal, Q is cleared.
—f{iH2
4.12.3.1 Operands
Parameter |Description Allowed Operands Optional
IN1 The first value to be compared; |[PACMotion ENUM variable or No
the value on the left side of the |structure variable.
relational statement. For details, refer to Data Types and
Structures in the PACMotion Multi-
Axis Motion Controller User’s
Manual, GFK-24438.
IN2 The second value to be compared;|PACMotion ENUM variable or No
the value on the right side of the [structure variable.
relational statement. IN2 must be
the same data type as IN1.
Q If INT or IN2 is true, Q is energized. [Power flow No

Ladder Diagram (LD) Programming

224

CPU Programmer’s Reference Manual Section 4

GFK-2950G June 2020
4.12.4 Range
lel;l_:irﬁ When the Range function is enabled, it compares the value of Mnemonics:

m B input IN against the range delimited by operands L1 and L2. RANGE_DINT
Either L1 or L2 can be the high or low limit. When L1 <IN< L2 RANGE DWORD

L1 ar f)r L2 <IN < L1, output parameter Q is set ON (1). Otherwise, Q RANGE_INT
de ': Sst OFF(0)- " toutoth iy, VANGELUNT
If the operation is successful, it passes power flow to the right. RANGE_WORD
—IN
4.12.4.1 Operands
Parameter |Description Allowed Operands |Optional
IN The value to compare against the range|All exceptS, SA, SB,SC [No
delimited by L1 and L2. Must be the same data
type as L1 and L2.
L1 The start point of the range. May be the upper|All except S, SA, SB, SC |No
limit or the lower limit. Must be the same data
type as IN and L2.
L2 The end point of the range. May be the lower or|All except S, SA, SB, SC [No
upper limit. Must be the same data type as IN
andL1.
Q If L1 <IN <L2orl2 <IN <L1, Qis energized;|Power flow No
otherwise, Q is off.

4.12.4.1.1 Example

Figure 179
V_100001 [RANGE| V_MO00001
i | 1T { }—
V_M00002

0 —{L1 a— »—

100 —|L2

V_R00003 —IN

When RANGE_INT receives power flow from the normally open contact %0001, it
determines whether the value in %¥R00003 is within the range 0 to 100 inclusively. Output
coil $M00002 is ON only if 0 < %AI0050 < 100.

Ladder Diagram (LD) Programming 225

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13 Timers

This section describes the PACSystems timed contacts and timer function blocks that are
implemented in the LD language.

4.13.1 Timed Contacts

The PACSystems has four timed contacts that can be used to provide regular pulses of
power flow to other program functions. Timed contacts cycle on and off, in square-wave
form, every 0.01 second, 0.1 second, 1.0 second, and 1 minute. Timed contacts can be read
by an external communications device to monitor the state of the CPU and the
communications link. Timed contacts are also often used to blink pilot lights and LEDs.

The timed contacts are referenced as T_10MS (0.01 second), T_100MS (0.1 second), T_SEC
(1.0 second), and T_MIN (1 minute). These contacts represent specific locations in %S
memory:

#T_10MS 0.01 second timed contact | %S0003
#T_100MS | 0.1 second timed contact | %S0004
#T_SEC 1.0 second timed contact | %S0005
#T_MIN 1.0-minute timed contact | %S0006

These contacts provide a pulse having an equal on and off time duration. The following
timing diagram illustrates the on/off time duration of these contacts.

Figure 180

X

T_I0000 [™
=] I

A.CAUTION

Do not use timed contacts for applications requiring accurate measurement of elapsed
time. Timers, time-based subroutines, and PID blocks are preferred for these types of
applications.

The CPU updates the timed contact references based on a free-running timer that has no
relationship to the start of the CPU sweep. If the sweep time remainsin phase with the timed
contact clock, the contact will always appear to be in the same state. For example, if the CPU
is in constant sweep mode with a sweep time setting of 100ms, the T_10MS and T_100MS
bits will never toggle.

Ladder Diagram (LD) Programming 226

CPU Programmer’s Reference Manual

GFK-2950G

4.13.2

Timer Function Blocks

Section4
June 2020

Function Function Block |Mnemonic Description
Type

Off Delay Timer |Built-in OFDT_HUNDS The Current Value (CV) of the timer resets
(instance datais ~ [OFDT_SEC to zero when power flow input is on. CV
WORD array) OFDT_TENTHS increments while power flow is off. When
See Built-In Timer |OFDT_THOUS CV=PV (Preset Value), power flow is no
Function Blocks longer passed to the right until power flow
below. inputis on again.

On Delay ONDTR_HUNDS [Retentive on delay timer. Increments while

Stopwatch ONDTR_SEC it receives power flow and holds its value

Timer ONDTR_TENTHS |when power flow stops.

ONDTR_THOUS

On Delay Timer TMR_HUNDS Simple on delay timer. Increments while it
TMR_SEC receives power flow and resets to zero
TMR_TENTHS when power flow stops.
TMR_THOUS
Timer Off Delay |Standard TOF When the input IN transitions from ON to
(instance datais a OFF, the timer starts timing until a
structure variable) specified period of time has elapsed, then
See sets the output Q to OFF.
Timer On Delay [Standard Timer TON When the input IN transitions from OFF to
Function Blocks. ON, the timer starts timing until a specified
period has elapsed, then sets the output Q
to ON.
Timer Pulse TP When the input IN transitions from OFF to

ON, the timer sets the output Q to ON for a
specified time interval.

4.13.2.1

Built-In Timer Function Blocks

Note:

Special care must be taken when programming timers in program blocks that are not called

every sweep, and in parameterized blocks and UDFBs. For details, refer to:

e Using OFDT, ONDTR and TMR in Parameterized Blocks

e Timers that are Skipped by the Jump Instruction

e Using OFDT, ONDTR and TMR in Parameterized Blocks, and

e Using OFDT, ONDTR and TMR in UDFBs.

Ladder Diagram (LD) Programming

227

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.2.1.1 Data Required for Built-in Timer Function Blocks

The data associated with these functions is retentive through power cycles. Each timer uses
a three-word array of %R, %W, %P, %L or symbolic memory to store the following
information:

Current value (CV) Word 1
Preset value (PV) Word 2
Control word Word 3

Do not use two consecutive words (registers) as the starting addresses of two timers. Logic
Developer - PLC does not check or warn you if register blocks overlap. Timers will not work

if you place the current value of a second timer on top of the preset value for the previous
timer.

4.13.2.1.2 Word 1: Current value (CV)

The first word (CV) can be read but should not be written to, or the function may not work
properly.

4.13.2.1.3 Word 2: Preset value (PV)

When the Preset Value (PV) operand is a variable, it is normally set to a different location
than word 2 in the timer’s or counter’s three-word array.

e If you use a different address and you change word 2 directly, your change will have no
effect, as PV will overwrite word 2.

If you use the same address for the PV operand and word 2, you can change the Preset

Value in word 2 while the timer or counter is running, and the change will be effective.
4.13.2.1.4 Word 3: Control word

The control word stores the state of the Boolean inputs and outputs of its associated timer
or counter, as shown in the following diagram:

Figure 181
(Blwa[13[2[11lwlae 8] [z1e6lsTalzT2zT110]
[| | | R g O T O I I |
Reset input
Enatie inpui, previous execulion
Q (countesimer staius oulputy
EN (enable input

Ladder Diagram (LD) Programming 228

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

A WARNING

The third word (Control) can be read but should not be written to; otherwise, the function
will not work.

Note: Bits 0 through 13 are used for timer accuracy.

4.13.2.1.5 Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep

Care should be taken when timers (ONDTR, TMR, and OFDTR) are used in program blocks
that are not called every sweep. The timers accumulate time across calls to the sub-block

unless they are reset. This means that they function like timers operating in a program with
a much slower sweep than the timers in the main program block. For program blocks that
are inactive for large periods of time, the timers should be programmed in such a manner
as to account for this catch up feature.

4.13.2.1.6 Timers that are Skipped by the Jump Instruction

You should not program a Jump around an instance of OFTD, ONDTR or TMR. Timers that
are skipped will not catch up and will therefore not accumulate time in the same manner as
if they were executed every sweep.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a result
of an interrupt.

4.13.2.1.7 Using OFDT, ONDTR and TMR in Parameterized Blocks

Special care must be taken when programming timers in PACSystems parameterized

blocks. Timers in parameterized blocks can be programmed to track true real-time if the
guidelines and rules below are followed. If the guidelines and rules described here are not
followed, the operation of the timer functions in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to
ensure these rules are followed.

The best use of a timer function is to invoke it with a reference address exactly one time each
scan. With parameterized blocks, it is important to use the appropriate reference memory
with the timer function and to call the parameterized block an appropriate number of times.

4.13.2.1.8 Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that
appears above the parameterized block in the call tree. To determine the source block for a
given parameterized block, determine which block invoked that parameterized block. If the
calling block is _MAIN or of type Block, it is the source block. If the calling block is any other
type (parameterized block or function block), apply the same test to the block that invoked
this block. Continue back up the call tree until the _MAIN block or a block of type Block is
found. This is the source block for the parameterized block.

Ladder Diagram (LD) Programming 229

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
4.13.2.1.9 Programming OFDT, ONDTR and TMR in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the
parameterized block in more than one place in your program logic.
4.13.2.1.10 Parameterized block called from one block

If your parameterized block that contains a timer will be called from only one logic block,
follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the timer that will not be manipulated anywhere
else. The reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L memory
corresponds to %P memory when the source block is _MAIN.

4.13.2.1.11 Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate the
timer reference memory used by each call to the parameterized block. Follow these rules
and guidelines:

1. Call the parameterized block exactly one time per execution of each source block
in which it appears.

2. Choose a %L reference or parameterized block formal parameter for the timer
reference memory. Do not use a %R, %P, %W, or symbolic memory reference.

Note:

° The strongly recommended choice is a %L location, which is inherited from the
parameterized block’s source block. Each source block has its own %L memory space except
the _MAIN block, which has a %P memory area instead. When the _MAIN block calls another
block, the %P mappings from the _MAIN block are accessed by the called block as %L
mappings.

° If you use a parameterized block formal parameter (word array passed-by-reference), the

actual parameter that corresponds to this formal parameter must be a %L, %R, %P, %W, or
symbolic reference. If the actual parameter is a %R, %P, %W, or symbolic reference, a unique
reference address must be used by each source block.

4.13.2.1.12 Recursion

If you use recursion (that s, if you have a block call itself either directly orindirectly) and your
parameterized block contains an OFDT, ONDTR, or TMR, you must follow two additional
rules:

e Program the source block so that it invokes the parameterized block before making any
recursive calls to itself.

e Do not program the parameterized block to call itself directly.

Ladder Diagram (LD) Programming 230

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.2.1.13 Using OFDT, ONDTR and TMR in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details on
these and other types of blocks, refer to Section 2.

When a timer function is present inside a UDFB, and a member variable is used for the
control block of a timer, the behavior of the timer may not match your expectations. If
multiple instances of the UDFB are called during a logic sweep, only the first-executed
instance will update its timer. If a different instance is then executed, its timer value will
remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add elapsed
time to its timer functions. This behavior matches the behavior of timers in a normal
program block.

4.13.2.1.14 Example

A UDFB is defined that uses a member variable for a timer function block. Two instances of
the function block are created: timer_A and timer_B. During each logic scan, both timer_A
and timer_B are executed. However, only the member variable in timer_A is updated and
the member variable in timer_B always remains at 0.

4.13.2.2 Off Delay Timer

OFDT The Off-Delay Timer (OFDT) increments while power flow Mnemonics:
SEC is off, and the timer's Current Value (CV) resets to zero QFDT_SEC
when power flow is on. OFDT passes power until the QFDT_TENTHS
1Y BV specifiedinterval PV (Preset Value) has elapsed. OFDT_HUNDS
OFDT_THOUS

22?2?

Time may be counted in the following increments:

e Seconds

e Tenths(0.1) of asecond

e Hundredths (0.01) of a second

e Thousandths (0.001) of a second

The range for PV is 0 to +32,767-time units. If PV is out of range, it has no effect on the
timer's word 2. The state of this timer is retentive on power failure; no automatic
initialization occurs at power-up.

When OFDT receives power flow, CV is set to zero and the timer passes power to the right.
The output remains on as long as OFDT receives power flow.

Each time the OFDT is invoked with its power flow input turned OFF, CV is updated to reflect
the elapsed time since the timer was reset. OFDT continues passing power to the right until
CV equals or exceeds PV. When this happens, OFDT stops passing power flow to the right
and stops accumulating time. If PV is 0 or negative, the timer stops passing power flow to
the right the first time that it is invoked with its power flow input OFF.

When the function receives power flow again, CV resets to zero.

Ladder Diagram (LD) Programming 231

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

Notes:

° The best way to use an OFDT function is to invoke it with a particular reference address
exactly one time each scan. Do not invoke an OFDT with the same reference address more
than once per scan (inappropriate accumulation of time would result). When an OFDT
appears in a program block, it accumulates time once per scan. Subsequent calls to that
program block within the same scan will have no effect on its OFDTs.

° Do not program an OFDT function with the same reference address in two different blocks.
You should not program a JUMP around a timer function. Also, if you use recursion (where
a block calls itself either directly or indirectly), program the program block so that it invokes
the timer before it makes any recursive calls to itself.

° For information on using timers inside parameterized blocks, refer to Using OFDT, ONDTR
and TMR in Parameterized Blocks.

° An OFDT expires (turns OFF power flow to the right) the first scan that it does not receive
power flow if the previous scan time was greater than PV.

° When OFDT is used in a program block that is not called every scan, the timer accumulates
time between calls to the program block unless it is reset. This means that OFDT functions
like a timer operating in a program with a much slower scan than the timer in the main
program block. For program blocks that are inactive for a long time, OFDT should be
programmed to allow for this catch-up feature. For example, if a timer in a program block
is reset and the program block is not called (is inactive) for four minutes, when the program
block is called, four minutes of time will already have accumulated. If the enable input is
OFF, these four minutes are applied to the timer (that is, CV is set to 4 minutes).

4.13.2.2.1 Timing diagram

Figure 182
a_l L L
N

a. ENABLE and Q both go high; timer is reset (CV = 0).

b. ENABLE goes low; timer starts accumulating time.
c. (CVreachesPV; Q goes low and timer stops accumulating time.
d. ENABLE goes high; timeris reset (CV = 0).

ENABLE goes low; timer starts accumulating time.

f. ENABLE goes high; timer is reset (CV = 0) before CV had a chance to reach PV. (The
diagram is not to scale.)

ENABLE goes low; timer begins accumulating time.

h. CVreaches PV; Q goes low and timer stops accumulating time.

Ladder Diagram (LD) Programming 232

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.2.2.2 Operands for OFDT

A\ WARNING

Do not use the Address, Address+1, or Address+2 addresses with other instructions.
Overlapping references cause erratic timer operation.

Parameter (Description Allowed Operands |Optional
Address The beginning address of a three-word R, W, P, L, symbolic No
(2227) WORD array:

Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word

PV The Preset Value used when the timer is All except S, SA, SB, SC |Optional

enabled orreset. 0 <PV <+32,767.If PVis
out of range, it has no effect on Word 2.

cv The current value of the timer. All except S, SA, SB, SC, |Optional
constant

4.13.2.2.3 Example for OFDT

Figure 183
V_100001 OFDT V_0Qo00001
| TENTHS (V—i

V_R0O0019
20 1PV CVl CurrentV

The output action is reversed by the use of a negated output coil. In this circuit, the OFDT
timer turns off negated output coil %¥Q0001 whenever contact %10001 is closed. After
%l0001 opens, %Q0001 stays off for 2 seconds then turns on.

4.13.2.3 On Delay Stopwatch Timer

ONDIE The retentive On-Delay Stopwatch Timer (ONDTR) Mnemonics:
SEC
7] B increments while it receives power flow and holds its ONDTR_SEC
. i value when power flow stops. ONDTR_TENTHS

ONDTR_HUNDS

Time may be counted in the following increments: ONDTR_THOUS

T

PV CV

e Seconds

e Tenths(0.1) of a second

e Hundredths (0.01) of a second

e Thousandths (0.001) of a second

Therangeis 0 to +32,767-time units. The state of this timer is retentive on power failure; no
automatic initialization occurs at power-up.

Ladder Diagram (LD) Programming 233

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

When ONDTR first receives power flow, it starts accumulating time (Current Value (CV)).
When the CV equals or exceeds Preset Value (PV), output Q is energized, regardless of the
state of the power flow input.

If the timer continues to receive power flow, it continues accumulating until CV equals the
maximum value (+32,767-time units). Once the maximum value is reached, it is retained,
and Q remains energized regardless of the state of the enable input.

When power flow to the timer stops, CV stops incrementing and is retained. Output Q, if
energized, will remain energized. When ONDTR receives power flow again, CV again
increments, beginning at the retained value.

When reset (R) receives power flow and PV is not equal to zero, CV is set back to zero and
output Q is de-energized.

Note: If PV equals zero, the time is disabled and the reset is activated, and the output of the time
becomes high. Subsequent removal of the reset or activation of input will have no effect on
the timer output; the output of the time remains high.

ONDTR passes power flow to the right when CV is greater than or equal to PV. Since no
automatic initialization to the outgoing power flow state occurs at power-up, the power
flow state is retentive across power failure.

Notes:

° The best way to use an ONDTR function is to invoke it with a reference address exactly one
time each scan. Do not invoke an ONDTR with the same reference address more than once
per scan (inappropriate accumulation of time would result). When an ONDTR appears in a
program block, it will only accumulate time once per scan. Subsequent calls to that same
program block within the same scan will have no effect on its ONDTRs. Do not program an
ONDTR function with the same reference address in two different blocks. You should not
program a JUMPN around a timer function. Also, if you use recursion (that is, having a block
callitself either directly or indirectly), program the program block so that it invokes the timer
before it makes any recursive calls to itself.

° For information on using timers inside parameterized blocks, refer to Using OFDT, ONDTR
and TMR in Parameterized Blocks.

° An ONDTR expires (passes power flow to the right) the first scan that is enabled and not reset
if the previous scan time was greater than PV.

° When ONDTR is used in a program block that is not called every scan, it accumulates time
between calls to the program block unless it is reset. This means that ONDTR functions like
a timer operating in a program with a much slower scan than the timer in the main program
block. For program blocks that are inactive for a long time, ONDTR should be programmed
to allow for this catch-up feature. For example, if a timer in a program block is reset and the
program block is not called (is inactive) for four minutes, when the program block is called,
four minutes of time will already have accumulated. If the enable input is ON and the reset
input is OFF, these four minutes are applied to the timer (that is, CV is set to 4 minutes).

Ladder Diagram (LD) Programming 234

CPU Programmer’s Reference Manual Section 4

GFK-2950G

June 2020

4.13.2.3.1 Timing diagram

Figure 184
RESET |
o | I
) | | | | 11 1
A B [D E FG H

a. ENABLE goes high; timer starts accumulating.

b. Currentvalue (CV) reaches preset value (PV); Q goes high. Timer continues to
accumulate time until ENABLE goes low, RESET goes high or current value
becomes equal to the maximum time.

c. RESET goes high; Q goes low, accumulated time is reset (CV=0).

d. RESET goes low; timer then starts accumulating again, as ENABLE is high.

e. ENABLE goes low; timer stops accumulating. Accumulated time stays the same.

f. ENABLE goes high again; timer continues accumulating time.

g. CVbecomes equal to PV; Q goes high. Timer continues to accumulate time until
ENABLE goes low, RESET goes high or CV becomes equal to the maximum time.

h. ENABLE goes low; timer stops accumulating time.

4.13.2.3.2 Operands for On Delay Stopwatch Timer

A WARNING

Do not

use the Address, Address+1, or Address+2 addresses with other instructions.

Overlapping references cause erratic timer operation.

Parameter |Description Allowed Operands |Optional
Address Beginning address of a three-word WORD |R, W, P, L, symbolic No
(222?) array:
Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word
R When Ris ON, it resets the Current Value |Power flow Optional
(Word 1) to zero.
PV The Preset Value used when the timeris |All except S, SA, SB, SC [Optional
enabled or reset. 0 <PV <+32,767.If PVis
out of range, it has no effect on Word 2.
cVv Current Value of the timer All except S, SA, SB, SC [Optional
and constant

Ladder Diagram (LD) Programming

235

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.2.3.3 Example for On Delay Stopwatch Timer

Figure 185
v_0Q00010 ONDTE | V_Qooon
|} SEC { V—
v¥_Q00010 |V_R00004
1/} E

8 —FV CVF CurremtV...

A retentive on-delay timer is used to create a signal (%Q0011) that turns on 8.0 seconds
after Q0010 turns on, and turns off when %Q0010 turns off.

4.13.2.4 On Delay Timer

TME The On-Delay Timer (TMR) increments while it receives Mnemonics:
-| SEC | power flow and resets to zero when power flow stops. The TMR_SEC
2999 timer passes power after the specified interval PV (Preset TMR_TENTHS
dpy cwk Value) has elapsed, as long as power is received. TMR_HUNDS
TMR_THOUS

The range for PV is 0 to +32,767-time units. If PV is out of range, it has no effect on the
timer's word 2. The state of this timer is retentive on power failure; no automatic
initialization occurs at power-up.

Time may be counted in the following increments:

e Seconds

e Tenths(0.1) of asecond

e Hundredths (0.01) of a second

e Thousandths (0.001) of a second

When TMR is invoked with its power flow input turned OFF, its Current Value (CV) is reset to
zero, and the timer does not pass power flow to the right. Each time the TMR is invoked with
its power flow input turned ON, CV is updated to reflect the elapsed time since the timer
was reset. When CV reaches PV, the timer function passes power flow to the right.

Ladder Diagram (LD) Programming 236

CPU Programmer’s Reference Manual

GFK-2950G

Section4
June 2020

Notes:

The best way to use a TMR function is to invoke it with a particular reference address exactly
one time each scan. Do not invoke a TMR with the same reference address more than once
per scan (inappropriate accumulation of time would result). When a TMR appears in a
program block, it will only accumulate time once per scan. Subsequent calls to that same
program block within the same scan will have no effect on its TMRs. Do not program a TMR
function with the same reference address in two different blocks. You should not program a
JUMP around a timer function. Also, if you use recursion (that is, having a block call itself
either directly or indirectly), program the program block so that it invokes the timer before
it makes any recursive calls to itself.

For information on using timers inside parameterized blocks, refer to Using OFDT, ONDTR
and TMR in Parameterized Blocks.

A TMR timer expires (passes power flow to the right) the first scan that it is enabled if the
previous scan time was greater than PV.

When TMR is used in a program block that is not called every scan, TMR accumulates time
between calls to the program block unless it is reset. This means that it functions like a timer
operating in a program with a much slower sweep than the timer in the main program
block. For program blocks that are inactive for a long time, TMR should be programmed to
allow for this catch-up feature. For example, if a timer in a program block is reset and the
program block is not called (is inactive) for 4 minutes, when the program block is called, four
minutes of time will already have accumulated. If the enable input is ON, these four minutes
are applied to the timer (i.e. CV is set to 4 minutes).

4.13.2.4.1 Timing Diagram

Figure 186

ENABLE goes high; timer begins accumulating time.

CV reaches PV; Q goes high and timer continues accumulating time.

ENABLE goes low; Q goes low; timer stops accumulating time and CV is cleared.

ENABLE goes high; timer starts accumulating time.

ENABLE goes low before current value reaches PV; Q remains low; timer stops accumulating

time and is cleared to zero (CV=0).

4.13.2.4.2 Operands for On Delay Timer

A\ WARNING

Do not use the Address, Address+1, or Address+2 addresses with other instructions.
Overlapping references cause erratic timer operation.

Ladder Diagram (LD) Programming

237

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020
Parameter |Description Allowed Operands Optional
7N The beginning address of a three-word R, W, P, L, symbolic No
WORD array:
Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word
PV The Preset Value, used when the timeris |All except S, SA, SB, SC Yes
enabled orreset. 0 <PV <+32,767.I1f PVis
out of range, it has no effect on Word 2.
cv The current value of the timer. All except S, SA, SB,SCand [Yes
constant

4.13.24.3 Example for On Delay Timer

Figure 187
DO_DWL REL DWELL
i} i1 { }—
DWELL
4| }7
DWELL TME REL

TENTHS {) 1

TEMID

PV

CV Current_...

An on-delay timer with address TMRID is used to control the length of time that a coil is on.
This coil has been assigned the variable DWELL. When the normally open (momentary)
contact DO_DWL is ON, coil DWELL is energized.

The contact of coil DWELL keeps coil DWELL energized (when contact DO_DWL is released)
and also starts the timer TMRID. When TMRID reaches its preset value of five tenths of a
second, coil REL energizes, interrupting the latched-on condition of coil DWELL. The contact

DWELL interrupts power flow to TMRID, resetting its current value and de-energizing coil
REL. The circuit is then ready for another momentary activation of contact DO_DWL.

Ladder Diagram (LD) Programming

238

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.3 Standard Timer Function Blocks

The standard timers are a pulse timer (TP), an on-delay timer (TON), and an off-delay timer
(TOF). The pulse timer block can be used to generate output pulses of a given duration. The
on-delay timer can be used to delay setting an output ON for a fixed period after an input is
set ON. The off-delay timer can be used to delay setting an output OFF for a fixed period
after aninput goes OFF so that the output s held on for a given period longer than the input.

Notes:
° Any block type can contain calls to the standard timers. (See Section 2 for a discussion of the
various block types.)
° Interrupt blocks can contain standard timers.
° An instance of a timer can be passed by reference to a parameterized block or UDFB.
° When the timer stops timing as a result of reaching its Preset Time (PT), the Elapsed Time

(ET) contains the actual timer duration. For example, if the Preset Time was specified as
333ms, but the timer actually timed to 350ms, the 350ms value is saved in ET.

4.13.3.1 Data Required for Standard Timer Function Blocks

Each invocation of a timer has associated instance data that persists from one execution of
the timer to the next. Instance variables are automatically located in symbolic memory.
(You cannot specify an address.) You can specify a stored value for each element. The user
logic cannot modify the values.

Each timer instance variable has the following structure. Elements of a timer structure
cannot be published.

The instance data type for each timer must be the same as the timer type:

The TOF timer requires an instance variable of type TOF.
The TON timer requires an instance variable of type TON.
The TP timer requires an instance variable of type TP.

Element | Type Description Details

IN BOOL Timer input Cannot be accessed in user logic.
PT DINT Preset time Cannot be accessed in user logic.
ET DINT Elapsed time Read only. Accessible in user logic.
Q BOOL Set ON when timer finishes timing Read only. Accessible in user logic.
ENO BOOL Enable output Read only. Accessible in user logic.
Tl BOOL Set ON when the timer instance is Read only. Accessible in user logic.

timing (that s, ET is incrementing).

4.13.3.2 Resetting the Timer

The preset time (PT) may be changed while the timer is timing to affect the duration.

When the timer reaches PT, the timer stops timing and the elapsed time parameter (ET)
contains the actual timer duration.

To reset the timer function block, set the PT input to 0. When the function block resets:

Ladder Diagram (LD) Programming 239

CPU Programmer’s Reference Manual

e TheTlelementissettoO

e ThelIN parameterisignored

GFK-2950G

e ETissetto0

e Qissettooff (0)
4.13.3.3 Operands

Section 4

June 2020

TOF, TON and TP have the same input and output parameters, except for the instance

variable, which must be the same type as the instruction.

Note:

erratic operation of the timer function block.

Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or Tl may cause

Parameter

Description

Allowed Types

Allowed
Operands

Optional

727?

Structure variable containing the
internal data for the timer
instance. (Refer to Data Required
for Standard Timer Function
Blocks.)

TOF, TON, or TP.
Must be same type as
the instruction.

NA

No

Timer input. Controls when the
timer will accumulate time.
TON and TP will begin to time
when IN transitions from OFF to
ON.

TOF will begin to time when IN
transitions from ON to OFF.

Flow

NA

Yes

PT

Preset time (in ms). Indicates the
amount of time the timer will time
until turning Q either ON or OFF,
depending on the timer type.
Setting PT to 0 resets the timer.

DINT

All except S,
SA, SB, SC

Yes

Timer output. Action depends on
the timer type.

When TP is timing, Q is ON.

When TON is done timing, Q turns
ON.

When TOF is done timing, Q turns
OFF.

Flow

NA

Yes

ET

Elapsed time. Indicates the length
of time, (in ms), that the timer has
been measuring time.

DINT

All except S,
SA, SB, SC
and constants

Yes

Ladder Diagram (LD) Programming

240

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.34 Timer Off Delay

Figure 188

TOF

—lpT ETH

When the input IN transitions from ON to OFF, the timer starts timing until a specified period
of time (PT) has elapsed, then sets the output Q to OFF.

4.13.3.4.1 Timing Diagram

Figure 189

M — —

—PT—» —iPT—»

|

td 11 t2 t3 t4 15

to When input IN is set to ON, the output Q follows and remains ON. The elapsed time,
ET, does not increment.

t1 When IN goes OFF, the timer starts to measure time and ET increments. ET continues
to increment until its value equals the preset time, PT.

t2 When ET equals PT, Q is set to OFF and ET remains at the preset time, PT.

t3 When input IN is set to ON, the output Q follows and remains ON. ET is set to 0.

t4 When IN is set to OFF, ET, begins incrementing. When IN is OFF for a period shorter
than that specified by PT, Q remains ON.

t5 When INis set to ON, ET is set to 0.

Ladder Diagram (LD) Programming 241

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.3.4.2 Example

In the following sample rung, a TOF function block is used to keep Light ON for 30,000ms
(30 seconds) after Door_Open is set to OFF. As long as Door_Open is ON, Light remains ON.

Figure 190
TOF
Door _Open OF_Delay Light
{ } N [w! @—
30000 —{PT ET—

4.13.3.5 Timer On Delay

Figure 191

TON

—PT ETH—

When the input IN transitions from OFF to ON, the timer starts timing until a specified period
of time (PT) has elapsed, then sets the output Q to ON.

4.13.3.5.1 Timing Diagram

Figure 192
N — _ ‘
S

—PT — PT—p

Ladder Diagram (LD) Programming 242

CPU Programmer’s Reference Manual Section 4

GFK-2950G

June 2020

t0

When input IN is set to ON, the timer starts to measure time and the elapsed time output
ET starts to increment. The output Q remains OFF and ET continues to increment until its
value equals the preset time, PT.

t1

When ET equals PT, the output Q is goes ON, and ET remains at the preset time, PT. Q
remains ON until IN goes OFF.

t2

When IN is set to OFF, Q goes OFF and ET is set to 0.

t3

When IN is set to ON, ET starts To increment.

t4

If INis ON for a shorter time than the delay specified in PT, the output Q remains OFF. ET is
set to 0 when IN is set to OFF.

4.13.3.5.2 Example

In the following sample rung, a TON function block is used to delay setting Start to ON for 1
minute (60,000ms) after Preheat is set to ON.

Figure 193
TOH
Prehest On_Delay B Start
|} N Q O
Bo000 —FT ET|—

4.13.3.6 Timer Pulse

Figure 194

—PT

TF

ET—

When the input IN transitions from OFF to ON, the timer sets the output Q to ON for the
specified time interval, PT has elapsed, then sets the output Q to ON.

Ladder Diagram (LD) Programming

243

CPU Programmer’s Reference Manual Section 4
GFK-2950G June 2020

4.13.3.6.1 Timing Diagram

Figure 195

1—F"T—|-
ta o2 t3 t4 5
t0 WheninputINis set to ON, the timer starts to measure time and the elapsed time output,
ET, increments until its value equals that of the specified preset time, PT. Qis setto 0 on
until ET equals PT.
t1 When ET equals PT, Q is set to OFF. The value of ET is held until IN is set to OFF.
t2 When IN is set to OFF, ET is set to 0.
3 When IN is set to ON, the timer starts to measure time and ET begins incrementing. Q Is
set to ON.
t4 If the input is OFF for a period shorter than the input PT, the output Q remains on and
ET continues Incrementing.
t5 When ET equals PT, Qs set to OFF and ET is set to 0.

4.13.3.6.2 Example

In the following sample rung, a TP function block is used to set Sprayers to ON for a 5-second
(5000ms) pulse.

Figure 196
TP
Rinse On_Pulse Sprayers
{ | 1IN Q G

S000 —IP'I' ETf—

Ladder Diagram (LD) Programming 244

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

Section5 Function Block Diagram (FBD)

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that
represents the behavior of functions, function blocks and programs as a set of
interconnected graphical blocks.

The block types Block, Parameterized Block, and Function Block can be programmed in FBD.
The _MAIN program block can also be programmed in FBD. For details on blocks, refer to
Program Data in Section 3. For information on using the FBD editor in the programming
software, refer to the online help.

For an overview of the types of operands that can be used with instructions, refer to
Operands for Instructions in Section 3.

Most functions and function blocks implemented in FBD are the same as their LD
counterparts. Instructions that are implemented differently are discussed in detail in this
chapter. FBD has the following general differences compared to LD:

o InFBD, except for timers and counters, functions and function blocks do not have EN or
ENO parameters.

e InFBD, all functions and function blocks display a solve order, which is calculated by the
FBD editor.

The FBD implementation of the PACSystems instruction set includes the following
categories:

e Advanced Math Functions

e Bit Operation Functions

e Comments

e Comparison Functions

e Control Functions

e Counters

e Data Move Functions

e Math Functions

e Program Flow Functions

e Timers

e Type Conversion Functions
e PROFINET Communication

o Consists of the PNIO_DEV_COMM function. For details, refer to the
PACSystems RX3i & RSTi-EP PROFINET 1/O Controller Manual, GFK-2571.

Function Block Diagram (FBD) 245

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.1 Note on Reentrancy

When a function block is created using the FBD language, the wires are created as global
variables, not as members. This has two consequences. First, if there are multiple instances
of that block in the program, the wires will show the values from the last instance executed
during the sweep, not the values for the instance being viewed. This will give the appearance
of incorrect operation while working properly.

The second consequence is that function blocks written in FBD are not reentrant. If you have
multiple instances of a block, and one of them can be called by an interrupt, then it is
possible for the interrupt to trigger while one instance of the block is in process, change the
values of the wires, and then return control to the original block. This will result in improper
operation.

There is a work-around for both symptoms, which is to create the wires as member variables
rather than global variables. This must be done manually by creating member variables of
the appropriate types. You can then right-click on each wire in the FBD diagram and use the
Replace Variable command to change the wire from a global variable to a member variable.

A CAUTION

Blocks written in the FBD language are not reentrant. Because of this, if the block is called
directly, or indirectly, from an interrupt, the block must not be called anywhere else in the
program, except when steps are taken to explicitly make it reentrant (see above). Doing so
can lead to unexpected operation. This applies to basic blocks, parameterized blocks, and
user-defined function blocks written in FBD.

5.2 Advanced Math Functions

The Advanced Math functions perform logarithmic, exponential, square root,

trigonometric, and inverse trigonometric operations.

Function Description
A0S Absolute value. Finds the absolute value of a double- precision integer (DINT),
1 signed single-precision integer (INT), REAL or LREAL (floating-point) value. The
- | 2 e mnemonic specifies the value's data type.
For details, refer to Absolute Value in Section 4.

E+F Exponential. Raises e to the value specified in IN (e™). Calculates the inverse
1 natural logarithm of the IN operand.
=™ “r For details, refer to Exponential/Logarithmic Functions in Section 4.

H IN2
EvET Exponential. Calculates IN1 to the power of IN2 (IN1™?).

1 For details, refer to EXPT Function below.
= 1 o =

= M2

Function Block Diagram (FBD) 246

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020
Function Description
AC0S Inverse trig. Calculates the inverse cosine of the IN operand and expresses the
1 result in radians.

LR () o For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Section 4.

Inverse trig. Calculates the inverse sine of the IN operand and expresses the

ASIN))
1 resultin radians.
- 4] () For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Section 4.
ATAN Inverse trig. Calculates the inverse tangent of the IN operand and expresses the
1 result in radians.

- Qg For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Section 4.

LM Logarithmic. Calculates the natural logarithm of the operand IN.
i 1 a For details, refer to Exponential/Logarithmic Functions in Section 4.
L0G Logarithmic. Calculates the base 10 logarithm of the operand IN.
1 For details, refer to Exponential/Logarithmic Functions in Section 4.
= [)
SORT Square root. Calculates the square root of the operand IN and stores the result
1 in Q.
= [) o : ; ;
For details, refer to Square Root in Section 4.

Trig. Calculates the cosine of the operand IN, where IN is expressed in radians.

CO5
1 For details, refer to Trig Functions in Section 4.
- I Q) e
SIM Calculates the sine of the operand IN, where IN is expressed in radians.
i 1 a For details, refer to Trig Functions in Section 4.
TAM Calculates the tangent of the operand IN, where IN is expressed in radians.
1 For details, refer to Trig Functions in Section 4.
- M 0 e

Function Block Diagram (FBD) 247

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.2.1 EXPT Function

The Power of X (EXPT) function raises the value of input IN1 to the
EXPT power specified by the value IN2 and places the resultin Q. The EXPT
function operates on REAL or LREAL input value(s) and place the
result in output Q. The instruction is not carried out if one of the
- N2 following invalid conditions occurs:

e IN1<0,for EXPT

e INTorIN2isaNaN (NotaNumber)
Invalid operations (error cases) may yield results that are different
from those in the LD implementation of this function.

5.2.1.1 Operands of the EXPT Function

Parameter |Description Allowed Types [Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. NA NA No
INorIN1 For EXP, LOG, and LN, IN contains|REAL, LREAL All except variables |No

the REAL value to be operated located in %S—%SC

on.

The EXPT function has two
inputs, IN1 and IN2. For EXPT,
IN1 is the base value and IN2 is
the exponent.

IN2 (EXPT) |The REAL exponent for EXPT. REAL, LREAL All except variables |No
located in %S—%SC

Q Contains the REAL REAL, LREAL All except constants |No
logarithmic/exponential value of and variables located
IN or of INT and IN2. in %S—%SC
5.3 Bit Operation Functions

The Bit Operation functions perform comparison, logical, and move operations on bit
strings. Bit Operation functions treat each WORD or DWORD data as a continuous string of
bits, with bit 1 of the WORD or DWORD being the Least Significant Bit (LSB). The last bit of
the WORD or DWORD is the Most Significant Bit (MSB).

A\ WARNING

Overlapping input and output reference address ranges in multiword functions is not
recommended, as it can produce unexpected results

Function Block Diagram (FBD) 248

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020
Function Description
AND Logical AND. Compares the bit strings IN1 and IN2 bit by bit. When the
1 corresponding bits are both 1, places a 1 in the corresponding location in
- |1 (D) output string Q; otherwise, places a 0 in the corresponding location in Q.
If additional inputs (IN3 through IN8) are used, each additional bit string is
= IM2 compared to the string in Q and the result is placed in Q.
For details, refer to Logical AND.
oR Logical OR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of
corresponding bits are both 0, places a 0 in the corresponding location in
1 ponding bi both 0, pl 0inth ponding location i
= 1M1 Q= output string Q; otherwise, places a 1 in the corresponding location in Q.
- 17 If additional inputs (IN3 through IN8) are used, each additional bit string is
compared to the string in Q and the result is placed in Q.
For details, refer to Logical OR.
OR Logical XOR. Compares the bit strings INT and IN2 bit by bit. When a pair of
1 corresponding bits are different, places a 1 in the corresponding location in
LN) the output bit string Q; when a pair of corresponding bits are the same,
placesa0in Q.
= M2 If additional inputs (IN3 through IN8) are used, each additional bit string is
compared to the string in Q and the result is placed in Q.
For details, refer to Logical XOR.
NOT Logical NOT. Sets the state of each bit in output bit string Q to the opposite
1 state of the corresponding bit in bit string INT.
= | g For details, refer to Logical NOT.
ROL Rotate Bits Left. Rotates all the bits in a string a specified number of places
1 to the left.
=N G For details, refer to Bit Operation Functions in Section 4.
= I
- LERM
ROR Rotate Bits Right. Rotates all the bits in a string a specified number of places
1 to the right. For details, refer to in Section 4.
- 1 2
- 4
- LEM

Function Block Diagram (FBD) 249

CPU Programmer’s Reference Manual

GFK-2950G

Section 5
June 2020

Function

Description

1
= I

=

= B1

= LEM

SHIFTL

B2

o

Shift Bits Left. Shifts all the bits in a word or string of words to the left by a
specified number of places.

For details, refer to

Bit Operation Functions in Section 4.

1
- I

=

= H1

= LEM

SHIFTR

B2

Q

Shift Bits Right. Shifts all the bits in a word or string of words to the right by
a specified number of places.

For details, refer to

Bit Operation Functions in Section 4.

5.3.1 Logical AND, Logical OR, and Logical XOR

The Logical functions examine each bit in bit string IN1 and the corresponding bit in bit
string IN2, beginning with the least significant bit in each string, and places the resultin Q.
If additional inputs (IN3 up to IN8) are used, the function compares each bit in the input with
the corresponding bit in Q and places the result in Q. The comparison is repeated for each
input that is used. The input bit strings specified in IN1 ... IN8 may overlap.

AND
1
= IN1

- N2

Function Block Diagram (FBD)

AND
1
IN1 Qp

= N2

- N3

= IN4

- N5

=1 |NG

IN7

- NS

5.3.1.1 Logical AND

If both bits examined by the Logical AND function
are 1, AND places a 1in the corresponding location
in output string Q. If either bit is 0 or both bits are
0, AND places a 0 in string Q in that location.

Tip:

You can use the Logical AND function to build
masks or screens, where only certain bits are
passed (the bits opposite a 1 in the mask),
and all other bits are set to 0.

Minimum number of inputs =2
Maximum number of inputs = 8

250

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020
OR 5.3.1.2 Logical OR
OR 1
1 w-{ N1 Q) = Ifeither bit examined by the Logical OR function is
=N QrF 1, OR places a 1 in the corresponding location in
- N2 =1 N2 outputstring Q. If both bits are 0, Logical OR places
a0in string Q in that location.
= N3
Minimum number of Tips:
inputs =2 -— . .
Pt IN4 e You can use the Logical OR function to
- IN5 combine strings or to control many

outputs with one simple logical
= ING structure. The Logical OR function is the
equivalent of two relay contacts in

= IN7 parallel multiplied by the number of bits
- IN8 in the string.

e You can use the Logical OR function to

Maximum drive indicator lamps directly from input

number of states or to superimpose blinking
conditions on status lights.

inputs =8
= s 5.3.1.3 Logical XOR
1 1
- IN1 Qb= - IN1 Qb= If the bits in the strings examined by XOR are
different, a 1 is placed in the corresponding
- N2 = IN2 position in the output bit string.
- IN3 For each pair of bits examined, if only one bit is 1,
Minimum XQR places a 1 in the corresponding location in
number of inputs "N string Q.
-9 If both bits are 0, XOR places a 0 in the
={INS corresponding location in string Q.
= IN& Tips:
-] N7 e If string IN2 and output string Q
o begin at the same reference, a 1
. placed in string IN1 will cause the
corresponding bit in string IN2 to
alternate between 0 and 1,
Maximum number changing state with each scan as
ofinputs =8 long as input is received.

e You can program longer cycles by
pulsing the input to the function at
twice the desired rate of flashing.
The input pulse should be one scan
long (one-shot type coil or self-
resetting timer).

Function Block Diagram (FBD) 251

CPU Programmer’s Reference Manual

GFK-2950G

5.3.1.4

5.3.1.5

5.3.2

Section 5
June 2020

You can use XOR to quickly
compare two bit strings, or to
blink a group of bits at the rate of
one ON state per two scans.

XOR is useful for transparency
masks.

Operands for AND, OR, and XOR

Parameter |Description Allowed Types Allowed Optional
Operands

Solve Order |Calculated by the FBD [NA NA No
editor.

IN1 The value to operate |BOOL, WORD All No
on. DWORD

IN2 (Must be [The value to operate |BOOL, WORD All No

the same data [on. DWORD

type as IN1.)

IN3...IN8 Values to operate on. |BOOL, WORD All Yes

(Must be the DWORD

same data

type asIN1.)

Q (Must be the |The operation’s result. [BOOL, WORD All except No

same data DWORD constants and

type as IN1 variables located in

and IN2.) %S memory

Property

Valid Range

Number of Inputs

2to8

Logical NOT

Properties for AND, OR, and XOR

Figure 197

NOT
1
- IN Q=

The Logical Not or Logical Invert (NOT) function sets the state of each bit in the output bit
string Q to the opposite of the state of the corresponding bit in bit string INT.

All bits are altered on each scan that input is received, making output string Q the logical

complement of input string IN1.

Function Block Diagram (FBD)

252

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.3.2.1 Operands

Parameter Description Allowed |Allowed (Optional
Types Operands
Solve Order Calculated by the FBD editor. ~ [NA NA No
IN1 The input string to NOT. WORD All No
DWORD
Q (Must be the same [The NOT's result. WORD All except No
data type asIN1) DWORD constants
and variables
located in %S
memory
5.4 Comments
5.4.1 Text Block
Figure 198
(enter text)

The Text block is used to place an explanation in the program. When you type in a comment,
the first few words are displayed.

Toincrease the size of the text box and display more text, select the box and drag one of the
handles.

There are no operands for the Text block.

o Editing a comment makes the Programmer lose equality.

e Comment text is downloaded to the controller and retrieved upon Logic Upload.

Function Block Diagram (FBD) 253

CPU Programmer’s Reference Manual

GFK-2950G

5.5

Comparison Functions

Section 5
June 2020

Comparison functions compare two values of the same data type or determine whether a

number lies within a specified range. The original values are unaffected.

Function Description
WP Compare. Compares two numbers, INT and IN2.
1 For details, refer to Relational Functions in Section 4.
= M1 LT =
- M2 EQ =
GT -
EQ Equal. Tests two numbers for equality.
1 For details, refer to Comparison Functions.
AN] fo
- M2
GE Greater Than or Equal. Tests whether one number is greater than or equal to
1 another.
= |11 (2] . . .
For details, refer to Comparison Functions.
= 12
GT Greater Than. Tests whether one number is greater than another.
1 For details, refer to Comparison Functions.
= M1 Q) -
-2
LE Less Than or Equal. Tests whether one number is less than or equal to another.
1 For details, refer to Comparison Functions.
= M1) -
= M2
T Less Than. Tests whether one number is less than another.
1 For details, refer to .Comparison Functions.
- (11) o
= 12

Function Block Diagram (FBD)

254

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020
Function Description
ME Not Equal. Tests whether two numbers are not equal.
2 For details, refer to Comparison Functions.
= |11 (2
- M2
EANGE Range. Tests whether one number is within the range defined by two other
1 supplied numbers.
- L1 o For details, refer to Relational Functions in Section 4.
-2
= |
5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or
Equal, Less Than
Figure 199
EQ GE GT LE LT NE
1 1 1 1 1 2
=IN1T Qe =fINT QF N Q= =N QfF = IN1 IN1 Qp
= IN2 = IN2 - IN2 = IN2 IN2 N2

The relational functions compare input IN1 to input IN2. These operands must be the same
data type. If inputs INT and IN2 are equal, the function outputs the result to Q, unless IN1
and/or IN2 is NaN (Not a Number). The following relational functions can be used to
compare two numbers:

Function | Definition Relational Statement
EQ Equal INT=IN2
NE Not Equal INT=IN2
GE Greater Than or Equal INT=IN2
GT Greater Than INT>IN2
LE Less Than or Equal INT<IN2
LT Less Than INT<IN2
Tip:

To compare values of different data types, first use conversion functions to make the types

the same.

Function Block Diagram (FBD)

255

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020
5.5.1.1 Operands
Parameter [Description Allowed Allowed Optional
Types Operands
Solve Order |Calculated by the FBD editor. NA NA No
IN1 The first value to be compared; the|BOOL (for EQ No
value on the left side of the relational{znd NE
statement. functi ly),
unctions only). |, . cents, SA, SB,
IN2 The second value to be compared;|BYTE, DINT, Ne No
the value on the right side of the|DWORD, INT,
relational statement. IN2 must be|REAL, LREAL,
the same data type as IN1. UINT, WORD
BOOL 1,Q,G,M,T,SA, SB,
SC
If the relational statement is true,
Q 0-1 Bit reference in |All except No
anon-BOOL constants.
variable.

5.6

Control Functions

The control functions limit program execution and change the way the CPU executes the
application program.

Function Description
oo 10 Do 1/O Interrupt. For one scan, immediately services a specified range of
1 inputs or outputs. (All inputs or outputs on a module are serviced if any
L EMO = |reference locations on that module are included in the DO 1/O function.
Partial I/O module updates are not performed.) Optionally, a copy of the
= =T scanned I/O can be placed in internal memory, rather than at the real input
o END points.
For details, refer to Control Functions in Section 4.
- ALT
MEER 10 TTE Mask 1/O Interrupt. Mask or unmask an interrupt from an 1/O board when
N using 1/O variables. If not using 1/O variables, use
- EM EMO SVC_REQ 17: Mask/Unmask I/O Interrupt, described in Section 6.
For details, refer to Control Functions in Section 4.
= flAS1
= M1

Function Block Diagram (FBD)

256

CPU Programmer’s Reference Manual

GFK-2950G

Section 5
June 2020
Function Description
PID_IND FID_|5A Proportional Integral Derivative (PID) Control.
1 1 Provides two PID closed-loop control
= SF A - 5P CV = algorithms:
- P ey Standard ISA PID algorithm (PID_ISA)
Independent term algorithm (PID_IND)
= fil 54 - il AP
= UF - UF Note: For details, refer to Section 7.
= D - [
SWC_REQ Service Request. Requests a special control system service.
1
- EN EMD fom Note: For details, refer to Section 6.
- FMC
= PR
SCAM_SET_IO Scan Set 1/O. Scans the 10 of a specified scan set.
1 For details, refer to Control Functions in Section 4.
- ET EMO o
-
- 0T
- SET
=05 10 Suspend 1/O. Suspends for one sweep all normal I/O updates, except those
1 specified by DO I/O instructions.
- EM EMC pu For details, refer to Control Functions in Section 4.
SUSE 10 IMNTR Suspend I/O Interrupt. Suspend or resume an |/O interrupt when using 1/O
1 variables. If not using I/O variables, use
= EI EMO = (SVC_REQ 32: Suspend/Resume I/O Interrupt, described in Section 6.
For details, refer to Control Functions in Section 4.
= SLISF
= M1
F TRIG Falling Edge Trigger. Detects a high-to-low transition of a Boolean input.
1 Produces a single output pulse when a falling edge is detected.
= CLK QP For details, refer to Control Functions in Section 4.

Function Block Diagram (FBD)

257

CPU Programmer’s Reference Manual Section 5

GFK-2950G

June 2020

Function

Description

R_TRIG
1

- CLK Q

Rising Edge Trigger. Detects a low-to-high transition of a Boolean input.
Produces a single output pulse when a rising edge is detected.
For details, refer to Control Functions in Section 4.

5.7 Counters

Function

Description

control_paramsber
DHCTR

1
- = EMNQ

- Y

Down Counter. Counts down from a preset value. The output is ON
whenever the Current Value is <0.

The parameter that appears above the function block is a one-
dimensional, three-word array in %R, %W, %P, %L, or symbolic memory
that the counter uses to store its current value, preset value and
control word.

For details, refer to Counters in Section 4.

control_parameter
UPCTR

1
= EMN EMNO

= | CY

- P

Up Counter. Counts up to a designated value. The output is ON
whenever the Current Value is > the Preset Value.

The parameter that appears above the function block is a one-
dimensional, three-word array in %R, %W, %P, %L, or symbolic memory
that the counter uses to store its current value, preset value and
control word.

For details, refer to Counters in Section 4.

Function Block Diagram (FBD)

258

CPU Programmer’s Reference Manual

GFK-2950G

5.8

Data Move Functions

The Data Move functions provide basic data move capabilities.

Section 5
June 2020

Function

Description

1
=

= |

ARRAY_SIZE

EMO

i1
el

Array Size. Counts the number of elements in an array.
For details, refer to Data Move Functions in Section 4.

= E

= M

1

ARRAY_SIZE_DINMA

EMO

i1
el

Array Size Dim1. Returns the value of the Array Dimension 1 property
of an array.
For details, refer to Data Move Functions in Section 4.

ARRAY_SIZE_DIMZ Array Size Dim2. Returns the value of the Array Dimension 2 property
1 of an array.
= EN ENG For details, refer to Data Move Functions in Section 4.
- []
BUS RO Bus Read. Reads data from the bus.
1 For details, refer to Data Move Functions in Section 4.

- EM EMO

- [ST =

- £ o

- 55

- RGR

- OFF

- | EM

Function Block Diagram (FBD)

259

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020
Function Description
BUS_RWW_BYTE Bus Read Modify Write. Uses a read/modify/write cycle to update a
1 data element in a module on the bus.
= EM ENO = Other BUS_RMW functions:
- op ST b= BUS_RMW_DWORD
BUS_RMW_WORD
- il Sk Oy
For details, refer to Data Move Functions in Section 4.
- R
-5
- 55
- RGN
= OFF
BUS_TS_BYTE Bus Test and Set. Handles semaphores on the bus.

1 Other BUS_TS function:

- El EMC o
BUS_TS_WORD
=R ST = For details, refer to Data Move Functions in Section 4.
-)
- 55
- RGN
= OFF
BUC_WRT Bus Write. Writes data to a module on the bus.

1 For details, refer to Data Move Functions in Section 4.
- Ef BRI
- [ST =
-
-
- 55
- RGN
= OFF
- | EM

Function Block Diagram (FBD)

260

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020
Function Description
COMM_REG Communication Request. Allows the program to communicate with
1 an intelligent module, such as a Genius Bus Controller or a High-
= EM EMNC
Speed Counter.
- |1 FT = For details, refer to
- =velD Communication Request in Section 4.
= TASK
FAROUT Fan Out. Copies the input value to
1 FANOUT multiple outputs of the same data type
N OUT! = 1
- 1 ouT
For details, refer to Fan Out below.
OUTZ
ouT2
Minimum Outputs =2 OuUT3
ouT4
OuTS
OUTE
ouTy
ouTa

Maximum Outputs = 8

T Te; Move Data. Copies data as individual bits, so the new location does
1 not have to be the same data type. Data can be moved into a different
| = ENO B= data type without prior conversion.
=1 I 0 = For details, refer to Move Data below.
- | EM
MOVE_DATA_EX Move Data Explicit. Provides data coherency by locking symbolic
1 memory being written to during the copy operation.
= EN END = For details, refer to Data Move Functions in Section 4.
- e - Note: FBD and ST do not support the constant 0 as a value for the
- - inputIN.
=t 14
={ LEI"

Function Block Diagram (FBD)

261

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020
Function Description
MOVE_FROM_FLAT Move from Flat. Copies reference memory data to a UDT variable or
1 UDT array. Provides the option of locking the symbolic or I/O variable
= EN ENC = Imemory area being written to during the copy operation.
- " For details, refer to Data Move Functions in Section 4.
= M
= LEN
[MOVE_TO_FLAT] Move to Flat. Copies data from symbolic or I/O variable memory to
1 reference memory. Copies across mismatching data types.
= EN EMNG = For details, refer to Data Move Functions in Section 4.
| DI: Ia p_—
= 1
w LEM
SIZE_OF Size Of. Counts the number of bits used by a variable.
1 For details, refer to Data Move Functions in Section 4
= El EMNC o
- 1] O

5.8.1 Fan Out

Figure 200

FANOUT
1
w- N OUTT fom

OUT2 fe=

Copies the input IN to multiple outputs.

Function Block Diagram (FBD) 262

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.8.1.1 Operands

Parameter |Description Allowed Types Allowed Optional
Operands
Solve Order |Calculated by the FBD |NA NA No
editor.
IN The input to copy to the [BOOL, DINT, DWORD, |All except SA, SB, |No
outputs. INT, REAL, UINT, or SC.
WORD variable or
constant
OUT1 ...0UT8|Variables of the same [Must be same type as |All exceptS, SA, SB, [No
data type as the IN IN. SCand constant.
operand. The outputs.
Minimum: two outputs.
Maximum: eight
outputs.

5.8.2 Move Data

Figure 201
MOV
1
- N Q o=
- LEN

When the input operand, EN, is set to ON, the MOVE instruction copies data as bits from one
location in PACSystems controller memory to another. Because the data is copied as bits,
the new location does not need to use the same type of memory area as the source. For
example, you can copy data from an analog memory area into a discrete memory area, or
vice versa.

MOV sets its output, ENO, whenever it receives data unless one of the following occurs:

e Whentheinput, EN, is set to OFF, then the output, ENO, is set to OFF.

e When the input, EN is set to ON, and the input, IN, contains an indirect reference, and
the memory of IN is out of range, then the output, ENO, is set to OFF.

The value to store at the destination Q is acquired from the IN parameter. If IN is a variable,
the value to store in Q is the value stored at the IN address. If IN is a constant, the value to
store in Q is that constant

The result of the MOVE depends on whether the data type for the Q operand a bit reference
or a non-bit reference is:

e IfQisanon-bitreference, LEN (the length) indicates the number of memory locations in
which the IN value should be repeated, starting at the location specified by Q.

Function Block Diagram (FBD) 263

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

o IfQisabitreference, INistreated as an array of bits. LEN therefore indicates the number
of bits to acquire from the IN parameter to make up the stored value. If IN is a constant,
bits are counted from the least-significant bit. If IN is a variable, LEN indicates the number
of bits to acquire starting at the IN location. Regardless, only LEN bits are stored starting
at address Q.

For example, if IN was the constant value 29 and LEN is 4, the results of a MOV operation are
as follows:

e QisaWORD reference: The value 29 is repeatedly stored in locations Q, Q+1, Q+2, and
Q+3.

e QisaBOOL reference: The binary representation of 29is 11101. Since LEN is 4, only the
four least-significant bits are used (1101). This value is stored at location Q in the same
order, so 1isstored in Q, 1isstored in Q+1, 0 is stored in Q+2, and 1 is stored in Q+3.

If data is moved from one location in discrete memory to another, such as from %I memory
to %T memory, the transition information associated with the discrete memory elements is
updated to indicate whether the MOVE operation caused any discrete memory elements to
change state.

Note: If an array of BOOL-type data specified in the Q operand does not include all the bits in a
byte, the transition bits associated with that byte (which are not in the array) are cleared
when the Move instruction receives data.

Data at the IN operand does not change unless there is an overlap in the source and
destination—a situation that is to be avoided.

Function Block Diagram (FBD) 264

CPU Programmer’s Reference Manual

GFK-2950G

5.8.2.1

Section 5
June 2020
MOV Operands
Parameter |Description Allowed Allowed Optional
Types Operands
Solve Order |Calculated by the FBD editor. |NA NA No
EN Enable BOOL variable |dataflow,1,Q,M, T, [No
G, S, SA, SB, SC,
discrete symbolic,
I/O variable
Bit referencein [R, P, L, Al, AQ, W,
anon-BOOL non-discrete
variable symbolic, 1/O
variable

IN The source of the data to copy |DINT, DWORD, |All. S, SA, SB, SC No
into the output Q. This can be [INT, REAL, allowed only for
either a constant or avariable [LREAL, UINT, |(WORD, DWORD,
whose reference address is the|WORD, or bit |BOOL types.
location of the first source referenceina
data item to move. non-BOOL
IN must have the same data |variable
type as the variable in the Q
parameter.

If IN is a BOOL variable or a bit
reference, an %I, %Q, %M, or
%T reference address need not
be byte-aligned, but 16 bits
beginning with the reference
address specified are
displayed online.

LEN The length of IN; the number |Constant Constant No
of bits to move.

IfINis a constant and Q is
BOOL:

1<LEN<16;

If INis a constant and Q is not
BOOL:

1 <LEN<256.

All other cases: 1< LEN <
32,767

LEN is also interpreted
differently depending on the
data type of the Q location.
For details, see discussion
under Move Data.

ENO Indicates whether the BOOL variable |dataflow,l,Q,M, T, |Yes
operation was successfully G, discrete symbolic,
completed. I/O variable

265

Function Block Diagram (FBD)

CPU Programmer’s Reference Manual

GFK-2950G

Section 5
June 2020
Parameter |Description Allowed Allowed Optional
Types Operands
IfENO = ON (1), the operation |Bit referencein |I,Q, M, T, G, R, P, L,
was initiated. Results of the |3 hon-BOOL Al, AQ, W, non-
operation are indicated in the |varjable discrete symbolic,
FT output. I/O variable
If ENO = OFF (0), the operation
was not performed. If EN was
ON, the FT output indicates an
error condition. If EN was OFF,
FTis not changed.
Q The location of the first DINT, DWORD, |data flow, I, Q,M, T, |No
destination data item. Q must |INT, REAL, S,SA, SB,SC,G, R, P,
have the same data type as LREAL, UINT, |L, Al,AQ, W,
the variable in the IN WORD, or bit |symbolic, I/O
parameter. referenceina |variable
If Q is a BOOL variable or a bit |non-BOOL
reference, an %I, %Q, %M, or |variable
%T reference address does not
need to be byte-aligned, but
16 bits beginning with the
specified reference address
are displayed online.
266

Function Block Diagram (FBD)

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.9 Math Functions

Your program may need to include logic to convert data to a different type before using a
Math or Numerical function. The description of each function includes information about
appropriate data types. The Type Conversion Functions section explains how to convert one
data type into a different data type.

Function Description
ADD Addition. Adds two or up to eight numbers.
" 1 5 For details, refer to
7 ' Add below.
= 12
O Division.’ Divides one number by another and outputs the quotient.
1
- (11] o Note: Take care to avoid overflow conditions when performing
divisions.
= M2
For details, refer to Divide below

Modulo Division. Divides one humber by another and outputs the

Moo i]
1 remainder. For details, refer to Modulus below.
RN 2] o
-2
ML Multiplication.> Multiplies two or up to eight numbers.
1
- 1 1 Note: Take care to avoid overflow conditions when performing
divisions.
-2 . .
For details, refer to Multiply below.
HEG Negate. Multiplies a number by -1 and places the result in an output
1 location.
- |) o For details, refer to Negate below.

>To avoid Overflows when multiplying or dividing 16-bit numbers, use the Type Conversion Functions to convert the numbers to a 32-bit
data type.
Function Block Diagram (FBD) 267

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020

Function Description

SCALE Scales an input parameter and places the result in an output location.

1 For details, refer to Math Functions in Section 4.
- |HI DT e
- L
- CIHI
-l L0
]
=UB Subtraction. Subtracts one or up to seven numbers from the input IN1 and

1 places the result in an output location.
= |11) For details, refer to Subtract below.
- 2

The output is calculated when the instruction is performed without Overflow, unless an
invalid operation occurs.

5.9.1 Overflow

If an operation on integer operands results in overflow, the output value wraps around.
Examples:

o If the ADD operation, 32767 + 1, is performed on signed integer operands, the result
is-32768

o Ifthe SUB operation, -32767 - 1, is performed on signed integer operands, the result is
32767

e Ifan ADD_UINT operation is performed on 65535+ 16, the result is 15.

Function Block Diagram (FBD) 268

CPU Programmer’s Reference Manual

Section 5
June 2020

GFK-2950G
5.9.2 Add
Figure 202
ADD
1
- N1 Q o=
= IN2

Minimum number
of inputs =2

= N2
- IN3
=t N4
= [N5
= |NG
=t IN7

= IN§

Maximum number
of inputs = 8.

Adds the operands INT and IN2 ... IN8 and stores the sum in Q. IN1 ... IN8 and Q must be of

the same data type.

The result is output to Q when ADD is performed without Overflow, unless one of the

following invalid conditions occurs:

. (+oo)

e INTand/orIN2...IN8is NaN (Not a Number).

If an ADD operation results in Overflow, the result wraps around. For example:

e Ifan ADD_DINT, ADD_INT or ADD_REAL operation is performed on 32767 + 1, Q will be

setto-32768.

o Ifan ADD_UINT operation is performed on 65535 + 16, Q will be set to 15.

Function Block Diagram (FBD)

269

CPU Programmer’s Reference Manual

GFK-2950G June 2020
5.9.2.1 Operands of the ADD Function
Parameter Description Allowed Types Allowed Optional
Operands
Solve Order Calculated by the FBD [NA NA No
editor.
INT...IN8 The values to be added. |INT, DINT, REAL, LREAL, |AllexceptS, |No
UINT SA, SB, SC and
Must be same data type |data flow
as Q.
Q The sum of INT ... IN8. If |INT, DINT, REAL, LREAL, |All exceptS, |No
an Overflow occurs, Q |UINT variable SA, SB, SC,
wraps around. Must be same data type |constantand
asINT....IN8. data flow
5.9.2.2 Properties for ADD
Property Valid Range
Number of Inputs 2to 8
5.9.3 Divide
Figure 203
DV
1
w-{ N1 Q
=1 IN2

Section 5

Divides the operand IN1 by the operand IN2 of the same data type as IN1 and stores the
quotient in the output variable assigned to Q, also of the same data type as INT and IN2.

The result is output to Q when DIV is performed without Overflow, unless one of the
following invalid conditions occurs:

e 0divided by 0 (Results in an application fault.)
e INT and/orIN2is NaN (Not a Number).

If an Overflow occurs, the result wraps around.

Notes:
° DIV rounds down; it does not round to the closest integer. For example, 24 DIV 5 = 4.
° Be careful to avoid overflows.

Function Block Diagram (FBD) 270

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.9.3.1 Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

Parameter |Description Allowed Types Allowed Optional
Operands

Solve Order Calculated by the FBD|NA NA No
editor.

IN1 Dividend: the value to be|INT, DINT, UINT, REAL, |All except S, SA,|No
divided; shown to the left of[LREAL SB, SC
DIV in the equation IN1 DIV
IN2=Q.

IN2 Divisor: the value to divide|INT, DINT, UINT, REAL, |All except S, SA,|No
into INT; shown to the right{LREAL SB, SC
of DIV in the equation IN1
DIV IN2=Q.

Q The quotient of INT/IN2. If|INT, DINT, UINT, REAL [All exceptS, SA,[No
an Overflow occurs, the|or LREAL variable SB, SCand
result is the largest value constant
with the proper sign.

5.9.4 Modulus

Figure 204

MOD
1
- IN1 Q f=

= IN2

Divides input INT by input IN2 and outputs the remainder of the division to Q.

All three operands must be of the same data type. The sign of the result is always the same
as the sign of input parameter IN1. Output Q is calculated using the formula:

Q=INT-((IN1DIVIN2) * IN2)
where DIV produces an integer number.
The result is output to Q unless one of the following invalid conditions occurs:

e 0divided by 0 (Results in an application fault.)
e INTand/orIN2is NaN (Not a Number)

Function Block Diagram (FBD) 271

GFK-2950G

5.9.4.1

5.9.5

CPU Programmer’s Reference Manual Section 5
June 2020
Operands for Modulus Function
Parameter Description Allowed Types |Allowed Optional
Operands
Solve Order Calculated by the FBD editor.[NA NA No
IN1 Dividend: the value to belINT, DINT, UINT [All exceptS, SA, SB, [No
divided into in order to SC
obtain the remainder; shown
to the left of MOD in the
equation INT MOD IN2=Q.
IN2 Divisor: the value to divide[INT, DINT, UINT [All exceptS, SA, SB, [No
into IN1; shown to the right SC
of MOD in the equation
INT MOD IN2=Q.
Q The remainder of INT/IN2. |INT, DINT, UINT |All except S, SA, SB, |No
variable SCand constant
Multiply
Figure 205
MUL MUL
1 1
- N1 Q = - N1 Q =
=1 IN2 - N2
= IN3
- N4
= INS
= ING
— IN7
= INS

Minimum number of
inputs=2

Maximum number of
inputs = 38.

Multiplies two through eight operands (IN1 ... IN8) of the same data type and stores the
result in the output variable assigned to Q, also of the same data type.

The output is calculated when the function is performed without Overflow unless an invalid

operation occurs.

If an Overflow occurs, the result wraps around.

Function Block Diagram (FBD)

272

CPU Programmer’s Reference Manual

GFK-2950G

5.9.5.1

5.9.5.2

5.9.6

Section 5
June 2020
Mnemonic Operation Displays as
INT Q(16-bit) =IN1(16-bit) * IN2(16- |base 10 number with sign, up to 5
bit) digits long
DINT Q(32-bit) =IN1(32-bit) * IN2(32- |base 10 number with sign, up to 10
bit) digits long
REAL Q(32-bit) =IN1(32-bit) * IN2(32- |base 10 number, sign and decimals, up
bit) to 8 digits long (excluding the
decimals)
UINT Q(16-bit) =IN1(16-bit) * IN2(16- |base 10 number, unsigned, up to 5
bit) digits long
Operands for Multiply
Parameter Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
INT ...IN8 The values to multiply. Must be [INT, DINT, |[All exceptS, SA, [No
the same data type as Q. UINT, REAL |SB, SC
Q The result of the multiplication. |INT, DINT, |All exceptS, SA, |No
UINT, REAL |SB, SCand
variable constant

Properties for Multiply

Property

Valid Range

Number of Inputs

2to8

Negate

Figure 206

NEG
1
- N

Q

Multiplies a number by -1 and places the result in the output location, Q

Function Block Diagram (FBD)

273

CPU Programmer’s Reference Manual

GFK-2950G

5.9.6.1

5.9.7

Section 5
June 2020
Operands
Parameter Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN The value to be negated. INT, DINT, |All exceptS, SA, [No
REAL SB, SC
Q The result, -1(IN) INT, DINT, |All exceptS, SA, [No
REAL SB, SCand
variable constant
Subtract
Figure 207
SUB SUB
1 1
- IN2 =1IN2
- IN3
= IN4
= ING
-~ IN7

Minimum number of Maximum number of

inputs =2

inputs = 8.

Subtracts the operands IN2 ...IN8 from the operand IN1 and stores the result in the output
variable assigned to Q.

The calculation is carried out when SUB is performed without Overflow, unless an invalid

operation occurs.

If a SUB operation results in Overflow, the result wraps around. For example:

° If a SUB_DINT, SUB_INT or SUB_REAL operation is performed on 32768 - 1, Q will be

setto 32767.

If a SUB_UINT operation results in a negative number, Q wraps around. (For example, a
result of -1 set Q to 65535.)

Function Block Diagram (FBD)

274

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020

Mnemonic Operation Displays as

SUB_INT Q(16-bit) =IN1(16-bit) - IN2(16-bit) |base 10 number with sign, up to 5
digits long

SUB_DINT Q(32-bit) =IN1(32-bit) - IN2(32-bit) |base 10 number with sign, up to 10
digits long

SUB_REAL Q(32-bit) =IN1(32-bit) - IN2(32-bit) |base 10 number, sign and decimals,
up to 8 digits long (excluding the
decimals)

SUB_UINT Q(16-bit) = IN1(16-bit) - IN2(16-bit) |base 10 number, unsigned, up to 5
digits long

5.9.7.1 Operands for Subtract

Parameter Description Allowed Types |Allowed Optional
Operands
Solve Order Calculated by the FBD NA NA No
editor.
INT The value to subtract DINT, INT, REAL, |All exceptS, SA, |No
from. UINT SB, SC
IN2...IN8 The value(s) to subtract All except S, SA, |No
from IN1. Must be the SB, SC
same data type as IN1.
Q The result of the DINT, INT, REAL, |All exceptS, SA, |No
subtraction. Must be the |UINT variable SB, SCand
same data type as IN1. constant
5.9.7.2 Properties for Subtract
Property Valid Range
Number of Inputs | 2to 8

Function Block Diagram (FBD) 275

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.10 Program Flow Functions

The program flow functions limit program execution or change the way the CPU executes
the application program.

Function Description

Program_Block Program_Block The CALL function causes the logic
CALL e execution to go immediately to the

1 = EN ENO f= designated program block, external C
- EN ENO fo= N1 OUTH block (parameterized or not), or
parameterized block and execute it.
After the block’s execution is complete,
control returns to the point in the logic
immediately following the CALL
instruction.

- IN2

For details, refer to Program Flow
Functions in Section 4.

Non-parameterized Parameterized CALL.
CALL May call a parameterized
external block or a
parameterized block.

The ARG_PRES (Argument Present)

ARG_1PRES function determines whether a
- EN ENO b= parameter value was present when the
function block instance of the
= IN Qp parameter was invoked.

For details, refer to Program Flow
Functions in Section 4.

Function Block Diagram (FBD) 276

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020
5.11 Timers
This section describes the PACSystems timing functions that are implemented in the FBD
language.
5.11.1 Built-in Timer Function Blocks

These function blocks use WORD Array instance data. The parameter that appears above
the function block is a one-dimensional, three-word array in %R, %W, %P, %L, or symbolic
memory that the timer uses to store its current value, preset value and control word.

Function Description
control_parameter Off Delay Timer. The timer's Current Value (CV) resets to zero
PDFDT HUNDS when its enable parameter (EN) is set to ON.. CV increments
1 while EN is OFF. When CV=PV (Preset Value), ENO is set to
- EN ENO = OFF until EN is set to ON again.
Other OFDT functions:
g Vi OFDT_SEC
OFDT_TENTHS
OFDT_THOUS
For details, refer to Timers in Section 4.
control_parameter On Delay Stopwatch Timer. Retentive on delay timer.
ONDTR_HUNDS Increments while ENis ON and holds its value when EN is OFF.
1
o EN ENO b= ONDTR_SEC
ONDTR_TENTHS
- R oV k= ONDTR_THOUS
For details, refer to Timers in Section 4.
- PV
control_parameter On Delay Timer. Simple on delay timer. Increments while EN
TMR_HUNDS is ON and resets to zero when EN is OFF.
1 TMR_SEC
T TMR_TENTHS
- PV cV k= TMR_THOUS

For details, refer to Timers in Section 4.

Function Block Diagram (FBD) 277

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020
5.11.2 Standard Timer Function Blocks

These functions blocks use Structure Variable instance data. Each invocation of a timer has
associated instance data that persists from one execution of the timer to the next. Instance
variables are automatically located in symbolic memory. (You cannot specify an address.)
You can specify a stored value for each element. The user logic cannot modify the values.

Function

Description

Instance_WVar

TOF
1
- N

-PT E

Qb=

T

Timer Off Delay. When the input IN transitions from ON to OFF, the
timer starts timing until a specified period of time has elapsed, then
sets the output Q to OFF.

For details, refer to Timers in Section 4.

instance_Var

TON
1
- N

- PT

Q

ET

Timer On Delay. When the input IN transitions from OFF to ON, the
timer starts timing until a specified period of time has elapsed, then
sets the output Q to ON.

For details, refer to Timers in Section 4.

Instance_Var

TP
1
w-t N

- PT

Q

ET

Timer Pulse. When the input IN transitions from OFF to ON, the timer
sets the output Q to ON for a specified time interval.
For details, refer to Timers in Section 4.

Function Block Diagram (FBD)

278

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

5.12 Type Conversion Functions

The Conversion functions change a data item from one number format (data type) to
another. Many programming instructions, such as math functions, must be used with data
of one type. As a result, data conversion is often required before using those instructions.

Function Description

Convert Angles

0OEG TO RAD DEG_TO_RAD: Converts degrees to radians.
1 RAD_TO_DEG: Converts radians to degrees.
g or For details, refer to Conversion Functions in Section 4.

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_T0_BC04 UINT_TO_BDC4: Converts UINT (16-bit unsigned integer) to BCDA4.
1 INT_TO_BCD4: Converts INT (16-bit signed integer) to BCD4.
= I il m= [For details, refer to Conversion Functions in Section 4.

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT T0_BCDS DINT_TO_BDS8: Converts DINT (32-bit signed integer) to BCDS.
1 For details, refer to Conversion Functions in Section 4.
R (2]

Convert to INT (16-bit signed integer)

BCO4_TO_INT BCD4_TO_INT: Converts BCD to INT.
1 UINT_TO_INT: Converts UINT to INT
=M er DINT_TO_INT: Converts DINT to INT..

REAL_TO_INT: Converts REAL to INT.
For details, refer to Conversion Functions in Section 4.

WORD T0 TNT Converts a 16-bit string (WORD) value to INT.
4 For details, refer to Convert WORD to INT below.
- |14) o

Convert to UINT (16-bit unsigned integer)

BCO4 T UINT BCD4_TO_UINT: Converts BCD4 to UINT.
N 1 5 INT_TO_UINT: Converts INT to UINT.
7 B DINT_TO_UINT: Converts DINT to UINT.

REAL_TO_UINT: Converts REAL to UINT.
For details, refer to Conversion Functions in Section 4.

WORD_TO_UINT WORD_TO_UINT: Converts a 16-bit string (WORD) value to UINT.

" 1 a For details, refer to Convert DWORD to DINT below.

Function Block Diagram (FBD) 279

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020

Function Description

Convert to DINT (32-bit signed integer)

BCOE_TO_DINT BCD8_TO_DINT: Converts BCD8 to DINT.
" 1 q UINT_TO_DINT: Converts UINT to DINT.
n B For details, refer to Conversion Functions in Section 4.

[NT_TO DINT INT_TO_DINT: Converts INT to DINT.
1 REAL_TO_DINT: Converts REAL (32-bit signed real or floating-point
= M [l
values) to DINT.

For details, refer to Conversion Functions in Section 4.

OWORD_TO_DINT DWORD_TO_DINT: Converts a 32-bit bit string (DWORD) value to
1 DINT.
={IMN @ |ror details, refer to Convert DWORD to DINT below.

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO _REAL BCD4_TO_REAL: Converts BCD4 to REAL.
1 BCD8_TO_REAL: Converts BCD8 to REAL.
=™ o UINT_TO_REAL: Converts UINT to REAL.

INT_TO_REAL: Converts INT to REAL.
DINT_TO_REAL: Converts DINT to REAL.
LREAL_TO_REAL: Converts LREAL to REAL.

For details, refer to Conversion Functions in Section 4.

Convert to LREAL(64-bit signed real or floating-point values)

REAL TO_LREAL Converts a REAL value to LREAL.

2 For details, refer to Conversion Functions” in Section 4.
- 4] ()

Convert to WORD (16-bit string)

NT TO WORD Converts an INT (16-bit signed integer) value to a WORD value.
1 For details, refer to Convert INT or UINT to WORD below.
- |4 2
UINT TO WORD Converts an unsigned single-precision integer (UINT) to WORD.
i For details, refer to Convert INT or UINT to WORD below.
-)

Convert to DWORD (32-bit bit string)

DINT TO DWORD Converts a double-precision signed integer (DINT) value to DWORD.
1 For details, refer to
= M 2l = |Convert DINT to DWORD below.

Function Block Diagram (FBD) 280

CPU Programmer’s Reference Manual Section 5

GFK-2950G June 2020
Function Description
Truncate
TRUNC DINT Rounds a REAL (32-bit signed real or floating-point) number down to
' a DINT number
- |) For details, refer to Conversion Functions in Section 4.
TRUMC_INT Rounds a REAL (32-bit signed real or floating-point) number down to
1 an INT number
= M G = For details, refer to Conversion Functions in Section 4.

5.12.1 Convert WORD to INT

Figure 208
WORD_TO_INT
1
- N Q -

Converts the input data into the equivalent single-precision signed integer (INT) value,
which it outputs to Q. This function does not change the original input data. The output data
can be used directly as input for another program function, as in the examples.

The function passes data to Q, unless the data is out of range (0 through +65,535).
5.12.1.1 Operands

Parameter |Description Allowed [Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN The value to convert to INT. WORD All except S, SA, |No
SB, and SC
Q The INT equivalent value of the [INT All except S, SA, |No
original value in IN. SB, SCand
constant

Function Block Diagram (FBD) 281

CPU Programmer’s Reference Manual
GFK-2950G

5.12.2 Convert WORD to UINT

Section 5
June 2020

Figure 209

WORD_TO_UINT

1
- [N Q =

These functions convert the input data into the equivalent single-precision unsigned integer

(UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used
directly as input for another program function, as in the example.

The function passes the converted data to Q, unless the resulting data is outside the range

0to +65,535.
5.12.2.1 Operands

Parameter |Description Allowed Types |Allowed Optional
Operands
Solve Order |Calculated by the FBD editor. |NA NA No
IN The value to convert to UINT. WORD All except S, SA, SB, |No
and SC
Q The UINT equivalent value of the[UINT All except S, SA, SB, |No
original input value in IN. SCand constant

5.12.3 Convert DWORD to DINT

Figure 210

DWORD_TO_DINT
1

Converts DWORD datainto the equivalent signed double-precision integer (DINT) value and
stores the result in Q. The conversion to DINT does not change the original data.

The output data can be used directly as input for another program function. The function
passes data to Q unless the data is out of range.

Function Block Diagram (FBD)

282

CPU Programmer’s Reference Manual Section 5
GFK-2950G June 2020
5.12.3.1 Operands
Parameter Description Allowed |Allowed Optional
Types Operands
Solve Order Calculated by the FBD editor. NA NA No
IN The value to convert to DINT. DWORD All except S, SA, [No
SB, and SC
Q The DINT equivalent value of the |UINT All except S, SA, [No
original input value in IN. SB, SCand
constant
5.12.4 Convert INT or UINT to WORD
Figure 211
UINT_TO_WORD
1
- | Q) o
Converts an unsigned single-precision integer (UINT) operand IN to a 16-bit bit string
(WORD) value and stores the result in the variable assigned to Q.
Figure 212
INT_TO_WORD
1
- [N Q=
Converts a 16-bit signed integer (INT) operand IN to a 16-bit bit string (WORD) value and
stores the result in the variable assigned to Q.
The output data can be used directly as input for another program function. The function
passes data to Q unless the data is out of range.
5.12.4.1 Operands
Parameter |Description Allowed Types |Allowed Optional
Operands
Solve Order |Calculated by the FBD editor. NA NA No
IN The value to convert to WORD. INT or UINT, All except S, SA, |No
depending on SB, and SC
function
Q The WORD equivalent value of the |WORD All except S, SA, |No
original value in IN. 0 < Q <65,535. SB, SCand
constant
Function Block Diagram (FBD) 283

CPU Programmer’s Reference Manual

GFK-2950G

5.12.5

5.12.5.1

Convert DINT to DWORD

Section 5
June 2020

Figure 213

1
- N

DINT_TO_DWORD

() o

When DINT_TO_DWORD receives data, it converts the input double-precision signed
integer (DINT) data into the equivalent DWORD (32-bit bit string) value, which it outputs to
Q. DINT_TO_DWORD does not change the original DINT data.

The output data can be used directly as input for another program function. The function
passes data to Q unless the data is out of range.

Operands
Parameter Description Allowed Types |Allowed Optional
Operands

Solve Order Calculated by the FBD editor. [NA NA No

IN The value to convert to DINT All except S, SA, |No
DWORD. SB, and SC

Q The DWORD equivalent value [DWORD All except S, SA, |No
of the original value in IN. 0 < SB, SCand
Q<4,294,967,295. constant

Function Block Diagram (FBD)

284

CPU Programmer’s Reference Manual

GFK-2950G

Section

Service Request Function

6 Service Request Function

Use a Service Request function to request one of the following control system services:

Section 6
June 2020

SVC_REQ 1: Change/Read Constant Sweep Timer

SVC_REQ 2: Read Window Modes and Time Values

SVC_REQ 3: Change Controller Communications Window Mode

SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value

SVC_REQ 5: Change Background Task Window Mode and Timer Value

SVC_REQ 6: Change/Read Number of Words to Checksum

SVC_REQ 7: Read or Change the Time-of-Day Clock

SVC_REQ 8: Reset Watchdog Timer

SVC_REQ 9: Read Sweep Time from Beginning of Sweep

SVC_REQ 10:

Read Target Name

SVC_REQ 11:

Read Controller ID

SVC_REQ 12:

Read Controller Run State

SVC_REQ 13:

Shut Down (STOP) CPU

SVC_REQ 14:

Clear Controller or 1/O Fault Table

SVC_REQ 15:

Read Last-Logged Fault Table Entry

SVC_REQ 16:

Read Elapsed Time Clock

SVC_REQ17:

Mask/Unmask I/O Interrupt

SVC_REQ 18:

Read I/O Forced Status

SVC_REQ 19:

Set Run Enable/Disable

SVC_REQ 20:

Read Fault Tables

SVC_REQ 21:

User-Defined Fault Logging

SVC_REQ 22:

Mask/Unmask Timed Interrupts

SVC_REQ 23:

Read Master Checksum

SVC_REQ 24:

Reset Module

SVC_REQ 25:

Disable/Enable EXE Block and Standalone C Program Checksums

SVC_REQ 29:

Read Elapsed Power Down Time

SVC_REQ 32:

Suspend/Resume I/O Interrupt

SVC_REQ 45:

Skip Next /O Scan

285

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

SVC_REQ 50: Read Elapsed Time Clock
SVC_REQ 51: Read Sweep Time from Beginning of Sweep
SVC_REQ 56: Logic Driven Read of Nonvolatile Storage

SVC_REQ 57: Logic Driven Write to Nonvolatile Storage

The following Service Requests are used in CPU HSB redundancy applications.

Refer to the PACSystems Hot Standby CPU Redundancy User’s Guide, GFK-2308. For non-HSB
applications, refer to PACSystems RX7i, RX3i and RSTi-EP TCP/IP Ethernet Communications
User Manual, GFK-2224.

SVC_REQ 26 | Role switch (redundancy)

SVC_REQ 27 | Write to reverse transfer area (Hot Standby Redundancy)

SVC_REQ 28 | Read from reverse transfer area (Hot Standby Redundancy)
SVC_REQ43 | Disable data transfer copy in backup unit (Hot Standby Redundancy)
SVC_REQ55 | Set application redundancy mode (non-Hot Standby Redundancy)

6.1 Operation of SVC_REQ Function

PACSystems supports the Service Request function in LD and FBD.

6.1.1 Ladder Diagram

Figure 214

svVC
- REOQ |

—|FNC

—{PEM

When SVC_REQ receives power flow, it requests the CPU to perform the special service
identified by the FNC operand.

Parameters for SVC_REQ are in the parameter block, which begins at the reference
identified by the PRM operand. The number of 16-bit references required depends on the
type of special controller service being requested. The parameter block is used to store both
the function's inputs and outputs.

SVC_REQ passes power flow unless an incorrect function number, incorrect parameters, or
out-of-range references are specified. Specific SVC_REQ functions may have additional
causes for failure.

Because the service request continues to be invoked each time power flow is enabled to the
function, additional enable/disable logic preceding the request may be necessary,
depending upon the application. (For example, repeated calling of SVC_REQ 24 would
continually reset a module, probably not the intended behavior.) In many cases a transition
contact or coil will be enough. Alternatively, you could use more complex logic, such as
having the function contained within a block that is only called a single time.

Service Request Function 286

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.1.1.1 Operands

Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %Al, and %AQ).

Operand |Data Type Memory Area Description

FNC INT variable or All except %S - %SC Function number; Service Request
constant number. The constant or reference
that identifies the requested
service.

PRM WORD variable All except flow, %S - %SC [The first WORD in the parameter
and constant block for the requested service.
Successive 16-bit locations store
additional parameters.

6.1.1.1.1 Example
Figure 215
V_I0000 SVC REO ¥_0ooo0
— —

7 —FNC

V_Ro00o01 — FPEM

When the enabling input %0001 is ON, SVC_REQ function number 7 is called, with the
parameter block starting at %R0001. If the operation succeeds, output coil Q0001 is set

ON.

Service Request Function 287

CPU Programmer’s Reference Manual

GFK-2950G

6.1.2

Section 6
June 2020

Function Block Diagram

Figure 216

SVC_REQ

1
=EN ENO =
= FNC

= PRM

The SVC_REQ function requests the CPU to perform the special service identified by the FNC

operand.

Parameters for SVC_REQ are in the parameter block, which begins at the reference
identified by the PRM operand. The number of 16-bit references required depends on the
type of special controller service being requested. The parameter block is used to store both
the function's inputs and outputs.

6.1.2.1 Operands
Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %Al, and %AQ.
Parameter |Description Allowed Types |Allowed Operands Optional
Solve Order |Calculated by the FBD editor. NA NA No
EN Enable input. When set to ON, the BOOL dataflow,,Q,M,T,G,S, SA, SB,SC, |No
SVC_REQ executes discrete symbolic, I/O variable
Bit referenceina |I,Q,M,T,G,R,P, L, Al,AQ, W,
non-BOOL variable |non-discrete symbolic, 1/O variable
FNC Function number; Service Request |INT, DINT, UINT, |All except %S - %SC No
number. The constant or variable WORD, DWORD |You can use data flow only if the
that identifies the requested parameter block requires only one
service. WORD
If you use a symbolic variable or an 1/O
variable, ensure that its Array
Dimension 1 property is set to a value
large enough to contain the entire
parameter block.
PRM The first word in the parameter INT, DINT, UINT, |All except flow, %S - %SC and constant |No
block for the requested service. WORD, DWORD
Successive 16-bit locations store
additional parameters.
ENO Set to ON unless an incorrect BOOL dataflow, I, Q, M, T, G, non-discrete |Yes
function number, incorrect symbolic, /O variable
parameters, or out-of-range Bit referenceina |I,Q,M,T,G,R,P, L, Al,AQ, W,
references are specified. Specific non-BOOL non-discrete symbolic, 1/O variable
SVC_REQ functions may have variable.
additional causes for failure.
Service Request Function 288

CPU Programmer’s Reference Manual

GFK-2950G

6.2 SVC_REQ 1: Change[Read Constant Sweep

Timer

Use SVC_REQ function 1 to:
e Disable Constant Sweep mode
o Enable Constant Sweep mode and use the old Constant Sweep timer value
e Enable Constant Sweep mode and use a new Constant Sweep timer value
e Setanew Constant Sweep timer value only
e Read Constant Sweep mode state and timer value.

The parameter block has a length of two words used for both input and output.
SVC_REQ executes successfully unless:

¢ Anumberotherthan0, 1, 2, or 3 is entered as the requested operation:

e Thescantime value is greater than 2550ms (2.55 seconds)

Section 6
June 2020

e Constant sweep time is enabled with no timer value programmed or with an old value of
0 for the timer.

6.2.1 To disable Constant Sweep mode:
Enter SVC_REQ 1 with this parameter block:
Address 0
Address+1 | Ignored
6.2.2 To enable Constant Sweep mode and use the old timer
value:
Enter SVC_REQ 1 with this parameter block:
Address 1
Address+1 |0

If the timer value does not already exist, entering 0 causes the function to set the OK output

to OFF.

Service Request Function

289

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020
6.2.3 To enable Constant Sweep mode and use a new timer

value:
Enter SVC_REQ 1 with this parameter block:

Address 1

Address + 1 New timer value

Note: Ifthe timer value does not already exist, entering 0 causes the function to set
the OK output to OFF.

6.2.4 To change the timer value without changing the

selection for sweep mode state:
Enter SVC_REQ 1 with this parameter block:

Address 2

Address + 1 New timer value

6.2.5 To read the current timer state and value without

changing either:
Enter SVC_REQ 1 with this parameter block:

Address 3
Address + 1 ignored

6.2.5.1 Output

SVC_REQ 1 returns the timer state and value in the same parameter block references:

Address 0 = Normal Sweep
1 =Constant Sweep

Address + 1 Current timer value

If the word address + 1 contains the hexadecimal value FFFF, no timer value has been
programmed.

Service Request Function 290

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.2.5.1.1

6.3

6.3.1.1

Service Request Function

June 2020

SVC_REQ 1 Example

If contact OV_SWP is set, the Constant Sweep Timer is read, the timer is increased by 2 ms,
and the new timer value is sent back to the CPU. The parameter block is at location %R3050.
The example logic uses discrete internal coil %M0001 as a temporary location to hold the

successful result of the first rung line. On any sweep in which OV_SWP is not set, %M00001
is turned off.

Figure 217
OV_sWF MOVE SVYCREQ ADDINT V_M00001
{ | WORD {
3
1 —IN Q- v_R03050 1—|FNC V_R03051 —{IN1 QfF W_R03051
V_R03050 —|FRM 2 —INZ
V_Mo0001 MOVE SVCREQ
1} WORD -
1
1 —IN Q- V_R03050 1—|FNC
V_R03050 —|FEM

SVC_REQ 2: Read Window Modes and Time
Values

Use SVC_REQ 2 to obtain the current window mode and time values for the controller
communications window and the backplane communications and the background task
window.

The parameter block has a length of three words. All parameters are output parameters. It
is not necessary to enter values in the parameter block to program this function.

Output

Address Window High Byte Low Byte
Address Controller Communications Window Mode Value in ms
Address+1 |Backplane Communications Window Mode Value in ms
Address +2 |Background Window Mode Value in ms

Note: A window is disabled when the time value is zero.

291

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.3.1.2 Mode Values

Mode Name (Value |Description

Limited Mode 0 The execution time of the window is limited to its respective default
value or to a value defined using SVC_REQ 3 for the controller
communications window or SVC_REQ 4 for the systems
communications window. The window will terminate when it has no
more tasks to complete.

Constant Mode |1 Each window will operate in a Run to Completion mode, and the CPU
will alternate among the three windows for a time equal to the sum of
each window's respective time value. If one window is placed in
Constant mode, the remaining two windows are automatically placed
in Constant mode. If the CPU is operating in Constant Window mode
and a particular window's execution time is not defined using the
associated SVC_REQ function, the default time for that window is used
in the constant window time calculation.

Run to 2 Regardless of the window time associated with a particular window,
Completion Mode whether default or defined using a service request function, the
window will run until all tasks within that window are completed.

6.3.1.2.1 SVC_REQ 2 Example

Figure 218

V_0Q00102 [SUCEREQ

2 —FNC

V_R00010 —|FEM

When %Q00102 is set, the CPU places the current time values of the windows in the
parameter block starting at location %R0010.

Service Request Function 292

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.4 SVC_REQ 3: Change Controller
Communications Window Mode

Use SVC_REQ 3 to change the controller communications window mode and timer value.
The change takes place during the next CPU sweep after the function is called.

The parameter block has a length of one word.

SVC_REQ 3 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is
selected.

6.4.1 To disable the controller communications window:
Enter SVC_REQ 3 with this parameter block:

Address [High Byte |Low Byte
Address |0 0

6.4.2 To re-enable or change the controller communications

window mode:
Enter SVC_REQ 3 with this parameter block:

Address|High Byte Low Byte

Address [Mode: 0 =Limited Tms <value <255msin Tms
2 =Runto Completion |increments

6.4.2.1 SVC_REQ 3 Example

Figure 219
V_100125 MOVE SWCREQ
i1} UINT
1
25 —|IN Q- v_P0O00S1 3 —|FNC

V_P000S1 —|FRM

V_10025 MOVE
4} UINT

0—IN Q- v_P0o00st

When enabling input %100125 transitions on, the controller communications window is
enabled and assigned a value of 25ms. When the contact transitions off, the window is
disabled. The parameter block is in global memory location %P00051.

Service Request Function 293

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.5 SVC_REQ 4: Change Backplane
Communications Window Mode and Timer
Value

Use SVC_REQ 4 to change the Backplane Communications window mode and timer value.
The change takes place during the next CPU sweep after the function is called.

SVC_REQ 4 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is
selected.

The parameter block has a length of one word.

6.5.1 To disable the Backplane Communications window:
Enter SVC_REQ 4 with this parameter block:

Address [High Byte |Low Byte

Address |0 0
6.5.2 To enable the Backplane Communications window
mode:
Enter SVC_REQ 4 with this parameter block:
Address|High Byte Low Byte
Address |Mode 0= Limited Tms < value <255ms

2 =Run to Completion

6.5.2.1 SVC_REQ 4 Example

When enabling output %M0125 transitions on, the mode and timer value of the Backplane
Communications window is read. If the timer value is greater than or equal to 25ms, the
value is not changed. If it is less than 25ms, the value is changed to 25ms. In either case,
when the rung completes execution the window is enabled. The parameter block for all
three windows is at location %R5051. Since the mode and timer for the Backplane
Communications window is the second value in the parameter block returned from the
Read Window Values function (SVC_REQ 2), the location of the existing window time for the
Backplane Communications window is in the low byte of %¥R5052.

Service Request Function 294

CPU Programmer’s Reference Manual Section 6

GFK-2950G June 2020
Figure 220
V_I00001 ¥_MO00125
— —{t)}—
V_MO00125 [sy¥CREQ AND AND
| WORD WORD |
2 —{FNC V_R0S052 —{IN1 Q- V_R0S060 W_R0S052 —IN1 Q- W¥_RS0061
¥_R05051 —|FRM 16#00FF —{IN2 16#FF00 —IN2
V_M00125 [LTINT OR WORD SUC REQ
{ | -
V_R0S060 —IN1 O V_R00061 —{IN1 Q- V_R00052 4 —{FNC
25 —IN2 25 —|IN2 _R00052 —|FRM

6.6 SVC_REQ 5: Change Background Task Window
Mode and Timer Value

Use SVC_REQ 5 to change the Background Task window mode and timer value. The change
takes place during the next CPU sweep after the function is called.

SVC_REQ 5 executes unless a mode other than 0 (Limited) or 2 (Run-to-Completion) is
selected.

The parameter block has a length of one word.

6.6.1 To disable the Background Task window:
Enter SVC_REQ 5 with this parameter block:

Address [High Byte |Low Byte
Address |0 0

6.6.2 To enable the Background Task window mode:
Enter SVC_REQ 5 with this parameter block:

Address|High Byte Low Byte

Address |Mode 0= Limited 1ms <value <255ms
2 =Run to Completion

Service Request Function 295

CPU Programmer’s Reference Manual

GFK-2950G

6.6.2.1.1

SVC_REQ 5 Example

When enabling contact #FST_SCN is set in the first scan, the MOVE function establishes a
value of 20ms for the Background task window, using a parameter block beginning at
%P00050. Later in the program, when input %100500 transitions on, the state of the
Background task window toggles on and off. The parameter block for all three windows is at
location %P00051. The time for the Background task window is the third value in the
parameter block returned from the Read Window Values function (function #2); therefore,

the location of the existing window time for the Background window is %P00053.

Section 6
June 2020

SVCREQ

FNC

PEM

Figure 221
#FST_SCN MOVE
I} UINT |_
1
20 —{IN Q- v_P000S0
V_I100500 SVC REQ EQUINT | V_MO00002
i { }J—
2 —{FNC V_P00053 —1H1 apF
V_P00051 —|FRM 0 —{IN2
V_I00500 V_M00002 MOVE
i1} 1/} Ut
1
0 —IN QfF v_P00053 5
V_Mo0002 MOVE
1} UINT Y_P000S3 —
1
V_P00050 —|IN QfF v_P00053

Service Request Function

296

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.7

6.7.1

6.7.2

Service Request Function

June 2020

SVC_REQ 6: Change/Read Number of Words to
Checksum

Use SVC_REQ 6 to read the current word count in the program to be check-summed or set
anew word count. By default, 16 words are checked. The function is successful unless some
number other than 0 or 1 is entered as the requested operation.

The parameter block has a length of 2 words.

To read the word count:

Enter a zero in the first word of the parameter block.

Address 0

Address + 1 |lgnored

The function returns the current checksum (word count) in the second word of the
parameter block. No range is specified for the read function; the value returned is the
number of words currently being check-summed.

Address 0

Address +1 [Current word count

To set a new word count:

Enter a one in the first word of the parameter block and the new word count in the second
word.

Address 1

Address +1 [New word count

The CPU changes the number of words to be check-summed to the value given in the
second word of the parameter block, rounded up to the next multiple of 8. To disable check-
summing, set the new word count to 0.

297

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.7.2.1.1 SVC_REQ 6 Example

Figure 222

#FST_SCN XOR MOVE
' WORD OINT |

yroose M QF B Zoote 1IN Q- gz

v 2ooyse —|IN2

V_100137 [sWCREQ ADD SUCREQ
Lt — UINT L

b —|FNC y oo N QF louss b —FHC

120045 —|PRM 16 — N2 ¥ 200552 —PRM

When enabling contact #FST_SCN is set, the parameter blocks for the checksum task
function are built. Later in the program, when input %100137 transitions on, the number of
words being check-summed is read from the CPU operating system. This number is
increased by 16, with the results of the ADD_UINT function being placed in the hold new

count for set parameter. The second service request block requests the CPU to set the new
word count.

The example parameter blocks are located at address %L00150. They have the following
contents:

%L00150 |0 =read current count
%L00151 [hold current count
%L00152 |1 =set current count

%L00153 |hold new count for set

Service Request Function 298

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.8

June 2020

SVC_REQ 7: Read or Change the Time-of-Day
Clock

Use SVC_REQ 7 to read or change the time of day clockin the CPU. The function is successful
unless:

e Aninvalid numberis entered for the requested operation.

e Aninvalid data format is specified.

o Datais provided in an unexpected format.

6.8.1

Service Request Function

Parameter Block Formats

In the first two words of the parameter block, you specify whether to read or set the time
and date, and which format to use.

Address 2-Digit Year Format 4-Digit Year Format
Address 0 =read time and date 0 = read time and date
(word 1) 1 = set time and date 1= settime and date
Address+1 0 = numeric data format 80h - numeric data format
(word 2) 1=BCD format 81h =BCD format

2 = unpacked BCD format 82h = unpacked BCD format

3 = packed ASCII format (with embedded |83h = packed ASCII format
spaces and colons)

4 =POSIX format n/a
Address+2 Data Data
(word 3)
to theend

Words 3 to the end of the parameter block contain output data returned by a read function,
or new data being supplied by a change function. In both cases, format of these data words
is the same. When reading the date and time, words (address + 2) to the end of the
parameter block are ignored on input.

299

CPU Programmer’s Reference Manual

GFK-2950G

Service Request Function

Section 6
June 2020

The format and length of the parameter block depends on the data format and number of

digits required for the year:

Data Format and N-digit Year |Length of parameter block
(number of words)

BCD, 2-digit year 6

BCD, 4-digit year 6

POSIX format 6

Unpacked BCD 2 9

Unpacked BCD 4 10

Numeric (2 and 4-digit years) 9

Packed ASCII, 2-digit year 12

Packed ASCII, 4-digit year 13

In any format:

e Hours are stored in 24-hour format.

o Day of the week is a numeric value ranging from 1 (Sunday) to 7 (Saturday).

Value |Day of the Week

1 Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

N|lo|lu | M WIN

Saturday

300

CPU Programmer’s Reference Manual

GFK-2950G

6.8.1.1

6.8.1.2

Service Request Function

BCD, 2-Digit Year

Section 6
June 2020

In BCD format, each time and date item occupy one byte, so the parameter block has six
words. The last byte of the sixth word is not used. When setting the date and time, this byte
is ignored; when reading date and time, the function returns a null character (00).

Parameter Block Format

Address

Example

(Sun., July 3, 2005, at 2:45:30 p.m.
=14:45:30 in 24-hour format)

1=change or 0 = read Address 0 (read)

1 (BCD format) Address+1 1 (BCD format)

High Byte Low Byte Address High Byte Low Byte
month year Address+2 (07 (July) 05 (year)
hours day of month Address+3 |14 (hours) 03 (day)
seconds minutes Address+4 |30 (seconds) 45 (minutes)
(null) day of week Address+5 |00 01 (Sunday)
BCD, 4-Digit Year

In this format, all bytes are used.

Parameter Block Format Address Example

(Sun., July 3, 2005, at 2:45:30 p.m.
=14:45:30 in 24-hour format)

1=change or 0 =read Address 00 (read)

81h (BCD format, 4-digit) Address+1 81h (BCD format, 4-digit)

High Byte Low Byte Address High Byte Low Byte
year year Address+2 20 (year) 05 (year)
day of month month Address+3 03 (day) 07 (July)
minutes hours Address+4 45 (minutes) 14 (hours)
day of week seconds Address+5 01 (Sunday) 30 (seconds)

301

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.8.1.3 POSIX

The POSIX format of the Time-of-Day clock uses two signed 32-bit integers (two DINTs) to
represent the number of seconds and nanoseconds since midnight January 1, 1970.
Reading the clockin POSIX format might make it easier for your application to calculate time
differences. This format can also be useful if your application communicates to other
devices using the POSIX time format. To read and/or change the date and time using POSIX
format, enter SVC_REQ 7 with this parameter block:

Parameter Block Format [Address Example: December 1, 2000 at 12 noon
1=change or 0 =read Address 0

4 (POSIX format) Address+1 4

seconds (LSW) Address+2 975,672,000

(MSW) Address+3

nanoseconds (LSW) Address+4 0

(MSW) Address+5

The PACSystems CPU’s maximum POSIX clock value is F48656FE (hexadecimal) seconds
and 999,999,999 (decimal) nanoseconds, which corresponds to December 31st, 2099
at 11:59 pm. This is the maximum POSIX value that SVC_REQ 7 will accept for changing the
clock. This is also the maximum POSIX value SVC_REQ 7 will return once the Time-Of-Day
clock passes this date.

If SVC_REQ 7 receives an invalid POSIX time to write to the clock, it does not change the
Time-Of-Day clock and disables its power-flow output.

Note:

o When reading the PACSystems CPU clock in POSIX format, the data returned is not easily
interpreted by a human viewer. If desired, it is up to the application logic to convert the
POSIX time into year, month, day of month, hour, and seconds.

o At 03:14:08 UTC on 19 January 2038, 32-bit versions of the Unix time stamp will cease to

work, as it will overflow the largest value that can be held in a signed 32-bit number
(7FFFFFFF16 or 2,147,483,647). Before this moment, software using 32-bit time stamps will
need to adopt a new convention for time stamps, and file formats using 32-bit time stamps
will need to be changed to support larger time stamps or a different epoch.

Service Request Function 302

CPU Programmer’s Reference Manual

GFK-2950G

6.8.1.4

6.8.1.5

Service Request Function

Unpacked BCD (2-Digit Year)

Section 6
June 2020

In Unpacked BCD format, each digit of the time and date items occupies the low-order four
bits of a byte. The upper four bits of each byte are always zero. This format requires nine

words. Values are hexadecimal.

Parameter Block Format Address Example
(Thurs., Dec. 8, 2002, at 9:34:57
a.m.)
1=change or 0 = read Address Oh
2 (Unpacked BCD format) Address+1 |2h
HighByte [Low Byte High Byte Low Byte
year Address+2 00h 02h
month Address+3 01h 02h
day of month Address+4 02h 08h
hours Address+5 00h 09h
minutes Address+6 03h 04h
seconds Address+7 05h 07h
day of week Address+8 00h 05h

Unpacked BCD (4-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order four
bits of a byte. The upper four bits of each byte are always zero. This format requires nine

words. Values are hexadecimal.

Parameter Block Format Address Example
(Thurs., Dec. 8, 2002, at 9:34:57
a.m.)
1=change or 0 = read Address Oh
82h (Unpacked 4-digit BCD format) [Address+1 |82h
High Byte Low Byte High Byte Low Byte
year Address+2 00h 02h
month Address+3 01h 02h
day of month Address+4 00h 08h
hours Address+5 00h 09h
minutes Address+6 03h 04h
seconds Address+7 05h 07h
day of week Address+8 00h 05h

303

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.8.1.6

6.8.1.7

Service Request Function

June 2020
Numeric, 2-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of week
each occupy one unsigned integer. To read and/or change the date and time using the
numeric format, enter SVC_REQ function #7 with this parameter block:

Parameter Block Format Address Example

Wed., June 15, 2005, at 12:15:30 a.m.
1=change or 0 = read Address 0
0 (Numeric format, 2-digityear) |Address+1 |0

High Byte Low Byte Value
year Address+2 05
month Address+3 06
day of month Address+4 15
hours Address+5 12
minutes Address+6 15
seconds Address+7 30
day of week Address+8 04

Numeric, 4-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of week
each occupy one unsigned integer. To read and/or change the date and time using the
numeric format, enter SVC_REQ function #7 with this parameter block:

Parameter Block Format Address Example: Wed., June 15, 2005, at
12:15:30 a.m.

1=change or 0 =read Address 0

80h (Numeric format, 4 digityear) |Address+1 |80h

High Byte Low Byte Value
year Address+2 2005
month Address+3 06
day of month Address+4 15
hours Address+5 12
minutes Address+6 15
seconds Address+7 30
day of week Address+8 04

304

CPU Programmer’s Reference Manual

GFK-2950G

6.8.1.8

Service Request Function

Packed ASCII, 2-Digit Year

Section 6
June 2020

In Packed ASCII format, each digit of the time and date items is an ASCIl formatted byte.
Spaces and colons are embedded into the data to format it for printing or display. ASCII
format for a 2-digit year requires 12 words in the parameter block. Values are hexadecimal.

Parameter Block Format Address Example
(Mon., Oct. 5, 2005, at 11:13:25
p-m. =23:13:25 in 24-hour
format)

1=change or 0 = read Address Oh (read)

3 (ASCIl format) Address+1 3h (ASClI format)

High Byte Low Byte High Byte Low Byte

year year Address+2 35h (5) 30h (0)

month (space) Address+3 31h (1) 20h (space)

(space) month Address+4 20h (space) 30h (0)

day of month day of month Address+5 35h (5) 30h (leading 0)

hours (space) Address+6 32h (2) 20h (space)

: (colon) hours Address+7 3Ah(2) 33h(3)

minutes minutes Address+8 33h(3) 31h (1)

seconds :(colon) Address+9 32h(2) 3Ah(2)

(space) seconds Address+10 20h (space) 35h(5)

day of week day of week Address+11 32h(2=Mon.) |30h (leading 0)

305

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020
6.8.1.9 Packed ASCII, 4-Digit Year

ASCIl format for a 4-digit year requires 13 words in the parameter block. Values are

hexadecimal.

Parameter Block Format Address Example

(Mon., Oct. 5, 2005, at 11:13:25
p-m. = 23:13:25 in 24-hour format)

1=change or 0 = read Address Oh (read)

83 (ASClI format) Address+1 83h (ASClI format, 4-digit)

High Byte Low Byte High Byte Low Byte

year (hundreds) |year (thousands) Address+2 30h (0) 32h(2)

year (ones) year (tens) Address+3 35h (5) 30h (0)

month (tens) (space) Address+4 31h (1) 20h (space)

(space) month (ones) Address+5 20h (space) 30h (0)

day of month day of month (tens) [Address+6 35h (5) 30h (leading 0)

(ones)

hours (tens) (space) Address+7 32h(2) 20h (space)

:(colon) hours (ones) Address+8 3Ah(:) 33h (3)

minutes (ones) |minutes (tens) Address+9 33h(3) 31h (1)

seconds (tens) |: (colon) Address+10 32h(2) 3Ah (A)

(space) seconds (ones) Address+11 20 (space) 35(5)

day of week day of week (tens) Address+12 32h(2=Mon.) |30h (leading 0)

(ones)
6.8.1.9.1 SVC_REQ 7 Example

In this example, the time of day is set to 12:00 pm without changing the current year, BCD
format requires six contiguous memory locations for the parameter block.

Rung 1 sets up the new time of day in two-digit year BCD format. It writes the value 4608
(equivalent to 12 00 BCD) to NOON and the value 0 to MIN_SEC.

Rung 2 requests the current date and time using the parameter block located at %P00300.

Rung 3 moves the new time value into the parameter block starting at R00300. It uses AND
and ADD operations to retrieve the current clock value from %P00303 and replace the hours,
minutes and seconds portion of the value with the values in NOON and MIN_SEC.

Rung 4 uses the parameter block beginning at %R00300 to set the new time.

Service Request Function

306

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

Figure 223

®EST_SCH MCVE INT MOVE INT
1 {1t —
4808 —IN 2f— noon e (] Sf— Mm_sEC
TO0016 MOVE INT NIOVE T TioEEn 00001
7 |} O_
o —m al— Poo200 1= o Poo201 T —frne
Fo0200 —{F
TO0001 129017 AND WORD ADD INT MOVE INT
3 |l 'L -
Po0303 —IN1 o|— roo03 00302 —{N1 2 rooag2 MiN_SEC —IN a|— mooz04
18 —{INZ HOON —|INZ
Too001 109017 TIOVE T TIGVE INT GRS
4 -
—|: al— Rooso " e ol rooso |
200300 —]

Service Request Function 307

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.9

6.9.1.1

Service Request Function

June 2020

SVC_REQ 8: Reset Watchdog Timer

Use SVC_REQ 8 to reset the watchdog timer during the scan.

Ordinarily, when the watchdog timer expires, the CPU stops and goes into an error state
without warning. SVC_REQ 8 allows the timer to keep going during a time-consuming task
(for example, while waiting for a response from a communications line).

Be sure that resetting the watchdog timer does not adversely affect the controlled process.

SVC_REQ 8 has no associated parameter block; however, you must specify a dummy
parameter, which SVC_REQ 8 will not use.

SVC_REQ 8 Example

Figure 224
v_aooz7 SVCREQ
{ | B
V_101476
{ | g —{FNC
V_M00010
{ | V_AI0001 —|PRM

In the LD example at right, power flow through enabling output %Q0127 orinput %11476 or
internal coil ¥M00010 causes the watchdog timer to be reset.

308

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.10

6.10.1.1

6.10.1.1.1

June 2020

SVC_REQ 9: Read Sweep Time from Beginning
of Sweep

Use SVC_REQ 9to read the time in milliseconds since the start of the sweep. The data format
is unsigned 16-bit integer.

Output

The parameter block is an output parameter block only; it has a length of one word.

|Address |time since start of scan

SVC_REQ 9 Example

Figure 225
I SUC REQ [GrinT |
V_M00200
9 —|FNC V_R00zOO —{IN1 @ { +—
V_E00200 —|FEM 100 —{IN2
Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 51: Read Sweep

Time from Beginning of Sweep.

Service Request Function 309

CPU Programmer’s Reference Manual

GFK-2950G

6.11

6.11.1.1

6.11.1.1.1

Service Request Function

SVC_REQ 10: Read Target Name

Use SVC_REQ 10 to read the name of the currently executing target.

Output

Section 6
June 2020

The output parameter block has a length of four words. It returns eight ASCIl characters: the
target name (from one to seven characters) followed by null characters (00h). The last

character is always a null character. If the target name has fewer than seven characters, null
characters are appended to the end.

Address Low Byte | High Byte
Address character 1 | character?2
Address+1 character3 | character4
Address+2 character5 | character 6
Address+3 character7 | 00

SVC_REQ 10 Example

Figure 226

|

00

oom

[

When enabling input %0301 goes ON, register location %R0099 is loaded with the value 10,
which is the function code for the Read Target Name function. The program block READ_ID
is then called to retrieve the target name. The parameter block is located at address

%R0100.

Figure 227

Program block READ_ID:

310

CPU Programmer’s Reference Manual

GFK-2950G

6.12

6.12.1.1

6.12.1.1.1

Service Request Function

SVC_REQ 11: Read Controller ID

Use SVC_REQ 11 to read the name of the controller executing the program.

Output

Section 6
June 2020

The output parameter block has a length of four words. It returns eight ASCIl characters: the
Controller ID (from one to seven characters) followed by null characters (00h). The last

character is always a null character

If the Controller ID has fewer than seven characters, null characters are appended to the

end.
Address Low Byte |High Byte
Address character 1 |character 2
Address+1 character3 |character4
Address+2 character5 |character6
Address+3 character7 |00
SVC_REQ 11 Example
Figure 228

V_I00303 MOVE READ_ID

L

r

WORD [CALL}

1 —|IN QF v_RO0099

When enabling input %l0303 is ON, register location %R0099 is loaded with the value 11,
which is the function code for the Read Controller ID function. The program block READ_ID

is then called to retrieve the ID. The parameter block is located at address %R0100.

Figure 229

#ALW_ON

V_R00099 —

V_R0O0100 —

SVCREQ

FNC

FEM

Program Block READ_ID:

311

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.13 SVC_REQ 12: Read Controller Run State

Use SVC_REQ 12 to read the current RUN state of the CPU.

6.13.1.1 Output

The output parameter block has a length of one word.

Address 1 =run/disabled

2 =run/enabled

6.13.1.1.1 SVC_REQ 12 Example

Figure 230
V_I00W0z [SVCREQ EQINT
_| |—
DISFLAY
12 —|ENC 1—{I¥1 O—{CAIL}-
V_R04002 —PRM W_R04002 —INZ

When contact V_[00102 is ON, the CPU run state is read into location %R4002. If the state is
Run/Disabled, the CALL function calls program block DISPLAY.

Service Request Function 312

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.14 SVC_REQ 13: Shut Down (STOP) CPU

Use SVC_REQ 13 to stop the CPU after the specified number of scans has been performed.
All outputs go to their designated default states at the start of the next CPU scan. An
informational Shut Down Controller fault is placed in the Controller Fault Table. The /O scan
continues as configured.

SVC_REQ 13 has an input parameter block with a length of one word.

Address Number of scans. Valid values:

-1: The CPU uses the Number of Last Scans value configured in the Hardware
Configuration Scan tab to determine when to transition to STOP Mode. For
details on Hardware Configuration parameters, refer to PACSystems RX7i,
RX3iand RSTi-EP CPU Reference Manual, GFK-2222.

1 through 5: The CPU finishes executing this scan, then executes this
number of scans -1, and transitions to STOP Mode.

Note: For CPUs with firmware version earlier than 2.00, the value must be set to 0; otherwise the
CPU does not stop.

6.14.1.1 SVC_REQ 13 Example

When a Loss of 1/O Module fault occurs, the #LOS_IOM contact turns ON and SVC_REQ 13
executes.

In this example, if the Shut Down CPU function executes, the JUMPN to the end of the
program prevents the logic that follows the JUMPN from executing in the current sweep.

Figure 231
#LOS_1OM END_PROG
¥ &
A o
W% SADD14 % TOODO1
END_FPROG MOVE WORD SVC REQ EndProgram
| | JUMPN

1 —IN Q— ROOOO1 13 —FNC

ROO001 —{FRM

The block's last instruction is a LABELN:

Figure 232

| |® EndProgram

Service Request Function 313

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.15 SVC_REQ 14: Clear Controller or 1/O Fault Table

Use SVC_REQ 14 to clear either the Controller Fault Table or the 1/O Fault Table. The
SVC_REQ outputis set ON unless some number other than 0 or 1 is entered as the requested
operation.

The parameter block has a length of 1 word. Itis an input parameter block only. There is no
output parameter block.

Address |0 = clear Controller Fault Table
1 =clear I/O Fault Table

6.15.1.1 SVC_REQ 14 Example

When inputs %10346 and %10349 are on, the Controller Fault Table is cleared. When inputs
%0347 and %10349 are on, the I/O Fault Table is cleared. When input %10348 is on and input
%l0349 is on, both are cleared. Positive transition coils V_M00001 and V_M00002 are used
to trigger these service requests to prevent the fault tables from being cleared multiple
times.

The parameter block for the Controller Fault Table is located at %R0500; for the 1/O Fault
Table the parameter block is located at %R0550.

Note: Both parameter blocks are set up elsewhere in the program.

Figure 233
v 100349 V_I00346 V_MO0001
f f @
V_100348
—_—
¥_Mooooi SVC REQ
| |
ik
14 —FNC
V_R00500 —PRAM
V_l00349 V_lno347 V_MODooz
{ } { | {T—
V_100348
1 ——
V_Moooo2 SVC REQ
| |}
o
14 —FNC
V_R0O0550 —PAM

Service Request Function 314

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.16 SVC_REQ 15: Read Last-Logged Fault Table
Entry

Use SVC_REQ 15 to read the last entry logged in the Controller Fault Table or the I/O Fault
Table. The SVC_REQ output is set ON unless some invalid number is entered as the
requested operation or the fault table is empty.

The non-extended parameter block has a length of 22 words and the extended parameter
block has a length of 24 words.

6.16.1.1 Input Parameter Block

Address |Format

Address+0 |0 =Read Controller Fault Table

1=Read /O Fault Table

80h = Read extended Controller Fault Table
81h = Read extended I/O Fault Table

6.16.1.2 Output Parameter Block

The format of the output parameter block depends on whether SVC_REQ 15 reads the
Controller Fault Table, the extended Controller Fault Table, the 1/O Fault Table or the
extended I/O Fault Table.

Controller Fault Table Output Format |Address 1/O Fault Table Output Format
High Byte Low Byte High Byte Low Byte
0 Address+0 1
unused long/short (always 01) Address+1 reference long/short
address memory |(always 03)
type
unused unused Address+2 reference address offset
slot rack Address+3 slot rack
task Address+4 block bus
fault action fault group Address+5 point
error code Address+6 fault action fault group
Address+7 fault type fault category
fault extra data Address+8to |fault extradata |fault description
Address+18
minutes seconds Address+19 minutes seconds
day of month |hour Address+20 day of month hour
year month Address+21 year month
milliseconds (extended format only) Address+22 milliseconds (extended format only)
not used (extended format only) Address+23 not used (extended format only)

Service Request Function 315

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020
6.16.1.2.1 Long/Short Value

The first byte (low byte) of word address +1 contains a number that indicates the length of
the fault-specific data in the fault entry. Possible values are as follows:

Controller extended and non-extended fault |00 = 8 bytes (short) |01 =24 bytes (long)
tables

I/O extended and non-extended fault tables |02 =5 bytes (short) {03 =21 bytes (long)

Note: PACSystems CPUs always return the Long values for both extended and non-extended
formats.

6.16.1.2.2 SVC_REQ 15 Example 1

Figure 234
V_I00250 V_I00251 MOVE
—— | |} e
1
0 =—IN Of— V_R00&00
W_I002350 V_I00251 MOVE
|} (My—— BT
1
1—IN Q- v_Ro0s0o

#ALW ON SVC REQ

15 —|FNC

V_R00s00 | FEM

When inputs %10250 and %10251 are both on, the first Move function places a zero (read
Controller Fault Table) into the parameter block for SVC_REQ 15. When input %0250 is on
and input %10251 is off, the Move instruction instead places a one (read I/O Fault Table) in
the SVC_REQ parameter block. The parameter block is located at location %R0600.

Service Request Function 316

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.16.1.2.3 SVC_REQ 15 Example 2

Figure 235

#EFST_SCN HMOVE
| —— INT L

1—{IN O ¥_R00&00
#IO_PRES [syCREQ| V_T0000M

i | —{
15 —|FNC
V_R00600 —{FRM
V_Toooo1 EQ INT
- V_MO00007

V_RO0&03 —| 1M1 a—— —

109 —|IN2
V_Toooo1 EQ INT

V_Moo007

V_RO0E03 — IN1 o——{ }—

265 —|IN2
#I0_FREES WV_MO00OT SVCREQ

i | i1 =

13 —|FNC

V_R00001 —|PRM

The CPU is shut down when any fault occurs on an /O module except when the fault occurs
on modules in rack 0, slot 9 and in rack 1, slot 9. If faults occur on these two modules, the
system remains running. The parameter for table type is set up on the first scan. The contact
IO_PRES, when set, indicates that the 1/O Fault Table contains an entry. The CPU sets the
normally open contact in the scan after the fault logic places a fault in the table. If faults are
placed in the table in two consecutive scans, the normally open contact is set for two
consecutive scans.

The example uses a parameter block located at %R0600. After the SVC_REQ function
executes, the second, third, and fourth words of the parameter block identify the 1/O
module that faulted:

Service Request Function 317

CPU Programmer’s Reference Manual

GFK-2950G

Service Request Function

High Byte Low Byte
%R0600 1
%R0601 reference address long/short
memory type
%R0602 reference address offset
%R0603 slot number rack number
%R0604 block (bus address) 1/O bus no.
%R0605 point address
%R0606 fault data

Section 6
June 2020

In the program, the EQ_INT blocks compare the rack/slot address in the table to
hexadecimal constants. The internal coil ¥MO0007 is turned on when the rack/slot where the
fault occurred meets the criteria specified above. If %M0007 is on, its normally closed
contact is off, preventing the shutdown. Conversely, if M0007 is off because the fault
occurred on a different module, the normally closed contact is on and the shutdown occurs.

318

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.17 SVC_REQ 16: Read Elapsed Time Clock

Use SVC_REQ 16 to read the system's elapsed time clock. The elapsed time clock measures
the time in seconds since the CPU was powered on. The parameter block has a length of
three words used for output only.

6.17.1.1 Output

Address Seconds from power on (low order)

Address+1 Seconds from power on (high order)

Address+2 100 microsecond (us) ticks

The first two words are the elapsed time in seconds. The last word is the number of 100 ps
ticks in the current second.

The resolution of the CPU's elapsed time clock is 100 microseconds (us). The overall
accuracy of the elapsed time clock is +0.01%. The accuracy of an individual sample of the
elapsed time clock is approximately 105 ps.

A\ WARNING

The SVC_REQ instructionis not protected against operating system and user interrupts. The
timing and length of these interrupts are unpredictable. The clock sample returned by
SVC_REQ 16 can sometimes be much more than 105 ps old by the time execution is
returned to the LD logic.

6.17.1.1.1 SVC_REQ 16 Example

The following logic is used in a block that is called infrequently. The screen shot was taken
between calls to the block. The logic displayed calculates the number of seconds that have
elapsed since the last time the block was called. It performs the final operation on rung 4 by
subtracting the time obtained by SVC_REQ 16 the last time the block was called (vetum)
from the time currently obtained by SVC_REQ 16 (novum) and storing the calculated value
in the variable named diff.

Onrung 2, SVC_REQ 16 returns three WORDs, stored in the 3-WORD array tempus. The first
two WORDs (16-bit values) are moved to a DINT (a 32-bit value). This move amounts to a
rough data type conversion that ignores the fact that the DINT type is a signed value.
Despite that, the subsequent calculations are correct until the time since power-on reaches
approximately 50 years. The DINT is converted to REAL to yield the number of whole
seconds elapsed since power-on, stored in variable sec. On rung 3, the third word returned
by SVC_REQ 16, tempus [2], is converted to REAL. This is the number of 100 ps ticks. To
obtain a fraction of a second, stored in the variable fraction, the value is divided by 10,000.
On rung 4, sec and fraction are added to express the exact number of seconds elapsed since
power-on, and this value is stored in the variable novum. On rung 1, the previous value of
novum was saved as vetum, the exact number of seconds elapsed since power-on the last
time the block was called. The last instruction on the fourth rung subtracts vetum from
novum to yield the number of seconds that have elapsed since the last time the block was
called.

Service Request Function 319

CPU Programmer’s Reference Manual

Section 6
June 2020

GFK-2950G
Figure 236
MOVE
REAL
#
3427648 1 3427617
novun —IN Qf— vetum
SVC REQ MOVE DINTTO
WORD REAL
2
15084 2 3427640
16 —|FNC terrpus[0] —IN Q IN Qf sec
15084
ternpus —| PRM
MOVE UINTTO DIV REAL
WORD REAL -
3
8097 1 0.8097
termpus[2] —IN u] IN] IN1 QO tractio
10000 —IN2Z
ADD SUBE REAL)|
REAL -
4
3427640 3427648 3427648 315625
sec —IN1 QO nowm novurn — IN1 O ditt
0.8097 3427617
fractio —IN2 vetum —|IN2

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 50: Read Elapsed
Time Clock.

Service Request Function

320

CPU Programmer’s Reference Manual
GFK-2950G

6.18

6.18.1

SVC_REQ 17: Mask/Unmask 1/O Interrupt

Use SVC_REQ 17 to mask or unmask an interrupt from an input/output board. When an
interrupt is masked, the CPU does not execute the corresponding interrupt block when the
input transitions and causes an interrupt.

The parameter block is an input parameter block only; it has a length of three words.

Address 0 =unmask input
1=mask input

Address+1 [memory type

Address+2 [reference (offset)

Memory type is a decimal number that resides in the low byte of word address + 1. It
corresponds to the memory type of the input:

70 %l memory in bit mode

10 %Al memory
12 %AQ memory

Successful execution occurs unless:

¢ Some number other than 0 or 1 is entered as the requested operation.

e The memory type of the input/output to be masked or unmasked is not %I, %Al or ¥AQ
memory.

e Thel/O boardis not a supported input/output module.

o The reference address specified does not correspond to a valid interrupt trigger
reference.

o The specified channel does not have its interrupt enabled in the configuration.

Masking/Unmasking Module Interrupts

During module configuration, interrupts from a module can be enabled or disabled. If a
module's interrupt is disabled, it cannot be used to trigger logic execution in the application
program, and it cannot be unmasked. However, if an interrupt is enabled in the
configuration, it can be dynamically masked or unmasked by the application program
during system operation.

The application program can mask and unmask interrupts that are enabled using Service
Request Function Block #17. To mask or unmask an interrupt from an open VME module,
the application logic should pass VME_INT_ID (17 decimal, 11H) as the memory type and
the VME interrupt id as the offset to SVC_REQ 17.

When the interrupt is not masked, the CPU processes the interrupt and schedules the
associated program logic for execution. When the interrupt is masked, the CPU processes
the interrupt but does not schedule the associated program logic for execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked.

Service Request Function 321

Section 6
June 2020

CPU Programmer’s Reference Manual

GFK-2950G

6.18.1.1

6.18.1.2

Service Request Function

For additional information on configuring and using VME module interrupts in a
PACSystems RX7i control system, refer to PACSystems RX7i User's Guide to Integration of

VME Modules, GFK-2235.
SVC_REQ 17 Example 1

In this example, interrupts from input %100033 are masked. The following values are moved

into the parameter block, which starts at %P00347, on the first scan:

Figure 237
#FST_SCN

] L

MOVE
UINT

LI

V_100346

MOVE
UINT

201 QO v_roons

MOVE
UINT

it}

n—IX QF v_roons

1={IX O} v_pooos?

7 < FNC

V_POOT ~{PRM

SVCREQ

Address %P00347 1 Interrupts from input are masked.
Address+1 | %P00348 70 Input type is %l.
Address+2 | %P00349 33 Offsetis 33.
SVC_REQ 17 Example 2
Figure 238
#EST_SCN [MOVE MOVE
|} OINT OINT |
1 1
10 —IN QF V_R00101 £—IN QF V_R00102
V_T00001 | MOVE | [SVC REQ
11} UINT L
1
1—{IN QF V_R00100 17 —{FNC
V_R00100 —|PRM

When %T00001 transitions on, alarm interrupts from input %Al0006 are masked. The

parameter block at %R00100 is set up on the first scan.

Section 6

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.19

June 2020

SVC_REQ 18: Read I/O Forced Status

Use SVC_REQ 18 to read the current status of forced values in the CPU's %l and %Q memory
areas.

Note: SVC_REQ 18 does not detect overrides in %G or %M memory types. Use %S0011 (#OVR_PRE) to detect
overrides in %I, %Q, %G, %M, and symbolic memory types.

6.19.1.1.1

6.19.1.1.2

The parameter block has a length of one word used for output only.

Output

Address |0 = No forced values are set

1 =Forced values are set

SVC_REQ 18 Example

Figure 239
V_I100001 [syC REQ EQ INT
i/}
V_T00001
18 - FNC 1<m ab—{
V_R01003 —{ PR V_R01003 —{IN2

Service Request Function

SVC_REQ reads the status of I/O forced values into location %R1003. If the returned value in
%R1003 is 1, there is a forced value, and EQ INT turns the $T0001 coil ON.

323

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.20

6.20.1.1.1

June 2020

SVC_REQ 19: Set Run Enable/Disable

Use SVC_REQ 19 to permit the LD program to control the RUN mode of the CPU.

The parameter passed indicates which function to perform. The OK output is turned ON if
the function executes successfully. It is set OFF if the requested operation is not SET RUN
DISABLE mode (1) or SET RUN ENABLE mode (2).

The parameter block is an input parameter block only with this format:

Address 1=SET RUN DISABLE mode
2 =SET RUN ENABLE mode

SVC_REQ 19 Example

When input %100157 transitions to on, the RUN DISABLE mode is set. When the SVC_REQ
function successfully executes, coil %Q00157 is turned on. When %Q00157 is on and
register %R00099 is greater than zero, the mode is changed to RUN ENABLE mode. When
the SVC_REQ successfully executes, coil Q00157 is turned off.

Figure 240
V_I00M57 MOVE SVCEREQ| V_Q00157
i1} OINT {s}—
1
1—IN Q= v_R00100 19 —FNC
W_R00100 —{PEM

V_Qoo157 GT UDINT

MOVE SVCREQ| V_000158
V_R00099 —{IN1 QO DINT {R}—
1
0 —{IN2z 2—I¥ QF V_R00100 19 —FNC

V_R00100 —|FRM

Service Request Function 324

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.21 SVC_REQ 20: Read Fault Tables

Use SVC_REQ 20 to retrieve the entire Controller or I/O Fault Table and return it to the LD
program in designated registers.

The first input parameter designates which table is to be read. A second input parameter
(always zero for the standard Read Fault Tables) is used by the extended format to read a
designated fault entry or to read a range of fault entries. The fault table data is placed in the
parameter block following the input parameters.

The OK output is turned on if the function executes successfully. It is off if the requested
operation is not Read Controller Fault Table (00h), Read 1/O Fault Table (01h), Read
Extended Controller Fault Table (80h), Read Extended I/O Fault Table (81h), Read I/O Fault
Table with Remote Fault Record (41h), or Read Extended I/O Fault Table with Remote Fault
Record (C1h). The OK output is also turned off if there is insufficient space in the specified
memory reference to accommodate the requested fault data. If the specified fault table is
empty, the function sets the OK output on, but returns only the fault table header
information.

The parameter block is an input and output parameter block. The parameter block comes
in two formats:

¢ Non-Extended: Read Controller Fault Table (00h), Read I/O Fault Table (01h) or Read I/O
Fault Table with Remote Fault Record (41h)®

e Extended: Read Extended Controller Fault Table (80h), Read Extended I/O Fault Table
(81h) or Read Extended 1/O Fault Table with Remote Fault Record (C1h)®.

6.21.1 Non-Extended Formats
6.21.1.1 Input Parameter Block Format

Amount of Retuned Data

Address +0 | 00h = Read Controller Fault Table 693 registers required for resulting output
01h =Read /O Fault Table 693 registers required for resulting output
41h =Read I/O Fault Table with 757 registers required for resulting output
Remote Fault Record

Address +1 | AlwaysO0

©1/O Fault Table with Remote Fault Record requires RX3i CPU firmware 9.40 or later.
Service Request Function 325

CPU Programmer’s Reference Manual

GFK-2950G

6.21.1.2

Section 6
June 2020
Non-Extended Output Parameter Block Format
Controller Fault Table Output 1/O Fault Table Output
Format Address Format
High Byte Low Byte High Byte Low Byte
2018 00h = Controller Fault 01h=1/O Fault
Unused Table Address+0 Unused Table
Unused Always zero (0) Address+1 Unused Always zero (0)
Unused Unused Address+2 Unused Unused
Address+3—
Unused Unused Address+14 Unused Unused
Minutes Seconds Address+15— Minutes Seconds
Day of Month Hour ?ﬁg:sssl;lz Last Day of month Hour
Year Month ?lljegcr:,D Format) Year Month
Number of faults since last clear Address+18 Number of faults since last clear
Number of faults in queue Address+19 Number of faults in queue
Number of faults read Address+20 Number of faults read
Start of fault data Address+21 Start of fault data
Address 1/0 Fault Table Output
Format
High Byte Low Byte
Address+0 Unused 41h=1/0
Fault Table
with Remote
Fault Record
Address+1 Starting index of faults to be
read
Address+2 Number of faults to be read
Address+3— Unused Unused
Address+14
Address+15— Minutes Seconds
Ac.ldress.+1 7 Day of month | Hour
(Time Since Last
Clear, Year Month
in BCD Format)
Address+18 Number of faults since last
clear
Address+19 Number of faults in queue
Address+20 Number of faults read
Address+21 Start of fault data

For the non-extended formats, the returned data for each fault consists of 21 words (42 bytes) for 00h and 01h
and 23 words (46 bytes) for 41h. This request returns 16 Controller Fault Table entries or 32 1/O Fault Table
entries, or the actual number of faults, if fewer. If the fault table read is empty, no data is returned.

Service Request Function

326

CPU Programmer’s Reference Manual

GFK-2950G
6.21.1.3

6.21.1.3.1

Section 6
June 2020

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 00h or 01h

Controller Fault Table (00h)

1/O Fault Table (01h) Output Format

Output Format Address

High Byte Low Byte High Byte Low Byte

Unused Long/short Address+21 Memory type Long/Short’

Unused Unused Address+22 Offset

Slot Rack Address+23 Slot Rack

Task Address+24 Bus address /O Bus Number

(block)

Fault action Fault group Address+25 Point

Error code Address+26 Fault action Fault group
Address+27 Fault type Fault category
Address+28 Fault extra data Fault description

Fault extra data
Address+29— Fault extra data
Address+38

Minutes Seconds Address+39— |Minutes Seconds

Day of month Hour Address+41 In,y of month Hour
(Time-stamp,

Year Month in BCD Format)|Year Month

Start of t fault output t

ar-otnext1ault oUtpUt paTaMELEr | a ddress+42 Start of next fault output parameter block

block

Start of next fault output parameter

block

7 The Long/Short indicator in the low byte of Address + 21 specifies the amount of fault data present in the fault entry:

Service Request Function

Fault Table

Long/Short Value

Fault Data Returned

Controller | 00

8 bytes of fault extra data present in the fault entry

01 24 bytes of fault extra data
1/0 02 5 bytes of fault extra data
03 21 bytes of fault extra data

327

CPU Programmer’s Reference Manual
GFK-2950G

6.21.1.3.2

Service Request Function

Format for Parameter Setting 41h

Section 6
June 2020

Address 1/O Fault Table with Remote Fault
Record (0x41) Output Format
High Low Byte
Byte

Address+21 Memory | Long/Short’
type

Address+22 Offset

Address+23 Slot Rack

Address+24 Remote | Remote Rack
Slot

Address+25 Remote | Remote Device ID
Sub-Slot

Address+26 Bus 1/O Bus Number (block)
address

Address+27 Point

Address+28 Fault Fault group
action

Address+29 Fault Fault category
type

Address+30 Fault Fault description
extra
data

Address+31— Fault extra data

Address+40

Address+41— Minutes | Seconds

Address+43

(Time-stamp, Day of Hour

in BCD Format) | month
Year Month

Address+44 Start of next fault output parameter

block

328

CPU Programmer’s Reference Manual

GFK-2950G

6.21.2

6.21.2.1

6.21.2.2

Service Request Function

Section 6
June 2020

Extended Formats

Each extended format request can read a maximum of 64 faults, or the size of the fault table
if it contains fewer than 64 faults.

For extended formats (Read Extended Controller Fault Table (80h), Read Extended I/O Fault
Table (81h) or Read Extended 1/O Fault Table with Remote Fault Record (C1h)), the
controller calculates the number of entries being read. Be sure that enough register space
is available to accommodate the number of fault entries requested. If the amount of data
requested exceeds the register space available, the CPU returns a fault indicating that
reference memory is out of range.

The total size of the fault table for the extended fault format is

Header Size + ((# fault entries) x (size of fault entry))

Input Parameter Block Format

Amount of Retuned Data
Address+0 80h = Read Extended Controller Fault 23 words (46 bytes) for each fault entry
Table 23 words (46 bytes) for each fault entry
81h =Read Extended I/O Fault Table 25 words (50 bytes) for each fault entry
C1h =Read Extended I/O Fault Table
with Remote Fault Record
Address+1 Starting index of faults to be read
Address+2 Number of faults to be read

Extended Format Output Parameter Block Format

Controller Fault Table Output 1/O Fault Table Output

Format Address Format

High Byte Low Byte High Byte Low Byte

Unused i(()):tr;)l(:rlljjl(i Address Unused 81h = Extended
Table I/O Fault Table

Starting index of faults to be read |Address+1 Starting index of faults to be read

Number of faults to be read Address+2 Number of faults to be read

Unused Unused Address+3—Address+14 Unused Unused

Minutes Seconds Address+15—Address+17 |Minutes Seconds

Day of Month |Hour (Time Since Last Clear, Day of month |Hour

Year Month in BCD Format) Year Month

Number of faults since last clear Address+18 Number of faults since last clear

Number of faults in queue Address+19 Number of faults in queue

Number of faults read Address+20 Number of faults read

Unused Address+21—Address+36 (Unused

Start of fault data Address+37 Start of fault data

329

CPU Programmer’s Reference Manual

GFK-2950G

Service Request Function

Section 6
June 2020
Address 1/O Fault Table Output
Format
High Byte | Low Byte
Address Unused Clh=
Extended 1/O
Fault Table
with Remote
Fault Record
Address+1 Starting index of faults
to be read
Address+2 Number of faults to be read
Address+3—Address+14 Unused Unused
Address+15—Address+17 | Minutes Seconds
(Time Since Last Clear,
in BCD Format) Day of Hour
month
Year Month
Address+18 Number of faults since
last clear
Address+19 Number of faults in queue
Address+20 Number of faults read

Address+21—Address+36

Unused

Address+37

Start of fault data

330

CPU Programmer’s Reference Manual

GFK-2950G
6.21.2.3

6.21.2.3.1

Service Request Function

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 0x80h & 0x81h

Section 6
June 2020

Controller Fault Table (0x80)

1/O Fault Table (0x81) Output

Output Format Address Format
High Byte Low Byte High Byte Low Byte
Reference
Unused Long/Short Address+37 address Long/Short Value
memory type

Unused Unused Address+38 Reference address offset

Slot Rack Address+39 Slot Rack

Task Address+40 Bus address //O bus number

(block)

Fault action Fault group Address+41 point

Error code Address+42 Fault action Fault group
Address+43 Fault type Fault category
Address+44 Fault extra data |Fault description

Fault extra data
Address*45— Fault extra data
Address+54

Minutes Seconds Address+55— Minutes Seconds

Day of month Hour Address+58 Day of month [Hour

Year Month (Time-stamp Year Month

Milliseconds in BCD Format) Milliseconds

Not used Address+59 Not used

Start of next fault output parameter block|Address+60 Start of next fault output

parameter block

331

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.21.2.3.2 Format for Parameter Setting 0xC1h

Address 1/O Fault Table with Remote Fault
Record (0xC1) Output Format
High Byte Low Byte
Address+37 Reference address Long/Short Value
memory type

Address+38 Reference address offset

Address+39 Slot Rack

Address+40 Remote Slot Remote Rack

Address+41 Remote Sub-Slot Remote Device
ID

Address+42 Bus address 1/0 bus number
(block)

Address+43 point

Address+44 Fault action Fault group

Address+45 Fault type Fault category

Address+46 Fault extra data Fault description

Address+47— | Fault extra data

Address+56

Address+57— | Minutes Seconds

Address+60 Day of month Hour

(Time-stamp v Vonth

i BCD ear on

Format) Milliseconds

Address+61 Not used

Address+62 Start of next fault output
parameter block

Service Request Function 332

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.21.2.3.3

6.21.2.3.4

Service Request Function

June 2020

SVC_REQ 20 Example 1: Non-Extended Format

When Read_PLC transitions on, a value of 0 is moved to the parameter block, which is
located at %R00500, and the Controller Fault Table is read. When Read_|O transitions on, a
value of 1 is moved to the parameter block and the 1/O Fault Table is read. When the
SVC_REQ function successfully executes, coil OK is turned on.

Figure 241
Read_PLC MOVE UINT SVC REQ OK
| &
1
o —{IN Q| ROOS00 20 —{FNC
Read_I0 MOVE UINT
i RO0500 —|PRM
1
1 —{IN Q| ROOS00

SVC_REQ 20 Example 2: Extended Format

When Read_PLC_Xt transitions on, the Extended Controller Fault Table is read. The
parameter block begins at %R00500. %R00500 contains the fault table type (Controller
Extended); %R00501 contains the starting fault to read, and %R00502 contains the number
of faults to read starting with the fault number in ¥R00501. When the SVC_REQ function
successfully executes, coil OK is turned on.

Figure 242
Read_PLC_xt MOVE MOVE MOVE
|} WORD WORD WORD @_
1 1 1
20 —IN Q[RO0500 1 —{IN Q|- rRO0501 10 —IN Q|- RO0502
SVC REQ oK
1 {s—
20 —FNC
ROO500 —{PRM

333

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.22 SVC_REQ 21: User-Defined Fault Logging

Use SVC_REQ 21 to define a fault that can be displayed in the Controller Fault Table. The
fault contains binary information or an ASCIl message. The user-defined fault codes start at
0 hex.

The error code information for the fault must be within the range 0 to 2047 for an
Application Msg: to be displayed. If the error code is in the range 81 to 112 decimal, the CPU
sets a fault bit of the same number in %SA system memory. This allows up to 32 bits to be
individually set.

Error Code Status Bit
Errors 0—80 No bit set
Errors 81—112 Sets %SA
Errors 113—2047 No bit set
Errors 2048—32,767 |Reserved

When EN is active, the fault data array referenced by IN is logged as a fault to the Controller
Fault Table. If EN is not enabled, the ok bit is cleared. If the error code is out of range, the ok
bit is cleared, and the fault will not be logged as requested.

The parameter block is an input parameter block only with this format:

Error code
Parameter address

MSB LSB
Address+1 Text2 Text1
Address+2 Text4 Text3
Address+3 Text6 Text5
Address+4 Text8 Text7
Address+5 Text10 Text9
Address+6 Text12 Text11
Address+7 Text14 Text13
Address+8 Text16 Text15
Address+9 Text18 Text17
Address+10 Text20 Text19
Address+11 Text22 Text21
Address+12 Text24 Text23

The input parameter data allows you to select an error code in the range 0 to 2047 and text
information that will be placed in the fault extra data portion of a long controller fault. The
controller fault address, fault group, and fault action are filled in by the function block.

The fault text bytes 1 - 24 can be used to pass binary or ASCII data with the fault. If the first
byte of the fault text data is non-zero, the data will be an ASCIl message string. This message
will then be displayed in the fault description area of the fault table. If the message is less
than 24 characters, the ASCII string must be NULL byte-terminated. The programmer will
display Application Msg: and the ASCII data will be displayed as a message immediately

Service Request Function 334

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.22.1.1.1

June 2020

following Application Msg:. If the error code is between 1 and 2047, the error code number
will be displayed immediately after Msg: in the Application Msg: string. (If the error code is
greater than 2047, the function is ignored, and its output is set to OFF.)

If the first byte of text is zero, then only Application Msg: will display in the fault description.
The next 1-23 bytes will be considered binary data for user data logging. This data is
displayed in the Controller Fault Table.

Note: When a user-defined fault is displayed in the Controller Fault Table, a value of -32768 (8000
hex) is added to the error code. For example, the error code 5 will be displayed as -32763.

SVC_REQ 21 Example

Figure 243

#FST_EXE [ELxmov| V_Q00001
|} WORD { }—

16#0057 {IN1 Q- ¥_P00001
16#2d45 —1IN2
16#5453 1IN
16#504F —|IN4
16#4F20 —{INS
16#004E —ING
1640000 —{IN7

V_I00050 [sVC REQ
A N S— L

21—|FNC

V_P00001 —{ PRM

Service Request Function

The value passed to IN1 is the fault error code. The value passed in, 16x0057, represents an
error code of 87 decimal and will appear as part of the fault message. The values of the next
inputs give the ASCII codes for the text of the error message. For IN2, the input is 2D45. The
low byte, 45, decodes to the letter E and the high byte, 2D, decodes to -. Continuing in this
manner, the string continues with S T O P O and N. The final character, 00, is the null
character that terminates the string. In summary, the decoding yields the string message
E_STOP ON.

335

CPU Programmer’s Reference Manual

GFK-2950G

6.23

6.23.1.1.1

Section 6
June 2020

SVC_REQ 22: Mask/Unmask Timed Interrupts

Use SVC_REQ 22 to mask or unmask timed interrupts and to read the current mask. When

the interrupts are masked, the CPU does not execute any timed interrupt block timed

program that is associated with a timed interrupt. Timed interrupts are masked/unmasked

as a group. They cannot be individually masked or unmasked.

Successful execution occurs unless some number other than 0 or 1 is entered as the
requested operation or mask value.

The parameter block is an input and output parameter block.

To determine the current mask, use this format:

Address

0 = Read interrupt mask

The CPU returns this format:

Address

0 =Read interrupt mask

Address+1

0 = Timed interrupts are unmasked
1 =Timed interrupts are masked

To change the current mask, use this format:

Address

1 =Mask/unmask interrupts

Address+1

0 =Unmask timed interrupts

1 =Mask timed interrupts

SVC_REQ 22 Example

When input %100055 transitions on, timed interrupts are masked.

Service Request Function

Figure 244
W_100055 MOVE MOVE SWC REQ
L t}——] UINT DINT B
{ 1
1IN OF v_Ro1002 1—I¥ QF v_R01003 22 —{FNC
V_R01002 —{ PRI
336

CPU Programmer’s Reference Manual

GFK-2950G

6.24

6.24.1.1

Service Request Function

SVC_REQ 23: Read Master Checksum

Use SVC_REQ 23 to read master checksums for the set of user program(s) and the
configuration, and to read the checksum for the block from which the service request is

made.

Section 6
June 2020

There is no input parameter block for this service request. The output parameter block
requires 15 words of memory.

Output

When a RUN Mode Store is active, the program checksums may not be valid until the store
is complete. To determine when checksums are valid, three flags (one each for Program

Block Checksum, Master Program Checksum, and Master Configuration Checksum) are
provided at the beginning of the output parameter block.

Address Description

Address Program Checksum Valid (0 = not valid, 1 = valid)
Address + 1 Master Program Checksum Valid (0 = not valid, 1 = valid)
Address + 2 Master Configuration Checksum Valid (0 = not valid, 1 = valid)
Address +3 Number of LD/SFC Blocks (including _MAIN)

Address + 4 Size of User Program in Bytes (DWORD data type)
Address + 6 Program Set Additive Checksum

Address +7 Program CRC Checksum (DWORD data type)

Address +9 Size of Configuration Data in Kbytes

Address + 10 |Configuration Additive Checksum

Address + 11 Configuration CRC Checksum (DWORD data type)
Address +13 :ZSVhblz/iZ?.CaJ\;tzzlstlileErzecuting Block’s Additive Checksum
Address + 14 [Currently Executing Block’s CRC Checksum

337

CPU Programmer’s Reference Manual

GFK-2950G

6.24.1.1.1

Service Request Function

SVC_REQ 23 Example

Section 6
June 2020

NE DINT
IN1 Q
INZ

V_M00055

—{s)}—

Figure 245
V_MO00054 TMESEC V_MO00054
1/t { }—
V_P00013
&0 PV Cv—
V_MO00054 SYCREQ
{ |
23 —FNC V_P00022 —
V_P00016 — PEM V_P00031 —
V_MO00054 MOVE
1} DWORD
1
V_Po0022 —IN O v_P00031

When the timer using registers %P00013 through %P00015 expires, the checksum read is
performed. The checksum data returns in registers %P00016 through %P00030. The master
program checksum in registers %P00022 and %P00023 (the program checksum isa DWORD
data type and occupies two adjacent registers) is compared with the last saved master
program checksum. If these are different, coil %M00055 is latched on. The current master
program checksum is then saved in registers %P00031 and %P00032.

338

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.25

June 2020

SVC_REQ 24: Reset Module

Use SVC_REQ 24 to reset a daughterboard or some modules. Modules that support
SVC_REQ 24 include:

RX3i IC693BEM331, IC694BEM331, IC693APU300, IC694APU300, IC695ETMO01,
IC693ALG2222, IC694ALG2222, IC695PNCO01

RX7i: Embedded Ethernet Interface module, [IC697BEM731, IC698BEM731,
IC697HSC700, IC697ALG230, IC698ETMO001

The SVC_REQ output is set ON unless one of the following conditions exists:

- Aninvalid number for rack and/or slot is entered.

— Thereis no module at the specified location.

— The module at the specified location does not support a runtime reset.
— The CPU was unable to reset the module at the specified location.

For this function, the parameter block has a length of 1 word. Itis an input parameter block
only.

Address |Module slot (low byte)
Module rack (high byte)

Rack 0, Slot 1 indicates that a reset is to be sent to the daughterboard.

Notes:

e [tisimportant to invoke SVC_REQ #24 for a given module for only one sweep at a time. Each time
this function executes, the target module will be reset regardless of whether it has finished starting
up from a previous reset.

e After sending a SVC_REQ #24 to a module, you must wait a minimum of 5 seconds before sending
another SVC_REQ #24 to the same module. This ensures that the module has time to recover and
complete its startup.

Service Request Function

339

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.25.1.1.1 SVC_REQ 24 Example

Figure 246
100200 100250
1 1| {D—
100250 MOVE
2 b WORD |-
1
2 —IN Q— ROOS00
100250 SVC
3 1} REQ |
24 —FNC
ROO500 —|PRNM

This example resets the module in rackO/slot 2.

In rung 1, when contact %100200 is closed, the positive transition coil sets %100250 to ON
for one sweep.

The MOVE_WORD instruction in rung 2 receives power flow and moves the value 2 into
%R00500.

The SVC_REQ function in rung 3 then receives power flow and resets the module indicated
by the rack/slot value in %$R00500.

Service Request Function 340

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.26 SVC_REQ 25: Disable/Enable EXE Block and

Standalone C Program Checksums

Use SVC_REQ 25 to enable or disable the inclusion of EXE in the background checksum
calculation. The default is to include the checksums.

This service request uses only an input parameter block.

Address |0 = Disable C applications inclusion in checksum calculation

1 =Enable C application inclusion in checksum calculation

The parameter block is unchanged after execution of the service request.

6.26.1.1.1 SVC_REQ 25 Example

When the coil TEST transitions from OFF to ON, SVC_REQ 25 executes to disable the
inclusion of EXE blocks in the background checksum calculation. When coil TEST transitions
from ON to OFF, the SVC_REQ executes to again include EXE blocks in the background
checksum calculation.

Figure 247
TEST MOVE SVCREQ
b UINT B
1
0 —IN QF V_R0O0150 25 —|FNC
TEST MOVE
{Lh UINT _R001S0 —{PRM
1
1 —{IN QF V_R0O0150

Service Request Function 341

CPU Programmer’s Reference Manual

GFK-2950G

6.27

6.27.1.1.1

SVC_REQ 29: Read Elapsed Power Down Time

Use SVC_REQ 29 to read the amount of time elapsed between the last power-down and the
most recent power-up. If the watchdog timer expired before power-down, the CPU is not
able to calculate the power down elapsed time, so the time is set to 0.

This service request cannot be accessed from a C block.

This function has an output parameter block only. The parameter block has a length of three
words.

Address Power-down elapsed seconds (low order)
Address + 1 Power-down elapsed seconds (high order)
Address + 2 100y ticks

The first two words are the power-down elapsed time in seconds. The last word is the
number of 100 ps ticks in the current second.

Note: Although this request responds with a resolution of 100 uS, the actual accuracy is 1
second. The battery-backed clock, which is used when the controller is powered down, is
accurate to within 1 second.

SVC_REQ 29 Example

When input %10251 is ON, the elapsed power-down time is placed into the parameter block
that starts at %R0050. The output coil (%Q0001) is turned on.

Figure 248
%0251 ﬂ;}mm
|
— o (r
REQ
- FNC
%R0050 1 pARM

Service Request Function 342

Section 6
June 2020

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt

Use SVC_REQ 32 to suspend a set of |/Q interrupts and cause occurrences of these interrupts
to be queued until these interrupts are resumed. The number of 1/O interrupts that can be
queued depends on the /O module’s capabilities. The CPU informs the I/O module that its
interrupts are to be suspended or resumed. The I/O module’s default is resumed. The
Suspend applies to all 1/O interrupts associated with the 1/O module. Interrupts are
suspended and resumed within a single scan.

SVC_REQ 32 uses only an input parameter block. Its length is three words.

Address 0 = resume interrupt
1 =suspend interrupt

Address + 1 memory type

Address+2 |reference (offset)

Successful execution occurs unless:

e Some number other than 0 or 1 is passed in as the first parameter.
e The memory type parameter is not 70 (%I memory).

e Thel/O module associated with the specified address is not an appropriate module for
this operation.

e Thereference address specified is not the first %I reference for the High-Speed Counter.

¢ Communication between the CPU and this I/O module has failed. (The board is not
present, or it has experienced a fatal fault.)

Note: I/Ointerrupts, unless suspended or masked, can interrupt the execution of a function block.
The most often used application of this Service Request is to prevent the effects of the
interrupts for diagnostic or other purposes.

Service Request Function 343

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.28.1.1.1 SVC_REQ 32 Example

Figure 249
SFST_SCN MOVE MOVE
I INT ot L
1 1
70 —{IN Q= v_F00002 &5 —{IN Q= v_P0o0003
[MOVE | [SUCREQ| V_To0001
o (y—
1
1= Q- v_Poooo! 32 —{FNC
V_PO0oo1 —{FEM

Vv_Tooom ECI INT

MOVE V_TO00006
V_AIOOI—{INI Q)
1
3400 —{IN2 V_AIOOOI—{IN OF v_Ro0o01
MOVE SVCREQ
INT n
1
o—IN QF v_Poooot 32 —{FNC
V_PO0001 —{PRM

Interrupts from the high-speed counter module whose starting point reference address is
%100065 will be suspended while the CPU solves the logic of the second rung. Without the
Suspend, an interrupt from the HSC could occur during execution of the third rung and
%T00006 could be set while %R000001 has a value other than 3,400. (%Al00001 is the first
non-discrete input reference for the High Speed Counter.)

Service Request Function 344

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.29 SVC_REQ 45: Skip Next /O Scan

Use the SVC_REQ function #45 to skip the next output and input scans. Any changes to the
output reference tables during the sweep in which the SVC_REQ #45 was executed will not
be reflected on the physical outputs of the corresponding modules. Any changes to the
physical input data on the modules will not be reflected in the corresponding input
references during the sweep after the one in which the SVC_REQ #45 was executed.

This function has no parameter block.

Note:

e This service request is provided for conversion of Series 90-30 applications. The Suspend /O
(SUS_IO) function block, which is supported by all PACSystems firmware versions, should be
used in new applications.

e The DOIO Function Block is not affected by the use of SVC_REQ #45. It will still update the I/O
when used in the same logic program as the SVC_REQ #45.

6.29.1.1.1 SVC_REQ 45 Example

Figure 250

IDLE SVCREQ
] 1
| B |

45 —|FNC

R00001 —|PRM

In the following LD example, when the Idle contact passes power flow, the next Output and
Input Scan are skipped.

Service Request Function 345

CPU Programmer’s Reference Manual

GFK-2950G

6.30 SVC_REQ 50: Read Elapsed Time Clock

Section 6
June 2020

Use SVC_REQ 50 to read the system’s elapsed time clock. The elapsed time clock measures
the time in seconds since the CPU was powered on. The parameter block has alength of four
words used for output only.

6.30.1.1 Output

Address

Seconds from power on (low order)

Address+1

Seconds from power on (high order)

Address+2

nanosecond ticks (low order)

Address+3

nanosecond ticks (high order)

The first two words are the elapsed time in seconds. The second two words are the number

of nanoseconds elapsed in the current second.

The resolution of the CPU’s elapsed time clock is 100 us. The overall accuracy of the elapsed
time clock is +0.01%. The accuracy of an individual sample of the elapsed time clock is
approximately 105 ps.

The SVC_REQ instructionis not protected against operating system and user interrupts. The

timing and length of these interrupts are unpredictable. The clock sample returned by
SVC_REQ 50 can sometimes be much more than 105 us old by the time execution is
returned to the LD logic.

Service Request Function

346

CPU Programmer’s Reference Manual

GFK-2950G

6.30.1.1.1

SVC_REQ 50 Example

The following logic is used in a block that is called occasionally. The screen shot was taken

Section 6
June 2020

between calls to the block. The second rung of logic calculates the number of seconds that
have elapsed since the last time the block was called. The third rung calculates the number
of nanoseconds to be added to, or subtracted from, the number of seconds. The first rung
saves the previous value of novum [0] and novum[1] into vetum[0] and vetum[1] before the

second rung of logic places the current time values in novum[0] and novum[1].

Figure 251
MOVE SVCREQ MOVE
g DINT WORD | }/;
1
500483 2 500465 41716 4 S00463
nowurn[0] —IN Q= vetum[0] 50 —FNC ternpus[0] — IN Q= novumn(0]
41716
tempus —{PRM
S0B DINT SUB DINT
2
S004e3 3 44260413 -48410665
novurn[0] — 1M1 O sec novurn[1] —IN1 O nano
500465 92671078
vetum[0] —IN2 veturn[1) —IN2
GT DINT
3
SUB DINT ADD
om0 DINT
-48410665 3 2 -48410665 951589335
nano —IN2 sec —{IN1 QpF sec2 nano —/IN1 O nano2
1—IN2 1000000000 —IN2

Service Request Function

347

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.31 SVC_REQ 51: Read Sweep Time from Beginning
of Sweep

Use SVC_REQ 51 to read the time in nanoseconds since the start of the sweep. The data is
unsigned 32-bit integer.

6.31.1.1 Output

The parameter block is an output parameter block only; it has a length of two words.

Address Itime (nanoseconds) since start of scan - low order

Address+1 time (nanoseconds) since start of scan - high order

6.31.1.1.1 SVC_REQ 51 Example

The elapsed time from the start of the scan is read into locations %R00200 and %R00201 if
it is greater than 10,020ns, internal coil %¥M0200 is turned on.

Figure 252
SWC REQ GT DINT
M00200
54 —{FNC RO0200 —{IN1 Q M
RO0200 —FRM 1020 —1IN2

Service Request Function 348

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.32

Service Request Function

June 2020

SVC_REQ 56: Logic Driven Read of Nonvolatile
Storage

CAUTION
This Service Request is not supported on CPE330 and CPE400 CPUs.
PACSystems controllers support a 64KB nonvolatile flash memory area, which can be

accessed by the logic-driven read/write service requests. Values are stored in the nonvolatile
storage area using

349

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

SVC_REQ 57: Logic Driven Write to Nonvolatile Storage. These values are applied to the
controller user memory on power-up.

If you want only to write to nonvolatile storage and have the values restored on a power
cycle, you may not need to use SVC_REQ 56. However, a logic driven read from nonvolatile
storage can be commanded as needed. For example, you can use #FST_SCN with
SVC_REQ 56 calls to force a reload on each STOP Mode to RUN Mode transition.

SVC_REQ 56 specifies a read operation from nonvolatile storage when the PACSystems is
running. You can specify which reference address range to read and optionally a different
destination memory location in CPU memory in which to place the read data. Using different
memory locations enables you to set up a comparison between existing values in CPU
memory with values in nonvolatile storage.

SVC_REQ 56 execution time will vary depending on the number of values stored in
nonvolatile storage, as it will find the most recent value for the requested reference address
range.

You can read up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 56.

6.32.1 Discrete Memory

Discrete memory can be read as individual bits or as bytes. For more information, refer to

Service Request Function 350

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

Memory Type Codes below.

If a discrete memory destination is forced, the forced value remains intact in CPU memory
even though the count in word 10 (address + 10) indicates that all the data was read and
transferred.

If a memory location has an associated transition bit and SVC_REQ 56 causes a transition on
that value, the transition bit is set.

Service Request Function 351

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.32.2

6.32.3

6.32.4

6.32.5

Service Request Function

June 2020

Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 56 until logic is written to
nonvolatile storage:

RUN Mode Store (RMS), even if a second RMS reverts everything to the original state.
Test-Edit session, even when you cancel your edits.
Word-for-word change.

Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded

contents are equal to the contents already on the nonvolatile storage. Setting bit 0 of
input word 8 (address + 7) to a value of 1 enables SVC_REQ 56 despite the above

conditions.

Maximum of One Active Instruction

When SVC_REQ 56 is active, it does not support an interrupt that attempts to activate
SVC_REQ 57 orasecond instance of SVC_REQ 56. If an attempt fails, an error indicating that
anotherinstance is active will be returned.

ENO and Power Flow To The Right

If the status is Success or Partial Read (see address+9), on the SVC_REQ instruction, ENO is
set to True in FBD and ST, and power flow passes to the rightin LD.

Parameter Block

Address+0 Memory type. Refer to

Memory Type Codes below.
Address+1 The zero-based offset N to read from nonvolatile storage. Contains the complete
Address+2 offset for any memory area except %W, which also requires the use of address +

2 for offsets greater than 65,535.

e For%l, %Q, %M, %T, and %G memory in byte mode, N =(Ra - 1) [8, where
Ra = one-based reference address. For example, to read from the one-
based bit reference address %133, enter the byte offset 4: (33-1) /8=4.

e For %W, %R, %Al, and %AQ memory, and for %I, %Q, %M, %T, and %G
memory in bit mode, N =Ra - 1. For example, to read from the one-based
reference address %R200, enter the zero-based reference offset 199; to
read from %73 in bit mode, enter offset 72. For memory in bit mode, the

offset must be set on a byte boundary, that is, a number exactly divisible
by 8:0, 8, 16, 24, and so on.

352

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

Address+3 Length. The number of items to read from nonvolatile storage beginning at the
reference address calculated from the offset defined at [address + 1 and address
+2]. The length can be one of the following:

Description Valid range

The number of words (16-bit registers) to read | 1 through 32 words
from %W, %R, %Al, or %AQ nonvolatile storage

The number of bytes to read from %I, %Q, %M, | 1through 64 bytes
%T, or %G in byte mode nonvolatile storage

The number of bits to read from %I, %Q, %M, %T, | 1 through 512 bits in
or %G in bit mode nonvolatile storage increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set
to zero.

Address + 4 Destination memory. The CPU memory area to write the read data to. This does
not need to be the same memory area as specified at [address]. Writing to a
different memory area enables you to compare the values that were already in
the CPU with the values read from nonvolatile storage.

Address+5 The zero-based offset N in CPU memory to start writing the read data to. Address

Address+6 +5, the least significant word, contains the complete offset for any memory area
except %W, which also requires the use of address + 6 for offsets greater than
65,535.

e For %I, %Q, %M, %T, and %G memory in byte mode, N=(Ra - 1) [8, where
Ra = one-based reference address. For example, to write to the one-based
bit reference address %133, enter the byte offset 4: (33-1) /8 =4.

e For%W, %R, %Al, and AQ memory, and for %I, %Q, %M, %T, and %G memory
in bit mode, N = Ra - 1. For example, to write to the one-based reference
address %R200, enter the zero-based reference offset 199; to write to %173
in bit mode, enter offset 72.

Address+7 e When bit 0 is set to 1, storage disabled conditions are ignored. A read is
allowed even if the logic in RAM has changed since nonvolatile storage was
read or written.

e Bits 1 through 15 must be set to zero; otherwise, the read fails.

Address+8 Reserved. Must be set to zero; otherwise, the read fails.

Address+9 Response status. The status read from nonvolatile storage. The low byte contains
the major error code; the high byte contains the minor error code.
For definitions, refer to Response Status Codes for SVC_REQ 56.

Address+10 Response Count. The number of words, bytes, or bits copied.

Service Request Function 353

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.32.5.1 Memory Type Codes

Type Decimal Type Decimal Value
Value
%R 8 %G (byte mode) 56
%Al 10 %! (bit mode) 70
%AQ 12 %Q (bit mode) 72
%l (byte mode) | 16 %T (bit mode) 74
%Q (byte 18 %M (bit mode) 76
mode)
%T (byte mode) | 20 %G (bit mode) 86
%M (byte 22 BW 196
mode)

6.32.5.2 Response Status Codes for SVC_REQ 56

Minor Major Description
00 01 Success. All values requested were found and copied.
01 01 Partial Read. All values found were copied, but some or all values

were not in storage.

01 02 Insufficient Destination Memory. The Destination memory location
is not large enough to store the requested values.

02 02 Invalid Length. The length requested is larger than 64 bytes or less
than 1 byte or the number of bits is not an exact multiple of 8.

03 02 Invalid storage or destination reference address. A specified memory
area is not %I, %Q, %T, %M, %G, %R, %Al, 5AQ, or BW, or the offset is
out of range, or the offset is not byte-aligned for discrete memory in

bit mode.

04 02 Invalid request. Spare bits or spare words in parameter block are not
set to zero.

01 03 Storage Busy. A SVC_REQ 57 or another SVC_REQ 56 instruction is

active. For example, an interrupt block is attempting to execute
SVC_REQ 56 when the block it interrupted was executing SVC_REQ

56.

01 04 Storage Disabled. The logic in RAM differs from the logic in
nonvolatile storage. See Storage disabled conditions.

02 04 Storage Closed. Either the storage has not been created or a previous
corruption error or unexpected read/write failure closed the storage.

01 05 Unexpected Read Failure. Acommand to the storage hardware failed
unexpectedly.

02 05 Corrupted storage. A corrupted checksum or storage header caused
aread to fail.

Service Request Function 354

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.32.5.2.1 SVC_REQ 56 Example

The following LD logic reads ten continuous bytes written to nonvolatile storage from %G1—
%G80 into %$G193—%G273. The value applied to IN1, 56, selects byte mode.

The parameter block starts at R00040. The response words are returned to %R00049 and

%R00050.
Figure 253
SetupParmBlk BLKMOV WORD ICVE WORD ResdlogicFlash
1 O,
—" Q— RO0020 ao— QF— RO004T
—inz
g —i
g —{INe
—l
24 —I
o —{IN7
RasdlogicFlash SVC REQ 30010
{1} Ny
RO0040 —{FRM

Service Request Function 355

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.32.5.2.2 Parameter Block for SVC_REQ 56 Example

Address + Offset | Address Input Value | Definition

Address+0 %R00040 56 Data type = %G (byte mode)
Address+1 %R00041 0 Address written from, low word
Address+2 %R00042 0 Address written from, high word
Address+3 %R00043 10 Length = 10 bytes

Address+4 %R00044 56 Data type to write to = %G (byte mode)
Address+5 %R00045 24 Address to write to, low word
Address+6 %R00046 0 Address to write to, high word
Address+7 %R00047 0 Storage disabled conditions are enforced
Address+8 %R00048 0 Reserved, must be setto 0

Address+9 %R00049 NA Response status.

Address+10 %R00050 NA Response count.

Service Request Function 356

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile
Storage

PACSystems controllers support a 65,500-byte nonvolatile flash memory area that can be
accessed by the logic-driven read/write service requests. Values are stored in the nonvolatile
storage area using SVC_REQ 57. These values are applied to the controller user memory on
power up.

SVC_REQ 57 specifies a range of reference addresses to read from a running PACSystems
CPU and write to nonvolatile storage. This feature is intended to retain a limited set of
values, such as set points or tuning parameters that need to change when the PACSystems
is running.

This feature uses 65,536 bytes of nonvolatile storage. But not all of this memory is available
for the actual data being written by the service request. Some of the memory is used
internally by the controller to maintain information about the data being stored.

Note: Nonvolatile storage is intended for storing values that do not change frequently. Once the
nonvolatile storage area fills up, a power cycle or STOP Mode Store is required to store more
values. The logic-driven write is not a replacement for battery backed RAM for values that
change frequently or during every sweep. (Refer to When nonvolatile storage is full below.)

6.33.1 Length of Data Written

SVC_REQ 57 scans the nonvolatile storage to find the most recent values stored for the
specified range. If it finds no values for the range or the most recent stored values are
different, the new values are written to nonvolatile storage.

SVC_REQ 57 reports the length of data written in word 8 (starting address + 7) of the
parameter block. The number of words written is calculated from the first word that
changed to the end of the array. For example, if you specify 8 words to be written, but only
the values of words 3 and 4 are changed, the SVC_REQ identifies the first mismatch at word
3 and writes the values of words 3 through 8 (a length of 6 words).

You can write up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 57. Each
invocation requires 4 words of command data (8 bytes). A 1-byte write requires 9 bytes
whereas a 64-byte write requires 72 bytes. You can generally make the most efficient use of
nonvolatile storage by transferring data in 56-byte increments, since this will actually write
64 bytes to the device. Given the bookkeeping overhead required by the Controller and
possible fragmentation, at least 54,912 bytes and no more than 64,000 bytes will be
available for the reference data and the 8 bytes of command data for each invocation. For
additional information, refer to Fragmentation below.

Service Request Function 357

CPU Programmer’s Reference Manual Section 6

GFK-2950G

6.33.2

6.33.3

6.33.4

6.33.5

6.33.6

June 2020

Write Frequency

Multiple calls to SVC_REQ 57 in a single sweep may cause CPU watchdog timeouts. The
number of calls to SVC_REQ 57 that can be made requires consideration of many variables:

o software watchdog timeout value
e theamount of databeing written
e sweeptime

o age of nonvolatile storage (flash)

If the application attempts to write to flash too frequently, the CPU could experience a
watchdog timeout while waiting for a preceding write operation to complete.

The Logic Driven Read/Write to Flash service requests are not intended for high frequency
use. We recommend limiting the number of calls to SVC_REQ 57 to one call per sweep to
avoid the potential of for causing a watchdog timeout.

Erase Cycles

The flash component on the PACSystems CPU is rated for 100K erase cycles. Erase cycles
occur under the following conditions:

o Writeto flash is commanded from the programmer.
e (learflash operation.

o Flash compaction after a power cycle when flash memory allotted for SVC_REQ 57 has
become full.

Discrete Memory

Discrete memory can be written to as individual bits or as bytes. For more information, see
Address.

Force and transition information is not written to nonvolatile storage.

Retentiveness

Writing values to nonvolatile storage for non-retentive memory such as %T does not make
the memory retentive. For example, all values stored to %T memory are set to zero on
power-up or a STOP Mode to RUN Mode transition. You can, however, read such values from
storage after power-up or STOP Mode to RUN Mode transition by using SVC_REQ 56.

Maximum of One Active Instruction

When SVC_REQ 57 is active, it does not support an interrupt that attempts to activate
SVC_REQ 56 or a second instance of SVC_REQ 57.

Service Request Function 358

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.33.7 Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 57 until logic is written to
nonvolatile storage:

e RUN Mode Store (RMS), even if a second RMS reverts everything to the original state
e Test-Edit session, even when you cancel your edits
e Word-for-word change

e Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded
contents are equal to the contents already on the nonvolatile storage

Setting bit 0 of input word 4 (address + 4) to a value of 1 enables SVC_REQ 57 despite the
above conditions.

6.33.8 Error Checking

When writing to nonvolatile storage, error checking is provided to ensure that logic and the
Hardware Configuration (HWC) in nonvolatile memory match the logic and HWC in
PACSystems RAM.

6.33.9 Fragmentation

Due to the nature of the media in PACSystems CPUs, writes may produce fragmentation of
the memory. That is, small portions of the memory may become unavailable, depending
upon the sequence of the writes and the size of each one. Datais stored on the device in 128
512-byte sections. Each section uses 12 bytes of bookkeeping information, leaving a
maximum of 64,000 bytes devoted to the reference data and command data for each
invocation. However, the data for a single invocation cannot be split across sections. So, if
there is insufficient space in the currently used section to contain the new data, the unused
portion of that section becomes lost.

Example: Suppose that the current operation is writing 64 bytes of reference data and 8
bytes of command data (72 bytes total). If there are only 71 bytes remaining in the current
section, the new data will be written to a new section and the unused 71 bytes in the old
section become unavailable.

6.33.10 When nonvolatile storage is full

When logic driven user nonvolatile storage is full, a fault is logged. Before you can use
SVC_REQ 57 to write again, use one of the following solutions:

To retain the most up-to-date data and continue writing with SVC_REQ 57 to nonvolatile
storage:

1. Stop the PACSystems.
2. Power cycle the PACSystems.

A power cycle when nonvolatile storage is full triggers a compaction of existing data. During
compaction, multiple writes of the same reference memory address are removed, which
leaves only the most recent data, and contiguous reference memory addresses are
combined into the fewest number of records necessary.

Service Request Function 359

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

If compaction cannot take place, a second fault is logged, and you need to use one of the
following two solutions.

To retain specific data from nonvolatile storage, clear nonvolatile storage, and then return
the data to nonvolatile storage:

1. While the controller s still running, use SVC_REQ 56 to read the desired values
into PACSystems memory.

2. Upload the current values from controller memory as initial values to your project.
Stop the controller.
4. Do one of the following:

Clear the flash memory, or
Write to flash. The flash is erased prior to writing, which frees up some space.

5. Download the initial values to the controller.
6. Start the controller.

7. Use SVC_REQ 57 to write the desired values from controller memory to
nonvolatile storage.

To write to flash to erase everything:

1. Stop the Controller.

2. Write to flash. The flash is erased prior to writing, which frees up some space.

6.33.11 Equality

Because data in nonvolatile storage is not considered part of the project, writing to
nonvolatile storage does not impact equality between the CPU and Logic Developer.

6.33.12 Redundancy

Redundancy systems can benefit from the use of logic driven user nonvolatile storage as
long as all of the references saved to nonvolatile storage are included in the transfer lists.
Each redundancy CPU maintains its own separate logic driven user nonvolatile storage by
means of SVC_REQ 57 during its logic scan. If the values of reference addresses to be stored
to user nonvolatile storage are synchronized, the logic driven user nonvolatile storage data
in each CPU is identical. If the values to be stored are not synchronized, then each CPU’s user
nonvolatile storage may be different.

6.33.13 ENO and Power Flow to the Right

If the status is Success or Partial Read, then on the SVC_REQ instruction, ENO is set to True
in FBD and ST, and power flow passes to the right in LD.

Service Request Function 360

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.33.14 Parameter Block for SVC_REQ 57

Address+0 Memory type. Refer to

Memory Type Codes above.

Address+1 The zero-based offset N to write to nonvolatile storage. Contains the complete
Address+2 offset for any memory area except %W, which also requires the use of address + 2
for offsets greater than 65,535.

e For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) | 8, where
Ra = one-based reference address. For example, to read from the one-based bit
reference address %T33, enter the byte offset4: (33-1) [8 =4.

e For%W, %R, %Al, and %AQ memory, and for %I, %Q, %M, %T, and %G memory in
bit mode, N =Ra- 1. Forexample, to read from the one-based reference address
%R200, enter the zero-based reference offset 199; to read from %73 in bit
mode, enter offset 72. For memory-in-bit mode, the offset must be set on a byte
boundary, that is, a number exactly divisible by 8: 0, 8, 16, 24, and so on.

Address+3 Length. The number of items to write to nonvolatile storage beginning at the
reference address calculated from the offset defined at [address + 1 and address + 2].
The length can be one of the following:

Description Valid range

The number of words (16-bit 1 through 32 words
registers) to read from %W, %R, %Al,
or %AQ nonvolatile storage

The number of bytes to read from 1 through 64 bytes
%I, %Q, %M, %T, or %G in byte mode
nonvolatile storage

The number of bits to read from %I, | 1through 512 bitsin
%Q, %M, %T, or %G in bit mode increments of 8 bits
nonvolatile storage

The value must reside in the low byte of address + 3. The high byte must be set
to zero.
Address+4 |WhenbitOissetto 1,

Storage Disabled Conditions are ignored. A write is allowed even if the logic in RAM
has changed since nonvolatile storage was read or written.

Bits 1 through 15 must be set to zero; otherwise, the write fails.

Address+5 Reserved. Value must be set to zero.

Address+6 Response status. The low byte contains the major error code; the high byte contains
the minor error code.

Address+7 Count of items written: Words, bytes or bits. Calculated from the first word that
changed to the end of the array.

Address+8
The number of bytes available in nonvolatile storage.
Address+9
Address+10
Reserved.
Address+11

Service Request Function 361

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

Service Request Function 362

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.33.14.1.1 Response Status Codes for SVC_REQ 57

Minor | Major | Description

00 01 Success. All values requested were written.

01 01 Existing values found. All values requested are in storage, but one or more
values were already stored.

01 02 Insufficient source memory. Counting from the offset, not enough
reference addresses are left in the specified memory area.

02 02 Invalid length. The length requested was larger than 64 bytes or less than 1
byte or the number of bits is not divisible by 8.

03 02 Invalid source reference address. The memory area specified is not
supported, the starting or ending offset is out of range, or the offset is not
byte-aligned for discrete memory areas.

04 02 Invalid request. Spare bits or spare words in the parameter block are not set
to zero.
01 03 Storage busy. A SVC_REQ 56 or another SVC_REQ 57 instruction is active.

For example, an interrupt block is attempting to execute SVC_REQ 57 when
the block it interrupted was executing SVC_REQ 57.

01 04 Storage disabled. The logic in RAM differs from the logic stored in
nonvolatile storage. Refer to

Storage Disabled Conditions above,

02 04 Storage closed. Either the storage has not been created or a previous
corruption error or unexpected read/write failure closed the storage.

01 05 Unexpected write failure. The command to the storage hardware failed
unexpectedly.

02 05 Corrupted storage. The write failed due to a bad checksum or corrupted
storage header information.
01 06 Write failed. Storage is full.

Service Request Function 363

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020
6.33.14.1.2 SVC_REQ 57 Example

The following LD logic writes ten continuous bytes to nonvolatile storage, ranging from %G1
through %G80. The value applied to IN1, 56, determines byte mode.

The parameter block starts at %R00050. The response words are returned to %R00056—
%R00059.

Figure 254

SetupParmBlk BLKMOV WORD WriteLogicFlash

©

WriteLogicFlash SVC REQ

Service Request Function 364

CPU Programmer’s Reference Manual Section 6
GFK-2950G June 2020

6.33.14.1.3 Parameter Block for SVC_REQ 57 Example

Address + Offset | Address Input Value | Definition

Address+0 %R00050 56 Data type = %G (byte mode)

Address+1 %R00051 0 Address written from, low word
Address+2 %R00052 0 Address written from, high word
Address+3 %R00053 10 Length =10 bytes

Address+4 %R00054 0 Storage disabled conditions are enforced
Address+5 %R00055 0 Reserved, must be setto 0

Response status. The low byte contains
Address+6 %R00056 NA the major error code; the high byte
contains the minor error code.

Count of items written: Words, bytes or

Address+7 %R00057 NA .

bits.
Address+8 %R00058 NA The number of bytes available in
Address+9 %R00059 NA nonvolatile storage.
Address+10 %R00060 NA Reserved
Address+11 %R00061 NA Reserved

Service Request Function 365

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

Section 7 PID Built-In Function Block

This chapter describes the PID (Proportional plus Integral plus Derivative) built-in function
block, which is used for closed-loop process control. The PID function compares feedback
from a process variable (PV) with a desired process set point (SP) and updates a control
variable (CV) based on the error.

The PID function uses PID loop gains and other parameters stored in a 40-word reference
array of 16-bit integer words to solve the PID algorithm at the desired time interval.

Figure 255: PID in Ladder Diagram PID in Ladder Diagram

FID IND PID ISA
| — N B PID IND PID_ISA
TETY reel T 1
—sF Cw— —sp tvl- = SP CV = = SP CV =
—FV —FV
- MAN = MAN
—{hiaN —MAN
- UP - P
—up —{up -{ DN = DN
—{oN —lou

This chapter presents the following topics:

e PID Example

PID Built-In Function Block 366

CPU Programmer’s Reference Manual

GFK-2950G

PID Built-In Function Block

Operands of the PID Function

Reference Array for the PID Function

Operation of the PID Function

PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
Determining the Process Characteristics
Setting Tuning Loop Gains

PID Example

Section 7
June 2020

367

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020
7.1 Operands of the PID Function
Figure 256
PID IND PID ISA
—{sP oV —sp v
—PV —{pv
—IMAN —{mAN
—upP —up
—{DN —DN
7.1.1 Operands for LD Version of PID Function Block
Parameter Description Allowed Allowed Optional
Types Operands
Instance Variable name of the PID Parameter Block WORD R,L,P,W No

(22?2?) array, which contains user-configurable and internal and symbolic
parameters, described in Reference Array for the PID
Function Uses 40 words that cannot be shared.

SP The control loop or process set point. Set using process |INT,BOOL |AllexceptS, |No
variable counts, the PID function adjusts the output array of SA, SB, and
control variable so that the process variable matches |length 16 or |SC
the set point (zero error). more,

Constant

PV Process Variable input from the process being INT,BOOL |AllexceptS, |[No
controlled. Often a %Al input. array of SA, SB, and

length 16 or |SC, and
more constant

MAN While Power Flow is received, the PID function blockis | Power Flow |NA No
held in manual mode. If no Power Flow is received the
PID function block is in Auto mode.

up While Power Flow is received, the Manual Commandis |Power Flow |NA No
increased by 1 each user configured Sample Period.

DN While Power Flow is received, the Manual Commandis |Power Flow |NA No
decreased by 1 each user configured Sample Period.

v The control variable output to the process. Often a INT,BOOL |All except %S |No
%AQ output. array of and constant

length 16 or
more

PID Built-In Function Block

368

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020
7.1.2 Operands for FBD Version of PID Function Block
Figure 257
Control_Parameter Control_Parameter
PID_IND PID_ISA
i 2
=1 8P o - SP CV fm
=PV - PV
= MAN o MAN
- UP - UP
= DN
= DN
Parameter Description Allowed Allowed Optional
Types Operands
Control Structure |Instance Variable name of the PID Parameter Block array,| WORD R, L, P,W No
Variable which contains user-configurable and internal and symbolic
parameters, described in Reference Array for the PID
Function
.Uses 40 words that cannot be shared.
Function block |Calculated by the FBD editor. Can be changed by the|NA NA No
solve order - FBD |user.
version
SP The control loop or process set point. Set using process | INT, BOOL All except S, No
variable counts, the PID function adjusts the output | array of SA, SB, and SC
control variable so that the process variable matches | length 16 or
the set point (zero error). more,
Constant
PV Process Variable input from the process being | INT, BOOL All except S, No
controlled. Often a %Al input. array of SA, SB, SCand
length 16 or constant
more
MAN When energized to 1 (through a contact), the PID | BOOL, Power | All No
function block is in manual mode. If this input is 0, the | Flow
PID block is in automatic mode.
uP If energized along with MAN, increases the control | BOOL, Power | All No
variable by 1 CV count per solution of the PID function | Flow
block.
DN If energized along with MAN, decreases the control | BOOL, Power | All No
variable by 1 CV count per solution of the PID function | Flow
block.
v The control variable output to the process. Often a | INT, BOOL All except %S No
%AQ output. array of and constant
length 16 or
more
PID Built-In Function Block 369

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

7.2 Reference Array for the PID Function

This parameter block for the PID function occupies 40 words of memory, located at the
starting Instance Variable specified in the PID function block operands. Some of the words
are configurable. Other words are used by the CPU for internal PID storage and are normally
not changed.

Every PID function call must use a different 40-word memory area, even if all the
configurable parameters are the same.

The configurable words of the reference array must be specified before executing the PID
function. Zeros can be used for most default values. Once suitable PID values have been
chosen, they can be defined as constants in BLKMOV functions so the program can set and
change them as needed.

The LD version of the PID function does not pass power flow if there is an error in the
configurable parameters. The function can be monitored using a temporary coil while
modifying data.

7.2.1 Scaling Input and Outputs

All parameters of the PID function are 16-bit integer words for compatibility with 16-bit
analog process variables. Some parameters must be defined in either PV counts or units or
in CV counts or units.

The SP input must be scaled over the same range as the PV, because the PID function
calculates error by subtracting these two inputs.

The process PV and control CV counts do not have to use the same scaling. Either may be -
32,000 or 0 to 32,000 to match analog scaling, or from 0 to 10,000 to display variables as
0.00%to 100.00%. If the process PV and control CV do not use the same scaling, scale factors
are included in the PID gains.

PID Built-In Function Block 370

CPU Programmer’s Reference Manual

GFK-2950G

7.2.2

Reference Array Parameters

Section 7
June 2020

Note:

Machine Edition software allows you to modify the configurable parameters for a PID

instruction in real time in online programmer mode. To customize PID parameters, right

click the PID function and select Tuning.

PID_IND: Change in the control variable in CV Counts if the Error or PV
changes 1 PV Count every 10ms. Entered as an integer representing a
fixed-point decimal time in seconds with two decimal places. The least
significant digit represents 0.01 second (10ms.) units. Displayed as
seconds with two decimal places.

For example, Kd entered as 120 is displayed as 1.20 Sec and results in a

Kd * A Error [delta time or 120 * 4 | 3 contribution to the PID Output if

. Low Bit
Words Parameter/Description . Range
Units
1 Loop Number Integer 0 to 255 (for user
(Address+0) |Optional number of the PID block. It provides a common identification in display only)
the CPU with the loop number defined by an operator interface device.
2 Algorithm - Set by the CPU
(Address+1) |1 =1SA algorithm
2 =Independent algorithm
3 Sample Period 10ms. 0 (every sweep)
(Address+2) [The shortest time, in 10ms. Increments, between solutions of the PID to 65535
algorithm. For example, use a 10 for a 100ms. Sample period. Minimum (10.9 Min) At
time of 10ms is enforced by the block if the sweep<10ms) least 10ms.
4,5 Dead Band + PV Counts [DeadBand +:0to
(Address+3, Dead Band - 32767
Address+4) Integral values defining the upper (+) and lower (-) Dead Band limits. If no (never negative)
Dead Band is required, these values must be 0. If the PID Error (SP - PV) or Dead Band -: -
(PV - SP) is above the (-) value and below the (+) value, the PID 32768t00
calculations are solved with an Error of 0. If non-zero, the (+) value must (never positive)
greater than 0 and the (-) value less than 0 or the PID block will not
function.
Leave these at 0 until the PID loop gains are set up or tuned. A Dead Band
might be added to avoid small CV output changes due to variations in
error.
6 PID_IND: Proportional Gain (Kp) CV%|PV% |0to327.67%
(Address+5) |PID_ISA: Controller gain (Kc = Kp)
PID_IND: Change in the control variable in CV Counts fora 100 PV Count |%CV/%PV
change in the Error term. Entered as an integer representing a fixed-point
decimal ratio with two decimal places. Displayed as a ratio of
percentages with two decimal places.
For example, a Kp entered as 450 is displayed as 4.50 and resultsin a
Kp * Error / 100 or 450 * Error [100 contribution to the PID Output.
PID_ISA: Same as PID_IND.
Kp is generally the first gain set when adjusting a PID loop.
7 PID_IND: Derivative Gain (Kd) 0.01sec |0to327.67 sec
(Address+6) |PID_ISA: Derivative Time (Td = Kd)

PID Built-In Function Block

371

CPU Programmer’s Reference Manual

GFK-2950G

Section 7
June 2020

Words

Parameter/Description

Low Bit
Units

Range

Error changes by 4 PV Counts every 30ms. Kd can be used to speed up a
slow loop response but is very sensitive to PV input noise. This noise
sensitivity can be reduced by using the derivative filter, which is enabled
by setting bit 5 of the Config Word .

PID_ISA: The ISA derivative time in seconds, Td, is entered and displayed
in the same way as Kd. Total derivative contribution to PID Output is

Kc * Td * A Error [dt.

8
(Address+7)

PID_IND: Integral Rate (Ki)

PID_ISA: Integral Rate (1/Ti = Ki)

PID_IND: Rate of change in the control variable in CV Counts per second
when the Erroris a constant 1 PV Count. Entered as an integer
representing a fixed-point decimal rate with three decimal places. The
least significant digit represents 0.001 counts per second, or 1 count per
0.001 second. Displayed as Repeats/Sec with three decimal places.

For example, Ki entered as 1400 is displayed as 1.400 Repeats/Sec and
resultsinaKi * Error * dt or 1400 * 20 * 50/1000 = 1,400 contribution to
PID Output for an Error of 20 PV Counts and a 50ms. CPU sweep time
(Sample Period of 0).

PID_ISA: The ISA Integral Time in seconds, Ti, must be inverted and
entered, as integral rate, as described for PID_IND. Total integral
contribution to PID Outputis Kc * Ki * Error * dt.

Kiis usually the second gain set after Kp.

Repeats/0.0
01 Sec

0to 32.767
repeats/sec

9
(Address+8)

CV Bias/Output Offset

Number of CV Counts added to the PID Output before the rate and
amplitude clamps. It can be used to set non-zero CV values when only Kp
Proportional gains are used, or for feed-forward control of this PID loop
output from another control loop.

CV Counts

-32768 to 32767
(add to PID
output)

10,11
(Address+9.
Address+10)

CV Upper Clamp

CV Lower Clamp

Number of CV Counts that define the highest and lowest value that CV is
allowed to take. These values are required. The Upper Clamp must have a
more positive value than the Lower Clamp, or the PID block will not work.
These are usually used to define limits based on physical limits fora CV
output. They are also used to scale the Bar Graph display for CV. The PID
block has anti-reset-windup, controlled by bit 4 of the Config Word, to
modify the integral term value when a CV clamp is reached.

CV Counts

-32,768 to
32,767

(Word 10 must
be greater than
word 11.)

12
(Address+11)

Minimum Slew Time

Minimum number of seconds for the CV output to move from 0 to full
travel of 100% or 32,000 CV Counts. It is an inverse rate limit on how fast
the CV output can change.

If positive, CV cannot change more than 32,000 CV Counts times the
solution time interval (seconds) divided by Minimum Slew Time.

For example, if the Sample Period is 2.5 seconds and the Minimum Slew
Time is 500 seconds, CV cannot change more than 32,000 * 2.5/ 500 or
160 CV Counts per PID solution.

The integral term value is adjusted if the CV rate limit is exceeded.

Seconds |
Full Travel

0 (none) to
32,000 sec

to move full CV
travel

PID Built-In Function Block

372

CPU Programmer’s Reference Manual

GFK-2950G

Section 7
June 2020

Words

Parameter/Description

Low Bit
Units

Range

When Minimum Slew Time is 0, there is no CV rate limit. Set Minimum
Slew Time to 0 while tuning or adjusting PID loop gains.

13
(Address+12)

Config Word

The low 6 bits of this word are used to modify default PID settings. The
other bits should be set to 0.

Bit 0: Error Term Mode.

When this bit has the default value of 0, the error term is SP - PV.

If the Error=SP-PV is positive, the CV output will decrease.

If the Error=SP-PV is negative, the CV output will increase.

This is type of operation is known as reverse acting. A good example is
your home heating system.

When this bit is 1, the error term is PV - SP.

If the Error=PV-SP is positive, the CV output will increase.

If the Error= PV-SP is negative, the CV output will decrease.

This type of operation is known as direct acting. A good example is your
home cooling system.

Bit 1: Output Polarity.

When this bit is 0, the CV output is the output of the PID calculation.
When itis set to 1, the CV output is the negated output of the PID
calculation. Setting this bit to 1 inverts the Output Polarity so that CV is
the negative of the PID output rather than the normal positive value.

Bit 2: Derivative Action on PV.

When this bit is 0, the derivative action is applied to the error term. When
itis setto 1, the derivative action is applied to PV only.

Bit 3: Deadband action.

When the Deadband action bit is 0, the actual error value is used for the
PID calculation.

When the Deadband action bit is 1, deadband action is chosen. If the
error value is within the deadband limits, the error used for the PID
calculation is forced to be zero. If, however, the error value is outside the
deadband limits, the magnitude of the error used for the PID calculation
is reduced by the deadband limit (| error| = | error — deadband limit|).
Bit 4: Anti-reset windup action.

When this bit is 0, the anti-reset-windup action uses a reset (integral
term) back-calculation. When the output is clamped, the accumulated
integral term is replaced with whatever value is necessary to produce the
clamped output exactly.

When the bit is 1, the accumulated integral term is replaced with the
value of the integral term at the start of the calculation. In this way, the
pre-clamp integral value is retained as long as the output is clamped. This
option is not recommended for new applications. Refer to CV Amplitude
and Rate Limits below.

Bit 5: Enable derivative filtering.

When this bit is set to 0, no filtering is applied to the derivative term.

Low 6 bits
used

Boolean

PID Built-In Function Block

373

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020
Low Bit
Words Parameter/Description . Range
Units
When set to 1, afirst order filter is applied. This will limit the effects of
higher frequency process disturbances, such as measurement noise, on
the derivative term.
14 Manual Command CV Counts [Tracks CVin Auto
(Address+13) |Set to the current CV output while the PID block is in Automatic mode. orsets CVin
When the block is switched to Manual mode, this value is used to set the Manual
CV output and the internal value of the integral term within the Upper
and Lower Clamp and Slew Time limits.
15 Control Word Maintained [Boolean
(Address+14) |If the Override bit (bit 0) is set to 1, the Control Word and the internal SP, by the C.PU‘
PV and CV parameters must be used for remote operation of the PID Unless.b't 0
: . . (Override)
block (see below). This allows a remote operator interface device, such as < setto 1
a computer, to take control away from the application program.
A\ CAUTION
If you do not want to allow remote operation of the PID block, make sure
the Control Word is set to 0. If the low bit is 0, the next 4 bits can be read
to track the status of the PID input contacts as long as the PID Enable
contact has power.
Control Word is a discrete data structure with the first five bit positions
defined in the following format:
Status or
. |Word o
Bit Function | External Action if Override bit is
Value
setto1:
) If 0, monitor block contacts below.
0 |1 Override
If 1, set them externally.
115 Manual If 1, block is in Manual mode. If other
|Auto numbers, itis in Automatic mode.
Should normally be 1. Otherwise block
2 |4 Enable]
is never called.
3 s upP If 1 and Manual (Bit 1) is 1, CVis
[Raise incremented every solution.
4 |16 DN If 1 and Manual (Bit 1) is 1, CV is
[Lower decremented every solution.
16 Internal SP Set and Non-
(Address+15) [Tracks the SPinput. If Override = 1, must be set externally to solve the PID|M@ntained iconfigurable,
algorithm using an alternate SP value. The original SP value is maintained bylthe Ezlé unless bit 0
uniess DI .
until overwritten. . (Override) of
(Override) of | Word
Control Word Control Wor
ssetto1. [issettol.
17 Internal CV Set and Non-
(Address+16) [Tracks CV output. maintained |configurable.
by the CPU.

PID Built-In Function Block

374

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020
. Low Bit
Words Parameter/Description . Range
Units
18 Internal PV Setand Non-
(Address+17) [Tracks PV input. Must be set externally if Override bit is set to 1. maintained \configurable,
by the CPU,) less bit 0
unless.b|t 0 (Override) of
(Override) of C | Word
Control Word | ontrol Wor
ssetto]. [iSsettol.

19 Output Setand Non-
(Address+18) |A Signed word value representing the output of the function block before[maintained |configurable.
the optional inversion. If the output polarity bit in the Config Word is set by the CPU.

to 0, this value equals the CV output. If the output polarity bit is set to 1,
this value equals the negative of the CV output.
20 Derivative Term Storage
(Address+19) |Used internally for storage of intermediate values. Do not write to this
location.
21,22 Integral Term Storage
(Address+20. |Used internally for storage of intermediate values. Do not write to these
Address+21) |locations.
23 Slew Term Storage
(Address +22) |Used internally for storage of intermediate values. Do not write to this
location.
24-26 Previous Solution Time Setand Non-
(Address+23 - |Internal storage of time of last PID solution. Normally do not write to maintained |configurable.
Address+25) [these locations. Some special circumstances may justify writing to these by the CPU.
locations.
Note: If you call the PID block in Automatic mode dfter a long delay,
you might want to use SVC_REQ #16 or SVC_REQ #51 to load
the current CPU elapsed time clock into Word 24 to update the
last PID solution time to avoid a step change of the integral
term.
27 Integral Remainder Storage Set and Non-
(Address+26) [Holds remainder from integral term scaling. maintained |configurable.
by the CPU.
28,29 SP, PV Lower Range PV Counts [-32768 to 32767
(Address+27, |SP, PV Upper Range
Address+28) |Optional integer values in PV Counts that define high and low display
values for SP and PV. (Word 29 must be greater than word 28.)
30 Reserved N/A Non-
(Address+29) |Word 30 is reserved. Do not use this location. configurable.
31,32 Previous Derivative Term Storage Setand Non-
(Address+30, |Used in calculations for derivative filter. Do not write to these locations. ~[Maintained |configurable.
Address+31) by the CPU.
33-40 Reserved N/A Non-configurable
(Address+32 - |Words 32-39 are reserved. Do not use these references.
Address+39)
PID Built-In Function Block 375

CPU Programmer’s Reference Manual Section 7

GFK-2950G June 2020
\

7.3 Operation of the PID Function

7.3.1 Automatic Operation

When the PID function block is called, it compares the current CPU time with the last PID
solution time stored in the reference array. If the interval between the two times is equal to
or greater than the Sample Period (word 3 of the reference array) and also equal to or
greater than 10 ms, the PID algorithm is solved using this time interval. Both the last solution
time and CV output are updated. In Automatic mode, the output CV is copied to the Manual
Command parameter (word 14 of the reference array).

Note: Ifyou call the PID block in Auto mode dfter a long delay, you may want to use SVC_REQ 16
or SVC_REQ 51 to load the current CPU time into the stored Previous Solution Time (word
24 of the reference array). This will update the last PID solution time and avoid a large step
change of the integral term. Another method to prevent the step change is to copy the PV
value to the SP before placing the loop into Auto.

7.3.2 Manual Operation

The PID function block is placed in Manual mode by providing power flow to both the Enable
and Manual input contacts. The output CV is set from the Manual Command parameter. If
either the UP or DN inputs have power flow, the Manual Command word is incremented
(UP) or decremented (DN) by one CV count every PID Sample Period. For faster manual
changes of the output CV, it is also possible to add or subtract any CV count value directly
to/from the Manual Command word (word 14 of the reference array).

The PID function block uses the CV Upper Clamp and CV Lower Clamp parameters to limit
the CV output. If a positive Minimum Slew Time (word 12 of the reference array) is defined,
itis used to limit the rate of change of the CV output. If either CV Clamp or the rate of change
limit is exceeded, the value of the integral (reset) term is adjusted so that CV is at the limit.
The anti-reset-windup feature assures that when the error term tries to drive CV above (or
below) the clamps for a long period of time, the CV output will move off the clamp
immediately when the error term changes sufficiently.

This operation, with the Manual Command tracking CV in Automatic mode and setting CV
in Manual mode, provides a bump-less transfer from Automatic to Manual mode. The CV
Upper and Lower Clamps and the Minimum Slew Time always apply to the CV output in
Manual mode and the integral term is always updated. This assures that when a user rapidly
changes the Manual Command value in Manual mode, the CV output cannot change any
faster than the slew rate limit set by the Minimum Slew Time, and the CV cannot go above
the CV Upper Clamp limit or below the CV Lower Clamp limit.

In order to assure a bump-less transfer from Manual back to Automatic mode, the user
program should copy the PV to the SP before switching back to Automatic mode. This allows
the algorithm to update the last sample period time and prepare to re-calculate CV based
upon the new Auto Mode SP commanded.

PID Built-In Function Block 376

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

7.3.3 Time Interval for the PID Function

The start time of each CPU sweep is used as the current time when calculating the time
interval between solutions of the PID function. The times and time intervals have a
resolution of 100 us. When an application uses multiple PID functions, all of them use the
same time value.

The PID algorithm is solved when the current time is equal to or greater than the time of the
last PID solution plus the Sample Period or 10 ms; whichever is larger. If the Sample Period
is set for execution on every sweep (value = 0), the PID function is restricted to a minimum
of 10 ms between solutions. If the sweep time is less than 10 ms, the PID function waits until
enough sweeps have occurred to accumulate an elapsed time of at least 10 ms. For
example, if the sweep time is 9 ms, the PID function executes every other sweep, and the
time interval between solutions is 18 ms. If a specific PID function is executed more than
once per sweep (by referencing the same reference array location in multiple PID function
blocks), the algorithm is solved only on the first call.

The longest possible interval between executions is 65,535 times 10 ms, or 10 minutes,
55.35 seconds.

7.4 PID Algorithm Selection (PIDISA or PIDIND) and

Gain Calculations

The PID function supports both the Independent Term (PID_IND) and ISA standard
(PID_ISA) forms of the PID algorithm. The Independent Term form takes its name from the
fact that the coefficients for the proportional, integral and derivative terms act
independently. The ISA algorithm is named for the Instrument Society of America (now the
International Society for Measurement and Control), which standardized and promoted it.

The two algorithms differ in how words 6 through 8 of the reference array are used and in
how the PID output (CV) is calculated.

The Independent term PID (PID_IND) algorithm calculates the output as:
PID Output =Kp * Error + Ki * Error * dt + Kd * Derivative + CV Bias

where Kp is the proportional gain, Ki is the integral rate, Kd is the derivative time, and dt is
the time interval since the last solution.

The ISA (PID_ISA) algorithm has different coefficients for the terms:
PID Output = Kc * (Error + Error * dt/Ti + Td * Derivative) + CV Bias

where Kc is the controller gain, Ti is the Integral time and Td is the Derivative time. The
advantage of PID_ISA is that adjusting Kc changes the contribution for the integral and
derivative terms as well as the proportional term, which can simplify loop tuning.

If you have the PID_ISA Kc, Ti and Td values, use the following equations to convert them to
use as PID_IND parameters:

Kp = Kc, Ki = Kc/Ti, and Kd = Kc * Td

The following diagram shows how the PID_IND algorithm works:
PID Built-In Function Block 377

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

Figure 258: PID_IND Diagram

Propodional Temm = Bias

’—\ Kp + Emor

Integral Term =

Previous Infen Term +] — Upper/Lawer Pularity
Ki * Emor* &Time Camp

Derivative Term =
A Value
e = A Time

The ISA Algorithm (PID_ISA) is similar except that its Kc gain coefficient is applied after the
three terms are summed, so that the integral gain is Kc / Ti and the derivative gain is Kc*d.

Bits 0, 1 and 2 in the Config Word set the Error sign, Output Polarity and Derivative Action,
respectively.

7.4.1 Derivative Term

The Derivative Term is Kd (word 7 of the reference array) multiplied by the time rate of
change of the Error term in the interval since the last PID solution.

Derivative = Kd * Aerror [dt =Kd * (Error - previous Error) [dt
where
dt = Current controller time - controller time at previous PID solution.

Two bits in the Config Word (word 13 of the reference array) affect the calculation of Aerror:
Error Term Mode and Derivative Action. For additional information about the operation of
these bits, refer to Config Word above.

7.4.2 Error Term Mode

The sign of the Error term is determined by the value of a mode bit in the reference array for
the PID function.

In reverse acting mode, the change in the error term is:
Aerror = (Error - previous Error) = ASP — APV

where
APV = (PV - previous PV), and ASP = (SP - previous SP).

However, in direct acting mode, the error term is (PV - SP), the sign of the change in the
error term is reversed:

Aerror = (Error — previous Error) == APV — ASP.

PID Built-In Function Block 378

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

7.4.3 Derivative Action on PV Bit

By default, the change in the error term depends on changes in both SP and PV. If SP is
constant, ASP=0, and SP has no effect on the derivative term. When SP changes, however,
it can cause large transient swings in the derivative term and hence the output. Loop
stability can be improved by eliminating the effect of SP changes on the derivative term.

To calculate the Derivative based only on the change in PV, set bit 2 of the Config Word to
1. This modifies the equations above by assuming SP is constant (ASP = 0).

7.4.4 Combined Operation of Error Term and Derivative
Action Modes
Bit 0 of Config Word Bit 2 of Config Word
Error Term Value
Value Error Term Mode Value | Derivative Action
0 Reverse Acting (default) | 0 ASPincluded ASP -A PV
1 Direct Acting 0 ASPincluded APV -A SP
0 Reverse Acting (default) | 1 ASP ignored -APV
1 Direct Acting 1 ASP ignored APV

7.4.5 CV Bias Term

The CV Bias term (word 9 in the reference array) is an additive term separate from the PID
inputs. It may be useful if you are using only Proportional gain (Kp) and you want the CV to
be a non-zero value when the PV equals the SP and the Erroris 0. In this case, set the CV Bias
to the desired CV when the PV is at the SP. CV Bias can also be used for feed forward control
where another PID loop or control algorithm is used to adjust the CV output of this PID loop.

If a non-zero Integral rate is used, the CV Bias will normally be 0 as the integral term acts as
an automatic bias or reset. Just start up in Manual mode and use the Manual Command word
(word 14 of the reference array) to set the desired CV, and then switch to Automatic mode.
This will immediately calculate the required value for the integral term.

7.4.6 CV Amplitude and Rate Limits

The PID block does not send the calculated Output directly to CV. Both PID algorithms can
impose amplitude and rate of change limits on the output Control Variable. If the Minimum
Slew Time (word 12 of the reference array) is non-zero, the rate of change (slew rate) limit
is determined by dividing the maximum CV value (32,000) by the Minimum Slew Time. For
example, if the Minimum Slew Time is 100 seconds, the rate limit will be 320 CV counts per
second. If the solution interval was 50 ms, the new CV output cannot change more than
320*50/1000 or 16 CV counts from the previous CV output.

The CV output is then compared to the CV Upper Clamp and CV Lower Clamp values (words
10 and 11 of the reference array). If CV is outside either limit, the CV output is clamped to
the appropriate limit value. When the CV output is modified to impose either slew rate or
amplitude limits (or both) the stored integral term would normally accumulate a large value
over time. This phenomenon is known as reset windup. Reset windup introduces errors in

PID Built-In Function Block 379

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

CV after the PID output no longer needs to be limited. For example, windup would prevent
the CV output from moving off a clamp value immediately.

There are two optional methods for preventing reset windup. If the Anti-reset-windup
Action bit (bit 4) of Config Word (word 13 of the reference array) is zero (the default), the
integral term is adjusted at each PID solution to match the errorinput and limited CV output
exactly. When PV changes while CV is clamped, or when CV is both rate and amplitude
limited in a particular PID solution, this option assures that a smooth transition will always
occur after CVis no longer limited.

If the Anti-reset-windup Action bit of Config Word is set, then the integral term stored on
the previous PID solution is simply retained as long as CV is limited. This option was added
to assure compatibility with existing PID applications when the default action described
above was introduced. This option is not recommended for new applications.

Finally, the PID block checks the Output Polarity (bit 2 of the Config Word) and changes the
sign of the output if the bit is 1.

CV = - (Clamped PID Output) if Output Polarity bit set, or
CV=(Clamped PID Output) if Output Polarity bit cleared.

If the block is in Automatic mode, the final CV is placed in the Manual Command (word 14
of the reference array). If the block is in Manual mode, the PID equation is skipped because
CV is set by the Manual Command, but the slew rate and amplitude limits are still checked.
This assures that the Manual Command cannot change the output above the CV Upper
Clamp or below the CV Lower Clamp, and the output cannot change faster than allowed by
the Minimum Slew Time.

7.4.7 Sample Period and PID Function Block Scheduling

The PID function block is a digital implementation of an analog control function, so the dt
sample timein the PID Output equationis not the infinitesimally small sample time available
with analog controls. The majority of processes being controlled can be approximated as a
gain with a first or second order lag and (possibly) a pure time delay. The PID function block
sets a CV output to the process and uses the process feedback PV to determine an Error to
adjust the next CV output. A key process parameter is the total time constant, which is how
fast the process can change PV when the CV is changed. As discussed in Determining the
Process Characteristics below, the total time constant, Tp+Tc, for a first order system is the
time required for PV to reach 63% of its final value when CV is stepped. The PID function
block will not be able to control a process unless its Sample Period is well under half the total
time constant. Larger Sample Periods will make it unstable.

The Sample Period should be no bigger than the total time constant divided by 10 (or down
to 5 worst case). For example, if PV seems to reach about 2/3 of its final value in 2 seconds,
the Sample Period should be less than 0.2 seconds, or 0.4 seconds worst case. On the other
hand, the Sample Period should not be too small, such as less than the total time constant
divided by 1000, or the Ki * Error * dt term for the PID integral term will round down to 0.
For example, a very slow process that takes 10 hours or 36,000 seconds to reach the 63%
level should have a Sample Period of 40 seconds or longer.

PID Built-In Function Block 380

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

Variations of the time interval between PID function solutions can have short-term effects
on the CV output. For example, if a step change to PV caused by measurement noise occurs
between solutions, the value of the derivative term will be inversely proportional to the time
interval. The performance of PID loops that are tuned for quick response may be improved
when the solution interval is held constant by configuring the CPU for constant sweep
mode. Depending on the CPU model and the application, constant sweep times of 10 ms,
integer multiples of 10 ms, or exact divisors of 10 ms (1, 2 or 5 ms) will be possible. The
Sample Period can then be set for a suitable multiple of 10 ms.

If many PID loops are used, allowing the application to solve all the loops on the same sweep
may lead to wide variations in CPU sweep time. If the loops have a common Sample Period
that is at least equal to the number of PID loops times the sweep time, a simple solution is
to sequence one or more 1’s through an array of zero ‘s and use these bits to enable power
flow to individual PID function blocks. The logic should assure that each PID function block
is enabled no more often than its Sample Period.

7.5 Determining the Process Characteristics

The PID loop gains, Kp, Kiand Kd, are determined by the characteristics of the process being
controlled. Two key questions when setting up a PID loop are:

1. How bigis the change in PV when CV is changed by a fixed amount, or what is the
open loop gain of the process?

2. How fast does the system respond, or how quickly does PV change after the CV
output is stepped?

Many processes can be approximated by a process gain, first or second order lag and a pure
time delay. In the frequency domain, the transfer function for a first order lag system with a
pure time delay is:

PV (s)

—— -T, I(14T,

cr(s) . Ols) ke

Plotting the response to a step input at time t0 in the time domain provides an open-loop
unit reaction curve:

Figure 259

CV Linit Siep Oulput fo Process P Linit Reaction Curve lnpel fiomiProcess:

Te Te

The following process model parameters can be determined from the PV unit reaction
curve:

PID Built-In Function Block 381

CPU Programmer’s Reference Manual Section 7

GFK-2950G June 2020
K Process open loop gain = final change in PV/change in CV at time to
(Note no subscript on K)
Tp Process or pipeline time delay or dead time after to before the process output PV
starts moving
Tc First order Process time constant, time required after T, for PV to reach 63.2% of the
final PV

Usually the quickest way to measure these parameters is by putting the PID function block
in Manual mode, making a small step change in the CV output by changing the Manual
Command (word 14 of the reference array), and then plotting the PV response over time.
For slow processes this can be done manually, but for faster processes a chart recorder or
computer graphic data-logging package will help. The CV step size should be large enough
to cause an observable change in PV, but not so large that it disrupts the process being
measured. A good step size may be from 2 to 10% of the difference between the CV Upper
and CV Lower Clamp values.

7.6 Setting Tuning Loop Gains
7.6.1 Basic Iterative Tuning Approach

Because PID parameters are dependent on the process being controlled, there are no
predetermined values that will work. However, a simple iterative process can be used to find
acceptable values for Kp, Ki, and Kd gains.

1. Setall the reference array parameters to 0, then set the CV Upper and CV Lower
Clamps to the highest and lowest CV expected. Set the Sample Period to a value
within the range Tc/10 to Tc/100, where Tc is the estimated process time
constant defined in Determining the Process Characteristics

2. Putthe PID function block in Manual mode and set the Manual Command (word
14 in the reference array) to different values to check if CV can be moved to Upper
and Lower Clamp. Record the PV value at some CV point and load it into SP.

3. Setasmall gain, suchas 100 * Maximum CV/Maximum PV, into Kp and turn off
Manual mode. Step SP by 2% to 10% of the Maximum PV range and observe PV
response. Increase Kp if PV step response is too slow or reduce Kp if PV overshoots
and oscillates without reaching a steady value.

4. Once aKpisfound, start increasing Ki to get overshooting that dampens out to a
steady value in two to three cycles. This may require reducing Kp. Also try
different SP step sizes and CV operating points.

5. After suitable Kp and Ki gains are found, try adding Kd to get quicker responses to
input changes, providing it doesn't cause oscillations. Kd is often not needed and
will not work with noisy PV.

6. Check gains over different SP operating points and add Dead Band and Minimum
Slew Time if needed. Some Reverse Acting processes may need setting of Config
Word Error Term or Output Polarity bits.

PID Built-In Function Block 382

CPU Programmer’s Reference Manual Section 7

GFK-2950G

June 2020

7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning
Approach

This approach provides good response to system disturbances with gains producing an
amplitude ratio of 1/4. The amplitude ratio is the ratio of the second peak over the first peak
in the closed loop response.

1.

Determine the three process model parameters, K, Tp and Tc for use in estimating
initial PID loop gains.

Calculate the Reaction rate:
R=K/Tc

For Proportional control only, calculate Kp as:
Kp=1/(R*Tp)=Tc/(K* Tp)

For Proportional and Integral control, use:
Kp=0.9/(R*Tp)=0.9 * Tc/(K * Tp) Ki=0.3 * Kp/Tp

For Proportional, Integral and Derivative control, use:
Kp=G/(R * Tp) where Gisfrom 1.2t02.0
Ki =0.5 * Kp/Tp
Kd=0.5"Kp * Tp

Check that the Sample Period is in the range
(Tp+Tc)/10to (Tp + Tc)/1000

7.6.3 |deal Tuning Method

The Ideal Tuning procedure provides the best response to SP changes that are delayed only

by the Tp process delay or dead time.

1.

PID Built-In Function Block

Determine the three process model parameters, K, Tp and Tc for use in estimating
initial PID loop gains.

Calculate Kp, Ki, and Kd as follows:
Kp=2*Tc/(3*K*Tp)
Ki=Tc
Kd =Ki/4 if Derivative term is used

Once initial gains are determined, convert them to integers.

Calculate the Process gain, K, as a change in input PV Counts divided by the
resulting output step change in CV Counts. (Not in process PV or CV engineering
units.) Specify all times in seconds.

Once Kp, Ki and Kd are determined, Kp and Kd are multiplied by 100 while Ki is

multiplied by 1000. The resulting values are entered the corresponding reference
array word locations.

383

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020

7.7 PID Example

The following PID example has a sample period of 100ms, a Kp gain of 4.00 and a Ki gain of
1.500. The set point is stored in R0001, the control variable is output in %AQ0002, and the
process variable is returned in %AI0003. CV Upper and CV Lower Clamps must be set, in this
case to 20000 and 4000, and an optional small Dead Band of +5 and -5 is included. The 40-
word reference array starts in R0100. Normally, user parameters are set in the reference
array, but %MO0006 can be set to re-initialize the 14 words starting at %R0102 (word 3) from
constants stored in logic (a useful technique).

The block can be switched to Manual mode with %M1 so that the Manual Command, %R113,
can be adjusted. Bits %$M4 or %M5 can be used to increase or decrease %R113 and the PID
CV by 1 every 100ms solution. For faster manual operation, bits M2 and %M3 can be used
to add or subtract the value in %R2 to/from %R113 every CPU sweep. The %T1 output is on
when the PID is OK.

7.7.1 Reference Array Initialization using M00006
For details on the contents of the reference array, refer to Reference Array for the PID
Function
Word | Function Address | Value
3 Sample Period %R102 10
4 + Dead Band %R103 |5
5 - Dead Band %R104 |5
6 Kp %R105 400
7 Kd %R106 |0
8 Ki %R107 1500

CV Bias %R108 |0

10 CV Upper Clamp %R109 |2000

11 CV Lower Clamp %R110 400

12 Minimum Slew Time | %R111 0
13 Config Word %R112 |0
14 Manual Command |%R113 |0
15 Control Word %R114 |0
16 Internal SP %R115 |0

PID Built-In Function Block 384

CPU Programmer’s Reference Manual Section 7
GFK-2950G June 2020
Figure 260 : PID Example Logic
00008 BLK CLR BLKMOV BLKMOV
1 | | WORD INT INT
35
ROO100 —IN 10 —{IN1 @~ ROO10Z 20000 —IN1 Q= ROD108
PID IND To0001
2 {—
ROD100
ROOOO1 —|SF CVW= AQ000Z
AlDoos —PY
00001
—~ ——{man
MOO004
1} up
00005
—— —pn
M00002 ADD INT
3 i} =
ROO1132 —IN1 QO ROO143
ROO00Z —(INZ
MO0003 SUB INT
4 — — -
ROO113 —IN1 Q= ROO113
ROOO0Z ={INZ

PID Built-In Function Block

385

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

Section 8 Structured Text (ST)
Programming

The Structured Text (ST) programming language is an IEC 61131-3 textual programming
language. This chapter describes how structured text is implemented in PACSystems. For
information on using the structured text editor in the programming software, refer to the
online help.

The block types Block, Parameterized Block, and Function Block (UDFB) can be programmed
in ST. The _MAIN program block can also be programmed in ST. For details on blocks, refer
to Program Organization in Section 2.

3.1 Language Overview
8.1.1 Statements

A structured text program consists of a series of statements, which are constructed from
expressions and language keywords. A statement directs the PACSystems controller to
perform a specified action. Statements provide variable assignments, conditional
evaluations, iteration, and the ability to call built-in functions. PACSystems supports those
statements described in

Structured Text (ST) Programming 386

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

Statement Types.

8.1.2 Expressions

Expressions use operators to calculate values from variables and constants. An example of a
simple expression is (x+5).

Composite expressions can be created by nesting simpler expressions, for example,

(a+b)*(c+d)-3.0 ** 4.

8.1.3 Operators

The table below lists the operators that you can use within an expression. They are listed
according to their evaluation precedence, which determines the sequence in which they are
executed within the expression. The operator with the highest precedence is applied first,
followed by the operator with the next highest precedence. Operators of equal precedence
are evaluated left to right. Operators in the same group, for example + and -, have the same
precedence.

Any address operators used in LD can be used on ST operands. Address operators have
precedence over the ST language operators. Address operators include indirect addressing
(for example, @Var1), array indexing (for example, Var1[3]), bit within word addressing (for
example, Var1.X[3]), and structure fields (for example, Var1.field1).

Structured Text (ST) Programming 387

CPU Programmer’s Reference Manual Section 8

GFK-2950G June 2020
Precedence Operator Operand Types Description
Group 1 (Highest) (...) Parenthesized expression
Group 2 - INT, DINT, REAL, LREAL Negation
NOT BOOL, BYTE, WORD, Boolean complement
DWORD
Group 3 e INT, DINT, UINT, REAL, Exponentiation®1°
LREALZ
Group 4 * INT, DINT, UINT, REAL, Multiplication®
LREAL
/ INT, DINT, UINT, REAL, Division® !
LREAL
MOD INT, DINT, UINT Modulus operation™
Group 5 + INT, DINT, UINT, REAL, Addition®
LREAL
- INT, UINT, DINT, REAL, Subtraction®
LREAL
Group 6 <, >,<=,>= INT, DINT, UINT, REAL, Comparison
LREAL, BYTE, WORD,
DWORD
Group 7 = ANY' Equality
<>, 1= ANY'™ Inequality
Group 8 AND, & BOOL, BYTE, WORD, Boolean AND
DWORD
Group 9 XOR BOOL, BYTE, WORD, Boolean exclusive OR
DWORD
Group 10 (Lowest) OR BOOL, BYTE, WORD, Boolean OR
DWORD

Some comparison and math operators have corresponding built-in functions. For instance,
the ‘+’ operator is similar to the ADD_INT function. You can use either the language
operator or the built-in function. The built-in function has the advantage of returning an
ENO status. For additional information refer to

Built-in Functions Supported for ST Calls.

8The base must be type REAL or LREAL. If the base is REAL, the power can be type INT, DINT, UINT, or REAL and the result is type REAL. If
the base is type LREAL, the power must be LREAL and the result will be LREAL

Use of math operators can cause Overflow or underflow. Overflow results are truncated.

10f either operand is positive or negative infinity, the result is undefined.

" The CPU flags a “divide-by-0” error as an application fault.

2Qperators that can take operands of type ANY can be used with any of the supported elementary data types. The supported data types
are: BOOL, INT, DINT, UINT, BYTE, WORD, DWORD, LREAL and REAL. STRING and TIME data types are not supported

Structured Text (ST) Programming 388

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.1.3.1 Operand Types

Type casting is not supported. To convert a type, use one of the built-in conversion
functions. Use of built-in functions is described in

Structured Text (ST) Programming 389

CPU Programmer’s Reference Manual Section 8

GFK-2950G June 2020
Function Call.
For untyped operators (+, ¥, ...), the types of the operands must match.

8.1.4 Structured Text Syntax

The syntax of the ST implementation for PACSystems follows the IEC 61131-3 standard.

e Structured Text statements must end in a semi-colon (;).

e Structured Text variables must be declared in the variable list for the target.
These symbols have the following functions.

:= assigns an expression to a variable

; required to designate the end of a statement

[] used for array indexing where the array index is an integer. For example, this sets
the third element of an array to the value j+10: intarray[3]: =j+ 10;

(* *)designates acomment. These comments can span multiple lines. For example,

(*This comment spans
multiple lines.*)

/|| or * designates a single line comment. For example,
c:=a+b; [[This is a single line comment.

C:=a+b; ‘Thisis a single line comment.

Structured Text (ST) Programming 390

Section 8
June 2020

CPU Programmer’s Reference Manual
GFK-2950G

3.2 Statement Types

The Structured Text statements, which specify the actual program execution, consist of the
following types, which are described in more detail on the following pages.

Statement Type | Description Example
Assignment Sets an object to a specified value. A:=1;B:=A;C:=A+B;
CASE Provides for the conditional execution of a set of CASE A OF
statements. 1,2:C:=3;
3: C:=4;
4.5:C:=5;
ELSE
C:=0;
END_CASE;
COMMENT Places a text explanation in the program. Ignored by the ST | (* This is a block comment *)
compiler. ‘ This is a line comment
|| Thisis aline comment /|
Function call Calls a function for execution. Fbinst(IN1:=1, OUT1 =>A);
RETURN Causes the program to return from a subroutine. The return | RETURN;
statement provides an early exit from a block.
EXIT Terminates iterations before the terminal condition EXIT;
becomes TRUE (1).
IF Specifies that one or more statements be executed IF (A<B) THEN
conditionally. C:=4;
ELSIF (A =B) THEN
C:=5;
ELSE
C:=6
END_IF;
FOR...DO Executes a statement sequence repeatedly based on the FORI1:=1TO 100BY 2DO
value of a control symbol. IF (Var1 -1)=40 THEN
Key :=1;
EXIT;
END_IF;
END_FOR;
WHILE Indicates that a statement sequence be executed WHILE | <= 100 DO
repeatedly until a Boolean expression evaluates to FALSE J=]+2;
(0). END_WHILE;
REPEAT Indicates that a statement sequence be executed REPEAT
repeatedly until a Boolean expression evaluates to TRUE (1). Ji=]+2;
UNTILJ>= 100
END_REPEAT;
ARG_PRESENT Determines whether a parameter value was present when ARG_PRES (IN :=In1, Q:>OutT1,
the function block instance of the parameter was invoked. ENO:>Out2);
For example, a parameter can be optional (pass by value).
Empty
Statement

Structured Text (ST) Programming

391

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.1 Assignment Statement

The assignment statement replaces the value of a variable with the result of evaluating an
expression (of the same data type).

Notes:
° Assignment staterments can affect transition bits.
° Assignment statements take override bits into account.

8.2.1.1 Format

Variable := Expression;
Where:
Variable is a simple variable, array element, etc.
Expression is a single value, expression, or complex expression.
8.2.1.1.1 Examples
Boolean assignment statements:
VarBool1 :=1;
VarBool2 := (val <=75);
Array element assignment:

Array_1[13] := (RealA [RealB)* PI;

Structured Text (ST) Programming 392

CPU Programmer’s Reference Manual
GFK-2950G

8.2.2 Function Call

Section 8
June 2020

The structured text function call executes a predefined algorithm that performs a
mathematical, bit string or other operation. The function call consists of the name of the
function or block followed by required input or output parameters.

The structured text logic can call blocks or the PACSystems built-in functions listed in the
table below. The call must be made in a single statement and cannot be part of a nested

expression.

Calls to some functions, such as communications request (COMMREQ), require a command
block or parameter block. For these functions, an array is declared, initialized in logic, and
then passed as a parameter to the function.

8.2.2.1 Built-in Functions Supported for ST Calls

Note: Only the functions listed in the following table are supported in the current PACSystems
version. Other built-in functions are not supported.

Example: cos(IN :=inReal, Q => outReal, ENO => outBool);

Category Functions More
information
Advanced Math ASIN, ATAN, ACOS, COS, SIN, TAN Section 4
LOG, LN, EXP, EXPT,
SQRT_INT, SQRT_DINT, SQRT_REAL
Math ABS_INT, ABS_DINT, ABS_REAL Section 4

SCALE_DINT, SCALE_INT, SCALE_UINT

Communication

PNIO_DEV_COMM

PACSystems RX3i &
RSTi-EP PROFINET
I/O Controller
Manual, GFK-2571

Control

DO_IO, MASK_IO_INTR, SCAN_SET_IO,

SUS_IO, SUS_IO_INTR, SVC_REQ,
SWITCH_POS, F_TRIG, R_TRIG

Section 4

Structured Text (ST) Programming

393

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

Category Functions More
information

Data Conversion BCD4_TO_INT, BCD4_TO_UINT, Section 4
BCD4_TO_REAL

BCD8_TO_DINT, BCD8_TO_REAL
DINT_TO_BCDS8, DINT_TO_DWORD,
DINT_TO_INT, DINT_TO_UINT,
DINT_TO_REAL, DINT_TO_LREAL
DWORD_TO_DINT

INT_TO_BCD4, INT_TO_DINT,
INT_TO_UINT, INT_TO_REAL,
INT_TO_WORD

UINT_TO_BCD4, UINT_TO_BCDS,
UINT_TO_INT, UINT_TO_DINT,
UINT_TO_REAL, UINT_TO_WORD

REAL_TO_INT, REAL_TO_UINT,
REAL_TO_DINT, REAL_TO_LREAL

LREAL_TO_DINT, LREAL_TO_REAL
TRUNC_INT, TRUNC_DINT
DEG_TO_RAD, RAD_TO_DEG
WORD_TO_INT, WORD_TO_UINT
Data Move ARRAY_SIZE, ARRAY_SIZE_DIMT, Section 4

ARRAY_SIZE_DIM2, COMMREQ,
MOVE_DATA_EX, SIZE_OF

PACMotion The RX3i CPUs support 56 PLCopen PACMotion Multi-
compliant motion functions and function | Axis Motion
blocks. Controller User’s

Manual, GFK-2448

8.2.2.2 Calls to Standard Function Blocks

Standard function blocks are instructions that have instance data in the form of a structure
variable. (For more information on function blocks and their instance data, refer to
Functions and Function Blocks in Section 2.) Standard function blocks are called in the same
way that a UDFB is called.

PACSystems controllers support three standard function blocks:

Pulse timer (TP) Generates output pulses of a given Refer to Timer Pulse in
duration Section 4

On-delay timer (TON) Delays setting an output ON for a fixed | Refer to On Delay Timerin
period after an input is set ON. Section 4

Off-delay timer (TOF) Delays setting an output OFF for a Refer to Off Delay Timer in
fixed period after an input goes OFF so | Section 4

that the output is held on for a given
period longer than the input.

Structured Text (ST) Programming 394

CPU Programmer’s Reference Manual Section 8

GFK-2950G June 2020
8.2.2.2.1 Format of Calls to Standard Timer Function Blocks
Notes:
° TOF, TON and TP have the same input and output parameters, except for the instance
variable, which must be the same type as the instruction.
° Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or Tl may cause
erratic operation of the timer function block.
° Instance data can be a variable or a parameter of the current UDFB or parameterized block.
8.2.2.2.2 Formal Convention

myTOF_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool,
ENO => outBoolSuccess);

myTON_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool,
ENO => outBoolSuccess);

myTP_Instance_Data(IN :=inBool, PT:=inDINT, ET =>outDINT, Q =>outBool, ENO
=> outBoolSuccess);

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses the
formal convention, the state of outBoolSuccess is set to 1 (call was successful) or 0 (call
failed).

8.2.2.2.3 Informal Convention
myTOF_Instance_Data(inBool, inDINT, outDINT, outBool);
myTON_Instance_Data(inBool, inDINT, outDINT, outBool);
myTP_Instance_Data(inBool, inDINT, outDINT, outBool);

Note: When using the informal convention, the operands must be assigned in the order shown above (that
is, IN, PT, ET, Q and ENO).

Structured Text (ST) Programming 395

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.2.3 Block Types Supported for ST Calls

An ST block can call blocks of type Block, Parameterized Block, or user defined Function
Block (UDFB) or External Block (C block). For more information on block types, refer to
Section 2.

8.2.2.4 Formal Calls vs. Informal Calls

PACSystems supports formal and informal calls in ST.

Formal Calls Informal Calls
Input parameter assignments use the :=’ Input and output parameters are listed in
notation while output assignments use the parentheses.
‘=>’ notation.
Optional parameters can be omitted. Parameters cannot be omitted.
Parameters can be in any order. Parameters must be in the correct order as

follows:

Inputs

Instance location (if required)
Length parameter (if required)
Outputs, starting with the last output

parameter.
The ENO parameter is specified in a formal The ENO parameter is not specified in an informal
function or block call. function or block call.

All built-in functions and user-defined blocks
have an optional ENO output parameter
indicating the success of the function or
block. Either ENO or YO can be used as this
output parameter name.

8.2.2.4.1 Format of Formal Function Call

FunctionName(IN1 :=inparam1, IN2 :=inparam2, OUT1 => outparam1, ENO => enoparam);

8.2.2.4.2 Format of Informal Function Call

FunctionName(inparam1, inparam2, outparam1);

8.2.24.3 Example

This code fragment shows the TAN function call.

TAN(AnyReal, Result);

Structured Text (ST) Programming 396

CPU Programmer’s Reference Manual Section 8

GFK-2950G

8.2.3

8.2.4

8.2.4.1

June 2020

RETURN Statement

The return statement provides an early exit from a block. For example, in the following lines
of code the third line will never execute. The variable a will have the value 4.

a:=4;
RETURN;
a:=5;

IF Statement

The IF construct offers conditional execution of a statement list. The condition is
determined by result of a Boolean expression. The IF construct includes two optional parts,
ELSE and ELSIF, that provide conditional execution of alternate statement list(s). One ELSE
and any number of ELSIF sections are allowed per IF construct.

Format

IF BooleanExpression1 THEN
StatementList1;

[ELSIF BooleanExpression2 THEN (*Optional*)
StatementList2;]

[ELSE (*Optional™*)
StatementList3;]

END_IF;

Where:
BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of structured text statements.

Note: Either ELSIF or ELSEIF can be used for the else if clause in an IF statement.

Structured Text (ST) Programming 397

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.4.2 Operation

The following sequence of evaluation occurs if both optional parts are present:

o If BooleanExpression1 is TRUE (1), StatementList1 is executed. Program execution
continues with the statement following the END_IF keyword.

o If BooleanExpression1 is FALSE (0) and BooleanExpression2 is TRUE (1), StatmentList2 is
executed. Program execution continues with the statement following the END_IF
keyword.

e Ifboth Boolean expressions are FALSE (0), StatmentList3 is executed. Program execution
continues with the statement following the END_IF keyword.

If an optional partis not present, program execution continues with the statement following
the END_IF keyword.

8.2.4.2.1 Example

The following code fragment puts text into the variable Status, depending on the value of
I/O point input value.

IF Input01<10.0 THEN

Status := Low_Limit_Warning;
ELSIF Input02 >90.0 THEN

Status := Upper_Limit_Warning;
ELSE

Status := Limits_OK;
END_IF;

Structured Text (ST) Programming 398

CPU Programmer’s Reference Manual
GFK-2950G

Section 8
June 2020

8.2.5

8.2.5.1

CASE Statement

The CASE ... OF construct offers conditional execution of statement lists. It uses the value
of an ST integer expression to determine whether to execute a statement list. The
statement list to be executed can be selected from multiple statement lists, depending on
the value of the associated integer expression.

Conditions can be expressed as a single value, a list of values, or arange of values. The single-
value, list of values, or range forms can be used by themselves or in combination. The
optional ELSE keyword can be used to execute a statement list when the associated value
does not meet any of the specified conditions.

You can have a maximum of 1024 cases in a single CASE ... OF construct. Additional cases
can be handled by adding the ELSE keyword to the construct and specifying a nested CASE
... OF construct or an IF ... THEN construct after the ELSE.

The number of nested CASE ... OF constructs and the number of levels are limited by the
memory in your computer.

The number of constants and constant ranges in a single conditional statement is limited by
the memory in your computer.

Format
CASE Integer_Expression OF
Int1: (*Single Value™)
StatementList_1;
Int2,Int3,Int4: (*List of Values*)
StatementList_2;
Int5..Int6: (*Range of Values*)
StatementList_3;
[ELSE (*Optional™*)
StatementList_Else;]
END_CASE;
Where:
Integer_Expression An ST expression that resolves to an integer (INT, DINT or UINT)
value.
Int A constant integer value.
StatementList_1 ... Structured Text statements.
StatementList_n

Structured Text (ST) Programming 399

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.5.2 Operation

The Int values are compared to Integer_Expression. The statement list following the first Int
value that matches Integer_Expression is executed. If the optional ELSE keyword is used and
no Int value matches Integer_Expression, the statement list following ELSE is executed.
Otherwise, no statement list is executed.

8.2.5.3 Requirements for Conditional Statements

o All constants must be of type INT, DINT or UINT.

e Inrange declarations, the beginning value must be less than the ending value (reading
from left to right). For example, 10..3 and 5..5 are invalid.

¢ Overlapping values in different case conditions are not allowed. For example, 5..10 and
7 cannot be specified as conditions in the same CASE ... OF construct.

8.2.5.3.1 Examples

The following code fragment assigns a value to the variable ColorVariable.

CASE ColorSelection OF
0: ColorVariable:= Red;
1: ColorVariable:= Yellow;

2,3,4: ColorVariable:= Green;

5..9: ColorVariable:=Blue;
ELSE ColorVariable:= Violet;
END_CASE;

The following code fragment uses a nested CASE...OF...END_CASE construct.

CASE ColorSelection OF
0: ColorVariable:= Red;
1: ColorVariable:= Yellow;

2,3,4: ColorVariable:= Green;
5..9: ColorVariable:=Blue;
ELSE
CASE ColorSelection OF
10: ColorVariable:= Violet;
ELSE ColorVariable:= Black;
END_CASE;
ColorError: 1;
END_CASE;

Structured Text (ST) Programming 400

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.6 FOR... DO Statements

The FOR loop repeatedly executes a statement list contained within the
FOR...DO...END_FOR construct. It is useful when the number of iterations can be predicted
in advance, for example to initialize an array. The number of iterations is determined by the
value of a control variable which is incremented (or decremented) from an initial value to a
final value by the FOR statement.

By default, each iteration of the FOR statement changes the value of the control variable by
1. The optional BY keyword can be used to specify an increment or decrement of the control
variable by specifying a (non-zero) positive or negative integer or an expression that resolves
to an integer.

FOR loops can be nested to a maximum of ten levels.

8.2.6.1 Format

FOR Control_Variable := Start_Value TO End_Value [BY Step_Value] DO
Statement list;
END_FOR;

Where:

Control_Variable The control variable. Can be an INT, DINT or UINT variable or parameter.

Start_Value The starting value of the control variable. Must be an expression, variable, or
constant of the same data type as Int_Variable.

End_Value The ending value of the control variable. Must be an expression, variable, or
constant of the same data type as Int_Variable.

Step_Value (Optional) The increment or decrement value for each iteration of the loop.
Must be an expression, variable, or constant of the same data type as
Int_Variable. If Step_Value is not specified, the control variable is
incremented by 1.

Statement list Any list of Structured Text statements.

8.2.6.2 Operation

The values of Start_Value, End_Value and Step_Value are calculated at the beginning of the
FOR loop. On the first iteration, Control_Variable is set to Start_Value.

At the beginning of each iteration, the termination condition is tested. If it is satisfied,
execution of the loop is complete and the statements after the loop will proceed. If the
termination condition is not satisfied, the statements within the FOR...END_FOR construct
are executed. At the end of each iteration, the value of Control_Variable is incremented by
Step_Value (or 1 if Step_Value is not specified).

Structured Text (ST) Programming 401

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

The termination condition of a FOR loop depends on the sign of the step value.

Step Value | Termination Condition

>0 Control_Variable > End_Value

<0 Control Variable < End Value

0 None. A termination condition is never reached and the loop will repeat infinitely.

As with the other iterative statements (WHILE and REPEAT), loop execution can be
prematurely halted by an EXIT statement.

To avoid infinitely repeating or unpredictable loops, the following precautions are
recommended:

¢ Do not allow the statement list logic within the FOR loop to modify the control variable.

e Do not use the control variable in logic outside the FOR loop.
8.2.6.2.1 Examples

The following code fragment initializes an array of 100 elements starting at %R1000 (given
that R1000 is at %R1000) by assigning a value of 10 to all array elements.

FORR1000:=1TO 100 DO
@R1000 :=10;
END_FOR;

The following code fragment assigns the values of an 1/O point to array elements over ten
I/O scans. The last entry is put in the array element with the smallest index.

FORR1000:=10TO1BY-1DO
@R1000 :=Input01;
END_FOR;

Structured Text (ST) Programming 402

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.7 WHILE Statement

The WHILE loop repeatedly executes (iterates) a statement list contained within the
WHILE...END_WHILE construct as long as a specified condition is TRUE (1). It checks the
condition first, then conditionally executes the statement list. This looping construct is
useful when the statement list does not necessarily need to be executed.

8.2.7.1 Format

WHILE <BooleanExpression> DO
<StatementList>;
END_WHILE;

Where:
BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Structured Text (ST) Programming 403

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.7.2 Operation

If BooleanExpression is FALSE (0), the loop is immediately exited; otherwise, if the
BooleanExpression is TRUE (1), the StatementList is executed and the loop repeated. The
statement list may never execute, since the Boolean expression is evaluated at the
beginning of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire. Avoid
infinite loops.

8.2.7.2.1 Example

The following code fragment increments | by a value of 2 if | is less than or equal to 100.

WHILE] <= 100 DO
J=]+2
END_WHILE;

Structured Text (ST) Programming 404

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.8 REPEAT Statement

The REPEAT loop repeatedly executes (iterates) a statement list contained within the
REPEAT...END_REPEAT construct until an exit condition is satisfied. It executes the
statement list first, then checks for the exit condition. This looping construct is useful when
the statement list needs to be executed at least once.

8.2.8.1 Format

REPEAT
StatementList;
UNTIL BooleanExpression END_REPEAT;

Where:
BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

8.2.8.2 Operation

The Statementlist is executed. If the BooleanExpression is FALSE (0), then the loop is
repeated; otherwise, if the BooleanExpression is TRUE (1), the loop is exited. The statement
list executes at least once, since the BooleanExpression is evaluated at the end of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire. Avoid
infinite loops.

8.2.8.2.1 Example

The following code fragment reads values from an array until a value greater than 5 is found
(orthe upper bound of the array is reached). Since at least one array value must be read, the
REPEAT loop is used. All variables in this example are of type DINT, UINT, or INT.

Index :=1;

REPEAT
Value:= @Index;
Index:=Index+1;
UNTIL Value >5 OR Index >=UpperBound END_REPEAT;

Structured Text (ST) Programming 405

CPU Programmer’s Reference Manual Section 8

GFK-2950G

8.2.9

8.2.9.1

8.2.9.1.1

June 2020

ARG_PRES Statement

The ARG_PRES function determines whether an input parameter value was present when
the function block instance of the parameter was invoked. This may be necessary if the
parameter is optional (pass by value).

This function must be called from a function block instance or a parameterized block.
Format

ARG_PRES (IN :=In1, Q:>Out1, ENO:>Out2);

Where:

In1 Must be an input parameter of the function block that contains the ARG_PRES
instruction. Cannot be an array element or structure element. An alias to a
parameter should resolve only to the parameter name.

Can be a BOOL, DINT, DWORD, INT, REAL, UINT, WORD variable, variable array
head name or variable array head name element [000]. Input or output
parameter value of a function block instance or a parameterized block

Out2 ABOOL variable. True if the parameter is present, otherwise false.

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses the
formal convention, the state of Out2 is set to 1 (call was successful) or 0 (call failed).

Example

The parameter TempVal is an input to the function block CheckTemp. In the following code
fragment, ARG_PRES is used to determine whether a value existed for the parameter
TempVal when an instance of CheckTemp was invoked. If TempVal had a value, the BOOL
output Temp_Presissetto 1.

ARG_PRES (TempVal, Temp_Pres);

Structured Text (ST) Programming 406

CPU Programmer’s Reference Manual Section 8
GFK-2950G June 2020

8.2.10 Exit Statement

The EXIT statement is used to terminate and exit from a loop (FOR, WHILE, REPEAT) before
it would otherwise terminate. Program execution resumes with the statement following the
loop terminator (END_FOR, END_WHILE, END_REPEAT). An EXIT statement is typically used
within an IF statement.

8.2.10.1 Format

EXIT;
Where:
ConditionForExiting An expression that determines whether to terminate early.
8.2.10.1.1 Example

The following code fragment shows the operation of the EXIT statement. When the variable
number equals 10, the WHILE loop is exited and execution continues with the statement
immediately following END_WHILE.

while (1) do
a:=a+1;
IF (@a=10) THEN
EXIT;
END_IF;
END_WHILE;

Structured Text (ST) Programming 407

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

Section9 Diagnostics

This chapter explains the PACSystems fault handling system, provides definitions of fault
extra data, and suggests corrective actions for faults.

Faults occur in the control system when certain failures or conditions happen that affect the
operation and performance of the system. Some conditions, such as the loss of an 1/O
module or rack, may impair the ability of the PACSystems controller to control a machine or
process. Other conditions, such as when a new module comes online and becomes available
for use, may be displayed to inform or alert the user.

Any detected fault is recorded in the Controller Fault Table or the I/O Fault Table, as
applicable.

Information in this chapter is organized as follows:

Diagnostics 408

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

e Fault Handling Overview

Diagnostics 409

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

e Using the Fault Tables
e System Handling of Faults

Diagnostics 410

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

e Controller Fault Descriptions and Corrective Actions
e |/O Fault Descriptions and Corrective Actions

Diagnostics 411

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

e Diagnostic Logic Blocks (DLBs)

Diagnostics 412

CPU Programmer’s Reference Manual Section 9

GFK-2950G June 2020
9.1 Fault Handling Overview
The PACSystems CPU detects three classes of faults:
Fault Class Examples
Internal Failures (Hardware) Non-responding modules

Failed battery

Failed Energy Pack (CPE302/CPE305/CPE310/CPE330
models)

Memory checksum errors

External /O Failures (Hardware) Loss of rack or module
Addition of rack or module
Loss of Genius I/O block

Operational Failures Communication failures
Configuration failures
Password access failures

9.1.1 System Response to Faults

Hardware failures require that either the system be shut down or the failure be tolerated.
I/O failures may be tolerated by the control system, but they may be intolerable by the
application or the process being controlled. Operational failures are normally tolerated.

Faults have three attributes:

Fault Table Affected 1/O Fault Table
Controller Fault Table
Fault Action Fatal
Diagnostic

Informational

Configurability Configurable
Non-configurable

9.1.2 Fault Tables

The PACSystems CPU maintains two fault tables, the Controller Fault Table for internal CPU
faults and the 1/O Fault Table for faults generated by 1/O devices (including I/O controllers).
For more information, refer to

Diagnostics 413

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

Using the Fault Tables below.

Diagnostics 414

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.1.3 Fault Actions and Fault Action Configuration

Fatal faults cause the fault to be recorded in the appropriate table, diagnostic variables to
be set, and the system to be stopped. Only fatal faults cause the system to stop.

Diagnostic faults are recorded in the appropriate table, and any diagnostic variables are set.
Informational faults are only recorded in the appropriate table.

Fault Action |Response by CPU

Fatal Log fault in fault table.
Set fault references.
Go to STOP/Fault Mode.
Diagnostic Log faultin fault table.

Set fault references.

Informational Log faultin fault table.

The hardware configuration can be used to specify the fault action of some fault groups. For
these groups, the fault action can be configured as either fatal or diagnostic. When a fatal
or diagnostic fault within a configurable group occurs, the CPU executes the configured
fault action instead of the action specified within the fault.

Note: The fault action displayed in the expanded fault details indicates the fault action specified
by the fault that was logged, but not necessarily the executed fault action. To determine
what action was executed for a particular fault in a configurable fault group, you must refer
to the hardware configuration settings.

9.1.3.1 Faults that are part of configurable fault groups:

Fault Action Displayed

Informational Diagnostic Fatal
in Fault Table : 'ag :

Diagnostic or Fatal.))
Diagnostic or Fatal.
Determined by . .

Determined by action

Fault Action Executed Informational action selected in)
selected in Hardware
Hardware Confiquration
Configuration. onfiguration.
9.1.3.2 Faults that are part of non-configurable fault groups:
Fault Action Displayed in Fault Table Informational Diagnostic Fatal
Fault Action Executed Informational Diagnostic Fatal

Diagnostics 415

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.2 Using the Fault Tables

To display the fault tables in Logic Developer software,

1. Go online with the PACSystems.

2. Select the Project tab in the Navigator, right click the Target node and choose
Diagnostics. The Fault Table Viewer appears.

The Controller Fault Table and the 1/O Fault Table display the following information:

Controller Time/Date The current date and time of the CPU.

Last Cleared The date and time faults were last cleared from the fault table. This
information is maintained by the PACSystems controller.

Status Displays Updating while the programmer is reading the fault table.
Status is Online when update is complete.
Total Faults The total number of faults since the table was last cleared.
Entries Overflowed The number of entries lost because the fault table has overflowed since it

was cleared. Each fault table can contain up to 64 faults.

9.2.1 Controller Fault Table

The Controller Fault Table displays CPU faults such as password violations, configuration
mismatches, parity errors, and communications errors.

Figure 261 Controller Fault Table Display

Controller Qi=01- .
[Choosa FaultTable| | Date/Time: 2000 00:01:51 Fault Table | status
& controllar Last Cleared: 2000 ctcéécc:‘.:. Viewer &
Cyo - - . T
Controller Fault Table (Displaying 2 of 2 faults, 0 Overflowed)
AT A0E 0 ’ L.nc1 Fault Description Date/Time
[rack.slot)
Fault Extra Data | 0.4 LAN transceiver fault; OFF netwark until fixed 01-01-2000 O0:00:04
Format ol =
I Failed battery signal 2
® E te
ASCIL | |
Sort Order

'ﬂcii sription

C Date/Time

Location ‘

&y ione

C asc | # pesc

Clear Controller Fault

Table
[| =l
The Controller Fault Table provides the following information for each fault:
Location Identifies the location of the fault by rack.slot.
Description Corresponds to a fault group, which is identified in the fault Details.
Date/Time The date and time the fault occurred based on the CPU clock.
Details To view detailed information, click the fault entry. Refer to Viewing

Controller Fault Details for more information.

Diagnostics 416

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.2.1.1 Viewing Controller Fault Details

Note: The fault action displayed in the expanded fault details indicates the fault action specified by the
fault that was logged, but not necessarily the executed fault action. To determine what action
was executed for a particular fault in a configurable fault group, you must refer to the hardware
configuration settings.

To see controller fault details, click the fault entry. The detailed information box for the fault
appears. (To close this box, click the fault.)

Figure 262: Detail Information for Controller Fault Entry

0.1 |Failed battery signal Jo1-02-2000 19:06:59
| Error Code Group Action | Task Num
0 18 2:Diagnostic]
Fault Extra Data: 02 00

The detailed information for controller faults includes the following:

Error Code Further identifies the fault. Each fault group has its own set of error
codes.
Group Group is the highest classification of a fault and identifies the general

category of the fault. The fault description text displayed by your
programming software is based on the fault group and the error codes.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer
to
Fault Actions and Fault Action Configuration.

Task Number Not used for most faults. When used, provides additional information
for Technical Support representatives.

Fault Extra Data Provides additional information for diagnostics by Technical Support
engineers. Explanations of this information are provided as appropriate
for specific faults in
Controller Fault Descriptions and Corrective Actions below.

9.2.1.2 User-Defined Faults

User-defined faults can be logged in the Controller Fault Table. When a user-defined fault
occurs, it is displayed in the appropriate fault table as Application Msg (error_code): and
may be followed by a descriptive message up to 24 characters. The user can define all
characters in the descriptive message. Although the message must end with the null
character, e.g., zero (0), the null character does not count as one of the 24 characters. If the
message contains more than 24 characters, only the first 24 characters are displayed.

Certain user-defined faults can be used to set a system status reference (%SA0081-
%SA0112).

User-defined faults are created using SVC_REQ 21: User-Defined Fault Logging which is
described in Section 6.

Note: When a user-defined fault is displayed in the Controller Fault table, a value of -32768
(8000 hex) is added to the error code. For example, the error code 5 will be displayed as -
32763.

Diagnostics 417

CPU Programmer’s Reference Manual Section 9

GFK-2950G

9.2.2

Diagnostics

June 2020

|/O Fault Table

The 1/O Fault Table displays I/O faults such as circuit faults, address conflicts, forced circuits,
I/O module addition/loss faults and I/O bus faults.

The fault table displays a maximum of 64 faults. When the fault table is full, it displays the
earliest 32 faults (33—64) and the last 32 faults (1—32). When another fault is received, fault
32isshoved out of the table. In this way, the first 32 faults are preserved for the user to view.

Figure 263 /O Fault Table Display

PLC Date/Time: 09-22-2005 12:41:56 . Status
Choose Fault Table LastCleared: 09-13-2005 12:06:57 Fault Table Viewer [Online
Cpc @ o . N N
[ec Pro | I/0 Fault Table (Displaying 27 of 27 faults, 0 Overflowed)
Print Fault Tables CIRC | Yariable Ref. Fault -
Lt No. Name Address Category Fault Type Date/Time
Fault Extra Data 0.3 n/a Loss of I/0 09-22-2005 03:27:38
Format Module
o C :
Byte O word 0.5 na |sin Lo 09-22-2005 03:27:38
C ascnn Y
| SortOrder 0.6 nfa |int Loss of 1/O 09-22-2005 03:27:38
Module
« Location U
Loss of [/O
€ Description 0.3 n/a Module 09-22-2005 03:24:51
 Date/Time
. Loss of /O e D
& Home 0.5 nfa |ail Module 09-22-2005 03:24:51
C asc | @ pesc 0.6 nfa |int Loss of 1/O 09-22-2005 03:24:51
Module

The 1/O Fault Table provides the following information for each fault:

Location Identifies the location of the fault by rack.slot location, and sometimes bus and
buss address.

CIRC No. When applicable, identifies the specific /O point on the module.

Variable Name If the fault is on a point that is mapped to an /O variable, and the variable is set

to publish (either internal or external), the I/O Fault Table displays the variable
name. Unpublished I/O variables will not be displayed in this field.

Ref. Address If the faultis on a point thatis mapped to a reference address, this field identifies
the I/O memory type and location (offset) that corresponds to the point
experiencing the fault. When a Genius device fault or local analog module fault
occurs, the reference address refers to the first point on the block where the
fault occurred.

Note: The Reference Address field displays 16 bits and %W memory has a
32-bit range. Addresses in %W are displayed correctly for offsets in the
16-bit range (<65,535). For %W offsets greater than 16 bits, the I/O
Fault Table displays a blank reference address.

Fault Category Specifies a general classification of the fault.

Fault Type Consists of subcategories under certain fault categories. Set to zero when not
applicable to the category.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. Refer to

Viewing 1/O Fault Details

for more information.

418

CPU Programmer’s Reference Manual

GFK-2950G

9.2.2.1

Diagnostics

Viewing I/O Fault Details

To see /O fault details, click the fault entry. The detailed information box for the fault
appears. (To close this box, click the fault.)

Figure 264 : 1/O Fault Table Fault Entry Detail Display

& Circuit Analog e .02
0.3 1 AQ 00001 Fault Fault 01-01-2000 00:02:27
= Bus Point | ! ‘ Fault
‘ I/0 Bus addrece | Addrecs | Group ‘ Action ‘ Category Type
| nfa nfa [1 [10 [2:Diagnostic | 1 =
‘ Fault Extra | 00
Data 00
Fault >
Description Input Open Wire

The detailed information for I/O faults includes:

/0 Bus

Bus Address
Point Address

Group

Action

Category
Fault Type

Fault Extra Data

Fault Description

When the module in the slot is a Genius Bus Controller (GBC), this number is
always one.

The serial bus address of the Genius device that reported or has the fault.
Identifies the point on the I/O device that has the fault when the fault is a
point-type fault.

Fault group is the highest classification of a fault. It identifies the general
category of the fault.

Fatal, Diagnostic, or Informational. For definitions of these actions, refer to
Fault Actions and Fault Action Configuration.

Identifies the category of the fault.

Identifies the fault type by number. Set to zero when not applicable to the
category.

Provides additional information for diagnostics by Technical Support
engineers. Explanations of this information are provided as appropriate for
specific faults in 1/O Fault Descriptions and Corrective Actions.

Provides a specific fault code when the I/O fault category is a circuit fault
(discrete circuit fault, analog circuit fault, low-level analog fault) or module
fault. It is set to zero for other fault categories.

419

Section 9
June 2020

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.3 System Handling of Faults

The system fault references listed below can be used to identify the specific type of fault that
has occurred. (A complete list of System Status References is provided in Section 3.)

System Fault | Address Description

Reference

#ANY_FLT %SC0009 Any new fault in either table since the last power-up or
clearing of the fault tables

#SY_FLT %SC0010 Any new system fault in the Controller Fault Table since
the last power-up or clearing of the fault tables

#IO_FLT %SC0011 Any new fault in the I/O Fault Table since the last power-
up or clearing of the fault tables

#SY_PRES %SC0012 Indicates that there is at least one entry in the Controller
Fault Table

#lO_PRES %SC0013 Indicates that there is at least one entry in the 1/O Fault
Table

#HRD_FLT %SC0014 Any hardware fault

#SFT_FLT %SC0015 Any software fault

On power-up, the system fault references are cleared. If a fault occurs, the positive contact
transition of any affected reference is turned on the sweep after the fault occurs. The system
fault references remain on until both fault tables are cleared, or All Memory in the CPU is
cleared.

Diagnostics 420

Section 9
June 2020

CPU Programmer’s Reference Manual
GFK-2950G

9.3.1 System Fault References

When a system fault reference is set, additional fault references are also set. These other
types of faults are listed in Fault References for Configurable Faults below and Fault

References for Non-Configurable Faults in the section which follows.

9.3.1.1 Fault References for Configurable Faults
Fault
(Default Address Description May Also Be Set
Action)
#SBUS_ER %SA0032 System bus error. All system | #HRD_FLT, #SY_PRES, #SY_FLT
(diagnostic) bus error faults are logged as
informational.
#SFT_lOC'3 %SA0029 Non-recoverable software | #|O_FLT, #I0O_PRES, #SFT_FLT
(diagnostic) error in an 1/O Controller
(10C).

#LOS_RCK™ %SA0012 Loss of rack (BRM failure, loss | #SY_FLT, #SY_PRES,
(diagnostic) of power) or missing a|#lO_FLT, #|O_PRES
configured rack.

#LOS_lOC™ %SA0013 Loss of 1/O Controller or|#IO_FLT, #I0_PRES

(diagnostic) missing a configured Bus

Controller.
#LOS_IOM %SA0014 Loss of 1/0 module (does not | #|0O_FLT, #I0_PRES
(diagnostic) respond), or missing a

configured 1/O module.
#LOS_SIO %SA0015 Loss of intelligent module | #SY_FLT, #SY_PRES
(diagnostic) (does not respond), or

missing a configured module.
#IOC_FLT %SA0022 Non-fatal bus or 1/O|#IO_FLT, #I0_PRES
(diagnostic) Controller error, more than

10 bus errors in 10 seconds.

(Error rate is configurable.)
#CFG_MM %SA0009 Configuration mismatch. | #SY_FLT, #SY_PRES
(fatal) Wrong module type

detected. The CPU does not

check the configuration

parameter settings for

individual modules such as

Genius 1/O blocks.
#OVR_TMP %SA0008 CPU temperature has | #SY_FLT, #SY_PRES
(diagnostic) exceeded its normal

operating temperature.

3 The #SFT_IOC software fault will have the same action as what you set for #LOS_IOC.
“When a Loss of Rack or Addition of Rack faultis logged, individual loss or add faults for each module in that rack are usually not

generated.

5Even if the #LOS_IOC fault is configured as Fatal, the CPU will not go to STOP/FAULT unless both GBCs of an internal redundant pair fail.

Diagnostics

421

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020
Note: If the fault action for a fault logged to the fault table is informational, the configured action is
not used. For example, if the logged fault action for an SBUS_ERR is informational, but you
configure it as fatal, the action is still informational.
9.3.1.2 Fault References for Non-Configurable Faults

Diagnostics

Fault Address Description Result
#PS_FLT %SA0005 Power supply fault Sets #SY_FLT, #SY_PRES
#HRD_CPU %SA0010 CPU hardware fault (such as failed|Sets #SY_FLT, #SY_PRES,
(fatal) memory device or failed serial port). #HRD_FLT
#HRD_SIO %SA0027 Non-fatal hardware fault on any|Sets#SY_FLT, #SY_PRES,
(diagnostic) module in the system, such as failure of | #HRD_FLT

a serial port on a LAN interface module.
#PNIO_ %SA0030 A diagnostic PROFINET alarm has been | Sets #ANY_FLT, #10O_FLT,
ALARM received and an 1/O fault has been | #IO_PRES

logged in group 28.
#SFT_SIO %SA0031 Non-recoverable software error in a|Sets#SY_FLT, #SY_PRES,
(diagnostic) LAN interface module. #SFT_FLT
#PB_SUM %SA0001 Program or block checksum failure | Sets #SY_FLT, #SY_PRES
(fatal) during power-up or in RUN Mode.
#LOW_BAT %SA0011 The low battery indication is not Sets #SY_FLT, #SY_PRES
(diagnostic) supported for all CPU versions. For

details, refer to

Battery Status (Group 18).
#OV_SWP %SA0002 Constant sweep time exceeded. Sets #SY_FLT, #SY_PRES
(diagnostic)
#SY_FULL %SA0022 Controller fault table full (64 entries). | Sets #SY_FLT, #SY_PRES,
#|O_FULL I/O Fault Table full (64 entries). #IO_FLT, #10_PRES
(diagnostic)
#APL_FLT %SA0003 Application fault. Sets #SY_FLT, #SY_PRES
(diagnostic)
#ADD_RCK™ | %SA0017 New rack added, extra rack, or|Sets#SY_FLT, #SY_PRES
(diagnostic) previously faulted rack has returned.
#ADD_IOC %SA0018 Extra 10C, previously faulted 1/O |Sets#IO_FLT, #IO_PRES
(diagnostic) Controlleris no longer faulted.
#ADD_IOM %SA0019 Extra 10 module, or previously faulted | Sets #|O_FLT, #|0_PRES
(diagnostic) I/0 module is no longer faulted.
#ADD_SIO %SA0020 New intelligent module is added, or|Sets #SY_FLT, #SY_PRES
(diagnostic) previously faulted module no longer

faulted.
#IOM_FLT %SA0023 Point or channel on an 1/O module; a | Sets #IO_FLT, I#O_PRES

(diagnostic)

partial failure of the module.

422

CPU Programmer’s Reference Manual

GFK-2950G

Diagnostics

Section 9
June 2020
Fault Address Description Result
#NO_PROG %SB0009 No application program is present at | CPU will not go to RUN
(information) power-up. Should only occur the first | Mode; it continues
time the PACSystems controller is|executing STOP Mode
powered up or if the user memory | sweep until avalid program
containing the program fails. is loaded. This can be a null
program that does nothing.
Sets #SY_FLT and
#SY_PRES.
#BAD_RAM %SB0010 Corrupted program memory at power- | Sets #SY_FLT and
(fatal) up. Program could not be read and/or | #SY_PRES.
did not pass checksum tests.
#WIND_ER %SB0001 Window completion error. Servicing of | Sets #SY_FLT and
(information) Controller Communications or Logic | #SY_PRES.
Window was skipped. Occurs in
Constant Sweep mode.
#BAD_PWD %SB0011 Change of privilege level request to a | Sets #SY_FLT and
(information) protection level was denied; bad |#SY_PRES.
password.
#NUL_CFG %SB0012 No configuration present upon |Sets#SY_FLT and
(fatal) transition to RUN Mode. Running |#SY_PRES.
without a configuration is equivalent to
suspending the I/O scans.
#SFT_CPU %SB0013 CPU software fault. A non-recoverable | CPU immediately
(fatal) error has been detected in the CPU. |transitions to STOP/Halt
May be caused by Watchdog Timer | Mode. The only activity
expiring. permitted is
communication with the
programmer. To be
cleared, controller power
must be cycled. Sets
SY_FLT, SY_PRES, and
SFT_FLT.
#STOR_ER %SB0014 Download of data to CPU from the CPU will not transition to
(fatal) programmer failed; some datain CPU [RUN Mode. This fault is not

may be corrupted.

cleared at power-up,
intervention is required to
correct it. Sets SY_FLT and
SY_PRES.

423

CPU Programmer’s Reference Manual

GFK-2950G

9.3.2

9.3.2.1

9.3.2.2

Diagnostics

Using Fault Contacts

Fault (-[F]-) and no-fault (-[NF]-) contacts can be used to detect the presence of I/O faults in
the system. These contacts cannot be overridden. The following table shows the state of
fault and no-fault contacts.

Condition [F] [NF]
Fault Present ON OFF
Fault Absent OFF ON

An NF contact will be ON (F contact will be OFF) when the referenced I/O pointis not faulted,
orthe referenced I/O point does not exist in the hardware configuration.

Fault Locating References (Rack, Slot, Bus, Module)

The PACSystems CPU supports reserved fault names for each rack, slot, bus, and module.
By programming these names on the FAULT and NOFLT contact instructions, logic can be
executed in response to faults associated with configured racks and modules.

Fault Locating Reference Name Format

These fault names can only be programmed on the FAULT and NOFLT contacts. The reserved
fault names are always available. It is not necessary to enable a special option, such as point
faults.

Section 9
June 2020

Fault Reference |Reserved Comment
Type Name
Rack #RACK_000r Where risrack numberQto7.
Slot #SLOT_Orss Where risrack number0to 7 and
ssis slot number 0 to 31.
Bus #BUS_Orssb Where risrack number0to7,
(Genius only) ssis slot number0to 31, and
b is the bus number (1 or 2).
Module #M_rssbmmm Where risrack number0to7,
(Genius only) ssis slot number 0 to 31,
b is the bus number (1 or 2), and
mmm is the Bus Address number 000 to 255.

These fault names do not correspond to %SA, %SB, %SC, or to any other reference type. They
are mapped to a memory area that is not user-accessible. Only the name is displayed.

424

CPU Programmer’s Reference Manual Section 9

GFK-2950G June 2020
9.3.2.2.1 Fault Reference Name Examples:
Figure 265
#RACKE_0001 #SLOT_0105 Qoooo1

| {F} {NF}

#RACK_0001 represents rack 1.

#SLOT_0105 represents rack 1, slot 5.

#BUS_02041 represents rack 2, slot 4, bus 1.

#M_2061028 represents rack 2, slot 6, bus 1, Genius module 28.

Note: When a slot level failure fault is reported to the fault tables, all bus and module fault locating
references associated with that slot are set (the FAULT contact passes power flow, and the NOFLT
contact does not pass power flow), regardless of what type of module it is. Conversely, when a
slot level reset fault is reported to the fault tables, all bus and module fault locating references
are cleared (the FAULT contact does not pass power flow, and the NOFLT contact passes power
flow).

9.3.2.3 Behavior of Fault Locating References

At power-up, all fault locating references are cleared in the CPU. When a fault is logged, the
CPU transitions the state of the affected reference(s). The state of the fault reference
remains in the fault state until one of the following actions occurs:

o Both the Controller and the 1/O Fault Tables are cleared through your programming
software either by clearing each table individually or clearing the entire CPU memory.

e The associated device (rack, I/O module, or Genius device) is added back into the
system. Whenever an Addition of. .. faultis logged, the CPU initializes all fault references
associated with the device to the NoFlt state. These references remain in the NoFlt state
until another fault associated with the device is reported. (This could take several
seconds for distributed 1/O faults, especially if the bus controller has been reset.)

Note: These fault references are set for informational purposes only. They should not be used to qualify
I/O data. The Alarm Contacts (described in Using Alarm Contacts) may be used to qualify I/O data.
The CPU does not halt execution as a result of setting a fault locating reference to the Fault state.

The fault references have a cascading effect. If there is a problem in the module located at
rack 5, slot 6, bus 1, module 29, the following fault references are set: RACK_05,
SLOT_0506, BUS_05061, and M_5061029. There will only be one entry in the fault table to
describe the problem with the module. The fault table does not show separate entries
pertaining to the rack, slot, and bus in this case.

If an analog base module (IC697ALG230) is lost, the fault locating reference for that module
is set. The fault locating references for its expander modules (IC697ALG440 and ALG441)
are not set as a result of the loss. Therefore, any fault locating references to an expander
module should also reference the base module to verify that the module orits base have not
been lost.

Diagnostics 425

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.3.3 Using Point Faults

Point faults pertain to external 1/O faults, although they are also set due to the failure of
associated higher-level internal hardware (for example, 10C failure or loss of a rack). To use
point faults, they must be enabled in Hardware Configuration on the Memory parameters
tab of the CPU.

When enabled, a bit for each discrete 1/O point and a byte for each analog I/O channel are
allocated in CPU memory. The CPU memory used for point faults is included in the total
reference table memory size. The FAULT and NOFLT contacts, described in Using Alarm
Contacts, provide access to the point faults.

The full support of point fault contacts depends on the capability of the I/O module. Some
Series 90-30 modules do not support point fault contacts. The point fault contacts for these
modules remain all off, unless a Loss of I/O Module occurs, in which case the RX3i CPU turns
on all point fault contacts associated with the lost module.

9.3.4 Using Alarm Contacts

High (-[HA]-) and low (-[LA]-) alarm contacts are used to represent the state of the analog
input module comparator function. To use alarm contacts, point faults must first be enabled
in Hardware Configuration on the Memory parameters tab of the CPU.

The following example logic uses both high and low alarm contacts.

Figure 266
| AT0001 AI0002 a

| B A} LA}

Note: HA and LA contacts do not create an entry in a fault table.

Diagnostics 426

CPU Programmer’s Reference Manual

GFK-2950G

9.4

9.4.1

Section 9
June 2020

Controller Fault Descriptions and Corrective
Actions

Each fault explanation contains a fault description and instructions to correct the fault. Many
fault descriptions have multiple causes. In these cases, the error code and additional fault

information are used to distinguish among fault conditions sharing the same fault

description.

Controller Fault Groups

Group Name Default Fault |Configurable
Action’®
1 Loss of or Missing Rack Diagnostic Yes
4 Loss of or Missing Option Module Diagnostic Yes
5 Addition of, or Extra Rack N/A No
8 Reset of, Addition of, or Extra Option Module |N/A No
11 System Configuration Mismatch Fatal™ Yes
12 System Bus Error Fatal Yes
13 CPU Hardware Failure N/A No
14 Module Hardware Failure N/A No
16 Option Module Software Failure N/A No
17 Program or Block Checksum Failure Group N/A No
18 Battery Status Group N/A No
19 Constant Sweep Time Exceeded N/A No
20 System Fault Table Full N/A No
21 I/O Fault Table Full N/A No
22 User Application Fault N/A No
24 CPU Over Temperature Diagnostic Yes
128 System Bus Failure N/A No
129 No User Program on Power-up N/A No
130 Corrupted User Program on Power-up N/A No
131 Window Completion Failure N/A No
132 Password Access Failure N/A No
134 Null System Configuration for RUN Mode N/A No
135 CPU System Software Failure N/A No
137 Communications Failure During Store N/A No
140 Non-critical CPU Software Event N/A No

18The fault action indicated is not applicable if the fault is displayed as informational. Faults displayed as informational, always behave as

informational.

'7f a system configuration mismatch occurs when the CPU is in RUN Mode, the fault action will be Diagnostic regardless of the fault
configuration. For additional information, refer to Fault Parameters in PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-

2222.
Diagnostics

427

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.2 Loss of or Missing Rack (Group 1)

The fault group Loss of or Missing Rack occurs when the system cannot communicate with
an expansion rack because the BTM (Bus Transmitter Module) in the main rack failed, the
BRM (Bus Receiver Module) in the expansion rack failed, power failed in the expansion rack,
or the expansion rack was configured in the configuration file but did not respond during
power-up.

Default action: Diagnostic. Configurable.
9.4.2.1 1, Rack Lost

The CPU generates this error when the main rack can no longer communicate with an
expansion rack. The error is generated for each expansion rack that exists in the system.

9.4.2.1.1 Correction

1. Power off the system. Verify that both the BTM and the BRM are seated properly in
their respective racks and that all cables are properly connected and seated.

2. Replace the cables.
3. Replace the BRM.
4. Replace the BTM.

9.4.2.2 2, Rack Not Responding

The CPU generates this error when the configuration file stored from the programmer
indicates that a particular expansion rack should be in the system, but none responds
for that rack number.

9.4.2.2.1 Correction

1. Check rack number jumper behind power supply—first on missing rack and then
on all other racks—for duplicated rack numbers.

2. Update the configuration file if a rack should not be present.

3. Addthe rack to the hardware configuration if a rack should be present and one is
not.

4. Power off the system. Verify that both the BTM and the BRM are seated properly in
their respective racks and that all cables are properly connected and seated.

Replace the cables.
Replace the BRM.
Replace the BTM.

© N o v

Check for Termination Plug on last BRM.

Diagnostics 428

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.3 Loss of or Missing Option Module (Group 4)

The fault group Loss of or Missing Option Module occurs when a LAN interface module, BTM,
or BRM fails to respond. The failure may occur at power-up or store of configuration if the
module is missing or during operation if the module fails to respond. This may also occur
due to hot removal of an option module.

Default action: Diagnostic. Configurable

9.4.3.1 3C hex|60 decimal, Module in Firmware Update Mode

The CPU generates this error when it finds a module in Firmware Update mode. Modules in
this mode will not communicate with the CPU.

9.4.3.1.1 Correction
1. Runthe firmware update utility for the module.
2. Reset the module with the push-button.
3. Power-cycle the entire system.

4. Power-cycle the rack containing the module.

9.4.3.2 63 hex[99 decimal, Module Hot Removed

The CPU logs this fault when it detects hot removal of an option module such as the LAN
interface module. No correction necessary.

9.4.3.3 All Others, Module Failure During Configuration

The CPU generates this error when a module fails during power-up or configuration store.

9.4.3.3.1 Correction

1. Power off the system. Replace the module located in that rack and slot.

2. Ifthe board is located in an expansion rack, verify BTM/BRM cable connections are
tight and the modules are seated properly; verify the addressing of the expansion
rack.

Replace the BTM.
4, Replace the BRM.

5. Replace the rack.

Diagnostics 429

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.4 Addition of, or Extra Rack (Group 5)

This fault group occurs when a configured expansion rack with which the CPU could not
communicate comes online or is powered on, or an unconfigured rack is found.

Action: Non-configurable.

9.4.4.1 1, Extra Rack

9.4.4.1.1 Correction

1. Checkrack jumper behind power supply for correct setting.

2. Update the configuration file to include the expansion rack.

Note: No correction necessary if rack was just powered on.

9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)

The fault group Reset of, Addition of, or Extra Option Module occurs when an option module
(LAN interface module, BTM, etc.) comes online, is reset, is hot inserted or a module is found

in the rack but is not configured.

Action: Non-configurable.

9.4.5.1 3, LAN Interface Restart Complete, Running Utility

The LAN Interface module has restarted and is running a utility program.

9.4.5.1.1 Correction
Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533).

9.4.5.2 7, Extra Option Module

Note: This fault is logged for an RX3i CPE310 that is configured as a CPU310, or a CPE330
configured as a CPU320, because the RX3i system detects the embedded Ethernet module
as an unconfigured module.

9.4.5.2.1 Correction

1. Update the configuration file to include the module.

2. Remove the module from the system.

9.4.5.3 E Hex/14 Decimal, Option Module Hot inserted

The CPU logs this fault when it detects hot insertion of an option module such as the LAN
interface module. No correction necessary

Note: When configuration is cleared or stored, a reset fault is generated for every intelligent option
module physically present in the system.

Diagnostics 430

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.6 System Configuration Mismatch (Group 11)

The fault group Configuration Mismatch occurs when the module occupying a slot is
different from that specified in the configuration file. When the GBC generates the
mismatch because of a Genius block, the second byte in the Fault Extra Data field contains
the bus address of the mismatched block.

Default action: Fatal. Configurable.

Note: If a system configuration mismatch occurs when the CPU is in RUN Mode, the fault action
will be Diagnostic regardless of the fault configuration. See Fault Parameters in PACSystemns
RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

9.4.6.1 2, Genius 1|0 Block Model Number Mismatch

The CPU generates this fault when the configured and physical Genius I/O blocks have
different model numbers.

9.4.6.1.1 Correction

1. Replace the Genius I/O block with one corresponding to the configured module.

2. Update the configuration file.

9.4.6.1.2 Fault Extra Data for Genius I/O Block Model Number Mismatch
Byte Value
[0] FF (flag byte)
[1] Serial Bus address
[2] Installed module type (refer to

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
below).

[3] Configured module type (refer to

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
below).

Diagnostics 431

CPU Programmer’s Reference Manual

GFK-2950G

9.4.6.1.3

Diagnostics

Section 9
June 2020

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)

Number
Description
Decimal |Hexadecimal
4 4 Genius Network Interface (GENI)
5 5 Phase B Hand Held Monitor
6 6 Phase B Series Six GBC with Diagnostics
7 7 Phase B Series Six GBC without Diagnostics
8 8 PLCM/Series Six
9 9 PLCM/Series 90-70
10 A Series 90-70 Single Channel Bus Controller
11 B Series 90-70 Dual Channel Bus Controller
12 @ Series 90-10 Genius Communications Module
13 D Series 90-30 Genius Communications Module
32 20 High Speed Counter
69 45 Phase B 115Vac 8-point (2 amp) Grouped Block
70 46 Phase B 115Vac/125Vdc 8-point Isolated Block
70 46 Phase B 115Vac/125Vdc 8-point Isolated Block without Failed
Switch
71 47 Phase B 220Vac 8-point Grouped Block
72 48 Phase B 24-48Vdc 16-point Proximity Sink Block
72 48 Phase B 24Vdc 16-point Proximity Sink Block
73 49 Phase B 24-48Vdc 16-point Source Block
73 49 Phase B 24Vdc 16-point Proximity Source Block
74 4A Phase B 12-24Vdc 32-point Sink Block
75 4B Phase B 12-24Vdc 32-point Source Block
76 4C Phase B 12-24Vdc 32-point 5V Logic Block
77 4D Phase B 115Vac 16-point Quad State Input Block
78 4E Phase B 12-24Vdc 16-point Quad State Input Block
79 4F Phase B 115/230Vac 16-point Normally Open Relay Block
80 50 Phase B 115/230Vac 16-point Normally Closed Relay Block
81 51 Phase B 115Vac 16-point AC Input Block
82 52 Phase B 115Vac 8-point Low-Leakage Grouped Block
127 7 Genius Network Adapter (GENA). Refer to
GENA Application ID Numbers below.
131 33 Phase B 115Vac 4-input, 2-output Analog Block
132 84 Phase B 24Vdc 4-input, 2-output Analog Block
133 85 Phase B 220Vac 4-input, 2-output Analog Block

432

CPU Programmer’s Reference Manual Section 9

GFK-2950G June 2020

Number

Description

Decimal |Hexadecimal

134 86 Phase B 115Vac Thermocouple Input Block

135 87 Phase B 24Vdc Thermocouple Input Block

136 88 Phase B 115Vac RTD Input Block

137 89 Phase B 24/48Vdc RTD Input Block

138 8A Phase B 115Vac Strain Gauge/mV Analog Input Block

139 8B Phase B 24Vdc Strain Gauge/mV Analog Input Block

140 8C Phase B 115Vac 4-input, 2-output Current Source Analog Block

141 8D Phase B 24Vdc 4-input, 2-output Current Source Analog Block
9.4.6.14 GENA Application ID Numbers

If the model number is 7F hex (Genius Network Adapter), the block may be one of the
following. (The GENA Application ID is shown for reference.)

Number

Decimal |Hexadecimal |Description

131 83 115Vac/230Vac/125Vdc Power Monitor Module
132 84 24/48Vdc Power Monitor Module
160 A0 Genius Remote 90-70 Rack Controller

Diagnostics 433

CPU Programmer’s Reference Manual Section 9

GFK-2950G

9.4.6.2

9.4.6.2.1

9.4.6.2.2

9.4.6.2.3

Diagnostics

June 2020
4,1/0 Type Mismatch

The CPU generates this fault when the physical and configured I/O types of Genius grouped
blocks are different.

Correction

1. Remove the indicated Genius module and install the module indicated in the
configuration file.

2. Update the Genius module descriptions in the configuration file to agree with
what is physically installed.

Fault Extra Data for I/O Type Mismatch
Byte |Value

[0] |FF

[1] Bus address

[2] Installed module’s I/O type

[3] Configured module’s I/O type

Genius Installed Module /O Types (Byte 2 of Fault Extra Data)

Value |Description

01 Input only
02 Output only
03 Combination

434

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.6.2.4 Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

Value

Decimal |Hexadecimal |Description

0 0 Discrete input

1 1 Discrete output

2 2 Analog input

3 3 Analog output

4 4 Discrete grouped

5 5 Analog grouped

20 14 Analogin, discrete in

21 15 Analogin, discrete out

24 18 Analog in, discrete grouped
30 1E Analog out, discrete in

31 1F Analog out, discrete out

34 22 Analog out, discrete grouped
50 32 Analog grouped, discrete in
51 33 Analog grouped, discrete out
54 36 Analog grouped, discrete grouped

9.4.6.3 8, Analog Expander Mismatch

The CPU generates this error when the configured and physical Analog Expander modules
have different model numbers.

9.4.6.3.1 Correction
1. Replace the Analog Expander module with one corresponding to configured
module.

2. Update the configuration file.
9.4.6.4 9, Genius I/O Block Size Mismatch

The CPU generates this error when block configuration size does not match the configured
size.

9.4.6.4.1 Correction

Reconfigure the block.

Diagnostics 435

CPU Programmer’s Reference Manual Section 9

GFK-2950G June 2020
9.4.6.4.2 Fault Extra Data for Genius I/O Block Size Mismatch

Byte |Value

[0] FF

[1] Bus address

[2] Module’s broadcast data length

[3] Configured module’s broadcast data length

9.4.6.5 A hex|10 decimal, Unsupported Feature

Configured feature not supported by this revision of the module.

9.4.6.5.1 Correction

1. Update the module to a revision that supports the feature.

2. Change the module configuration.

9.4.6.5.2 Fault Extra Data for Unsupported Feature
Byte Value
[8] Contains a reason code indicating what feature is not supported.

0x5 - GBC revision too old
0x6 - Only supported in main rack

9.4.6.6 E hex/14 decimal, LAN Duplicate MAC Address

This LAN Interface module has the same MAC address as another device on the LAN. The
module is off the network.

9.4.6.6.1 Correction

1. Change the module’s MAC address.
2. Change the other device’s MAC address.

9.4.6.7 F hex/15 decimal, LAN Duplicate MAC Address Resolved

Previous duplicate MAC address has been resolved. The module is back on the network. This
is an informational message. No correction required.

9.4.6.8 10 hex/16 decimal, LAN MAC Address Mismatch

MAC address programmed by softswitch utility does not match configuration stored from
software.

9.4.6.8.1 Correction

Change MAC address on softswitch utility or in software.

Diagnostics 436

CPU Programmer’s Reference Manual Section 9

GFK-2950G

9.4.6.9

9.4.6.9.1

9.4.6.10

9.4.6.10.1

9.4.6.10.2

9.4.6.11

9.4.6.11.1

9.4.6.12

9.4.6.12.1

Diagnostics

June 2020

11 hex|/17 decimal, LAN Softswitch/Modem mismatch

Configuration of LAN module does not match modem type or configuration programmed
by softswitch utility.

Correction

1. Correct configuration of modem type.

2. Consult LAN Interface manual for configuration setup.

13 hex/19 decimal, DCD Length Mismatch

Directed control data lengths do not match.
Correction

See Fault Extra Data.

Fault Extra Data for DCD Length Mismatch

Byte |Value

[0] FF

[1] Bus address

[2] Module’s directed data length

[3] Configured module’s directed data length

25 hex|37 decimal, Controller Reference Out-of-Range

Areference on either the trigger, disable, or 1/O specification is out of the configured limits.

Correction

Modify the incorrect reference to be within range or increase the configured size of the
reference data.

26 hex[38 decimal, Bad Program Specification

The 1/O specification of a program is corrupted.

Correction

Contact Technical Support.

437

CPU Programmer’s Reference Manual Section 9

GFK-2950G

9.4.6.13

9.4.6.13.1

9.4.6.14

9.4.6.14.1

9.4.6.15

9.4.6.15.1

9.4.6.16

9.4.6.16.1

9.4.6.17

9.4.6.17.1

Diagnostics

June 2020

27 hex|39 decimal, Unresolved or Disabled Interrupt
Reference

The CPU generates this error when an interrupt trigger reference is either out of range or
disabled in the I/O module’s configuration.

Correction

1. Remove or correct the interrupt trigger reference.

2. Update the configuration file to enable this particular interrupt.

43 hex|67 decimal, Module Configuration Failure

Module configuration was not successfully accepted by the module.

Correction

Check fault table for other module-specific faults for possible reasons why the module did
not accept the configuration. Check that the configuration for the module is correct and
valid.

4B hex|75 decimal, ECC jumper is disabled, but should be
enabled

If the CPU redundancy feature is supported and required, the ECC jumper must be in the
enabled position.

Correction

Set the ECC jumper to the enabled position. (See the instructions provided with the
Redundancy CPU firmware upgrade kit).

4C hex|76 decimal, ECC jumper is enabled, but should be
disabled

If the CPU firmware does not support redundancy, the ECC jumper must be in the disabled
position.

Correction
Set the ECC jumper to the disabled position (jumper on one pin or removed entirely).

All Others, Module and Configuration do not Match

The CPU generates this fault when the module occupying a slot is not of the same type that
the configuration file indicates.

Correction
1. Replace the module in the slot with the type indicated in the configuration file.

2. Update the configuration file.

438

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.7 System Bus Error (Group 12)

The fault group System Bus Error occurs when the CPU encounters a bus error.

Default action: Diagnostic. Configurable.
9.4.7.1 4, Unrecognized VME Interrupt Source

The CPU generates this error when a module generates an interrupt not expected by the
CPU (unconfigured or unrecognized).

9.4.7.1.1 Correction

Ensure that all modules configured for interrupts have corresponding interrupt declarations
in the program logic.

9.4.8 CPU Hardware Failure (Group 13)

The fault group CPU Hardware occurs when the CPU detects a hardware failure, such as a
RAM failure or a communications port failure.

When a CPU Hardware failure occurs, the OK LED will flash on and off to indicate that the
failure was not serious enough to prevent Controller Communications to retrieve the fault
information.

Action: Non-configurable.
9.4.8.1 6E hex/110 decimal, Time-of-Day Clock not Battery-Backed

The battery-backed value of the time-of-day clock has been lost.

9.4.8.1.1 Correction

1. Replace the battery. Do not remove power from the main rack until replacement
is complete. Reset the time-of-day clock using your programming software.

2. Replace the module.

9.4.8.2 0A8 hex|/168 decimal, Critical Over-Temperature Failure

CPU’s critical operating temperature exceeded.

Diagnostics 439

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.8.3 All Others

9.4.8.3.1 Correction
Replace the module.
9.4.8.3.2 Fault Extra Data for CPU Hardware Failure

For a RAM failure in the CPU (one of the faults reported as a CPU hardware failure), the
address of the failure is stored in the first four bytes of the field.

9.4.9 Module Hardware Failure (Group 14)

The fault group Module Hardware Failure occurs when the CPU detects a non-fatal hardware
failure on any module in the system, for example, a serial port failure on a LAN interface
module. The fault action for this group is Diagnostic.

Action: Non-configurable.
9.4.9.1 1A0 hex[416 decimal, Missing 12 Volt Power Supply

A power supply that supplies 12 volts is required to operate the LAN Interface module.

9.4.9.1.1 Correction

1. Install/replace a 100-watt power supply.
2. Connect an external VME power supply that supplies 12 volts.

9.4.9.2 1C2 - 1C6 hex (450 - 454 decimal), LAN Interface Hardware
Failure

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533), for a
description of these errors.

9.4.9.3 All Others, Module Hardware Failure

A module hardware failure has been detected.

9.4.9.3.1 Correction

Replace the affected module.

Diagnostics 440

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.10 Option Module Software Failure (Group 16)

The fault group Option Module Software Failure occurs when:

e Anon-recoverable software failure occurs on an intelligent option module.
e The module type is not a supported type.
e The Ethernet Interface logs an eventin its Ethernet exception log.

Action: Non-configurable.

9.4.10.1 1, Unsupported Board Type

The board is not one of the supported types.
9.4.10.1.1 Correction

1. Upload the configuration file and verify that the software recognizes the board
type in the file. If there is an error, correct it, download the corrected
configuration file, and retry.

2. Display the Controller Fault Table on the programmer. Contact Technical Support,
giving them all the information contained in the fault entry.

9.4.10.2 2, 3, COMMREQ Frequency Too High

COMMREQs are being sent to a module faster than it can process them.

9.4.10.2.1 Correction

Change the application program to send COMMREQs to the module at a slower rate or
check the completion status of each COMMREQ before sending the next.

9.4.10.3 4, More Than One BTM in a Rack

There is more than one BTM present in the rack.

9.4.10.3.1 Correction

Remove one of the BTMs from the rack; there can only be one in a CPU rack.

9.4.10.4 >4, Option Module Software Failure

Software failure detected on an option module.

9.4.10.4.1 Correction

1. Reload software into the indicated module.

2. Replace the module.

Diagnostics 441

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.10.5 >400, LAN System Software Fault

The Ethernet interface software has detected an unusual condition and recorded an event
in its exception log. The Fault Extra Data contains the corresponding event in the Ethernet
exception log, which can be viewed by the Ethernet Interface’s Station Manager function.
The first two digits of Fault Extra Data contain the Event type; the remaining data
correspond to the four-digit values for Entry 2 through Entry 6. Some exceptions may also
contain optional multi-byte SCode and other data.

9.4.10.5.1 Correction
For information on interpreting the fault extra data, refer to the PACSystems TCP/IP
Ethernet Communications Station Manager User Manual, GFK-2225, Appendix B.

9.4.11 Program or Block Checksum Failure (Group 17)

The fault group Program or Block Checksum Failure occurs when the CPU detects error
conditions in program or blocks. It also occurs during RUN Mode background checking. In
all cases, the Fault Extra Data field of the Controller Fault Table record contains the name of
the program or block in which the error occurred.

Action: Non-configurable.

9.4.11.1 All Error Codes, Program or Block Checksum Failure

The CPU generates this error when a program or block is corrupted.

9.4.11.1.1 Correction
1. Clear CPU memory and retry the store.
2. Examine C application for errors.

3. Display the Controller Fault Table on the programmer. Contact Technical Support,
giving them all the information contained in the fault entry.

9.4.11.1.2 Fault Extra Data for Program or Block Checksum Failure

The name of the offending program block is contained in the first eight bytes of the Fault
Extra Data field.

Diagnostics 442

CPU Programmer’s Reference Manual

GFK-2950G

9.4.12

9.4.12.1

9.4.12.1.1

9.4.12.1.2

9.4.12.1.3

9.4.12.2

9.4.12.2.1

Diagnostics

Battery Status (Group 18)

Faults in this group occur when the CPU detects a failed battery (or Energy Pack).

Action: Non-configurable.

0, Failed Battery

CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310,
CPU315, CPU/CRU320 and NIU0OO1

The battery in the CPU module has failed or is disconnected.

If the battery is disconnected, this fault is logged for all CPU types and all supported battery
types.

Should a Smart Battery fail during operation, this faultis logged for all CPU types. When used
with a legacy (non-smart) battery, this indication is not reliable.

CPE302, CPE305 and CPE310
The Energy Pack has failed or is disconnected.

Correction

Replace the battery or Energy Pack. For instructions on replacing the battery, refer to the
PACSystems Battery and Energy Pack Manual, GFK-2741.

1, Low Battery - CPUs with Battery-Backed RAM

This faultis supported only by the CPU versions listed in the PACSystems Battery and Energy
Pack Manual, GFK-2741.

The CPU detects the low battery condition only while the CPU is powered up.

If alow battery condition occurs while the CPU is powered down, the CPU logs a Low Battery
fault upon power-up as soon as it detects the signal from the smart battery.

While the CPU is powered up, it is unlikely that a Low Battery fault will be detected because
the current drain on the battery is negligible. The exception is when a good battery is
replaced with a low battery while the CPU has power. In this case, a Low Battery fault would
indicate that a good battery has been accidentally replaced with a depleted battery.

The Controller fault table indicates the battery status. For details of LED operation of specific
CPUs, refer to PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

When a Failed Battery fault is logged, this fault is also logged.

Correction

Replace the battery. For instructions on replacing the battery, refer to the PACSystems
Battery and Energy Pack Manual, GFK-2741.

443

Section 9
June 2020

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.12.3 1, Low Battery — CPE302/CPE305/CPE310/CPE330 CPUs with

Energy Pack
The Status LED and the Controller fault table indicate the Energy Pack status.
PLC_BAT LOW_BAT Energy Pack Status
(%S0014) (%SA0011)
0 0 Energy Pack connected and operational (may be charging)
1 1 Energy Pack not connected or has failed
0 1 Energy Pack is nearing its end-of-life and should be
replaced.

9.4.13 Constant Sweep Time Exceeded (Group 19)

The fault group Constant Sweep Exceeded occurs when the CPU operates in Constant
Sweep mode and detects that the sweep has exceeded the constant sweep timer. In the
fault extra data, the DWORD at byte offset 8 contains the amount of time that the sweep
went beyond the constant sweep time (in microsecond units). Stored in Big Endian format.

Action: Non-configurable.

9.4.13.1 0, Constant Sweep

9.4.13.1.1 Correction
If Constant Sweep (0):

1. Increase constant sweep time.

2. Remove logic from application program.

Note: Errorcode 1 is not used.

9.4.14 System Fault Table Full (Group 20)

The fault group System Fault Table Full occurs when the Controller Fault Table reaches its
limit.

Action: Non-configurable.

9.4.14.1 0, System Fault Table Full

94.14.1.1 Correction
Clear the Controller Fault Table.

Diagnostics 444

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.15 |/O Fault Table Full (Group 21)

The fault group 1/O Fault Table Full occurs when the 1/O Fault Table reaches its maximum
configured limit. To avoid loss of additional faults, clear the earliest entry from the table.

Action: Non-configurable.

9.4.15.1 0, 1/O Fault Table Full

9.4,15.1.1 Correction

Clear the 1/O Fault Table.

9.4.16 User Application Fault' (Group 22)

The fault group Application Fault occurs when the CPU detects a fault in the user program.

Action: Non-configurable.

9.4.16.1 2, Software Watchdog Timer Expired

The CPU generates this error when the watchdog timer expires. The CPU stops executing
the user program and enters STOP/Halt Mode. To recover, cycle power to the CPU with
battery disconnected. Causes of timer expiration include: Looping, via jump, very long
program, etc.

9.4.16.1.1 Correction

1. Determine what caused the expiration (logic execution, external event, etc.) and
correct.

2. Use the system service function block to restart the watchdog timer.

9.4.16.2 7, Application Stack Overflow

Block call depth has exceeded the CPU capability.
9.4.16.2.1 Correction

Increase the program’s stack size or adjust application program to reduce nesting.
9.4.16.3 11 hex/17 decimal, Program Run Time Error

A run-time error occurred during execution of a program.

9.4.16.3.1 Correction

Correct the specific problem in the application.
9.4.16.4 1E-21hex (30 - 33 decimal), LAN Interface Fault

Refer to the PAC Systems TCP/IP Ethernet Communications User Manual, GFK-2224 for a description of
these errors. Please see the Diagnostics Chapter, 'Controller Fault Table'.

8 Error Codes 1, 4, 5, 6, 8-15, 28, 29 and 49 are not used by PACs.
Diagnostics 445

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.16.5 22 hex|34 decimal, Unsupported Protocol

Hardware does not support configured protocol.

9.4.16.6 33 hex[51 decimal, Flash Read Failed

Possible causes:

1. Files notin flash. (May be caused by power cycle during flash write.)

2. Could not read from flash because OEM protection is enabled.

9.4.16.7 34 hex|52 decimal, Memory Reference Out of Range

A user logic memory reference, computed during logic execution, is out of range. Includes
indirect references, array element references, and potentially other types of references.

9.4.16.7.1 Correction

Correct logic or adjust memory size in hardware configuration.

9.4.16.8 35 hex[53 decimal, Divide by zero attempted in user logic.

User logic contained a divide by zero operation. (Applies to ST and FBD logic.)
9.4.16.8.1 Correction

Correct logic.
9.4.16.9 36 hex[54 decimal, Operand is not byte aligned.

Avariable in user logic is not properly byte-aligned for the requested operation.

9.4.16.9.1 Correction

Correct logic or adjust memory size in hardware configuration.

9.4.16.10 39 hex/57 decimal, DLB heartbeat not received, All DLBs
stopped and deleted

The controller has not received a heartbeat signal from the programmer within the time
specified by the DLB Heartbeat setting in the Target properties.

9.4.16.10.1 Correction

Increase the DLB Heartbeat setting. For additional information, refer to Executing DLBs.

Diagnostics 446

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.16.11 3B hex [59 decimal, PSB called by a block whose %L or %P
memory is not large enough to accommodate this reference.

Parameterized blocks do not have their own %L data, but instead inherit the %L data of their
calling blocks. If %L references are used within a parameterized block and the block is called
by _MAIN, %L references are inherited from the %P references wherever encountered in the
parameterized block (for example, %L0005 = %P0005). For a discussion of the use of local

Data.

9.4.16.11.1 Correction

Determine which block called the parameterized subroutine block and increase the size of
%L or %P memory allocated to the calling block. (To do this, change the Extra Local Words
setting in the block’s Properties.)

The maximum size of %L or %P is 8192 words per block. If your application needs more space,
consider changing some %P or %L references to %R, %W, %Al, or %AQ. These changes require
arecompilation of the program block and a STOP Mode Store to the CPU.

Itis possible, by using Online Editing in the programming software to cause a parameterized
block to use %L higher than allowed because of the way it inherits data. To correct this
condition, delete the %L variables from the logic and then remove the unused variables from
the variable list. These changes require a recompilation of the program block and a STOP
Mode Store to the CPU.

9.4.17 CPU Over-Temperature (Group 24)

Default action: Diagnostic. Configurable.
9.4.17.1 1, Over-Temperature failure.

CPU’s normal operating temperature exceeded.

9.4.17.1.1 Correction

Turn off CPU to allow heat to disperse and install a fan kit to requlate temperature.

9.4.18 Power Supply Fault (Group 25)

Action: Non-configurable.
9.4.18.1 1, Power supply failure.

Unknown power supply failure.

9.4.18.1.1 Correction

Replace power supply module.

9.4.18.2 2, Power supply overloaded

The load on the power supply has reached its rated maximum

Diagnostics 447

CPU Programmer’s Reference Manual

GFK-2950G

9.4.18.2.1

9.4.18.3

9.4.18.4

9.4.18.4.1

9.4.19

9.4.19.1.1

9.4.20

9.4.20.1

9.4.20.1.1

9.4.20.2

Diagnostics

Correction

Replace power supply with a higher capacity model or reconfigure system to reduce load on
power supply.

3, Power supply switched off
The switch on the power supply was moved to the OFF position.

4, Power-supply has exceeded normal operating
temperature

The temperature of the power supply is a just a few degrees from causing it to turn off.

Correction

Turn off system to allow heat to disperse. Install a fan kit to requlate temperature.

No User Program on Power-Up (Group 129)

The fault group No User Program on Power-Up occurs when the CPU powers up with its
memory preserved but no user program exists in the CPU. The CPU detects the absence of
a user program on power-up; the controller stays in STOP Mode.

Action: Non-configurable.

Correction

Download an application program before attempting to go to RUN Mode.

Corrupted User Program on Power-Up (Group 130)

The fault group Corrupted User Program on Power-Up occurs when the CPU detects
corrupted user RAM. The CPU will remain in STOP Mode.

Action: Non-configurable.
1, Corrupted user RAM on power-up

The CPU generates this error when it detects corrupted user RAM on power-up.

Recommended Corrections, Listed in Order
1. Cycle power without battery or Energy Pack.
2. Examine any C applications for errors.
3. Replace the volatile memory backup battery on the CPU.
4, Replace the CPU.

7, User memory not preserved over power cycle

The CPU generates this error when it detects a battery failure that occurred while the
controller was powered down.

448

Section 9
June 2020

CPU Programmer’s Reference Manual Section 9

GFK-2950G

9.4.20.2.1

9.4.21

9.4.21.1

9.4.21.1.1

9.4.21.2

9.4.21.2.1

9.4.22

9.4.22.1

9.4.22.1.1

Diagnostics

June 2020

If this fault occurs on a power cycle when the battery was not detached or replaced, the
battery has failed and should be replaced.

Correction

Replace the battery on the CPU. For instructions on replacing the battery, refer to the
PACSystems Battery and Energy Pack Manual, GFK-2741.

Window Completion Failure (Group 131)

The fault group Window Completion Failure is generated by the pre-logic and end-of-sweep
processing software in the CPU. The fault extra data contains the name of the task that was
executing when the error occurred.

Action: Non-configurable.
0, Window Completion Failure

The CPU generates this error when it is operating in Constant Sweep mode and the constant
sweep time was exceeded before the programmer window had a chance to begin
executing.

Correction
Increase the constant sweep timer value.

1, Logic Window Skipped

The logic window was skipped due to lack of time to execute.

Correction
1. Increase base cycle time.

2. Reduce Communications Window time.

Password Access Failure (Group 132)

The fault group Password Access Failure occurs when the CPU receives a request to change
to anew privilege level and the password included with the request is not valid for that level.

Action: Non-configurable.

0, Password Access Failure

Correction

Retry the request with the correct password.

449

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.23 Null System Configuration for RUN Mode (Group 134)

The fault group Null System Configuration for RUN Mode occurs when the CPU transitions
from STOP Mode to one of the RUN Modes and a configuration file is not present. The
transition to Run is permitted, but no 1/O scans occur.

Action: Informational. Non-configurable.

9.4.23.1 0, Null System Configuration for RUN Mode

9.4.23.1.1 Correction

Download a configuration file.

9.4.24 CPU System Software Failure (Group 135)

Faults in this group are generated by the operating software of the CPU. They occur at many
different points of system operation. When a fatal fault occurs, the CPU immediately
transitions to STOP/Halt. The only activity permitted when the CPU is in this mode is
communications with the programmer. The only method of clearing this condition is to
cycle power on the controller with the battery disconnected.

Action: Non-configurable.

9.4.24.1 5A hex|[90 decimal, User Shut Down Requested

The CPU generates this informational alarm when SVC_REQ #13 (User Shut Down) executes
in the application program.

9.4.24.1.1 Correction

None required. Information-only alarm.

9.4.24.2 94 hex|148 decimal, Units Contain Mismatched Firmware,
Update Recommended

This fault is logged each time the redundancy state changes and the redundant CPUs
contain incompatible firmware.

9.4.24.2.1 Correction

Ensure that redundant CPUs have compatible firmware.

9.4.24.3 D8 hex[216 decimal, Processor Exception Trap

The processor has detected an error condition while executing an instruction. The CPU was
placed into STOP/Halt mode.

9.4.24.3.1 Correction
Disconnect the battery from the CPU and cycle power to clear the STOP/Halt condition.

9.4.24.4 DA hex[218 decimal, Critical Over-Temperature Failure

Diagnostics 450

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

Critical operating temperature of CPU exceeded.

9.4.24.4.1 Correction

Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature

9.4.24.5 All Others, CPU Internal System Error

An internal system error has occurred that should not occur in a production system.

9.4.24.5.1 Correction

Display the Controller Fault Table on the programmer. Contact Technical Support and give
them all the information contained in the fault entry.

Error Fault Extra Data Description

Value (First Byte)
DEVICE_NOT_AVAILABLE CF Specific device is not available in the system.
BAD_DEVICE_DATA cC Data stored on device has been corrupted

and is no longer reliable. Or, Flash Memory
has not been initialized.

DEVICE_RW_ERROR CB Error occurred during a read/write of the
Flash Memory device.
FLASH_INCOMPAT_ERROR | 8E Data in Flash Memory is incompatible with

the CPU firmware release due to the CPU
firmware revision numbers, the instruction
groups supported, or the CPU model
number.

ITEM_NOT_FOUND_ERROR | 8D One or more specified items were not found
in Flash Memory.

9.4.25 Communications Failure During Store (Group 137)

This fault group occurs during the store of programs or blocks and other data to the CPU.
The stream of commands and data for storing programs or blocks and data starts with a
special start-of-sequence command and terminates with an end-of-sequence command.
This fault is logged if communications with the programming device performing the store
is interrupted or any other failure that terminates the store occurs. As long as this fault is
present in the system, the controller will not transition to RUN Mode. This fault is not
automatically cleared on power-up; you must specifically clear the condition.

Action: Non-configurable.

Diagnostics 451

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.25.1 0, Communications Failure During Store

9.4.25.1.1 Correction

Clear the fault and retry the download of the program or configuration file.

9.4.25.2 1, Communications Lost During RUN Mode Store

Communications or power was lost during a RUN Mode Store. The new program or block
was not activated and was deleted.

9.4.25.2.1 Correction
Perform the RUN Mode Store again. This fault is diagnostic.

9.4.25.3 2, Communications Lost During Cleanup for RUN Mode Store

Communications was lost, or power was lost during the cleanup of old programs or blocks
during a RUN Mode Store. The new program or block is installed, and the remaining
programs and blocks were cleaned up.

9.4.25.3.1 Correction
None required. This fault is informational.

9.4.25.4 3, Power Lost During a RUN Mode Store

Power was lost in the middle of a RUN Mode Store.

9.4.25.4.1 Correction

Delete and restore the program. This error is fatal.

9.4.26 Non-Critical CPU Software Event (Group 140)

This group is used for recording conditions in the system that may provide valuable
information to Technical Support.

Default action: Non-configurable.

Error Code Description Correction
1-30 Events during power-up No corrective action is required unless
31-50 Events on the serial port or in a this fault occurs with other specific

faults. The fault may contain useful
information for Technical Support if

serial protocol

51,52 Miscellaneous internal system
other problems are encountered.
events
53 Access control fault See details below.
54 and greater Miscellaneous internal system | No corrective action is required unless
events this fault occurs with other specific

faults. The fault may contain useful
information for Technical Support if
other problems are encountered.

Diagnostics 452

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.4.26.1 Error code 53, Access Control Fault

If data access is prevented because of the Enhanced Security settings, the Controller logs a
faultinto the fault table. This fault can be used to help diagnose access problems. To prevent
overflowing the fault table, only one fault is logged until the fault table is cleared.

9.4.26.1.1 Fault example

Location: 0.8 Date/Time: 07-07-2013 17:06:55.087

Group: 140 INFO_CPU_SOFTWR - CPU software event

Error Code: 53 Action:1 Task Num:3

Extra Data: 00 fa 022500 00 00 0001 Te 06 00 00 00 00 00 00 00 01 00 00 00 00 00
9.4.26.1.2 Meaning of this example fault

A 1-bit READ request beginning at %57 was rejected due to an access violation.
9.4.26.1.3 Interpreting the Fault Extra Data

Bytes 1-8: Ignored when decoding a security-related fault.

Byte 9: The operation during which the fault occurred.

01 (as in the example): Read

02: Write
Byte 10: The hexadecimal value (HV) that specifies a CPU memory area.
Hexadecimal | Memory area
Value (HV)
08 %R (Register memory)
0A %Al (Analog input memory)
0C %AQ (Analog output memory)
10 %I (Discrete input memory)
12 %Q (Discrete output memory)
14 %T (Discrete temporary status memory)
16 %M (Discrete momentary internal memory)
18 %SA (Discrete system memory A)
1A %SB (Discrete system memory B)
1C %SC (Discrete system memory C)
1E %S (Discrete system memory)
38 %G (Genius global memory)
C4 %W (Bulk Memory)

Bytes 11-18: 0-based bit offset of the memory area being accessed. The 8-byte value is
encoded in little endian format, meaning that the byte values are reversed.
Inthe example, the value is 0x0000000000000006, which is equal to 1-based
bit offset 7.

Diagnostics 453

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

Bytes 19-22: The length in bits of data requested. In the example, 1 bit was requested.

Bytes 23-24: Ignored when decoding a security-related fault.

9.5 1/O Fault Descriptions and Corrective Actions
The 1/O fault table reports the following data about faults:

e Fault Group

e Fault Action

e Fault category

e Faulttype

o Fault description

All faults have a fault category, but a fault type and fault group may not be listed for every
fault. To view the detailed information pertaining to a fault, click the fault entry in the 1/O
Fault Table.

Note: The model number mismatch and I/O type mismatch faults are reported in the controller
fault table under the System Configuration Mismatch group. They are not reported in the
I/O fault table.

Diagnostics 454

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.1 Fault Extra Data

An /O fault table entry contains up to 21 bytes of I/ O fault extra data that contains additional
information related to the fault. Not all entries contain 1/O fault extra data.

9.5.2 /O Fault Groups

Group Number |Group Name E:tfiaou':f:ault Configurable
2 Loss of or Missing 10C Diagnostic Yes
3 Loss of or Mis.sing I/O module or Diagnostic Ves
network Device
6 Addition or Reset of, or Extra IOC N/A No
7 :gfvlvtcl)?E ;l;\c/)ircléxtra I/0 module or NJA No
9 IOC or I/O Bus Fault Diagnostic Yes
10 I/O Module Fault N/A No
15 I0C Software Failure Same As Group 2 ' | Yes
16 Module Software Failure N/A No
28 PROFINET Alarms Diagnostic No
133 Genius Block Address Mismatch N/A No

9 The fault action for the 10C Software Failure group 15 always matches the action used by the Loss of or Missing 10C group 2. If the Loss
of or Missing I0C group is configured, the I0C Software Failure group is also configured to take the same fault action.
Diagnostics 455

CPU Programmer’s Reference Manual

GFK-2950G

9.5.3

Diagnostics

|/O Fault Categories

Section 9
June 2020

Category Fault Type

Fault Description

Fault Extra Data

Circuit Fault (1) | Discrete Fault (1)

Loss of User Side Power
(01 hex)

Circuit Configuration

Short Circuit in User Wiring
(02 hex)

Circuit Configuration

Sustained Overcurrent
(04 hex)

Circuit Configuration

Low or No Current Flow
(08 hex)

Circuit Configuration

Switch Temperature Too
High (10 hex)

Circuit Configuration

Switch Failure (20 hex)

Circuit Configuration

Point Fault (83 hex)

Circuit Configuration

Output Fuse Blown (84 hex)

Circuit Configuration

Analog Fault (2)

Input Channel Low Alarm
(01 hex)

Circuit Configuration

Input Channel High Alarm
(02 hex)

Circuit Configuration

Input Channel Under Range
(04 hex)

Circuit Configuration

Input Channel Over Range
(08 hex)

Circuit Configuration

Input Channel Open Wire
(10 hex)

Circuit Configuration

Over Range or Open Wire
(18 hex)

Circuit Configuration

Output Channel Under Range
(20 hex)

Circuit Configuration

Output Channel Over Range
(40 hex)

Circuit Configuration

Expansion Channel Not
Responding
(80 hex)

Circuit Configuration

Invalid Data (81 hex)

Circuit Configuration

Low-Level Analog
Fault (4)

Input Channel Low Alarm
(01 hex)

Circuit Configuration

Input Channel High Alarm
(02 hex)

Circuit Configuration

Input Channel Under Range
(04 hex)

Circuit Configuration

Input Channel Over Range
(08 hex)

Circuit Configuration

Input Channel Open Wire
(10 hex)

Circuit Configuration

Wiring Error (20 hex)

Circuit Configuration

456

CPU Programmer’s Reference Manual

GFK-2950G

Diagnostics

Section 9
June 2020
Category Fault Type Fault Description Fault Extra Data
Internal Fault (40 hex) Circuit Configuration
Input Channel Shorted Circuit Configuration
(80 hex)
Invalid Data (81 hex) Circuit Configuration
GENA (Genius GENA Circuit Fault (80 hex) | Byte 2:GENA Fault
Network
Adapter) Fault (3)
Remote I/O Remote I/O Scanner Circuit | Byte 1: Circuit Type
Scanner Fault Fault Byte 2: 1/O Type
Loss of Block (2) | Not Specified (0) | NA Block Configuration
A/D Number of Input Circuits
Communications Number of Output
Lost (1) Circuits
Addition of NA NA Block Configuration
Block (3) Number of Input Circuits
Number of Output
Circuits
/0 Bus Fault (6) |Bus Fault (1) NA NA
Bus Outputs
Disabled (2)
SBA Conflict (3)
Genius Module | Headend Fault (0) | Configuration Memory NA
Fault (8) Ato D Comm. Failure (08 hex)
Fault (1) Calibration Memory Failure
User Scaling Error | (20 hex)
(5) Shared RAM Failure (40 hex)
Store Fail (6) Internal Circuit Fault (80 hex)
Watchdog Timeout (81 hex)
Output Fuse Blown (84 hex)
Addition of IOC | NA Extra Module (01 hex) NA
(9) Reset Request (02 hex)
Loss of IOC(10) |NA NA Timeout
Unexpected State
Unexpected Mail Status
VME Bus Error
IOC Software NA NA NA
Fault (11)
Forced Circuit NA NA Block Configuration
(12) Discrete/Analog
Indication*
Unforced Circuit | NA NA Block Configuration
(13) Discrete/Analog
Indication*
Loss of /O NA NA NA
Module (14)
Addition of /O [NA VME Module Reset NA
Module (15) Requested (30 hex)

457

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020
Category Fault Type Fault Description Fault Extra Data
Extra I/O Module | NA NA NA
(16)
ExtraBlock (17) |NA NA NA
IOC Hardware NA NA NA
Failure (18)
GBC stopped GBC detected NA NA
reporting faults | high error count
because too on Genius Bus and
many faults dropped off the
have occurred | bus foratleast 1.5
(19) seconds. (1)
GBC Software Datagram queue |NA
Exception (21) | full (1)
R/W request
queue full (2)
Low priority mail
rejected (3)
Background
message received
before CPU
completed
initialization (4)
Genius software
version too old (5)
Excessive use of
internal GBC
memory (6)
Block Switch NA NA Block Configuration
(22) - Number of Input Circuits
redundant Number of Output
Genius block Circuits
switched bus Rack/Slot address of GBC
from which block was
removed.
Block not active | NA NA NA
on redundant
bus (23)
Reset of 10C NA NA NA
(27)
PROFINET NA Refer to PROFINET controller | NA
network faults documentation.
(33 and higher)

458

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.54 Circuit Faults (Category 1)

Circuit faults apply to Genius I/O modules and the 1C697VRD008 RTD/Strain Bridge
modules. Fault extra data is available for all faults in this category. More than one condition
may be presentin a particular reporting of the fault.

Action: Diagnostic.

9.5.4.1 Fault Extra Data for Circuit Faults

9.5.4.1.1 Genius Bus Controller

Circuit fault entries use one or two bytes of the fault extra data area. If the GBC reports the
fault, the first byte is generated by the GBC and the second byte contains the circuit
configuration and is encoded as shown in the following table.

Value Description
(Byte 2)

1 Circuitis aninput.
2 Circuitis an input.
3 Circuitis an output.

If the fault type is a GENA fault, the second byte contains the data that was reported from
the GENA module in Fault Byte 2 of its Report Fault message.

9.54.1.2 VRDO0O1 RTD/Strain Bridge

Circuit fault entries; 13 bytes of the fault extra data area. The fault extra data is encoded as
shown in the following table.

Bytes |Description

1-10 Used by technical support.

11 Line number

12 Module number

13 Used by technical support.

9.5.4.2 Fault Descriptions for Discrete Faults

9.5.4.2.1 1, Loss of User Side Power

The GBC generates this error when there is a power loss on the field wiring side of a Genius
1/O block.

9.54.2.2 Correction

1. (Only valid for Isolated I/O blocks.) Initiate Pulse Test COMREQ #1. Pulse test may
be enabled or disabled at I/ O block.

2. Correct the power failure.
9.54.2.3 2, Short Circuit in User Wiring

The GBC generates this error when it detects a short circuit in the user wiring of a Genius
block. A short circuit is defined as a current level greater than 20 amps.
Diagnostics 459

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020
9.54.24 Correction

Fix the cause of the short circuit.

9.54.2.5 4, Sustained Overcurrent

The GBC generates this error when it detects a sustained current level greater than 2 amps
in the user wiring.

9.54.2.6 Correction

Fix the cause of the over current.

9.5.4.2.7 8, Low or No Current Flow

The GBC generates this error when there is very low or no current flow in the user circuit.

9.54.2.8 Correction

Fix the cause of the condition.

9.5.4.2.9 10 hex, Switch Temperature Too High

The GBC generates this error when the Genius block reports a high temperature in the
Genius Smart Switch.

9.5.4.2.10 Correction

1. Ensure that the block s installed to provide adequate circulation.
2. Decrease the ambient temperature surrounding the block.
3. Install RC Snubbers on inductive loads.

9.5.4.2.11 20 hex, Switch Failure

The GBC generates this error when the Genius block reports a failure in the Genius Smart
Switch.

9.5.4.2.12 Correction

1. Check for shunts across Genius output (pushbuttons).

2. Replace the Genius1/O block.
9.5.4.2.13 83 hex, Point Fault

The CPU generates this error when it detects a failure of a single 1/O point on a Genius I/O
module.

9.5.4.2.14 Correction
Replace the Genius I/O block.

9.5.4.2.15 84 hex, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on a Genius 1/O output block.

9.5.4.2.16 Correction
1. Determine and repair the cause of the fuse blowing; replace the fuse.

2. Replace the block.
Diagnostics 460

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.4.3 Fault Descriptions for Analog Faults

9.5.4.3.1 1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog module reports a low alarm on an
input channel.

9.54.3.2 Correction
Correct the condition causing the low alarm.
9.54.3.3 2, Input Channel High Alarm
The GBC generates this error when the Genius Analog module reports a high alarm on an
input channel.
9.5434 Correction
Correct the condition causing the high alarm.
9.5.4.3.5 4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range
condition on an input channel.

9.54.3.6 Correction

Correct the problem causing the condition.

9.5.4.3.7 8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an input channel.

9.5.4.3.8 Correction
Correct the problem causing the condition.
9.5.4.3.9 10 hex/16 decimal, Input Channel Open Wire

The GBC generates this error when a Genius Analog module detects an open wire condition
on an input channel.

9.5.4.3.10 Correction

Correct the problem causing the condition.

9.5.4.3.11 18 hex/24 decimal, Over Range or Open Wire

Inputs open or inputs off-scale.

9.54.3.12 Correction

Correct the problem causing the condition.

9.5.4.3.13 20 hex/32 decimal, Output Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range
condition on an output channel.

Diagnostics 461

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.4.3.14 Correction

Correct the problem causing the condition.

9.5.4.3.15 40 hex/64 decimal, Output Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an output channel.

9.54.3.16 Correction

Correct the problem causing the condition.

9.5.4.3.17 80 hex/128 decimal, Expansion Channel Not Responding

The CPU generates this error when data from an expansion channel on a multiplexed analog
input board is not responding.

9.5.4.3.18 Correction

3. Checkwiring to the module.

4. Replace the module.
9.5.4.3.19 81 hex/129 decimal, Invalid Data
The GBC generates this error when it detects invalid data from a Genius Analog input block.
9.5.4.3.20 Correction

Correct the problem causing the condition.

9.5.4.4 Low-Level Analog Faults

9.5.4.4.1 1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog module reports a low alarm on an
input channel.

9.5.4.4.2 Correction
Correct the condition causing the low alarm.

9.5.4.4.3 2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alarm on an
input channel.

9.5.4.44 Correction
Correct the condition causing the high alarm.

9.5.4.4.5 4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range
condition on an input channel.

9.5.4.4.6 Correction
Correct the problem causing the condition.

Diagnostics 462

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020
9.5.4.4.7 8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an input channel.

9.5.4.4.8 Correction

Correct the problem causing the condition.

9.5.4.4.9 10 hex, Input Channel Open Wire

The GBC generates this error when the Genius Analog module detects an open wire
condition on an input channel.

9.5.4.4.10 Correction

Correct the problem causing the condition.

9.5.4.4.11 20 hex/32 decimal, Wiring Error

The GBC generates this error when the Genius Analog module detects an improper RTD
connection or thermocouple reverse junction fault.

9.54.4.12 Correction

Correct the problem causing the condition.

9.5.4.4.13 40 hex/64 decimal, Internal Fault

The GBC generates this error when the Genius Analog module reports a cold junction sensor
fault on a thermocouple block or an internal error in an RTD block.

9.5.4.4.14 Correction

Correct the problem causing the condition.

9.5.4.4.15 80 hex/128 decimal, Input Channel Shorted

The GBC generates this error when it detects an input channel shorted on a Genius RTD or
Strain Gauge Block.

9.5.4.4.16 Correction

Correct the problem causing the condition.

9.5.4.4.17 81 hex/129 decimal, Invalid Data

The GBC generates this error when it detects invalid data from a Genius Analog input block.

9.54.4.18 Correction

Correct the problem causing the condition.
9.5.4.5 GENA Fault

The GENA Fault has no fault descriptions associated with it. GENA Fault Byte 2 is the first
byte of the fault extra data.

9.5.4.5.1 80 hex/128 decimal

Diagnostics 463

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

The Genius /O operating software generates this error when it detects a failure in a GENA
block attached to the Genius I/O bus.

9.54.5.2 Correction
Replace the GENA block.
9.5.5 Loss of Block (Category 2)

The fault category Loss of Block applies to Genius devices.

Action: Diagnostic.
9.5.5.1 Loss of Block

The GBC generates this error when it is unable to communicate to the Genius device.

9.5.5.1.1 Correction
1. Verify power and wiring to the block.

2. Replace the block.

9.5.5.2 Loss of Block - A|D Communications Fault
The GBC generates this error when it detects a failure of A/D communications on a Genius
device.

9.5.5.2.1 Correction

1. Verify power and serial bus wiring to the block.

2. Replace the block.
9.5.5.2.2 Fault Extra Data for Loss of Block

The Loss of Block fault provides four bytes of fault extra data. The second byte contains the
block configuration and is encoded as shown in the following table. The third byte specifies
the number of input circuits possibly used, and the fourth byte specifies the number of
output circuits possibly used.

9.5.5.2.3 Block Configuration (Byte 2)

Value | Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

Diagnostics 464

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.6 Addition of Block (Category 3)

The fault category Addition of Block applies only to Genius devices. There are no fault types
or fault descriptions associated with this category.

The Genius operating software generates this error when it detects that a Genius block that
stopped communicating with the controller starts communicating again.

Action: Diagnostic.

9.5.6.1.1 Correction
Informational only. None required.
9.5.6.1.2 Fault Extra Data for Addition of Block

The Addition of Block fault provides four bytes of fault extra data. The second byte contains
the block configuration and is encoded as shown in the following table. The third byte
specifies the number of input circuits possibly used, and the fourth byte specifies the
number of output circuits possibly used.

9.5.6.1.3 Block Configuration (Byte 2)

Value | Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

9.5.7 /O Bus Fault (Category 6)

The fault category I/O Bus Faults has three fault types associated with it.

Default action: Diagnostic. Configurable.

9.5.7.1 Bus Fault

The GBC operating software generates this error when it detects a failure with a Genius 1/O
bus. (Generated when Error Rate in the GBC configuration is exceeded—the default Error
Rate is 10 errors in a 10 second period).

9.5.7.1.1 Correction

1. Determine the reason for the bus failure and correct it.
2. Replace the GBC.

The Error Rate can be set higher than the default value if needed, but the bus should be
examined electrically—use an oscilloscope for waveform check.

9.5.7.2 Bus Outputs Disabled

The GBC operating software generates this error when it times out waiting for the CPU to
perform an output scan.

Diagnostics 465

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.7.2.1 Correction
1. Reduce time between GBC output scans by assigning them to scan set 1.
Increase CPU software watchdog timer setting

Replace the CPU.

> W N

Display the controller fault table on the programmer. Contact Technical Support,
giving them all the information contained in the fault entry.

9.5.7.3 SBA Conflict

The GBC detected a conflict between its serial bus address and that of another device on the

bus.
9.5.7.3.1 Correction

Adjust one of the conflicting serial bus addresses.
9.5.8 Module Fault (Category 8)

The fault category Module Fault has one fault type, headend fault, and eight fault
descriptions. This fault category does not provide fault extra data. The default fault action
for this category is Diagnostic.

9.5.8.1 08 hex, Configuration Memory Failure

The GBC generates this errorwhen it detects a failure in a Genius block’s EEPROM or NVRAM.

9.5.8.1.1 Correction

Replace the Genius block’s electronics module.
9.5.8.2 20 hex|32 decimal, Calibration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s calibration
memory.

9.5.8.2.1 Correction

Replace the Genius block’s electronics module.

9.5.8.3 40 hex|64 decimal, Shared RAM Fault

The GBC generates this error when it detects an error in a Genius block’s shared RAM.

9.5.8.3.1 Correction

Replace the Genius block’s electronics module.
9.5.8.4 80 hex[128 decimal, Module Fault

An internal failure has been detected in a module.

9.5.8.4.1 Correction

Replace the affected module.
Diagnostics 466

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.8.5 81 hex[129 decimal, Watchdog Timeout

The CPU generates this error when it detects that an input module watchdog timer has
expired.

9.5.8.5.1 Correction

Replace the input module.
9.5.8.6 84 hex[132 decimal, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on an output module.

9.5.8.6.1 Correction

1. Determine and repair the cause of the fuse blowing and replace the fuse.

2. Replace the module.

9.5.9 Addition of IOC (Category 9)

The fault category Addition of 1/O Controller has no fault types or fault descriptions
associated with it. The default fault action for this category is Diagnostic.

9.5.9.1 Addition of I0C

The CPU generates this error when an IOC that has been faulted returns to operation or
when an 10C is found in the system and the configuration file indicates that no I0C s to be
in that slot or when an 10C is hot inserted.

9.5.9.1.1 Correction

1. No action is necessary if the faulted module is in a remote rack and is returning
due to a remote rack power cycle.

2. Update the configuration file or remove the module.

9.5.9.2 01 hex, Extra Module

Module present, but not configured.

9.5.9.2.1 Correction

Update the configuration file or remove the module.
9.5.9.3 02 hex, Reset Request

Module added back after reset request. No corrective action is necessary.

Diagnostics 467

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.10 Loss of or Missing 10 Controller (Category 10)

The fault category Loss of 10C has no fault types or fault descriptions associated with
it.Default action: Diagnostic. Configurable.

Note: This fault is always displayed as Fatal in the I/O Fault Table, regardless of its configured
action.

The CPU generates this error when it cannot communicate with an I/O Controller and an
entry for the 10C exists in the configuration file.

This fault is also logged when an 10C is hot removed (No corrective action necessary in this
case).

9.5.10.1.1 Correction

1. Verify that the module in the slot/bus address is the correct module.
2. Review the configuration file and verify that it is correct.

3. Replace the module.
4

If fault is not resolved, display the controller fault table on the programmer.
Contact Technical Support, giving them all the information contained in the
fault entry.

9.5.10.1.2 Fault Extra Data for Loss of or Missing |OC

Fault extra data for Loss of or Missing I0C provides additional information for diagnostics by
Technical Support.

Diagnostics 468

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.11 |IOC (1/O Controller) Software Fault (Category 11)

The fault category 10C Software Fault applies to any type of I/O Controller.

Action: Fatal.

9.5.11.1 Datagram Queue Full, Read|/Write Queue Full

Too many datagrams or read/write requests have been sent to the GBC.

9.5.11.1.1 Correction
Adjust the system to reduce the request rate to the GBC.

9.5.11.2 Response Lost

The GBCis unable to respond to a received datagram or read/write request.

9.5.11.2.1 Correction
Adjust the system to reduce the request rate to the GBC.

9.5.12 Forced and Unforced Circuit (Categories 12 and 13)

The fault categories Forced Circuit and Unforced Circuit report point conditions and
therefore are not technically faults. They have no fault types or fault descriptions. These
reports occur when a Genius /O point was forced or unforced with the Hand-Held Monitor.

Action: Informational.

9.5.12.1 Fault Extra Data for Forced/Unforced Circuit

Three bytes of fault extra data are present when a circuit force is added or removed

Byte Number Description Value Description
1 Circuit Configuration 1 Circuitis an input.
2 Circuitis aninput.
3 Circuitis an output.
2 Analog/Discrete 1 Block is a discrete block.
Information 2 Block is an analog block.
3 Block has both discrete and
analog.

Diagnostics 469

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.13 Loss of or Missing 1/O Module (Category 14)

The fault category Loss of I/O Module applies to discrete and analog I/O modules. There are
no fault types or fault descriptions associated with this category.

Default action: Diagnostic. Configurable.

The CPU generates this error when it detects that an I/O module is no longer responding to
commands from the CPU, or when the configuration file indicates an 1/O module is to
occupy a slot and no module exists in the slot. This fault is also logged when an /O module
is hot removed (No corrective action necessary in this case).

9.5.13.1.1 Correction

1. Replace the module.
2. Correct the configuration file.

3. Display the I/O fault table on the programmer. Contact Technical Support, giving
them all the information contained in the fault entry.

9.5.14 Addition of I/O Module (Category 15)

The fault category Addition of I/O Module applies to discrete and analog I/O modules. There
are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

9.5.14.1 Addition of 1]|O Module

The CPU generates this error when an I/O module that had been faulted returns to operation
oris hotinserted.

9.5.14.1.1 Correction

1. No action necessary if module was removed or replaced or if the remote rack was
power cycled.

2. Update the configuration file or remove the module.

9.5.14.2 30 hex[48 decimal, VME Reset on Request

Reset of VME module was requested. No corrective action necessary.

Diagnostics 470

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.15 Extra /O Module (Category 16)

The fault category Extra I/O Module applies to discrete and analog I/O modules. There are
no fault types or fault descriptions associated with this category.

Action: Diagnostic.

The CPU generates this error when it detects an /O module in a slot that the configuration
file indicates should be empty.

9.5.15.1.1 Correction

1. Remove the module. (It may be in the wrong slot.)

2. Update and restore the configuration file to include the extra module.

9.5.16 Extra Block (Category 17)

The fault category Extra Block applies only to Genius I/O devices. There are no fault types or
fault descriptions associated with this category.

Action: Diagnostic.

The GBC generates this error when it detects a Genius device on the bus at a serial bus
address where the configuration file does not have a block.

9.5.16.1.1 Correction

1. Remove or reconfigure the block. (It may be at the wrong serial bus address.)

2. Update and restore the configuration file to include the extra block.

Diagnostics 471

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.17 |OC Hardware Failure (Category 18)

The fault category 10C Hardware Failure has no fault types or fault descriptions.
Action: Diagnostic.
The Genius operating software generates this error when it detects a hardware failure in the
bus communication hardware or a baud rate mismatch.
9.5.17.1.1 Correction

1. Verify that the baud rate set in the configuration file for the GBC agrees with the
baud rate programmed in every block on the bus.

2. Change the configuration file and restore it, if necessary.
Replace the GBC.

4. Selectively remove each block from the bus until the offending block is isolated
then replace it.

9.5.18 GBC Stopped Reporting Faults (Category 19)

GBC detected a high error count on the Genius I/O bus and dropped off the bus for at least
1.5 seconds.

9.5.18.1.1 Correction

Check for incorrect wiring, interference from other equipment, a loose connection, or a
failed device on the Genius bus.

Diagnostics 472

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.5.19 GBC Software Exception (Category 21)
9.5.19.1 1, Incoming datagram queue full

Too many datagrams or read/write requests have been sent to the GBC.

9.5.19.1.1 Correction

Adjust the system to reduce the request rate to the GBC.
9.5.19.2 2, Read|write request queue full

The queue for Read/Write requests in the GBC is full. The requests may be from the Genius
Bus or from COMMREQs.

9.5.19.2.1 Correction
Adjust the system to reduce the request rate to the GBC.

9.5.19.3 3, Low priority mail queue from GBC to CPU full

The response to the CPU was lost.

9.5.19.4 4, Genius background message requiring CPU action
received before CPU completed initialization

Message was ignored.

9.5.19.5 5, GBC software version too old

9.5.19.5.1 Correction
Update GBC firmware.

9.5.19.6 6, Excessive use of internal GBC memory

9.5.19.6.1 Correction
Verify COMMREQ usage.

Diagnostics 473

CPU Programmer’s Reference Manual

GFK-2950G

9.5.20

9.5.20.1.1

9.5.20.1.2

9.5.21

Diagnostics

Block Switch (Category 22)

The Block Switch fault category has no fault types or fault descriptions.

Action: Diagnostic.

Section 9
June 2020

The GBC generates this error when a Genius block on redundant Genius buses switches from
one bus to another.

Correction

1. No actionis required to keep the block operating.

2. The bus that the block switched from may need to be repaired.

d.

Verify the bus wiring.

b. Replace the I/O controller.
c. Replace the Bus Switching Module (BSM).

Fault Extra Data for Block Switch

circuits used

Byte Number | Description Value | Description
1 Circuit 1 Circuitis aninput.
configuration 2 Circuitis an input.
3 Circuitis an output.
2 Block configuration | 1 Block is configured for inputs only.
2 Block is configured for outputs only.
3 Block is configured for inputs and outputs
(grouped block).
3 Number of input
circuits used
4 Number of output

Reset of IOC (Category 27)

The fault category Reset of I/O Controller has no fault types or fault descriptions associated
with it. The default fault action for this category is Diagnostic.

The CPU generates this message when an 1/O Controller is reset. No corrective action

necessary.

474

CPU Programmer’s Reference Manual
GFK-2950G

9.6

Diagnostics

Diagnostic Logic Blocks (DLBs)

A Diagnostic Logic Block (DLB) is a block of Ladder Diagram logic that can be downloaded
to the controller for independent execution. These blocks are useful tools for interacting
with an application that is running in the PACSystems controller. DLBs may be used to:

e Collectinformation from a running application to analyze and diagnose problems

e Test modifications and corrections to a running application before incorporating them
into the application.

o Test the devices that will be controlled by the application.

DLBs are intended to accomplish a specific task that is temporary in nature, such as
diagnosing the source of a problem or testing tuning parameters. When you have finished
using a DLB, it should be removed from the host controller. At this point the application logic
and its variable allocation return to what it was before the DLB was downloaded.

You can also remove the DLBs from the Logic Developer target, at which point the target’s
logic and variable allocation will be identical to what they were before the DLBs were
introduced.

Note that, although the DLB is removed from the controller, any changes the DLB made to
the system are not removed. For example, if the DLB logic changes a hardware parameter,
the parameter does not return to its previous value when the DLB is removed.

DLB logic can be executed with the controller in STOP 10 Enabled Mode, which allows
debugging the application without the main application program running.

475

Section 9
June 2020

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

A\CAUTION

Do not use a DLB as a permanent part of a production application, because a DLB is stopped
and deleted from memory when Logic Developer loses its Programmer-mode connection
with the host controller. This could happen if the programmer’s communications cable is
disconnected orif a second programmer connects serially to the same RX3i and establishes
a Programmer-mode session.

Note: Redundancy CPUs do not support DLBs.

9.6.1 DLB Operation

Figure 267 Diagnostic Logic Blocks (DLBs) assigned to Target in MPE

=] fae PMM225
- @ Target
@ Data Watch Lists

B-{@ Diagnostic Logic Blocks
=] @ Active Blocks
= Testl
= ﬁ LDBK
&P Cam Profile:
=1 LDBK1
+ ‘E LDBK3

#-] Test2

DLBs are created as components of a specific Target and are separate from the application
logic block components associated with a target.

They are written in LD programming language and support many of the same features, such
as View Lock, Edit Lock, etc. as other block types.

A target can have a maximum of 128 DLBs in a given PAC Machine Edition target. Each DLB
can have associated published variable table (PVT) and cam profile (used with Motion
applications) files. Each DLB can use up to 128K bytes of memory.

A DLB can be copied and pasted like other blocks. Regardless of where a DLB is pasted,
normal conflict handling is applied.

An active DLB can be dragged to the Toolchest, to folders under the Active Blocks node, or
to folders under the Program Blocks node. Note that only active blocks can be dragged.
Downloading, executing, or modifying a DLB does not affect the equality of the main logic
program.

Diagnostics 476

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.6.1.1 Suspend 1/O Function and DLBs

The Suspend I/O (SUS_IO) function operates the samein a DLB as it does in application logic.
Both application logic and DLB logic execute in the CPU Sweep Logic window. Therefore,
when a SUSPEND_IO is executed by either the application or the DLB, outputs are held
current during the output scan that occurs immediately after the Logic window finishes its
execution, and input references will not be updated from inputs during the input scan that
occurs immediately before the Logic window is executed in the next CPU sweep.

Note that a SUSPEND_IO only affects normal I/O scans. It does not affect I/O scanning that
is done as the result of DO_IO or SCAN_SET_IO functions that execute in application or DLB
logic. SUS_IO has the same effect whether it is executed once in a sweep or multiple times
in a sweep.

9.6.1.2 Restrictions on DLB Operation

Because DLBs are intended only for temporary use, there are more restrictions on their
operation compared to application logic blocks. All built-in functions and function blocks
other than those listed below can be used in DLB logic.

¢ DLB logic may not call any logic block or be called by any logic block.
e You cannot define parameters or scheduling for a DLB.

e A DLB has no parameters other than the standard ENO output parameter. Since DLBs
cannot be called from other blocks, you can access its ENO parameter only by reading or
writing it in the DLB’s logic.

e You cannot use variables that have %L or %P addresses. Therefore, the following features
that require %L or %P memory cannot be used in a DLB:

a. #FST_EXE system variable
b. The built-in timer function blocks, ONDTR, OFDT, and TMR
c. %L or %P variables.

o Locally scoped variables must be symbolic. For additional information, refer to DLB
Variables.

e DLBs or their associated files cannot be loaded from the RX3i.

o DLBs and their associated files cannot be downloaded to flash memory.

e You cannot give an LD DLB the name _MAIN.

¢ You cannot modify an active LD DLB while it is executing on the Controller.
e You cannot perform a Test Edit (Online Edit Mode and Online Test Mode).

¢ You cannot perform word-for-word changes on an active DLB.

Diagnostics 477

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.6.1.3 DLB Variables

A DLB can have its own variables, which are local to the DLB and not accessible by any other
block. All DLB local variables are symbolic, retentive, and published.

Local variables should be used within DLBs whenever possible. If the system is already
running and you create new global variables in the DLB, the programming software will not
download the DLB because the programmer’s memory map will no longer match the RX3i
controller’s memory map.

DLB logic can read and write the global variables of the application that resides in the same
target as it does. These variables may be mapped or symbolic.

To use functions that require the use of located variables, a DLB must use the global located
variables of the application that resides in the same target as the DLB. These functions
include:

a. COMMREQ (location of the Status variable)
b. DO_IO
c. Some SVC_REQ functions

A DLB can create aliases to global located application variables or arrays of variables that
were specifically created and documented to serve as scratchpad memory for DLBs that
need to use located variables.

Diagnostics 478

CPU Programmer’s Reference Manual

GFK-2950G

9.6.2
9.6.2.1

9.6.2.2

Diagnostics

Executing DLBs

DLB Properties

Section 9
June 2020

The properties for an active DLB include Execution Mode, which has the following possible

values:

o Sweep (Default) - The DLB executes at a fixed point in the normal Controller sweep, until
explicitly stopped.

o Update Rate - Uses the Update Rate defined for the Target. The actual rate varies from a
minimum value equal to the Update Rate to a maximum value of Update Rate + 1 sweep.
If the sweep takes more time than the update rate, the DLB is executed as soon as the

user logic program execution completes in the current sweep.

e ScanOnce-The DLB executes exactly one time when the user requests for DLB execution

to start. It then stops executing until it is manually instructed to run again.

Figure 268 Properties of Diagnostic Logic Block (DLB)

Block Properties
Name MeasureTimeB etweenE xecutions
Description
Language Ladder
Block Type Block
Execution Mode Sweep j
Update Rate
Scan Once
Inspector I
Target Properties

The Target properties include DLB Heartbeat, which specifies, in milliseconds, the maximum
time the controller waits for a heartbeat signal from the programmer. If a heartbeat timeout
occurs, the DLB will be stopped and removed from the controller. This insures that DLB

execution is stopped in the event of a communications failure between the programmer

and the controller.

With larger applications or a slower PC, some operations such as opening the Controller File
Explorer may cause the DLB Heartbeat to time out. If this happens, you may need to increase
the DLB Heartbeat interval.

The DLB Heartbeat must always be greater than the Update Rate setting for the Target.

479

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020
Figure 269 DLB Heartbeat Setting
o X

Scheduling Mode Normal »

Force Compact PYT True

Enable Shared Variables | False

DLEB Heartbeat [ms) |1000

Physical Port ETHERNET v

Inspector

9.6.2.2.1 Right-click Online Operations for an Active DLB

Menu Enable Rules Description

Download Disabled if block is already running on | Downloads block to controller,
controller, target notin programmer mode, | removing any other DLB that
Config+Logic is not equal, or Access Level | was already there.
prevents write.

Start Disabled if block is already running, target | Downloads block to controller,
not in programmer mode, another block is | removing any other DLB that
executing on controller, HWC+Logic is not | was already there, and then
equal, or Access Level prevents write starts executing block.

Stop Disabled if block is not executing Stops execution of block.

Remove Disabled if block is not on controller, block | Stops block, then removes it
is executing, or not in programmer mode from controller.

9.6.2.3 DLB Online Operations

Only asingle DLB can be downloaded and executed on the controller at a time. To download
an Active DLB to the controller, you must have:

e Program logic and HWC equal to the controller (Logic EQ)
e Targetin programmer mode

¢ Enough privilege to write to the controller

Operation Minimum PACSystems RX3i Privilege Level Required
Storing DLBs in STOP Mode 3
Storing DLBs in RUN Mode 4

When a DLB is downloaded, you are given the option of storing initial values or clearing
memory for local variables. If another DLB is already downloaded on the controller it will be
removed before the selected DLB is downloaded.

When a DLB is downloaded to the controller, all variables locally scoped to the DLB are
published from the controller so that HMIs or other devices can view the data.

While a DLB is running, the active target is read-only; no changes can DLB or the application
logic. If the DLB has been downloaded to the controller but is not executing, changes are
allowed but the first change will remove the DLB from the controller. You will be prompted
to confirm the change before the DLB is removed. Uploading of the DLB is not supported.

Diagnostics 480

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

Once a DLB is downloaded to the controller, it can be started if the main program is running
on the controller in STOP with I/O Enabled or RUN with I/O Enabled Mode.

9.6.2.4 Removing a DLB from the Controller

The following actions will cause the DLB to be removed from the controller. If the DLB is
executing, it will be stopped before being removed.

e Removing the DLB from the controller through the Online Operations menu.

e Programmer connection to controller is lost by going offline or a communication failure
that causes a DLB Heartbeat timeout

e Switching from programmer mode to monitor mode

e Downloading to controller (Config, Logic, Stored Values, etc.)

e Clearing the controller, other than fault tables and controller supplemental files
e Performing any Flash operation, other than Verify

¢ Uploading from controller (Config, Logic, Stored Values, etc.)

e Changingthe DLB that is on the controller

If there is an executing DLB, and you transition from RUN Mode to STOP Mode, the executing
DLB will be stopped as well. The DLB will not be removed from the controller in this case.

If you initiate an upload, and there is a DLB on the controller, you will be prompted for
confirmation and notified that the DLB will be removed and that all active DLBs will be made
inactive. If there are no DLBs on the controller but there is at least one active DLB, you will
be prompted for confirmation and notified that all active DLBs will be made inactive. If you
choose to abort the upload, no changes are made. If you proceed, all DLBs are deactivated.
If DLBs are de-activated, you will have to reactivate them manually.

When a DLB is removed from the controller, any PMM data logger (DLOG) and event queue
(ELOG) files that were created by the DLB are also removed.

9.6.2.5 Basic Steps for Using a DLB in the Controller

1. Create an LD Block under the Active Blocks DLB Node in the Navigator.

You can accomplish this in several ways, such as by creating a new block under the
Active Blocks node, dragging a block from the Toolchest, or copying and pasting a
block from another project.

2. Select DLB block properties, for example, Execution Mode, as desired.

3. Ifnecessary, change the Target property, DLB Heartbeat. For larger projects, you
may need to increase DLB Heartbeat from its default value of 1000ms to avoid
timing out while performing some operations, such as opening the Controller
File Explorer.

Go online to the Controller and go into Programmer Mode, Logic Equal.

5. Right click the DLB and select the Online Operations menu to download the DLB to
the controller and start its execution. (To download and start the DLB in one
operation, select Online Operations > Start.)

6. Monitor DLB execution.

Diagnostics 481

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

9.6.2.6 Monitoring DLB Execution

There are several tools to monitor the execution of the DLB in the controller:

e DLB Local Symbolic variables monitored in Data Watch, LD Editor, or Data Monitor.

e DLB Icon shows the DLB state in the Navigator: Downloaded & to controller or
Executing %

e A Proficy View application can monitor the execution of the DLB by using its Local
Symbolic Variables in Panels and Scripts.

The DLB block icon in the Navigator indicates its current state, as shown below:

Inactive DLB - & (block displayed in gray)
Active DLB Downloaded to Controller- | &} (block displayed in blue)

Executing DLB - % (block displayed in green)

9.6.3 Diagnostic Logic Block (DLB) Example

In this example, a block of LD logic is downloaded to the controller and executed.
The basic steps for using a sample DLB in the controller are as follows:

1. Create an LD block named MonitorScan and place it in the Toolchest. For
information on working with the Toolchest, refer to the online help.

The logic in the DLB block measures Controller scan time. It calculates the Minimum
(minTime), Maximum (maxTime), and Average (avgTime) time between DLB block
executions. When the DLB is set to Sweep Mode, these values should be close to the
Controller Sweep time.

Diagnostics 482

CPU Programmer’s Reference Manual

GFK-2950G

9.6.3.1.1

Diagnostics

Logic for the Monitor Scan Block

Section 9
June 2020

Figure 270

1 | Effcecture 8 new lime resding snd sonved itints &

1o gat the & |sceed tme of ths pravious SwaeD

SVE RED 10473
2 =
—{F» e Tima[l] —|IN 2 eecy
aveTing —{PRAN
ICVE WINT TG I BEAL
VORD REAL -
weeTima(3] —! Q Q W1 =] e
—{H2
ADD REAL B RE RE
aan —IF Q= newTime nw Tima —]INT 2 slapsedTime siapaed Time —]IN1 2 elapsedTime
fmction —{IN2 oidTime —|INZ 1000 —{IN2
Figure 271
= o 1 wan, lorss alapesd swess tima
EC REAL KCVE

ﬁ' Updaie the min, max, and sversge seeep limes

REAL

i

GT REAL
min Tisa —]INT 2
0.0 —INZ

T REAL

slapsadTime —|INT =

mar Tima =]INZ

wapredTisg —{IH1

minTima —|IM2

LT REAL

[— slapsed Time

slappedTine —|IN

BEAL

b= i T

slacreaTiHe —

I

REAL

- &N Time

483

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

Figure 272

ADD REAL ADD REAL O REAL

alapsegTine —|INT Q- cumuianveTime sweapCnt —]IN1 2 sweeslCnr sumulativeTima —JIN1 S avgTime
sumulative Timg —INI 7.0 =—{IN2 FaggaCar —IN2
11 | plinitislize old tims b2 previcus new time
ACVE
12 REAL |

reaTine ~‘r. = sl Time

2. Dragand drop the DLB Block from the Toolchest to the Active Blocks node in the
Navigator.

Figure 273: Drag DLB from Toolchest and Drop in Active Blocks Node

= @ Demo
- scanTimes
ﬁ Data Watch Lists
= || Diagnostic Logic Blocks
[= ﬁ Artive Blodks
R onvorscan
3] Inactive Blocks
+ fili§§ Hardware Configuration
+ I Logic
+- o Referance View Tables
+ 0y Supplemental Files
£ >

3. Inthe DLB block properties, set the Execution Mode to Sweep.

Figure 274: Set DLB Execution Mode to Sweep (Properties Tab)

hropector S ¥

Block Properties
Namea ”Horile-Scm
Dezcriphion
Language
Block Tvpe: :
EveculionMode |Sweep |

Inmwtc-rl

Diagnostics 484

CPU Programmer’s Reference Manual Section 9
GFK-2950G June 2020

4. Go online to the Controller and select Programmer Mode. Put the Controllerin
RUN Mode or STOP Enabled Mode.

5. Select the DLB Online Operations > Start menu to download the DLB to the
controller and start its execution.

Figure 275: Start DLB Execution

Navigator n x

T
=I- & Demo
- % ScanTimes
£2 Data Watch Lists
=& Diagnostic Logic Blocks

= ﬁ Active Blocks

= -
Inactive Blog O Enter
+ fil Hardware Confit cut Ctrl+
+ L Logic Copy Crl+C

+- L Reference View
+-[fy supplemental Fil

Delete Del

Dauriosd

Start

Check Block
Deactivate

Properties Alt+Enter

6. Inthe Initialize Symbolic Variables dialog box, select how new local symbolic
variables will be initialized and click OK.

Figure 276 : Initialize Local Symbolic Variables

Initialize symbolic variables

Choose how the memory allocated for new local symbolic variables will be
initialized.

@ Cleared (all values set to zerof

" Set to initial value of associated variable.

7. Notice the change in the DLB Icon and the DLB status in the Status bar.
9.6.3.1.2 DLB Block Icon/Status Bar Once Started.

Figure 277 : DLB Icon and Status Bar after Execution has Commenced

MNavigator B ox
e o
= @De'nu

- 4 ScanTimes
Data Watch Lists
=1- @] Diagnostic Logic Blocks
- W) Active Blocks

DLE Running

i@ Inective Blocks
+ [l Hardware Configuration
-0 Logic
+ L) Reference View Tables
+ [IE Supplemental Files

& | Programmer, Stop Enabled, Config EQ, Logic EQ, Sweep= 0.0 ms. DLB[MonitorScan, Running]

Diagnostics 485

CPU Programmer’s Reference Manual

Section9
GFK-2950G June 2020
8. Open the DLB block and place the DLB variables in the Data Watch window to
observe their operation.
sFigure 278: Data Watch for DLB Variables
Varable Name Address | Value |
Py MonitorScan avgTime 11.062¢6¢
ﬁg_ MonitorScan.min Time 0.0
rijL. MonitorScan maxTime 27105.38
B8 MontorScan elapsadTime 7.8125
]
Diagnostics

486

General Contact Information

Home link: http://www.emerson.com/industrial-automation-controls

Knowledge Base: https://www.emerson.com/industrial-automation-controls/support

Technical Support

Americas

Phone: 1-888-565-4155
1-434-214-8532 (If toll free option is unavailable)
Customer Care (Quotes/Orders/Returns): customercare.mas@emerson.com
Technical Support: support.mas@emerson.com

Europe

Phone: +800-4444-8001
+420-225-379-328 (If toll free option is unavailable)
Customer Care (Quotes/Orders/Returns): customercare.emea.mas@emerson.com
Technical Support: support.mas.emea@emerson.com

Asia

Phone: +86-400-842-8599

+65-6955-9413 (All other Countries)

Customer Care (Quotes/Orders/Returns): customercare.cn.mas@emerson.com
Technical Support: support.mas.apac@emerson.com

Any escalation request should be sent to: mas.sfdcescalation@emerson.com

Note: If the product is purchased through an Authorized Channel Partner, please contact the seller directly for any
support.

Emerson reserves the right to modify orimprove the designs or specifications of the products mentioned in this manual
at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance of any
product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely with the
purchaser.

© 2020 Emerson. All rights reserved.
Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark
of Emerson Electric Co. All other marks are the property of their respective owners.

&

&
EMERSON.

http://www.emerson.com/Industrial-Automation-Controls
https://www.emerson.com/Industrial-Automation-Controls/Support
mailto:customercare.mas@emerson.com
mailto:support.mas@emerson.com
mailto:customercare.emea.mas@emerson.com
mailto:support.mas.emea@emerson.com
mailto:customercare.cn.mas@emerson.com
mailto:support.mas.apac@emerson.com
mailto:mas.sfdcescalation@emerson.com

	Section 1 Introduction
	1.1 Revisions in this Manual
	1.2 PACSystems Programming and Configuration
	1.3 Migrating Series 90 Applications to PACSystems
	1.4 PACSystems Documentation
	1.4.1 PACSystems Manuals
	1.4.2 RX3i Manuals
	1.4.3 RX7i Manuals
	1.4.4 Series 90 Manuals
	1.4.5 Distributed I/O Systems Manuals

	Section 2 Program Organization
	2.1 Structure of a PACSystems Application Program
	2.1.1 Blocks
	2.1.2 Functions and Function Blocks
	2.1.3 How Blocks Are Called
	2.1.4 Nested Calls
	2.1.5 Types of Blocks
	2.1.5.1 Program Blocks
	2.1.5.1.1 Program Blocks and Local Data
	2.1.5.1.2 Using Parameters with a Program Block

	2.1.5.2 Parameterized Blocks
	2.1.5.2.1 Parameterized Blocks and Local Data
	2.1.5.2.2 Using Parameters with a Parameterized Block

	2.1.5.3 User-Defined Function Blocks (UDFBs)
	2.1.5.3.1 Defining a UDFB
	2.1.5.3.2 Creating UDFB Instances
	2.1.5.3.3 Instance Data Structures
	2.1.5.3.4 UDFBs and Scope
	2.1.5.3.5 Using Parameters with UDFBs
	2.1.5.3.6 Using Internal Member Variables with UDFBs
	2.1.5.3.7 UDFB Logic
	2.1.5.3.8 UDFB Operation with Other Blocks

	2.1.5.4 External Blocks
	2.1.5.4.1 External Blocks and Local Data
	2.1.5.4.2 Initialization of C Variables
	2.1.5.4.3 Using Parameters with an External Block

	2.1.6 Local Data
	2.1.7 Parameter Passing Mechanisms
	2.1.8 Languages
	2.1.8.1 Ladder Diagram (LD)
	2.1.8.2 Function Block Diagram
	2.1.8.3 Structured Text

	2.2 Controlling Program Execution
	2.3 Interrupt-Driven Blocks
	2.3.1 Interrupt Handling
	2.3.2 Timed Interrupts
	2.3.3 I/O Interrupts
	2.3.4 Module Interrupts
	2.3.5 Interrupt Block Scheduling
	2.3.5.1 Normal Block Scheduling
	2.3.5.2 Preemptive Block Scheduling

	Section 3 Program Data
	1.1
	3.1 Variables
	3.1.1 Mapped Variables
	3.1.2 Symbolic Variables
	3.1.2.1 Restrictions on the Use of Symbolic Variables

	3.1.3 I/O Variables
	3.1.3.1 Restrictions on the Use of I/O Variables
	3.1.3.2 I/O Variable Format
	3.1.3.2.1 Supported I/O Variable Types
	3.1.3.2.2 I/O Variable Examples

	3.1.4 Arrays
	3.1.5 Variable Indexes and Arrays
	3.1.5.1 Requirements and Support
	3.1.5.2 Where Array Elements with Variable Indexes are Not Supported:
	3.1.5.3 Ensuring that a Variable Index does not Exceed the Upper Boundary of an Array
	3.1.5.3.1 One-Dimensional Array
	3.1.5.3.2 Two-Dimensional Array

	3.2 Reference Memory
	3.2.1 Word (Register) References
	3.2.1.1 Indirect References
	3.2.1.1.1 Bit in Word References
	3.2.1.1.2 Restrictions
	3.2.1.1.3 Examples:

	3.2.2 Bit (Discrete) References

	3.3 User Reference Size and Default
	3.3.1 %G User References and CPU Memory Locations

	3.4 Genius Global Data
	3.5 Transitions and Overrides
	3.6 Retentiveness of Logic and Data
	3.7 Data Scope
	3.8 System Status References
	3.8.1 %S References
	3.8.2 %SA, %SB, and %SC References
	3.8.3 Fault References
	3.8.3.1 System Fault References
	3.8.3.2 Configurable Fault References
	3.8.3.3 Non-Configurable Faults

	3.9 How Program Functions Handle Numerical Data
	3.9.1 Data Types
	3.9.2 Floating Point Numbers
	3.9.2.1 Types of Floating-Point Variables
	3.9.2.2 Internal Format of REAL Numbers
	3.9.2.3 Internal Format of LREAL Numbers
	3.9.2.4 Errors in Floating Point Numbers and Operations
	3.9.2.4.1 IEEE 754 Infinity Representations
	3.9.2.4.2 IEEE 754 Representations of NaN values:

	3.10 User Defined Types (UDTs)
	3.10.1 Working with UDTs
	3.10.2 UDT Properties
	3.10.3 UDT Limits
	3.10.4 RUN Mode Store of UDTs
	3.10.5 UDT Operational Notes
	3.10.5.1.1 Example

	3.11 Operands for Instructions
	3.12 Word-for-Word Changes
	3.12.1 Exception: Symbolic Variables

	Section 4 Ladder Diagram (LD) Programming
	4.1 Advanced Math Functions
	4.1.1 Exponential/Logarithmic Functions
	4.1.1.1 Operands of the Exponential/Logarithmic Functions

	4.1.2 Square Root
	4.1.2.1.1 Example
	4.1.2.2 Operands for the Square Root Function

	4.1.3 Trig Functions
	4.1.3.1 Operands of Trig Functions
	4.1.3.1.1 Example

	4.1.4 Inverse Trig – ASIN, ACOS, and ATAN
	4.1.4.1 Operands of Inverse Trig Functions

	4.2 Bit Operation Functions
	4.2.1 Data Lengths for the Bit Operation Functions
	4.2.2 Bit Position
	4.2.2.1 Operands of Bit Position
	4.2.2.1.1 Examples

	4.2.3 Bit Sequencer
	4.2.3.1 Memory Required for Bit Sequencer
	4.2.3.2 Operands for Bit Sequencer
	4.2.3.2.1 Example

	4.2.4 Bit Set, Bit Clear
	4.2.4.1 Operands for Bit Set, Bit Clear
	4.2.4.1.1 Example 1
	4.2.4.1.2 Example 2

	4.2.5 Bit Test
	4.2.5.1 Operands for Bit Test
	4.2.5.1.1 Example 1
	4.2.5.1.2 Example 2

	4.2.6 Logical AND, Logical OR, and Logical XOR
	4.2.6.1 Logical AND
	4.2.6.2 Logical OR
	4.2.6.3 Logical XOR
	4.2.6.4 Operands for Logical AND, OR, and XOR
	4.2.6.4.1 Example: Logical AND
	4.2.6.4.2 Example: Logical XOR

	4.2.7 Logical NOT
	4.2.7.1 Operands for Logical NOT
	4.2.7.1.1 Example

	4.2.8 Masked Compare
	4.2.8.1 Operands for Masked Compare Function
	4.2.8.1.1 Masked Compare Example 1
	4.2.8.1.2 Masked Compare Example 2

	4.2.9 Rotate Bits
	4.2.9.1 Operands for Rotate Bits
	4.2.9.1.1 Example

	4.2.10 Shift Bits
	4.2.10.1 Shift Left
	4.2.10.2 Shift Right
	4.2.10.3 Shift Left and Shift Right
	4.2.10.4 Operands for Shift Left, Shift Right, Shift Left and Shift Right
	4.2.10.4.1 Example

	4.3 Coils
	4.3.1 Coil Checking
	4.3.2 Graphical Representation of Coils
	4.3.2.1 Coil (Normally Open)
	4.3.2.2 Continuation Coil
	4.3.2.3 Negated Coil

	4.3.3 Set Coil, Reset Coil
	4.3.3.1.1 Example of Set Coil, Reset Coil

	4.3.4 Transition Coils
	4.3.4.1 POSCOIL and NEGCOIL
	4.3.4.1.1 Operands for POSCOIL and NEGCOIL
	4.3.4.1.2 Example for POSCOIL and NEGCOIL

	4.3.4.2 PTCOIL and NTCOIL
	4.3.4.2.1 Operands for PTCOIL and NTCOIL

	4.3.4.3 Examples Comparing PTCOIL and POSCOIL
	4.3.4.3.1 PTCOIL
	4.3.4.3.2 POSCOIL

	4.4 Contacts
	4.4.1 Continuation Contact
	4.4.2 Fault Contact
	4.4.2.1 Operands

	4.4.3 High and Low Alarm Contacts
	4.4.3.1 Operands

	4.4.4 No Fault Contact
	4.4.4.1 Operands

	4.4.5 Normally Closed and Normally Open Contacts
	4.4.5.1 Operands

	4.4.6 Transition Contacts
	4.4.6.1 POSCON and NEGCON
	4.4.6.1.1 Overrides
	4.4.6.1.2 Transition to RUN Mode
	4.4.6.1.3 Operands for POSCON and NEGCON
	4.4.6.1.4 POSCON and NEGCON Example 1

	4.4.6.2 PTCON and NTCON
	4.4.6.2.1 Operands for PTCON and NTCON
	4.4.6.2.2 Examples Comparing PTCON and POSCON
	4.4.6.2.3 PTCON
	4.4.6.2.4 POSCON
	4.4.6.2.5 Logic Example Using PTCON

	4.5 Control Functions
	4.5.1 Do I/O
	4.5.1.1 Do I/O for Inputs
	4.5.1.2 Do I/O for Outputs
	4.5.1.3 Operands
	4.5.1.3.1 Example - Do I/O for Inputs
	4.5.1.3.2 Example - Do I/O for Outputs

	4.5.2 Edge Detectors
	4.5.2.1 Operands
	4.5.2.1.1 Instance Data Structure

	4.5.2.2 F_TRIG Operation
	4.5.2.3 R_TRIG Operation
	4.5.2.3.1 Example

	4.5.3 Drum
	4.5.3.1 Using Drum in Parameterized Blocks
	4.5.3.1.1 Finding the Source Block
	4.5.3.1.2 Programming Drum in Parameterized Blocks
	4.5.3.1.3 Parameterized block called from one block
	4.5.3.1.4 Parameterized block called from multiple blocks

	4.5.3.1.5 Recursion

	4.5.3.2 Using Drum in UDFBs
	4.5.3.2.1 Example

	4.5.3.3 Operands for Drum
	4.5.3.4 Control Block for the Drum Sequencer Function

	4.5.4 For Loop
	4.5.4.1 Operands
	4.5.4.1.1 For Loop Example 1
	4.5.4.1.2 For Loop Example 2

	4.5.5 Mask I/O Interrupt
	4.5.5.1 Operands
	4.5.5.1.1 Example

	4.5.6 Read Switch Position
	4.5.6.1 Operands

	4.5.7 Scan Set IO
	4.5.7.1 Operands for SCAN_SET_IO
	4.5.7.1.1 Example

	4.5.8 Suspend I/O
	4.5.8.1.1 Example

	4.5.9 Suspend or Resume I/O Interrupt
	4.5.9.1 Operands
	4.5.9.1.1 Example

	4.6 Conversion Functions
	4.6.1 Convert Angles
	4.6.1.1 Operands
	4.6.1.1.1
	4.6.1.1.2 Example

	4.6.2 Convert UINT or INT to BCD4
	4.6.2.1 Operands
	4.6.2.1.1
	4.6.2.1.2 Example - UINT to BDC4
	4.6.2.1.3 Example - INT to BCD4

	4.6.3 Convert DINT to BCD8
	4.6.3.1 Operands
	4.6.3.1.1 Example

	4.6.4 Convert BCD4, UINT, DINT, or REAL to INT
	4.6.4.1 BDC4, UINT, and DINT
	4.6.4.2 REAL
	4.6.4.3 Operands
	4.6.4.3.1 Example: BCD4 to INT
	4.6.4.3.2 Example: UINT to INT
	4.6.4.3.3 Example: DINT to INT

	4.6.5 Convert BCD4, INT, DINT, or REAL to UINT
	4.6.5.1 Operands
	4.6.5.1.1 Example: BCD4 to UINT
	4.6.5.1.2 Example: INT to UINT
	4.6.5.1.3 Example: DINT to UINT

	4.6.5.1.4 Example: REAL to UINT

	4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT
	4.6.6.1 BCD8, UINT, and INT
	4.6.6.2 REAL and LREAL
	4.6.6.3 Operands
	4.6.6.3.1 Example: UINT to DINT
	4.6.6.3.2 Example: BCD8 to DINT
	4.6.6.3.3 Example: INT to DINT
	4.6.6.3.4 Example: REAL to DINT

	4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL
	4.6.7.1 Operands
	4.6.7.1.1 Example: UINT to REAL
	4.6.7.1.2 Example: INT to REAL
	4.6.7.1.3 Example: LREAL to REAL

	4.6.8 Convert REAL to LREAL
	4.6.8.1 Operands
	4.6.8.1.1 Example

	4.6.9 Convert DINT to LREAL
	4.6.10 Truncate
	4.6.10.1 Operands
	4.6.10.1.1 Example

	4.7 Counters
	4.7.1 Data Required for Counter Function Blocks
	4.7.1.1.1 Word 3: Control Word Structure

	4.7.2 Down Counter
	4.7.2.1 Operands
	4.7.2.1.1 Example – Down Counter

	4.7.3 Up Counter
	4.7.3.1 Operands
	4.7.3.1.1 Example – Up Counter
	4.7.3.1.2 Example – Up Counter and Down Counter

	4.8 Data Move Functions
	4.8.1 Array Size
	4.8.1.1 Operands
	4.8.1.1.1 Example

	4.8.2 Array Size Dimension Function Blocks
	4.8.2.1 Array Size Dimension 1
	4.8.2.1.1 Operands

	4.8.2.2 Array Size Dimension 2
	4.8.2.2.1 Operands
	4.8.2.2.2 Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

	4.8.3 Block Clear
	4.8.3.1 Operands
	4.8.3.1.1 Example

	4.8.4 Block Move
	4.8.4.1 Operands
	4.8.4.1.1 Example

	4.8.5 BUS_ Functions
	4.8.5.1 Rack, Slot, Subslot, Region, and Offset Parameters
	4.8.5.2 BUS Read
	4.8.5.2.1 Operands for BUS READ
	4.8.5.2.2 BUS_RD Status in the ST Output

	4.8.5.3 BUS Read Modify Write
	4.8.5.3.1 Operands for BUS_RMW
	4.8.5.3.2 BUS_RMW Status in the ST Output

	4.8.5.4 BUS Test and Set
	4.8.5.4.1 Operands for BUS Test and Set

	4.8.5.5 BUS Write
	4.8.5.5.1 Operands for Bus Write

	4.8.6 Communication Request (COMMREQ)
	4.8.6.1 Command Block
	4.8.6.1.1 Command Block Structure
	4.8.6.1.2 Status Pointer Memory Type

	4.8.6.1.3 Operands for COMMREQ
	4.8.6.1.4 COMMREQ Status Word
	4.8.6.1.5 COMMREQ Example 1
	4.8.6.1.6 COMMREQ Example 2

	4.8.7 Data Initialization
	4.8.7.1 Operands
	4.8.7.1.1 Example

	4.8.8 Data Initialize ASCII
	4.8.8.1 Operands
	4.8.8.1.1 Example

	4.8.9 Data Initialize Communications Request
	4.8.9.1 Operands
	4.8.9.1.1 Example

	4.8.10 Data Initialize DLAN
	4.8.10.1 Operands

	4.8.11 Move
	4.8.11.1 MOVE Operands
	4.8.11.1.1 MOVE_BOOL Example
	4.8.11.1.2 MOVE_WORD Example

	4.8.12 Move Data
	4.8.12.1 MOVE_DATA Operands

	4.8.13 Move Data Explicit
	4.8.13.1 MOVE_DATA_EX Operands
	4.8.13.1.1 Example

	4.8.14 Move From Flat
	4.8.14.1 Operation
	4.8.14.1.1 Copying arrays and array elements
	4.8.14.1.2 Example:

	4.8.14.1.3 Copying to specified array elements
	4.8.14.1.4 Example:

	4.8.14.2 MOVE_FROM_FLAT Operands
	4.8.14.2.1 Example

	4.8.15 Move to Flat
	4.8.15.1 Copying Arrays and Array Elements
	4.8.15.2 MOVE_TO_FLAT Operands
	4.8.15.2.1 Example

	4.8.16 Shift Register
	4.8.16.1 Operands for Shift Register
	4.8.16.1.1 Example

	4.8.17 Size Of
	4.8.17.1 Operands
	4.8.17.1.1 Example

	4.8.18 Swap
	4.8.18.1 Operands for Swap
	4.8.18.1.1 Example for Swap

	4.9 Data Table Functions
	4.9.1 Array Move
	4.9.1.1 Operands for Array Move
	4.9.1.1.1 Array Move Example 1
	4.9.1.1.2 Array Move Example 2
	4.9.1.1.3 Array Move Example 3

	4.9.2 Array Range
	4.9.2.1 Operands for Array Range
	4.9.2.1.1 Array Range Example 1
	4.9.2.1.2 Array Range Example 2

	4.9.3 FIFO Read
	4.9.3.1 Operands for FIFO Read
	4.9.3.1.1 Example for FIFO Read

	4.9.4 FIFO Write
	4.9.4.1 Operands for FIFO Write
	4.9.4.1.1 Example for FIFO Write

	4.9.5 LIFO Read
	4.9.5.1 Operands for LIFO Read
	4.9.5.1.1 Example for LIFO Read

	4.9.6 LIFO Write
	4.9.6.1 Operands for LIFO Write
	4.9.6.1.1 Example for LIFO Write

	4.9.7 Search
	4.9.7.1 Search Relationships:
	4.9.7.2 Operands for the Search Function
	4.9.7.2.1 Example for the Search Function

	4.9.8 Sort
	4.9.8.1 Operands
	4.9.8.1.1 Example

	4.9.9 Table Read
	4.9.9.1 Operands
	4.9.9.1.1 Table Read Example

	4.9.10 Table Write
	4.9.10.1 Operands
	4.9.10.1.1 Table Write Example

	4.10 Math Functions
	4.10.1 Overflow
	4.10.2 Absolute Value
	4.10.2.1 Operands
	4.10.2.1.1 Example

	4.10.3 Add
	4.10.3.1 Operands of the ADD Function
	4.10.3.1.1 Example1 for ADD
	4.10.3.1.2 Example2 for ADD

	4.10.4 Divide
	4.10.4.1 Operands for the DIV Function
	4.10.4.2 DIV_MIXED Operands
	4.10.4.2.1 DIV_MIXED Example

	4.10.5 Modulus
	4.10.5.1 Operands for Modulus Function

	4.10.6 Multiply
	4.10.6.1 Operands for Multiply
	4.10.6.1.1 Example – Scaling Analog Input Values

	4.10.7 Scale
	4.10.7.1 Operands
	4.10.7.1.1 Example

	4.10.8 Subtract
	4.10.8.1 Operands for Subtract

	4.11 Program Flow Functions
	4.11.1 Argument Present
	4.11.1.1 Operands for ARG_PRES
	4.11.1.1.1
	4.11.1.1.2 Example for ARG_PRES

	4.11.2 Call
	4.11.2.1 Operands for Call
	4.11.2.1.1 Example 1 for Call
	4.11.2.1.2 Example 2 for Call
	4.11.2.1.3 Logic for AVG_4 Parameterized Block

	4.11.3 Comment
	4.11.4 JumpN
	4.11.4.1 Operands

	4.11.5 Master Control Relay/End Master Control Relay
	4.11.5.1 MCRN
	4.11.5.2 EndMCRN
	4.11.5.2.1 Operands for MCRN/ENDMCRN
	4.11.5.2.2 Example of MCRN/ENDMCRN

	4.11.6 Wires

	4.12 Relational Functions
	4.12.1 Compare
	4.12.1.1 Operands
	4.12.1.1.1 Example

	4.12.2 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	4.12.2.1 Operands

	4.12.3 EQ_DATA
	4.12.3.1 Operands

	4.12.4 Range
	4.12.4.1 Operands
	4.12.4.1.1 Example

	4.13 Timers
	4.13.1 Timed Contacts
	4.13.2 Timer Function Blocks
	4.13.2.1 Built-In Timer Function Blocks
	4.13.2.1.1 Data Required for Built-in Timer Function Blocks
	4.13.2.1.2 Word 1: Current value (CV)
	4.13.2.1.3 Word 2: Preset value (PV)
	4.13.2.1.4 Word 3: Control word

	4.13.2.1.5 Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep
	4.13.2.1.6 Timers that are Skipped by the Jump Instruction
	4.13.2.1.7 Using OFDT, ONDTR and TMR in Parameterized Blocks
	4.13.2.1.8 Finding the Source Block
	4.13.2.1.9 Programming OFDT, ONDTR and TMR in Parameterized Blocks
	4.13.2.1.10 Parameterized block called from one block
	4.13.2.1.11 Parameterized block called from multiple blocks
	4.13.2.1.12 Recursion

	4.13.2.1.13 Using OFDT, ONDTR and TMR in UDFBs
	4.13.2.1.14 Example

	4.13.2.2 Off Delay Timer
	4.13.2.2.1 Timing diagram
	4.13.2.2.2 Operands for OFDT
	4.13.2.2.3 Example for OFDT

	4.13.2.3 On Delay Stopwatch Timer
	4.13.2.3.1 Timing diagram
	4.13.2.3.2 Operands for On Delay Stopwatch Timer
	4.13.2.3.3 Example for On Delay Stopwatch Timer

	4.13.2.4 On Delay Timer
	4.13.2.4.1 Timing Diagram
	4.13.2.4.2 Operands for On Delay Timer
	4.13.2.4.3 Example for On Delay Timer

	4.13.3 Standard Timer Function Blocks
	4.13.3.1 Data Required for Standard Timer Function Blocks
	4.13.3.2 Resetting the Timer
	4.13.3.3 Operands
	4.13.3.4 Timer Off Delay
	4.13.3.4.1 Timing Diagram
	4.13.3.4.2 Example

	4.13.3.5 Timer On Delay
	4.13.3.5.1 Timing Diagram
	4.13.3.5.2 Example

	4.13.3.6 Timer Pulse
	4.13.3.6.1 Timing Diagram
	4.13.3.6.2 Example

	Section 5 Function Block Diagram (FBD)
	5.1 Note on Reentrancy
	5.2 Advanced Math Functions
	5.2.1 EXPT Function
	5.2.1.1 Operands of the EXPT Function

	5.3 Bit Operation Functions
	5.3.1 Logical AND, Logical OR, and Logical XOR
	5.3.1.4 Operands for AND, OR, and XOR
	5.3.1.5 Properties for AND, OR, and XOR

	5.3.2 Logical NOT
	5.3.2.1 Operands

	5.4 Comments
	5.4.1 Text Block

	5.5 Comparison Functions
	5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	5.5.1.1 Operands

	5.6 Control Functions
	5.7 Counters
	5.8 Data Move Functions
	5.8.1 Fan Out
	5.8.1.1 Operands

	5.8.2 Move Data
	5.8.2.1 MOV Operands

	5.9 Math Functions
	5.9.1 Overflow
	5.9.2 Add
	5.9.2.1 Operands of the ADD Function
	5.9.2.2 Properties for ADD

	5.9.3 Divide
	5.9.3.1 Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

	5.9.4 Modulus
	5.9.4.1 Operands for Modulus Function

	5.9.5 Multiply
	5.9.5.1 Operands for Multiply
	5.9.5.2 Properties for Multiply

	5.9.6 Negate
	5.9.6.1 Operands

	5.9.7 Subtract
	5.9.7.1 Operands for Subtract
	5.9.7.2 Properties for Subtract

	5.10 Program Flow Functions
	5.11 Timers
	5.11.1 Built-in Timer Function Blocks
	5.11.2 Standard Timer Function Blocks

	5.12 Type Conversion Functions
	5.12.1 Convert WORD to INT
	5.12.1.1 Operands

	5.12.2 Convert WORD to UINT
	5.12.2.1 Operands

	5.12.3 Convert DWORD to DINT
	5.12.3.1 Operands

	5.12.4 Convert INT or UINT to WORD
	5.12.4.1 Operands

	5.12.5 Convert DINT to DWORD
	5.12.5.1 Operands

	Section 6 Service Request Function
	6.1 Operation of SVC_REQ Function
	6.1.1 Ladder Diagram
	6.1.1.1 Operands
	6.1.1.1.1 Example

	6.1.2 Function Block Diagram
	6.1.2.1 Operands

	6.2 SVC_REQ 1: Change/Read Constant Sweep Timer
	6.2.1 To disable Constant Sweep mode:
	6.2.2 To enable Constant Sweep mode and use the old timer value:
	6.2.3 To enable Constant Sweep mode and use a new timer value:
	6.2.4 To change the timer value without changing the selection for sweep mode state:
	6.2.5 To read the current timer state and value without changing either:
	6.2.5.1 Output
	6.2.5.1.1 SVC_REQ 1 Example

	6.3 SVC_REQ 2: Read Window Modes and Time Values
	6.3.1.1 Output
	6.3.1.2 Mode Values
	6.3.1.2.1 SVC_REQ 2 Example

	6.4 SVC_REQ 3: Change Controller Communications Window Mode
	6.4.1 To disable the controller communications window:
	6.4.2 To re-enable or change the controller communications window mode:
	6.4.2.1 SVC_REQ 3 Example

	6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
	6.5.1 To disable the Backplane Communications window:
	6.5.2 To enable the Backplane Communications window mode:
	6.5.2.1 SVC_REQ 4 Example

	6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value
	6.6.1 To disable the Background Task window:
	6.6.2 To enable the Background Task window mode:
	6.6.2.1.1 SVC_REQ 5 Example

	6.7 SVC_REQ 6: Change/Read Number of Words to Checksum
	6.7.1 To read the word count:
	6.7.2 To set a new word count:
	6.7.2.1.1 SVC_REQ 6 Example

	6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock
	6.8.1 Parameter Block Formats
	6.8.1.1 BCD, 2-Digit Year
	6.8.1.2 BCD, 4-Digit Year
	6.8.1.3 POSIX
	6.8.1.4 Unpacked BCD (2-Digit Year)
	6.8.1.5 Unpacked BCD (4-Digit Year)
	6.8.1.6 Numeric, 2-Digit Year
	6.8.1.7 Numeric, 4-Digit Year
	6.8.1.8 Packed ASCII, 2-Digit Year
	6.8.1.9 Packed ASCII, 4-Digit Year
	6.8.1.9.1 SVC_REQ 7 Example

	6.9 SVC_REQ 8: Reset Watchdog Timer
	6.9.1.1 SVC_REQ 8 Example

	6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep
	6.10.1.1 Output
	6.10.1.1.1 SVC_REQ 9 Example

	6.11 SVC_REQ 10: Read Target Name
	6.11.1.1 Output
	6.11.1.1.1 SVC_REQ 10 Example

	6.12 SVC_REQ 11: Read Controller ID
	6.12.1.1 Output
	6.12.1.1.1 SVC_REQ 11 Example

	6.13 SVC_REQ 12: Read Controller Run State
	6.13.1.1 Output
	6.13.1.1.1 SVC_REQ 12 Example

	6.14 SVC_REQ 13: Shut Down (STOP) CPU
	6.14.1.1 SVC_REQ 13 Example

	6.15 SVC_REQ 14: Clear Controller or I/O Fault Table
	6.15.1.1 SVC_REQ 14 Example

	6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry
	6.16.1.1 Input Parameter Block
	6.16.1.2 Output Parameter Block
	6.16.1.2.1 Long/Short Value
	6.16.1.2.2 SVC_REQ 15 Example 1
	6.16.1.2.3 SVC_REQ 15 Example 2

	6.17 SVC_REQ 16: Read Elapsed Time Clock
	6.17.1.1 Output
	6.17.1.1.1 SVC_REQ 16 Example

	6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt
	6.18.1 Masking/Unmasking Module Interrupts
	6.18.1.1 SVC_REQ 17 Example 1
	6.18.1.2 SVC_REQ 17 Example 2

	6.19 SVC_REQ 18: Read I/O Forced Status
	6.19.1.1.1 Output
	6.19.1.1.2 SVC_REQ 18 Example

	6.20 SVC_REQ 19: Set Run Enable/Disable
	6.20.1.1.1 SVC_REQ 19 Example

	6.21 SVC_REQ 20: Read Fault Tables
	6.21.1 Non-Extended Formats
	6.21.1.1 Input Parameter Block Format
	6.21.1.2 Non-Extended Output Parameter Block Format
	6.21.1.3 Format of Returned Data for Fault Table Entries
	6.21.1.3.1 Format for Parameter Setting 00h or 01h
	6.21.1.3.2 Format for Parameter Setting 41h

	6.21.2 Extended Formats
	6.21.2.1 Input Parameter Block Format
	6.21.2.2 Extended Format Output Parameter Block Format
	6.21.2.3 Format of Returned Data for Fault Table Entries
	6.21.2.3.1 Format for Parameter Setting 0x80h & 0x81h
	6.21.2.3.2 Format for Parameter Setting 0xC1h
	6.21.2.3.3 SVC_REQ 20 Example 1: Non-Extended Format
	6.21.2.3.4 SVC_REQ 20 Example 2: Extended Format

	6.22 SVC_REQ 21: User-Defined Fault Logging
	6.22.1.1.1 SVC_REQ 21 Example

	6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts
	6.23.1.1.1 SVC_REQ 22 Example

	6.24 SVC_REQ 23: Read Master Checksum
	6.24.1.1 Output
	6.24.1.1.1 SVC_REQ 23 Example

	6.25 SVC_REQ 24: Reset Module
	6.25.1.1.1 SVC_REQ 24 Example

	6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums
	6.26.1.1.1 SVC_REQ 25 Example

	6.27 SVC_REQ 29: Read Elapsed Power Down Time
	6.27.1.1.1 SVC_REQ 29 Example

	6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt
	6.28.1.1.1 SVC_REQ 32 Example

	6.29 SVC_REQ 45: Skip Next I/O Scan
	6.29.1.1.1 SVC_REQ 45 Example

	6.30 SVC_REQ 50: Read Elapsed Time Clock
	6.30.1.1 Output
	6.30.1.1.1 SVC_REQ 50 Example

	6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweep
	6.31.1.1 Output
	6.31.1.1.1 SVC_REQ 51 Example

	6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
	6.32.1 Discrete Memory
	6.32.2 Storage Disabled Conditions
	6.32.3 Maximum of One Active Instruction
	6.32.4 ENO and Power Flow To The Right
	6.32.5 Parameter Block
	6.32.5.1 Memory Type Codes
	6.32.5.2 Response Status Codes for SVC_REQ 56
	6.32.5.2.1 SVC_REQ 56 Example
	6.32.5.2.2 Parameter Block for SVC_REQ 56 Example

	6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage
	6.33.1 Length of Data Written
	6.33.2 Write Frequency
	6.33.3 Erase Cycles
	6.33.4 Discrete Memory
	6.33.5 Retentiveness
	6.33.6 Maximum of One Active Instruction
	6.33.7 Storage Disabled Conditions
	6.33.8 Error Checking
	6.33.9 Fragmentation
	6.33.10 When nonvolatile storage is full
	6.33.11 Equality
	6.33.12 Redundancy
	6.33.13 ENO and Power Flow to the Right
	6.33.14 Parameter Block for SVC_REQ 57
	6.33.14.1.1 Response Status Codes for SVC_REQ 57
	6.33.14.1.2 SVC_REQ 57 Example

	6.33.14.1.3 Parameter Block for SVC_REQ 57 Example

	Section 7 PID Built-In Function Block
	7.1 Operands of the PID Function
	7.1.1 Operands for LD Version of PID Function Block
	7.1.2 Operands for FBD Version of PID Function Block

	7.2 Reference Array for the PID Function
	7.2.1 Scaling Input and Outputs
	7.2.2 Reference Array Parameters

	7.3 Operation of the PID Function
	7.3.1 Automatic Operation
	7.3.2 Manual Operation
	7.3.3 Time Interval for the PID Function

	7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
	7.4.1 Derivative Term
	7.4.2 Error Term Mode
	7.4.3 Derivative Action on PV Bit
	7.4.4 Combined Operation of Error Term and Derivative Action Modes
	7.4.5 CV Bias Term
	7.4.6 CV Amplitude and Rate Limits
	7.4.7 Sample Period and PID Function Block Scheduling

	7.5 Determining the Process Characteristics
	7.6 Setting Tuning Loop Gains
	7.6.1 Basic Iterative Tuning Approach
	7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach
	7.6.3 Ideal Tuning Method

	7.7 PID Example
	7.7.1 Reference Array Initialization using %M00006

	Section 8 Structured Text (ST) Programming
	8.1 Language Overview
	8.1.1 Statements
	8.1.2 Expressions
	8.1.3 Operators
	8.1.3.1 Operand Types

	8.1.4 Structured Text Syntax

	8.2 Statement Types
	8.2.1 Assignment Statement
	8.2.1.1 Format
	8.2.1.1.1 Examples

	8.2.2 Function Call
	8.2.2.1 Built-in Functions Supported for ST Calls
	8.2.2.2 Calls to Standard Function Blocks
	8.2.2.2.1 Format of Calls to Standard Timer Function Blocks
	8.2.2.2.2 Formal Convention
	8.2.2.2.3 Informal Convention

	8.2.2.3 Block Types Supported for ST Calls
	8.2.2.4 Formal Calls vs. Informal Calls
	8.2.2.4.1 Format of Formal Function Call
	8.2.2.4.2 Format of Informal Function Call
	8.2.2.4.3 Example

	8.2.3 RETURN Statement
	8.2.4 IF Statement
	8.2.4.1 Format
	8.2.4.2 Operation
	8.2.4.2.1 Example

	8.2.5 CASE Statement
	8.2.5.1 Format
	8.2.5.2 Operation
	8.2.5.3 Requirements for Conditional Statements
	8.2.5.3.1 Examples

	8.2.6 FOR … DO Statements
	8.2.6.1 Format
	8.2.6.2 Operation
	8.2.6.2.1 Examples

	8.2.7 WHILE Statement
	8.2.7.1 Format
	8.2.7.2 Operation
	8.2.7.2.1 Example

	8.2.8 REPEAT Statement
	8.2.8.1 Format
	8.2.8.2 Operation
	8.2.8.2.1 Example

	8.2.9 ARG_PRES Statement
	8.2.9.1 Format
	8.2.9.1.1 Example

	8.2.10 Exit Statement
	8.2.10.1 Format
	8.2.10.1.1 Example

	Section 9 Diagnostics
	9.1 Fault Handling Overview
	9.1.1 System Response to Faults
	9.1.2 Fault Tables
	9.1.3 Fault Actions and Fault Action Configuration
	9.1.3.1 Faults that are part of configurable fault groups:
	9.1.3.2 Faults that are part of non-configurable fault groups:

	9.2 Using the Fault Tables
	9.2.1 Controller Fault Table
	9.2.1.1 Viewing Controller Fault Details
	9.2.1.2 User-Defined Faults

	9.2.2 I/O Fault Table
	9.2.2.1 Viewing I/O Fault Details

	9.3 System Handling of Faults
	9.3.1 System Fault References
	9.3.1.1 Fault References for Configurable Faults
	9.3.1.2 Fault References for Non-Configurable Faults

	9.3.2 Using Fault Contacts
	9.3.2.1 Fault Locating References (Rack, Slot, Bus, Module)
	9.3.2.2 Fault Locating Reference Name Format
	9.3.2.2.1 Fault Reference Name Examples:

	9.3.2.3 Behavior of Fault Locating References

	9.3.3 Using Point Faults
	9.3.4 Using Alarm Contacts

	9.4 Controller Fault Descriptions and Corrective Actions
	9.4.1 Controller Fault Groups
	9.4.2 Loss of or Missing Rack (Group 1)
	9.4.2.1 1, Rack Lost
	9.4.2.1.1 Correction

	9.4.2.2 2, Rack Not Responding
	9.4.2.2.1 Correction

	9.4.3 Loss of or Missing Option Module (Group 4)
	9.4.3.1 3C hex/60 decimal, Module in Firmware Update Mode
	9.4.3.1.1 Correction

	9.4.3.2 63 hex/99 decimal, Module Hot Removed
	9.4.3.3 All Others, Module Failure During Configuration
	9.4.3.3.1 Correction

	9.4.4 Addition of, or Extra Rack (Group 5)
	9.4.4.1 1, Extra Rack
	9.4.4.1.1 Correction

	9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)
	9.4.5.1 3, LAN Interface Restart Complete, Running Utility
	9.4.5.1.1 Correction

	9.4.5.2 7, Extra Option Module
	9.4.5.2.1 Correction

	9.4.5.3 E Hex/14 Decimal, Option Module Hot inserted

	9.4.6 System Configuration Mismatch (Group 11)
	9.4.6.1 2, Genius I/O Block Model Number Mismatch
	9.4.6.1.1 Correction
	9.4.6.1.2 Fault Extra Data for Genius I/O Block Model Number Mismatch
	9.4.6.1.3 Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
	9.4.6.1.4 GENA Application ID Numbers

	9.4.6.2 4, I/O Type Mismatch
	9.4.6.2.1 Correction
	9.4.6.2.2 Fault Extra Data for I/O Type Mismatch
	9.4.6.2.3 Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)
	9.4.6.2.4 Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

	9.4.6.3 8, Analog Expander Mismatch
	9.4.6.3.1 Correction

	9.4.6.4 9, Genius I/O Block Size Mismatch
	9.4.6.4.1 Correction
	9.4.6.4.2 Fault Extra Data for Genius I/O Block Size Mismatch

	9.4.6.5 A hex/10 decimal, Unsupported Feature
	9.4.6.5.1 Correction
	9.4.6.5.2 Fault Extra Data for Unsupported Feature

	9.4.6.6 E hex/14 decimal, LAN Duplicate MAC Address
	9.4.6.6.1 Correction

	9.4.6.7 F hex/15 decimal, LAN Duplicate MAC Address Resolved
	9.4.6.8 10 hex/16 decimal, LAN MAC Address Mismatch
	9.4.6.8.1 Correction

	9.4.6.9 11 hex/17 decimal, LAN Softswitch/Modem mismatch
	9.4.6.9.1 Correction

	9.4.6.10 13 hex/19 decimal, DCD Length Mismatch
	9.4.6.10.1 Correction
	9.4.6.10.2 Fault Extra Data for DCD Length Mismatch

	9.4.6.11 25 hex/37 decimal, Controller Reference Out-of-Range
	9.4.6.11.1 Correction

	9.4.6.12 26 hex/38 decimal, Bad Program Specification
	9.4.6.12.1 Correction

	9.4.6.13 27 hex/39 decimal, Unresolved or Disabled Interrupt Reference
	9.4.6.13.1 Correction

	9.4.6.14 43 hex/67 decimal, Module Configuration Failure
	9.4.6.14.1 Correction

	9.4.6.15 4B hex/75 decimal, ECC jumper is disabled, but should be enabled
	9.4.6.15.1 Correction

	9.4.6.16 4C hex/76 decimal, ECC jumper is enabled, but should be disabled
	9.4.6.16.1 Correction

	9.4.6.17 All Others, Module and Configuration do not Match
	9.4.6.17.1 Correction

	9.4.7 System Bus Error (Group 12)
	9.4.7.1 4, Unrecognized VME Interrupt Source
	9.4.7.1.1 Correction

	9.4.8 CPU Hardware Failure (Group 13)
	9.4.8.1 6E hex/110 decimal, Time-of-Day Clock not Battery-Backed
	9.4.8.1.1 Correction

	9.4.8.2 0A8 hex/168 decimal, Critical Over-Temperature Failure
	9.4.8.3 All Others
	9.4.8.3.1 Correction
	9.4.8.3.2 Fault Extra Data for CPU Hardware Failure

	9.4.9 Module Hardware Failure (Group 14)
	9.4.9.1 1A0 hex/416 decimal, Missing 12 Volt Power Supply
	9.4.9.1.1 Correction

	9.4.9.2 1C2 - 1C6 hex (450 – 454 decimal), LAN Interface Hardware Failure
	9.4.9.3 All Others, Module Hardware Failure
	9.4.9.3.1 Correction

	9.4.10 Option Module Software Failure (Group 16)
	9.4.10.1 1, Unsupported Board Type
	9.4.10.1.1 Correction

	9.4.10.2 2, 3, COMMREQ Frequency Too High
	9.4.10.2.1 Correction

	9.4.10.3 4, More Than One BTM in a Rack
	9.4.10.3.1 Correction

	9.4.10.4 >4, Option Module Software Failure
	9.4.10.4.1 Correction

	9.4.10.5 >400, LAN System Software Fault
	9.4.10.5.1 Correction

	9.4.11 Program or Block Checksum Failure (Group 17)
	9.4.11.1 All Error Codes, Program or Block Checksum Failure
	9.4.11.1.1 Correction
	9.4.11.1.2 Fault Extra Data for Program or Block Checksum Failure

	9.4.12 Battery Status (Group 18)
	9.4.12.1 0, Failed Battery
	9.4.12.1.1 CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315, CPU/CRU320 and NIU001
	9.4.12.1.2 CPE302, CPE305 and CPE310
	9.4.12.1.3 Correction

	9.4.12.2 1, Low Battery – CPUs with Battery-Backed RAM
	9.4.12.2.1 Correction

	9.4.12.3 1, Low Battery – CPE302/CPE305/CPE310/CPE330 CPUs with Energy Pack

	9.4.13 Constant Sweep Time Exceeded (Group 19)
	9.4.13.1 0, Constant Sweep
	9.4.13.1.1 Correction

	9.4.14 System Fault Table Full (Group 20)
	9.4.14.1 0, System Fault Table Full
	9.4.14.1.1 Correction

	9.4.15 I/O Fault Table Full (Group 21)
	9.4.15.1 0, I/O Fault Table Full
	9.4.15.1.1 Correction

	9.4.16 User Application Fault (Group 22)
	9.4.16.1 2, Software Watchdog Timer Expired
	9.4.16.1.1 Correction

	9.4.16.2 7, Application Stack Overflow
	9.4.16.2.1 Correction

	9.4.16.3 11 hex/17 decimal, Program Run Time Error
	9.4.16.3.1 Correction

	9.4.16.4 1E - 21 hex (30 - 33 decimal), LAN Interface Fault
	9.4.16.5 22 hex/34 decimal, Unsupported Protocol
	9.4.16.6 33 hex/51 decimal, Flash Read Failed
	9.4.16.7 34 hex/52 decimal, Memory Reference Out of Range
	9.4.16.7.1 Correction

	9.4.16.8 35 hex/53 decimal, Divide by zero attempted in user logic.
	9.4.16.8.1 Correction

	9.4.16.9 36 hex/54 decimal, Operand is not byte aligned.
	9.4.16.9.1 Correction

	9.4.16.10 39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted
	9.4.16.10.1 Correction

	9.4.16.11 3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large enough to accommodate this reference.
	9.4.16.11.1 Correction

	9.4.17 CPU Over-Temperature (Group 24)
	9.4.17.1 1, Over-Temperature failure.
	9.4.17.1.1 Correction

	9.4.18 Power Supply Fault (Group 25)
	9.4.18.1 1, Power supply failure.
	9.4.18.1.1 Correction

	9.4.18.2 2, Power supply overloaded
	9.4.18.2.1 Correction

	9.4.18.3 3, Power supply switched off
	9.4.18.4 4, Power-supply has exceeded normal operating temperature
	9.4.18.4.1 Correction

	9.4.19 No User Program on Power-Up (Group 129)
	9.4.19.1.1 Correction

	9.4.20 Corrupted User Program on Power-Up (Group 130)
	9.4.20.1 1, Corrupted user RAM on power-up
	9.4.20.1.1 Recommended Corrections, Listed in Order

	9.4.20.2 7, User memory not preserved over power cycle
	9.4.20.2.1 Correction

	9.4.21 Window Completion Failure (Group 131)
	9.4.21.1 0, Window Completion Failure
	9.4.21.1.1 Correction

	9.4.21.2 1, Logic Window Skipped
	9.4.21.2.1 Correction

	9.4.22 Password Access Failure (Group 132)
	9.4.22.1 0, Password Access Failure
	9.4.22.1.1 Correction

	9.4.23 Null System Configuration for RUN Mode (Group 134)
	9.4.23.1 0, Null System Configuration for RUN Mode
	9.4.23.1.1 Correction

	9.4.24 CPU System Software Failure (Group 135)
	9.4.24.1 5A hex/90 decimal, User Shut Down Requested
	9.4.24.1.1 Correction

	9.4.24.2 94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended
	9.4.24.2.1 Correction

	9.4.24.3 D8 hex/216 decimal, Processor Exception Trap
	9.4.24.3.1 Correction

	9.4.24.4 DA hex/218 decimal, Critical Over-Temperature Failure
	9.4.24.4.1 Correction

	9.4.24.5 All Others, CPU Internal System Error
	9.4.24.5.1 Correction

	9.4.25 Communications Failure During Store (Group 137)
	9.4.25.1 0, Communications Failure During Store
	9.4.25.1.1 Correction

	9.4.25.2 1, Communications Lost During RUN Mode Store
	9.4.25.2.1 Correction

	9.4.25.3 2, Communications Lost During Cleanup for RUN Mode Store
	9.4.25.3.1 Correction

	9.4.25.4 3, Power Lost During a RUN Mode Store
	9.4.25.4.1 Correction

	9.4.26 Non-Critical CPU Software Event (Group 140)
	9.4.26.1 Error code 53, Access Control Fault
	9.4.26.1.1 Fault example
	9.4.26.1.2 Meaning of this example fault
	9.4.26.1.3 Interpreting the Fault Extra Data

	9.5 I/O Fault Descriptions and Corrective Actions
	9.5.1 Fault Extra Data
	9.5.2 I/O Fault Groups
	9.5.3 I/O Fault Categories
	9.5.4 Circuit Faults (Category 1)
	9.5.4.1 Fault Extra Data for Circuit Faults
	9.5.4.1.1 Genius Bus Controller
	9.5.4.1.2 VRD001 RTD/Strain Bridge

	9.5.4.2 Fault Descriptions for Discrete Faults
	9.5.4.2.1 1, Loss of User Side Power
	9.5.4.2.2 Correction

	9.5.4.2.3 2, Short Circuit in User Wiring
	9.5.4.2.4 Correction

	9.5.4.2.5 4, Sustained Overcurrent
	9.5.4.2.6 Correction

	9.5.4.2.7 8, Low or No Current Flow
	9.5.4.2.8 Correction

	9.5.4.2.9 10 hex, Switch Temperature Too High
	9.5.4.2.10 Correction

	9.5.4.2.11 20 hex, Switch Failure
	9.5.4.2.12 Correction

	9.5.4.2.13 83 hex, Point Fault
	9.5.4.2.14 Correction

	9.5.4.2.15 84 hex, Output Fuse Blown
	9.5.4.2.16 Correction

	9.5.4.3 Fault Descriptions for Analog Faults
	9.5.4.3.1 1, Input Channel Low Alarm
	9.5.4.3.2 Correction

	9.5.4.3.3 2, Input Channel High Alarm
	9.5.4.3.4 Correction

	9.5.4.3.5 4, Input Channel Under Range
	9.5.4.3.6 Correction

	9.5.4.3.7 8, Input Channel Over Range
	9.5.4.3.8 Correction

	9.5.4.3.9 10 hex/16 decimal, Input Channel Open Wire
	9.5.4.3.10 Correction

	9.5.4.3.11 18 hex/24 decimal, Over Range or Open Wire
	9.5.4.3.12 Correction

	9.5.4.3.13 20 hex/32 decimal, Output Channel Under Range
	9.5.4.3.14 Correction

	9.5.4.3.15 40 hex/64 decimal, Output Channel Over Range
	9.5.4.3.16 Correction

	9.5.4.3.17 80 hex/128 decimal, Expansion Channel Not Responding
	9.5.4.3.18 Correction

	9.5.4.3.19 81 hex/129 decimal, Invalid Data
	9.5.4.3.20 Correction

	9.5.4.4 Low-Level Analog Faults
	9.5.4.4.1 1, Input Channel Low Alarm
	9.5.4.4.2 Correction

	9.5.4.4.3 2, Input Channel High Alarm
	9.5.4.4.4 Correction

	9.5.4.4.5 4, Input Channel Under Range
	9.5.4.4.6 Correction

	9.5.4.4.7 8, Input Channel Over Range
	9.5.4.4.8 Correction

	9.5.4.4.9 10 hex, Input Channel Open Wire
	9.5.4.4.10 Correction

	9.5.4.4.11 20 hex/32 decimal, Wiring Error
	9.5.4.4.12 Correction

	9.5.4.4.13 40 hex/64 decimal, Internal Fault
	9.5.4.4.14 Correction

	9.5.4.4.15 80 hex/128 decimal, Input Channel Shorted
	9.5.4.4.16 Correction

	9.5.4.4.17 81 hex/129 decimal, Invalid Data
	9.5.4.4.18 Correction

	9.5.4.5 GENA Fault
	9.5.4.5.1 80 hex/128 decimal
	9.5.4.5.2 Correction

	9.5.5 Loss of Block (Category 2)
	9.5.5.1 Loss of Block
	9.5.5.1.1 Correction

	9.5.5.2 Loss of Block - A/D Communications Fault
	9.5.5.2.1 Correction
	9.5.5.2.2 Fault Extra Data for Loss of Block
	9.5.5.2.3 Block Configuration (Byte 2)

	9.5.6 Addition of Block (Category 3)
	9.5.6.1.1 Correction
	9.5.6.1.2 Fault Extra Data for Addition of Block
	9.5.6.1.3 Block Configuration (Byte 2)

	9.5.7 I/O Bus Fault (Category 6)
	9.5.7.1 Bus Fault
	9.5.7.1.1 Correction

	9.5.7.2 Bus Outputs Disabled
	9.5.7.2.1 Correction

	9.5.7.3 SBA Conflict
	9.5.7.3.1 Correction

	9.5.8 Module Fault (Category 8)
	9.5.8.1 08 hex, Configuration Memory Failure
	9.5.8.1.1 Correction

	9.5.8.2 20 hex/32 decimal, Calibration Memory Failure
	9.5.8.2.1 Correction

	9.5.8.3 40 hex/64 decimal, Shared RAM Fault
	9.5.8.3.1 Correction

	9.5.8.4 80 hex/128 decimal, Module Fault
	9.5.8.4.1 Correction

	9.5.8.5 81 hex/129 decimal, Watchdog Timeout
	9.5.8.5.1 Correction

	9.5.8.6 84 hex/132 decimal, Output Fuse Blown
	9.5.8.6.1 Correction

	9.5.9 Addition of IOC (Category 9)
	9.5.9.1 Addition of IOC
	9.5.9.1.1 Correction

	9.5.9.2 01 hex, Extra Module
	9.5.9.2.1 Correction

	9.5.9.3 02 hex, Reset Request

	9.5.10 Loss of or Missing IO Controller (Category 10)
	9.5.10.1.1 Correction
	9.5.10.1.2 Fault Extra Data for Loss of or Missing IOC

	9.5.11 IOC (I/O Controller) Software Fault (Category 11)
	9.5.11.1 Datagram Queue Full, Read/Write Queue Full
	9.5.11.1.1 Correction

	9.5.11.2 Response Lost
	9.5.11.2.1 Correction

	9.5.12 Forced and Unforced Circuit (Categories 12 and 13)
	9.5.12.1 Fault Extra Data for Forced/Unforced Circuit

	9.5.13 Loss of or Missing I/O Module (Category 14)
	9.5.13.1.1 Correction

	9.5.14 Addition of I/O Module (Category 15)
	9.5.14.1 Addition of I/O Module
	9.5.14.1.1 Correction

	9.5.14.2 30 hex/48 decimal, VME Reset on Request

	9.5.15 Extra I/O Module (Category 16)
	9.5.15.1.1 Correction

	9.5.16 Extra Block (Category 17)
	9.5.16.1.1 Correction

	9.5.17 IOC Hardware Failure (Category 18)
	9.5.17.1.1 Correction

	9.5.18 GBC Stopped Reporting Faults (Category 19)
	9.5.18.1.1 Correction

	9.5.19 GBC Software Exception (Category 21)
	9.5.19.1 1, Incoming datagram queue full
	9.5.19.1.1 Correction

	9.5.19.2 2, Read/write request queue full
	9.5.19.2.1 Correction

	9.5.19.3 3, Low priority mail queue from GBC to CPU full
	9.5.19.4 4, Genius background message requiring CPU action received before CPU completed initialization
	9.5.19.5 5, GBC software version too old
	9.5.19.5.1 Correction

	9.5.19.6 6, Excessive use of internal GBC memory
	9.5.19.6.1 Correction

	9.5.20 Block Switch (Category 22)
	9.5.20.1.1 Correction
	9.5.20.1.2 Fault Extra Data for Block Switch

	9.5.21 Reset of IOC (Category 27)

	9.6 Diagnostic Logic Blocks (DLBs)
	9.6.1 DLB Operation
	9.6.1.1 Suspend I/O Function and DLBs
	9.6.1.2 Restrictions on DLB Operation
	9.6.1.3 DLB Variables

	9.6.2 Executing DLBs
	9.6.2.1 DLB Properties
	9.6.2.2 Target Properties
	9.6.2.2.1 Right-click Online Operations for an Active DLB

	9.6.2.3 DLB Online Operations
	9.6.2.4 Removing a DLB from the Controller
	9.6.2.5 Basic Steps for Using a DLB in the Controller
	9.6.2.6 Monitoring DLB Execution

	9.6.3 Diagnostic Logic Block (DLB) Example
	9.6.3.1.1 Logic for the Monitor Scan Block
	9.6.3.1.2 DLB Block Icon/Status Bar Once Started.

	General Contact Information
	Technical Support

