## PACSystems™ RX3i System Manual





#### Warnings and Caution Notes as Used in this Publication

#### **A** WARNING

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

#### **A** CAUTION

Caution notices are used where equipment might be damaged if care is not taken.

**Note:** Notes merely call attention to information that is especially significant to understanding and operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. The information is supplied for informational purposes only, and Emerson makes no warranty as to the accuracy of the information included herein. Changes, modifications, and/or improvements to equipment and specifications are made periodically and these changes may or may not be reflected herein. It is understood that Emerson may make changes, modifications, or improvements to the equipment referenced herein or to the document itself at any time. This document is intended for trained personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability or fitness for particular purpose.

## **Contents**

| Table of I | igures                                                          | . xix |
|------------|-----------------------------------------------------------------|-------|
| Section 1  | : Introduction                                                  | 1     |
| 1.1        | Revisions of this Manual                                        | 1     |
| 1.2        | Overview                                                        | 4     |
|            | 1.2.1 Features                                                  | 4     |
|            | 1.2.2 Programming and Configuration                             | 6     |
|            | 1.2.3 PACSystems Documentation                                  | 6     |
| 1.3        | Modules for RX3i Systems                                        | 8     |
|            | 1.3.1 RX3i Modules (IC695 and IC694)                            | 9     |
|            | 1.3.2 Series 90-30 (IC693) Modules for RX3i Systems             | 12    |
|            | 1.3.3 Series 90-30 Modules that Cannot Be Used in an RX3i Syste | em.14 |
| 1.4        | Backplanes and Power Supplies                                   | 16    |
|            | 1.4.1 RX3i Universal Backplane                                  | 16    |
|            | 1.4.2 Expansion (12-slot and 16-slot Universal Backplanes Only) |       |
|            | 1.4.3 Backplanes Available for the RX3i System                  |       |
|            | 1.4.4 Power Supplies for RX3i Systems                           |       |
| 1.5        | Expansion Systems                                               | 20    |
|            | 1.5.1 Expansion System with One Expansion or Remote Backplai    | ne.21 |
|            | 1.5.2 Using Multiple Expansion and Remote Backplanes            | 21    |
| Section 2  | : Installation                                                  | 23    |
| 2.1        | Pre-Installation Check                                          | 24    |
| 2.2        | System Layout Guidelines                                        | 24    |
| 2.3        | Enclosures                                                      | 26    |
|            | 2.3.1 RX3i Universal Backplane Dimensions and Spacing           | 27    |
|            | 2.3.2 RX3i Serial Expansion Backplane Dimensions and Spacing    |       |
| 2.4        | System Wiring                                                   | 29    |
|            | 2.4.1 Color Coding Wires                                        | 29    |
|            | 2.4.2 Wire Routing                                              |       |
| 2.5        | System Grounding                                                | 31    |
|            | 2.5.1 Ground Conductors                                         | 32    |
|            | 2.5.2 Backplane Safety and EMC Reference Grounding              | 33    |

|           | 2.5.3 Power Supply Grounding                                   | 33  |
|-----------|----------------------------------------------------------------|-----|
|           | 2.5.4 Programmer Grounding                                     | 34  |
|           | 2.5.5 Shield Grounding                                         | 34  |
| 2.6       | System Installation                                            | 35  |
|           | 2.6.1 Universal Backplanes                                     | 35  |
|           | 2.6.2 Expansion Backplanes                                     | 38  |
|           | 2.6.3 Mounting a Backplane in a 19-Inch Rack                   | 40  |
|           | 2.6.4 Modules                                                  | 43  |
|           | 2.6.5 CPU Installation                                         | 67  |
|           | 2.6.6 Power Supplies                                           | 68  |
|           | 2.6.7 Serial Bus Transmitter Module                            | 73  |
| Section 3 | : Backplanes                                                   | 74  |
| 3.1       | RX3i Universal Backplanes: IC695CHS007, IC695CHS012,           |     |
|           | IC695CHS016                                                    | 75  |
|           | 3.1.1 Dual-Bus Backplane                                       | 76  |
|           | 3.1.2 PCI-Only Backplane                                       |     |
|           | 3.1.3 RX3i Universal Backplane Features                        |     |
|           | 3.1.4 Module Locations in a 12- or 16-Slot Universal Backplane |     |
|           | 3.1.5 Module Locations in a 7-Slot Universal Backplane         | 83  |
| 3.2       | Serial Expansion Backplanes: IC694CHS392, IC694CHS398          | 85  |
| Section 4 | : Power Supplies                                               | 87  |
| 4.1       | Power Supply Overview                                          |     |
|           | 4.1.1 Power Supply Field Wiring                                |     |
|           | 4.1.2 24Vdc Isolated Power                                     |     |
|           | 4.1.3 RX3i IC695 Power Supply Outputs                          |     |
|           | 4.1.4 RX3i IC694 Power Supply Outputs                          |     |
| 4.2       | Module Load Requirements                                       |     |
|           | 4.2.1 Power Supply Loading Example                             | 97  |
|           | 4.2.2 Load Sharing / Redundancy                                |     |
| 4.3       | AC Power Supply Connections for Floating Neutral (IT) Systems  |     |
|           | 4.3.1 Special Instructions for Floating Neutral Systems        | 102 |
|           | 4.3.2 Non-Floating Neutral System                              |     |
| 4.4       | Power Supply, 120/240 Vac or 125Vdc, 40 W: IC695PSA040         |     |
|           | 4.4.1 Specifications: PSA040                                   | 106 |
|           | 4.4.2 Field Wiring: PSA040                                     |     |
|           | <del>-</del>                                                   |     |

|         | 4.5  | Multi-purpose Power Supply, 120/240 Vac or 125Vdc, 40 W:         |      |
|---------|------|------------------------------------------------------------------|------|
|         |      | IC695PSA140                                                      | 110  |
|         |      | 4.5.1 Specifications: PSA140                                     | 112  |
|         |      | 4.5.2 Field Wiring: PSA140                                       | 115  |
|         | 4.6  | Power Supply, 24Vdc, 40 W: IC695PSD040                           | 116  |
|         |      | 4.6.1 Specifications: PSD040                                     | 118  |
|         |      | 4.6.2 Field Wiring: PSD040                                       | 120  |
|         | 4.7  | Multi-Purpose Power Supply, 24Vdc, 40 W: IC695PSD140             | 122  |
|         |      | 4.7.1 Specifications: PSD140                                     | 124  |
|         |      | 4.7.2 Field Wiring: PSD140                                       |      |
|         | 4.8  | Power Supply, 120/240 Vac or 125Vdc: IC694PWR321                 | 128  |
|         |      | 4.8.1 Specifications: PWR321                                     | 129  |
|         |      | 4.8.2 Field Wiring: PWR321                                       | 130  |
|         | 4.9  | Power Supply, 120/240 Vac or 125Vdc High Capacity: IC694PWR33    | 30   |
|         |      |                                                                  | 132  |
|         |      | 4.9.1 Specifications: PWR330                                     | 133  |
|         |      | 4.9.2 Field Wiring: PWR330                                       |      |
|         | 4.10 | Power Supply, 24Vdc High-Capacity: IC694PWR331                   | 136  |
|         |      | 4.10.1 Specifications: PWR331                                    | 137  |
|         |      | 4.10.2 Field Wiring: PWR331                                      | 139  |
| Section | on 5 | Serial Bus Transmitter & Expansion Cables.                       | 141  |
|         | 5.1  | Serial Bus Transmitter Module: IC695LRE001                       | 142  |
|         |      | 5.1.1 Specifications: LRE001                                     | 143  |
|         |      | 5.1.2 Expansion Module Installation                              | 143  |
|         |      | 5.1.3 Powering Down Individual Expansion or Remote Backplane 144 | S    |
|         | 5.2  | I/O Bus Expansion Cables: IC693CBL300, 301, 302, 312, 313        | 144  |
|         |      | 5.2.1 Cable with Two Connectors: IC693CBL302                     | 145  |
|         |      | 5.2.2 Cables with Three Connectors: IC693CBL300, 301, 312, 313   | 146  |
|         | 5.3  | Specifications: IC693CBL300, 301, 302, 312, 313                  | 147  |
|         |      | 5.3.1 Expansion Port Pin Assignments                             | 148  |
|         |      | 5.3.2 Building Custom Cables                                     | 149  |
|         |      | 5.3.3 Termination Requirement for Expansion or Remote System     | .151 |
| Section | on 6 | Discrete Input Modules                                           | 152  |
|         | 6.1  | Input Module, 120 Vac, 8-Point Isolated: IC694MDL230             | 153  |
|         |      | 6.1.1 Specifications: MDL230                                     | 154  |

Contents iii

|      | 6.1.2 Field Wiring: MDL230                                 | 155 |
|------|------------------------------------------------------------|-----|
| 6.2  | Input Module, 240 Vac, 8-Point Isolated: IC694MDL231       | 156 |
|      | 6.2.1 Specifications: MDL231                               | 157 |
|      | 6.2.2 Field Wiring: MDL231                                 | 158 |
| 6.3  | Input Module, 120 Vac, 16-Point: IC694MDL240               | 159 |
|      | 6.3.1 Specifications: MDL240                               | 160 |
|      | 6.3.2 Thermal Derating: MDL240                             | 160 |
|      | 6.3.3 Field Wiring: MDL240                                 | 160 |
| 6.4  | Input Module, 24Vac/Vdc 16-Point Pos/Neg Logic IC694MDL241 | 162 |
|      | 6.4.1 Specifications: MDL241                               | 163 |
|      | 6.4.2 Field Wiring: MDL241                                 | 164 |
| 6.5  | Input Module, 120 Vac 16-Point Isolated: IC694MDL250       | 165 |
|      | 6.5.1 Specifications: MDL250                               | 166 |
|      | 6.5.2 Input Filter Setup: MDL250                           |     |
|      | 6.5.3 Module Status Data: MDL250                           |     |
|      | 6.5.4 Field Wiring: MDL250                                 |     |
| 6.6  | Input Module, 120 Vac, 32-Point: IC694MDL260               |     |
|      | 6.6.1 Specifications: MDL260                               |     |
|      | 6.6.2 Thermal Derating: MDL260                             |     |
|      | 6.6.3 Input Filter Setup: MDL260                           |     |
|      | 6.6.4 Module Status Data: MDL260                           |     |
| c 7  | 6.6.5 Field Wiring: MDL260                                 |     |
| 6.7  | Input Module, 125Vdc Pos/Neg, 8-Point IC694MDL632          |     |
|      | 6.7.1 Specifications: MDL632                               |     |
|      | 6.7.2 Thermal Derating: MDL632                             |     |
| 6.0  | 6.7.3 Field Wiring: MDL632                                 |     |
| 6.8  | Input Module, 24Vdc Pos/Neg, 8-Point IC694MDL634           |     |
|      | 6.8.1 Specifications: MDL634                               |     |
| 6.0  | 6.8.2 Field Wiring: MDL634                                 |     |
| 6.9  | Input Module, 125Vdc Pos/Neg, 16-Point IC694MDL635         |     |
|      | 6.9.1 Specifications: MDL635                               |     |
|      | 6.9.2 Field Wiring: MDL635                                 |     |
| 6.10 | Input Module, 24Vdc Pos/Neg, 16-Point IC694MDL645          |     |
|      | 6.10.1 Specifications: MDL645                              |     |
|      | 6.10.2 Field Wiring: MDL645                                |     |
| 6.11 | Input Module: 24Vdc 16-Point Pos/Neg Logic IC694MDL646     |     |
|      | 6.11.1 Specifications: MDL646                              |     |
|      | 6.11.2 Field Wiring: MDL646                                | 188 |

Contents iv

| 6.12      | Input Module: 48 Vdc 16-Point Isolated Pos/Neg Logic IC694N |     |
|-----------|-------------------------------------------------------------|-----|
|           |                                                             |     |
|           | 6.12.1 Specifications: MDL648                               |     |
|           | 6.12.2 Thermal Derating: MDL648                             |     |
|           | 6.12.3 Field Wiring: MDL648                                 |     |
| 6.13      | , , ,                                                       |     |
|           | IC694MDL655, IC694MDL658                                    |     |
|           | 6.13.1 Specifications: MDL654, MDL655, MDL658               |     |
|           | 6.13.2 Thermal Derating: MDL654 & MDL655                    |     |
|           | 6.13.3 Field Wiring: MDL654, MDL655, MDL658                 |     |
| 6.14      | Input Module, 24Vdc 32-Point Grouped IC694MDL660            |     |
|           | 6.14.1 Specifications: MDL660                               |     |
|           | 6.14.2 Thermal Derating: MDL660                             |     |
|           | 6.14.3 Field Wiring: MDL660                                 |     |
|           | 6.14.4 Module Status Data: MDL660                           |     |
|           | 6.14.5 Input Filter Setup: MDL660                           |     |
| 6.15      |                                                             |     |
|           | 6.15.1 LED Operation: MDL664                                |     |
|           | 6.15.2 Specifications: MDL664                               |     |
|           | 6.15.3 Thermal Derating: MDL664                             |     |
|           | 6.15.4 Field Wiring: MDL664                                 |     |
|           | 6.15.5 Circuit Operation: MDL664                            |     |
|           | 6.15.6 Input and Output Data Formats: MDL664                |     |
|           | 6.15.7 Diagnostics: MDL664                                  |     |
|           | 6.15.8 Configuration: MDL664                                |     |
| 6.16      | Input Simulator, 8-/16-Point IC694ACC300                    | 216 |
|           | 6.16.1 Specifications: ACC300                               | 216 |
| Section 7 | 7: Discrete Output Modules                                  | 217 |
| 7.1       | Output Module, 120 Vac, 0.5 Amp, 12-Point: IC694MDL310      | 218 |
|           | 7.1.1 Specifications: MDL310                                | 219 |
|           | 7.1.2 Thermal Derating: MDL310                              |     |
|           | 7.1.3 Field Wiring: MDL310                                  |     |
| 7.2       | Output Module, 120/240 Vac, 2 Amp, 8-Point: IC694MDL330     |     |
|           | 7.2.1 Specifications: MDL330                                |     |
|           | 7.2.2 Thermal Derating: MDL330                              |     |
|           | 7.2.3 Field Wiring: MDL330                                  |     |
| 7.3       |                                                             |     |

Contents

|      | 7.3.1 Specifications: MDL340                                    | 225    |
|------|-----------------------------------------------------------------|--------|
|      | 7.3.2 Thermal Derating: MDL340                                  | 225    |
|      | 7.3.3 Field Wiring: MDL340                                      | 226    |
| 7.4  | Output Module, 120/240 Vac 16-Point Isolated: IC694MDL350       | 227    |
|      | 7.4.1 Specifications: MDL350                                    | 228    |
|      | 7.4.2 Field Wiring: MDL350                                      | 230    |
|      | 7.4.3 Module Status Data: MDL350                                | 231    |
| 7.5  | Output Module, 120/240 Vac Isolated, 2 Amp, 5-Point: IC694MDI   | _390   |
|      |                                                                 | 232    |
|      | 7.5.1 Specifications: MDL390                                    | 233    |
|      | 7.5.2 Thermal Derating MDL390                                   | 233    |
|      | 7.5.3 Field Wiring: MDL390                                      | 234    |
| 7.6  | Output Module, 12/24Vdc 2A Positive Logic 8-Point: IC694MDL73   | 30 235 |
|      | 7.6.1 LEDs                                                      | 235    |
|      | 7.6.2 Specifications: MDL730                                    | 236    |
|      | 7.6.3 Thermal Derating MDL730                                   | 236    |
|      | 7.6.4 Field Wiring: MDL730                                      | 237    |
| 7.7  | Output Module, 12/24Vdc 0.5A Positive Logic 8-Point: IC694MDL   | 732    |
|      |                                                                 | 238    |
|      | 7.7.1 Specifications: MDL732                                    | 239    |
|      | 7.7.2 Field Wiring: MDL732                                      | 240    |
| 7.8  | Output Module 125Vdc, 1 Amp, 6-Point Isolated Positive/Negative | /e:    |
|      | IC694MDL734                                                     | 241    |
|      | 7.8.1 Specifications: MDL734                                    | 242    |
|      | 7.8.2 Field Wiring: MDL734                                      | 243    |
| 7.9  | Output Module, 12/24Vdc, 0.5 Amp, Positive Logic, 16-Point:     |        |
|      | IC694MDL740                                                     | 244    |
|      | 7.9.1 Specifications: MDL740                                    | 245    |
|      | 7.9.2 Field Wiring: MDL740                                      | 246    |
| 7.10 | Output Module, 12/24Vdc, 0.5 Amp, Negative Logic 16-Point:      |        |
|      | IC694MDL741                                                     | 247    |
|      | 7.10.1 Specifications: MDL741                                   | 248    |
|      | 7.10.2 Field Wiring: MDL741                                     | 249    |
| 7.11 | Output Module, 12/24Vdc 1A Positive Logic, 16-Point with ESCP p | oer    |
|      | Group: IC694MDL742                                              | 250    |
|      | 7.11.1 Electronic Short-Circuit Protection (ESCP)               | 251    |
|      | 7.11.2 Specifications: MDL742                                   | 251    |
|      | 7.11.3 Thermal Derating: MDL742                                 | 252    |
|      | 7.11.4 Field Wiring: MDL742                                     | 253    |

Contents

| 7.12 | Output Module, 5/24Vdc (TTL) Negative Logic, 32-Point: IC694M   | DL752 |
|------|-----------------------------------------------------------------|-------|
|      |                                                                 | 254   |
|      | 7.12.1 Specifications: MDL752                                   | 255   |
|      | 7.12.2 Field Wiring: MDL752                                     | 256   |
|      | 7.12.3 Typical Connections: MDL752                              | 257   |
| 7.13 | Output Module, 12/24Vdc, 0.5A Positive Logic, 32-Point:         |       |
|      | IC694MDL753                                                     | 258   |
|      | 7.13.1 Specifications: MDL753                                   | 259   |
|      | 7.13.2 Field Wiring: MDL753                                     |       |
| 7.14 | Output Module, 12/24Vdc, 0.75A Positive Logic, 32-Point with ES | CP    |
|      | per Group: IC694MDL754                                          | 261   |
|      | 7.14.1 Electronic Short-Circuit Protection (ESCP)               | 262   |
|      | 7.14.2 LEDs: MDL754                                             |       |
|      | 7.14.3 Specifications: MDL754                                   |       |
|      | 7.14.4 Thermal Derating: MDL754                                 |       |
|      | 7.14.5 Output Defaults: MDL754                                  | 265   |
|      | 7.14.6 Field Wiring: MDL754                                     | 266   |
|      | 7.14.7 Module Status Data: MDL754                               | 267   |
|      | 7.14.8 ESCP Status Data: MDL754                                 | 267   |
| 7.15 | Output Module, 12/24Vdc, 0.5A Positive Logic, 32-Point with ESC | P per |
|      | Group: IC694MDL758                                              | 268   |
|      | 7.15.1 Electronic Short-Circuit Protection (ESCP)               | 269   |
|      | 7.15.2 LEDs: MDL758                                             | 269   |
|      | 7.15.3 Specifications: MDL758                                   | 270   |
|      | 7.15.4 Module Data: MDL758                                      | 271   |
|      | 7.15.5 Field Wiring: MDL758                                     | 272   |
| 7.16 | Output Module, 24/125Vdc, 2A Positive Logic, 16-Point with ESC  | P &   |
|      | Diagnostics: IC695MDL765                                        | 273   |
|      | 7.16.1 Electronic Short-Circuit Protection (ESCP)               | 274   |
|      | 7.16.2 LED Operation: MDL765                                    | 275   |
|      | 7.16.3 Specifications: MDL765                                   | 276   |
|      | 7.16.4 Field Wiring: MDL765                                     | 278   |
|      | 7.16.5 Circuit Operation: MDL765                                | 279   |
|      | 7.16.6 Input and Output Data Formats: MDL765                    | 280   |
|      | 7.16.7 Diagnostics: MDL765                                      |       |
|      | 7.16.8 Configuration: MDL765                                    | 285   |
| 7.17 | Output Module, Isolated Relay, N.O., 4 Amp, 16-Point: IC694MD   | L916  |
|      |                                                                 | 287   |
|      | 7.17.1 Specifications: MDL916                                   | 288   |

Contents vii

|              | 7.17.2 Field Wiring: MDL916                                      | 291  |
|--------------|------------------------------------------------------------------|------|
| 7.1          | 18 Output Module, Isolated Relay, N.O., 4 Amp, 8-Point: IC694MDL | .930 |
|              |                                                                  | 292  |
|              | 7.18.1 Specifications: MDL930                                    | 293  |
|              | 7.18.2 Field Wiring: MDL930                                      | 295  |
| 7.1          | 19 Output Module, Isolated Relay, N.C. and Form C, 8A, 8-Point:  |      |
|              | IC694MDL931                                                      | 296  |
|              | 7.19.1 Specifications: MDL931                                    | 297  |
|              | 7.19.2 Field Wiring: MDL931                                      | 299  |
| 7.2          | Output Module, Relay Output, N.O., 2 Amp, 16-Point: IC694MDL     | _940 |
|              |                                                                  | 300  |
|              | 7.20.1 Specifications: MDL940                                    | 301  |
|              | 7.20.2 Field Wiring: MDL940                                      | 303  |
| C = =4: = := | O. Disprets Missed I/O Madules                                   | 204  |
| Section      | 8: Discrete Mixed I/O Modules                                    | 304  |
| 8.1          | High-Speed Counter Module: IC694APU300                           | 305  |
|              | 8.1.1 Counter Types: APU300                                      | 306  |
|              | 8.1.2 Status LEDs: APU300                                        | 308  |
|              | 8.1.3 Specifications: APU300                                     | 309  |
|              | 8.1.4 Field Wiring: APU300                                       |      |
|              | 8.1.5 ESCP Outputs with 1.5 Amps per Point Minimum               |      |
| 8.2          | Serial I/O Processor Module: IC694APU305                         | 315  |
|              | 8.2.1 Specifications: APU305                                     | 316  |
|              | 8.2.2 Field Wiring: APU305                                       |      |
|              | 8.2.3 Configuration: APU305                                      |      |
|              | 8.2.4 Module Data: APU305                                        |      |
| 8.3          | High-Speed Counter Modules: IC695HSC304, IC695HSC308             | 330  |
|              | 8.3.1 LEDs: HSC304 & HSC308                                      | 331  |
|              | 8.3.2 Specifications: HSC304 & HSC308                            |      |
|              | 8.3.3 Field Wiring: HSC304 & HSC308                              |      |
| 8.4          | Mixed I/O Module: IC694MDR390                                    | 337  |
|              | 8.4.1 LEDs: MDR390                                               | 337  |
|              | 8.4.2 Specifications: MDR390                                     |      |
|              | 8.4.3 Field Wiring: MDR390                                       | 340  |
| Section      | 9: Analog Input Modules                                          | 341  |
| 9.1          | Analog Input Modules Isolated Current/Voltage: IC695ALG106 a     | and  |
| ٥.           | TC605ALG112                                                      | 2/12 |

Contents viii

|     | 9.1.1 Features                                              | 342   |
|-----|-------------------------------------------------------------|-------|
|     | 9.1.2 Specifications: ALG106 & ALG112                       | 342   |
|     | 9.1.3 Field Wiring: ALG106                                  | 345   |
|     | 9.1.4 Field Wiring: ALG112                                  | 346   |
|     | 9.1.5 Configuration: ALG106 & ALG112                        | 347   |
|     | 9.1.6 Note on Using Interrupts                              | 354   |
| 9.2 | Analog Input Module 4-Channel Differential Voltage: IC694Al | _G220 |
|     |                                                             | 359   |
|     | 9.2.1 Isolated +24Vdc Power                                 | 359   |
|     | 9.2.2 LEDs: ALG220                                          | 359   |
|     | 9.2.3 Specifications: ALG220                                | 360   |
|     | 9.2.4 Data Format: ALG220                                   | 360   |
|     | 9.2.5 Field Wiring: ALG220                                  | 362   |
| 9.3 | Analog Input Module 4-Channel Differential Current: IC694Al | _G221 |
|     |                                                             | 363   |
|     | 9.3.1 LEDs: ALG221                                          | 363   |
|     | 9.3.2 Specifications: ALG221                                | 364   |
|     | 9.3.3 Data Format: ALG221                                   | 364   |
|     | 9.3.4 Field Wiring: ALG221                                  | 366   |
| 9.4 | Analog Input Module 16-/8-Channel Voltage: IC694ALG222      | 367   |
|     | 9.4.1 Isolated +24Vdc Power                                 | 367   |
|     | 9.4.2 LEDs: ALG222                                          | 367   |
|     | 9.4.3 Specifications: ALG222                                | 368   |
|     | 9.4.4 Configuration: ALG222                                 | 369   |
|     | 9.4.5 Data Format: ALG222                                   | 370   |
|     | 9.4.6 Field Wiring: ALG222                                  | 372   |
| 9.5 | Analog Input Module 16-Channel Current: IC694ALG223         | 374   |
|     | 9.5.1 Module Power                                          | 374   |
|     | 9.5.2 LEDs: ALG223                                          | 374   |
|     | 9.5.3 Specifications: ALG223                                | 375   |
|     | 9.5.4 Configuration: ALG223                                 | 376   |
|     | 9.5.5 Data Format: ALG223                                   | 377   |
|     | 9.5.6 Field Wiring: ALG223                                  | 379   |
| 9.6 | Analog Input module Advanced Diagnostics 16-Channel Volt    | age:  |
|     | IC694ALG232                                                 | 381   |
|     | 9.6.1 Features                                              | 381   |
|     | 9.6.2 Isolated +24Vdc Power                                 | 382   |
|     | 9.6.3 LEDs: ALG232                                          | 382   |
|     | 9.6.4 Specifications: ALG232                                | 383   |
|     | 9.6.5 Configuration: ALG232                                 | 384   |

|       |      | 9.6.6 Channel Input Data: ALG232                                                                  |                                                      |
|-------|------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|
|       |      | 9.6.7 Field Wiring: ALG232                                                                        | 392                                                  |
|       | 9.7  | Analog Input module Advanced Diagnostics 16-Channel Curr                                          | ent:                                                 |
|       |      | IC694ALG233                                                                                       | 394                                                  |
|       |      | 9.7.1 Module Power                                                                                | 394                                                  |
|       |      | 9.7.2 Features                                                                                    | 394                                                  |
|       |      | 9.7.3 LEDs: ALG233                                                                                | 395                                                  |
|       |      | 9.7.4 Specifications: ALG233                                                                      | 396                                                  |
|       |      | 9.7.5 Configuration: ALG233                                                                       | 397                                                  |
|       |      | 9.7.6 Field Wiring: ALG233                                                                        | 404                                                  |
|       | 9.8  | Analog Input Module 8-/4-Channel Current/Voltage: IC695ALC                                        | 608                                                  |
|       |      | Analog Input Module 16-/8-Channel Current/Voltage: IC695AL                                        | .G616                                                |
|       |      |                                                                                                   | 406                                                  |
|       |      | 9.8.1 Features                                                                                    | 406                                                  |
|       |      | 9.8.2 LEDs: ALG608 & ALG616                                                                       | 407                                                  |
|       |      | 9.8.3 Specifications: ALG608 & ALG616                                                             | 408                                                  |
|       |      | 9.8.4 Configuration: ALG608 & ALG616                                                              | 410                                                  |
|       |      | 9.8.5 Module Data: ALG608 & ALG616                                                                | 416                                                  |
|       |      | 9.8.6 Field Wiring: ALG608 & ALG616, Single-Ended Mode                                            | 420                                                  |
|       |      | 9.8.7 Field Wiring: ALG608 & ALG616, Differential Mode                                            | 422                                                  |
|       |      |                                                                                                   |                                                      |
| Secti | on 1 | 0: Analog Output Modules                                                                          | 121                                                  |
| Secti | on 1 | 0: Analog Output Modules                                                                          | 424                                                  |
| Secti | on 1 |                                                                                                   |                                                      |
| Secti |      |                                                                                                   | 425                                                  |
| Secti |      | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425<br>425                                           |
| Secti |      | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425<br>425<br>425                                    |
| Secti |      | Analog Output Module Voltage 2-Channel: IC694ALG390<br>10.1.1 Isolated +24Vdc Power<br>10.1.2 LED | 425<br>425<br>425                                    |
| Secti |      | Analog Output Module Voltage 2-Channel: IC694ALG390  10.1.1 Isolated +24Vdc Power                 | 425<br>425<br>425<br>426                             |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425<br>425<br>426<br>426<br>428                      |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390  10.1.1 Isolated +24Vdc Power                 | 425<br>425<br>426<br>426<br>428<br>429               |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390  10.1.1 Isolated +24Vdc Power                 | 425<br>425<br>426<br>426<br>428<br>429               |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425<br>425<br>426<br>426<br>428<br>429<br>429        |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390  10.1.1 Isolated +24Vdc Power                 | 425<br>425<br>426<br>426<br>429<br>429<br>429        |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425425426426428429429431                             |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390  10.1.1 Isolated +24Vdc Power                 | 425<br>425<br>426<br>426<br>429<br>429<br>429<br>431 |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425425426426429429431431                             |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425425426426429429429431431433                       |
| Secti | 10.1 | Analog Output Module Voltage 2-Channel: IC694ALG390                                               | 425425426426429429431431431433 392435                |

|           | 10.3.4 Current and Voltage Ranges and Resolution: ALG392            | 439  |
|-----------|---------------------------------------------------------------------|------|
|           | 10.3.5 Module Data: ALG392                                          | 441  |
|           | 10.3.6 Field Wiring: ALG392                                         | 442  |
|           | 10.3.7 Configuration: ALG392                                        | 443  |
| 10.4      | Analog Output Module 4-Channel Current/Voltage: IC695ALG704         | 1    |
|           | Analog Output Module 8-Channel Current/Voltage: IC695ALG708         | 3444 |
|           | 10.4.1 Isolated +24Vdc Power                                        | 444  |
|           | 10.4.2 Features: ALG704 & ALG708                                    | 445  |
|           | 10.4.3 LEDs: ALG704 and ALG708                                      | 445  |
|           | 10.4.4 Specifications: ALG704 and ALG708                            | 446  |
|           | 10.4.5 Configuration: ALG704 and ALG708                             | 448  |
|           | 10.4.6 Module Data: ALG704 and ALG708                               | 458  |
|           | 10.4.7 Field Wiring: ALG704 and ALG708                              | 461  |
| 10.5      | Analog Current/Voltage Output Isolated module, IC695ALG808          | 462  |
|           | 10.5.1 Isolated +24Vdc Power                                        | 462  |
|           | 10.5.2 Features                                                     | 463  |
|           | 10.5.3 LEDs: IC695ALG808                                            | 463  |
|           | 10.5.4 Specifications: IC695ALG808                                  | 464  |
|           | 10.5.5 Configuration: IC695ALG808                                   | 465  |
|           | 10.5.6 Module Data: IC695ALG808                                     | 474  |
|           | 10.5.7 Field Wiring: IC695ALG808                                    | 477  |
| Section 1 | 1: Analog Modules with HART Communication 478                       | าร   |
| 11.1      | Overview of HART Communications for PACSystems RX3i                 | 478  |
|           | 11.1.1 RX3i HART Module Operation                                   | 479  |
|           | 11.1.2 Using DO I/O with HART Modules                               |      |
|           | 11.1.3 Using a Hand-held Calibrator with RX3i Analog HART Mod       |      |
|           | 11.1.4 HART Pass-Through Functionality                              | 483  |
| 11.2      | Analog Input Module 16-/8-Channel Current/Voltage with HART:        |      |
|           | IC695ALG626 Analog Input Module 8-/4-Channel Current/Voltag         |      |
|           | with HART: IC695ALG628                                              |      |
|           | 11.2.1 Features                                                     | 486  |
|           | 11.2.2 Specifications: ALG626 and ALG628                            |      |
|           | 11.2.3 Configuration: ALG626 and ALG628                             |      |
|           | 11.2.4 Input Module Data Formats: ALG626 and ALG628                 |      |
|           | 11.2.5 Field Wiring: IC695ALG626 and ALG628, Single-Ended Mo<br>503 |      |

Contents xi

|           | 11.2.6 Field Wiring: IC695ALG626 and ALG628, Differential Mode50 |    |
|-----------|------------------------------------------------------------------|----|
|           | 11.2.7 HART Device Connections50                                 | )7 |
| 11.3      | Analog Output Module 8-Channel Current/Voltage with HART:        |    |
|           | IC695ALG72850                                                    | )8 |
|           | 11.3.1 Features50                                                |    |
|           | 11.3.2 Isolated +24Vdc Power50                                   |    |
|           | 11.3.3 LEDs: ALG728                                              |    |
|           | 11.3.4 Specifications: ALG7285                                   |    |
|           | 11.3.5 Configuration: ALG7285                                    |    |
| 11.4      | Example5                                                         |    |
|           | 11.4.1 Output Module Data Formats: ALG72852                      |    |
|           | 11.4.2 Field Wiring: ALG72852                                    |    |
|           | 11.4.3 HART Device Connections                                   |    |
| 11.5      | HART Reference Data52                                            | 27 |
|           | 11.5.1 HART Status Data52                                        | 27 |
|           | 11.5.2 HART Data Format52                                        |    |
| 11.6      | COMMREQs for HART Modules                                        | 29 |
|           | 11.6.1 Get HART Device Information, COMMREQ 1 Command Block 530  |    |
|           | 11.6.2 Remote Get HART Device Information, Command Block53       | 32 |
|           | 11.6.3 COMMREQ Status Word                                       | 35 |
|           | 11.6.4 Remote and Local Get HART Device Information, Reply Data  |    |
|           | Format53                                                         | 36 |
|           | 11.6.5 Sending a HART Pass-Through Command to a HART Device 53   |    |
|           | 11.6.6 HART Pass-Through Commands and Command Codes for RX       |    |
|           | Modules                                                          |    |
|           | 11.6.7 HART Communications Status                                |    |
| 11.7      | Function Blocks to Read HART Data5                               | 54 |
|           | 11.7.1 DYN_HART_STRUCT5                                          | 54 |
|           | 11.7.2 ALL_HART_STRUCT5!                                         | 56 |
| 11.8      | Converting HART Data to / from RX3i Format5!                     | 58 |
|           | 11.8.1 Converting Floating-Point Data (Endian Flip)5             | 59 |
|           | 11.8.2 ASCII_PACK50                                              | 50 |
|           | 11.8.3 ASCII_UNPACK50                                            |    |
|           | 11.8.4 Example Function Block 3: ASCII_UNPACK:50                 | 53 |
| Section 1 | 2: Analog Mixed I/O Modules56                                    | 4  |
| 12.1      | Analog Module 4-Input/2-Output Current/Voltage: IC694ALG44256    | 55 |
|           | 12.1.1 Features50                                                | 55 |

Contents xii

|         |       | 12.1.2 Isolated +24 Vdc Power                               | 565  |
|---------|-------|-------------------------------------------------------------|------|
|         |       | 12.1.3 LEDs: ALG442                                         | 566  |
|         |       | 12.1.4 Specifications: ALG442                               | 567  |
|         |       | 12.1.5 Field Wiring: ALG442                                 | 569  |
|         |       | 12.1.6 Input Scaling: ALG442                                | 570  |
|         |       | 12.1.7 Output Scaling: ALG442                               | 571  |
|         |       | 12.1.8 I/O Data: ALG442                                     | 572  |
|         |       | 12.1.9 Status Data: ALG442                                  | 573  |
|         |       | 12.1.10 Configuration: ALG442                               |      |
|         |       | 12.1.11 Ramp Mode Operation: ALG442                         |      |
|         |       | 12.1.12 Changing Module Operation on Command: ALG442        | 578  |
|         | 12.2  | Analog Module 4-Input/2-Output Current/Voltage with Advance |      |
|         |       | Diagnostics: IC694ALG542                                    | 583  |
|         |       | 12.2.1 Features                                             | 583  |
|         |       | 12.2.2 Isolated +24Vdc Power                                | 584  |
|         |       | 12.2.3 LEDs: ALG542                                         | 584  |
|         |       | 12.2.4 Specifications: ALG542                               | 584  |
|         |       | 12.2.5 Field Wiring: ALG542                                 |      |
|         |       | 12.2.6 Input Scaling: ALG542                                |      |
|         |       | 12.2.7 Output Scaling: ALG542                               |      |
|         |       | 12.2.8 I/O Data: ALG542                                     |      |
|         |       | 12.2.9 Status Data: ALG542                                  |      |
|         |       | 12.2.10 Configuration: ALG542                               |      |
|         |       | 12.2.11 Rate of Change Alarms: ALG542                       |      |
|         |       | 12.2.12 Ramp Mode Operation: ALG542                         |      |
|         |       | 12.2.13 Clamp Mode Operation: ALG542                        |      |
|         |       | 12.2.14 Changing Module Operation on Command: ALG542        | 605  |
| Soction | an 1  | 3: Universal Analog Input Module                            | 610  |
| Secur   | ו ווכ | 5. Offiversal Arialog Input Wodule                          | .010 |
|         | 13.1  | Universal Analog Input: Voltage, Current, Resistance, RTD,  |      |
|         |       | Thermocouple, 8-Channel + 2 CJC: IC695ALG600                | 611  |
|         | 13.2  | Features                                                    | 612  |
|         | 13.3  | LEDs: ALG600                                                | 613  |
|         | 13.4  | Specifications: ALG600                                      | 614  |
|         |       | 13.4.1 Typical Accuracy Specifications                      |      |
|         |       | 13.4.2 Maximum Accuracy Specifications                      |      |
|         | 13.5  | Field Wiring: ALG600                                        |      |
|         | . 5.5 |                                                             |      |
|         |       | 13.5.1 Installing CJC Sensors                               |      |
|         |       | 13.5.2 Connecting Channels to the Same Thermocouple Point   | oZU  |

Contents xiii

| 13.6      | Configuration: ALG600                                       | 621  |
|-----------|-------------------------------------------------------------|------|
|           | 13.6.1 Module Parameters                                    | 621  |
|           | 13.6.2 Channel 1 – 8 Parameters                             | 622  |
|           | 13.6.3 Input Scaling: ALG600                                | 623  |
|           | 13.6.4 Example 1                                            | 623  |
|           | 13.6.5 Example 2                                            | 624  |
|           | 13.6.6 Rate of Change Alarms: ALG600                        | 625  |
|           | 13.6.7 Using Alarming: ALG600                               | 628  |
|           | 13.6.8 Using Interrupts                                     | 628  |
|           | 13.6.9 Example:                                             |      |
|           | 13.6.10 CJC Parameters                                      |      |
|           | 13.6.11 CJC Scan Enable                                     |      |
| 13.7      | Module Data: ALG600                                         | 631  |
|           | 13.7.1 Resolution and Update Time                           | 632  |
|           | 13.7.2 Isolated Input Groups                                |      |
|           | 13.7.3 Channel Diagnostic Data: ALG600                      |      |
|           | 13.7.4 Module Status Data: ALG600                           | 634  |
|           | 13.7.5 Terminal Block Detection                             | 634  |
|           | 4: Thermocouple Input Modules                               |      |
| 14.1      | Thermocouple Input 6-/12-Channel Isolated Modules IC695ALG3 |      |
|           | IC695ALG312                                                 |      |
|           | 14.1.1 Features                                             |      |
|           | 14.1.2 Specifications: ALG306 & ALG312                      |      |
| 14.2      | Thermocouple Input 12-Channel Isolated Module IC695ALG412.  |      |
|           | 14.2.1 Features                                             | 640  |
|           | 14.2.2 Specifications: ALG412                               |      |
| 14.3      | Thermocouple Module Operation: ALG306, ALG312 & ALG412      | 644  |
|           | 14.3.1 LEDs: ALG306, ALG312 & ALG412                        | 644  |
|           | 14.3.2 Field Wiring: ALG306, ALG312, & ALG412               | 645  |
|           | 14.3.3 Configuration: ALG306, ALG312 & ALG412               | 647  |
|           | 14.3.4 Module Data: ALG306, ALG312 & ALG412                 | 656  |
| Section 1 | 5: RTD Input Module                                         | .659 |
| 15.1      | RTD Input 8-Channel Isolated Module IC695ALG508             | 660  |
|           | 15.1.1 Features                                             | 660  |
|           | 15.1.2 LEDs: ALG508                                         |      |
|           | 13.1.2 LLDS. ALG300                                         |      |
|           | 15.1.3 Specifications: ALG508                               |      |

|           | 15.1.5 Configuration: ALG508                    | 667 |
|-----------|-------------------------------------------------|-----|
|           | 15.1.6 Module Input Data: ALG508                | 674 |
| Section 1 | 6: Special Purpose Modules                      | 677 |
|           | RX3i I/O Link Interface Module: IC694BEM320     |     |
| 10.1      | 16.1.1 Specifications                           |     |
|           | 16.1.2 I/O Size Selection: BEM320               |     |
|           | 16.1.3 LEDs: BEM320                             |     |
|           | 16.1.4 Serial Ports: BEM320                     |     |
| 16.2      | RX3i I/O Link Master Module: IC694BEM321        | 680 |
|           | 16.2.1 Specifications: BEM321                   | 680 |
|           | 16.2.2 LEDs: BEM321                             |     |
|           | 16.2.3 Restart Pushbutton: BEM321               | 681 |
|           | 16.2.4 Serial Port: BEM321                      |     |
| 16.3      | RX3i Genius Bus Controller: IC694BEM331         | 682 |
|           | 16.3.1 Features                                 | 682 |
|           | 16.3.2 LEDs: BEM331                             |     |
|           | 16.3.3 Specifications: BEM331                   |     |
| 46.4      | 16.3.4 Field Wiring: BEM331                     |     |
| 16.4      | ,,                                              |     |
|           |                                                 |     |
| 46.5      | 16.4.1 Features                                 |     |
| 16.5      | LEDs: CMM002 & CMM004                           |     |
|           | 16.5.1 Specifications: CMM002 and CMM004        |     |
| 16.6      | 16.5.2 Serial Ports: CMM002 & CMM004            |     |
| 16.6      | RX3i Control Memory Xchange Module: IC695CMX128 |     |
|           | 16.6.1 Features                                 |     |
|           | 16.6.2 LEDs: CMX128                             |     |
|           | 16.6.3 Specifications: CMX128                   |     |
| 16.7      | •                                               | 054 |
| 10.7      | IC695RMX228                                     | 695 |
|           | 16.7.1 Features: RMX128 & RMX228                | 696 |
|           | 16.7.2 Specifications: RMX128 & RMX228          | 697 |
| 16.8      | RX3i DeviceNet Master Module: IC694DNM200       |     |
|           | 16.8.1 Features                                 | 698 |
|           | 16.8.2 LEDs and Connectors: DNM200              | 699 |
|           | 16.8.3 Specifications: DNM200                   | 699 |

| 16.8.4         | Γhe DeviceNet Bus                              | 700 |
|----------------|------------------------------------------------|-----|
| 16.9 Motion    | Mate Module: IC694DSM314                       | 704 |
| 16.9.1         | Overview: DSM314                               | 705 |
| 16.9.2         | Specifications: DSM314                         | 705 |
| 16.9.3 F       | Features: DSM314                               | 706 |
| 16.10 Motion   | Controller Module: IC694DSM324                 | 707 |
| 16.10.1        | Overview: DSM324                               | 708 |
| 16.10.2        | Features: DSM324                               | 709 |
| 16.10.3        | Specifications: DSM324                         | 710 |
| 16.11 PACMot   | tion Multi-Axis Motion Controller: IC695PMM335 | 711 |
| 16.11.1        | Servo Types Supported                          | 711 |
| 16.11.2        |                                                |     |
| 16.11.3        | Fiber I/O Terminal Block                       | 712 |
| 16.11.4        | Features                                       | 712 |
| 16.12 IEC 618  | 50 Ethernet Communication Module: IC695ECM850  | 713 |
| 16.12.1        | Specifications: ECM850                         | 714 |
| 16.13 Etherne  | t Interface Module: IC695ETM001                | 717 |
| 16.13.1        | Ethernet Interface Specifications:             | 718 |
| 16.13.2        | Ethernet Interface Ports                       | 718 |
| 16.13.3        | Station Manager                                | 719 |
| 16.13.4        | Ethernet Global Data (EGD)                     |     |
| 16.13.5        | ETM001-Jx Interface Controls and Indicators    | 720 |
| 16.13.6        | ETM001-Kxxx Interface Controls and Indicators  |     |
| 16.14 RX3i DN  | IP3 Outstation Module: IC695EDS001             |     |
| 16.14.1        | Module features:                               | 722 |
| 16.15 RX3i Eth | nernet IEC 104 Server Module                   | 723 |
| 16.15.1        | Module Features                                | 723 |
| 16.16 Etherne  | t Network Interface Unit: IC695NIU001          | 724 |
| 16.16.1        | Ethernet NIU Features                          | 724 |
| 16.16.2        | Compatibility                                  | 725 |
| 16.16.3        | ·                                              |     |
| 16.16.4        | Ethernet Global Data Features                  | 725 |
| 16.16.5        | Ports                                          | 726 |
| 16.17 Etherne  | t Network Interface Unit: IC695NIU001 PLUS     | 727 |
| 16.17.1        | Compatibility                                  | 728 |
| 16.17.2        | Features: Ethernet NIU001 PLUS                 |     |
| 16.17.3        |                                                |     |
| 16.17.4        | \$ 11                                          |     |
| 16.17.5        | Specifications: NIU001 PLUS                    | 730 |

|                                                                                                                                                                                | NIU001 PLUS vs. NIU001 Classic Comparison                                                                                                                                                                                     | , .                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 16.17.7                                                                                                                                                                        | Ports                                                                                                                                                                                                                         | 732                                                                                     |
| 16.18 PROFIB                                                                                                                                                                   | US Master Module: IC695PBM300                                                                                                                                                                                                 | 733                                                                                     |
| 16.18.1                                                                                                                                                                        | Features                                                                                                                                                                                                                      | 733                                                                                     |
| 16.18.2                                                                                                                                                                        | PROFIBUS Master Module Controls and Indicators                                                                                                                                                                                | 734                                                                                     |
| 16.18.3                                                                                                                                                                        | Specifications: PBM300                                                                                                                                                                                                        | 734                                                                                     |
| 16.19 PROFIB                                                                                                                                                                   | JS Slave Module: IC695PBS301                                                                                                                                                                                                  | 735                                                                                     |
| 16.19.1                                                                                                                                                                        | PROFIBUS Slave Module Controls and Indicators                                                                                                                                                                                 | 736                                                                                     |
| 16.19.2                                                                                                                                                                        | Specifications: PBS301                                                                                                                                                                                                        | 736                                                                                     |
| 16.20 PROFIN                                                                                                                                                                   | ET Controller Module: IC695PNC001                                                                                                                                                                                             | 737                                                                                     |
| 16.20.1                                                                                                                                                                        | Features:                                                                                                                                                                                                                     | 737                                                                                     |
| 16.20.2                                                                                                                                                                        | Specifications: PNC001                                                                                                                                                                                                        | 738                                                                                     |
| 16.21 PROFIN                                                                                                                                                                   | ET Scanner Module: IC695PNS001/IC695PNS101                                                                                                                                                                                    | 741                                                                                     |
| 16.21.1                                                                                                                                                                        | Features                                                                                                                                                                                                                      | 741                                                                                     |
| 16.21.2                                                                                                                                                                        | Front Panel Port                                                                                                                                                                                                              | 742                                                                                     |
| 16.21.3                                                                                                                                                                        | LED Indications: PNS001                                                                                                                                                                                                       | 742                                                                                     |
| 16.21.4                                                                                                                                                                        | Specifications: PNS001                                                                                                                                                                                                        | 745                                                                                     |
| 16.21.5                                                                                                                                                                        | Compatibility: PNS001                                                                                                                                                                                                         | 747                                                                                     |
| 16.21.6                                                                                                                                                                        | Compatibility: PNS101                                                                                                                                                                                                         | 748                                                                                     |
| 16.22 RX3i CEI                                                                                                                                                                 | Carrier: IC695CEP001 RX3i CEP Expansion Carrier:                                                                                                                                                                              |                                                                                         |
|                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                         |
| IC694CE                                                                                                                                                                        | E001                                                                                                                                                                                                                          | 749                                                                                     |
| IC694CE<br>16.22.1                                                                                                                                                             | Features                                                                                                                                                                                                                      |                                                                                         |
|                                                                                                                                                                                |                                                                                                                                                                                                                               | 750                                                                                     |
| 16.22.1                                                                                                                                                                        | Features                                                                                                                                                                                                                      | 750<br>750                                                                              |
| 16.22.1<br>16.22.2                                                                                                                                                             | Features  Normal Operation of Individual LEDs: CEP001 & CEE001                                                                                                                                                                | 750<br>750<br>752                                                                       |
| 16.22.1<br>16.22.2<br>16.22.3                                                                                                                                                  | Features  Normal Operation of Individual LEDs: CEP001 & CEE001  Ordering Information                                                                                                                                          | 750<br>750<br>752<br>753                                                                |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4                                                                                                                                       | Features  Normal Operation of Individual LEDs: CEP001 & CEE001  Ordering Information                                                                                                                                          | 750<br>750<br>752<br>753                                                                |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6                                                                                                                 | Features  Normal Operation of Individual LEDs: CEP001 & CEE001  Ordering Information                                                                                                                                          | 750<br>750<br>752<br>753<br>754                                                         |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6                                                                                                                 | Features  Normal Operation of Individual LEDs: CEP001 & CEE001  Ordering Information                                                                                                                                          | 750<br>750<br>752<br>753<br>754<br>763                                                  |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius (                                                                                               | Features  Normal Operation of Individual LEDs: CEP001 & CEE001  Ordering Information                                                                                                                                          | 750<br>752<br>753<br>754<br>763<br>764                                                  |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius 0<br>16.23.1<br>16.23.2                                                                         | Features  Normal Operation of Individual LEDs: CEP001 & CEE001  Ordering Information  Specifications  Quick Start: CEP001 & CEE001  Supported I/O Modules  Communications Gateway Module IC695GCG001  LED Indications: GCG001 | 750<br>750<br>752<br>753<br>754<br>763<br>764<br>765                                    |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius 0<br>16.23.1<br>16.23.2                                                                         | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750<br>750<br>752<br>753<br>754<br>763<br>764<br>765<br>767                             |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius 0<br>16.23.1<br>16.23.2                                                                         | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750<br>750<br>752<br>753<br>764<br>763<br>765<br>765<br>767                             |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius (<br>16.23.1<br>16.23.2<br>16.24 IC695PF                                                        | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750<br>750<br>752<br>753<br>754<br>763<br>764<br>765<br>767<br>768<br>769               |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius 0<br>16.23.1<br>16.23.2<br>16.24 IC695PF<br>16.24.1<br>16.24.2                                  | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750<br>750<br>752<br>753<br>764<br>763<br>765<br>767<br>768<br>769<br>769               |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius 0<br>16.23.1<br>16.23.2<br>16.24 IC695PF<br>16.24.1<br>16.24.2<br>16.24.3                       | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750<br>750<br>752<br>753<br>754<br>763<br>764<br>765<br>767<br>768<br>769<br>769        |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius (<br>16.23.1<br>16.23.2<br>16.24 IC695PF<br>16.24.1<br>16.24.2<br>16.24.3<br>16.24.4            | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750750752753764765767768769769770773                                                    |
| 16.22.1<br>16.22.2<br>16.22.3<br>16.22.4<br>16.22.5<br>16.22.6<br>16.23 Genius 0<br>16.23.1<br>16.23.2<br>16.24 IC695PF<br>16.24.1<br>16.24.2<br>16.24.3<br>16.24.4<br>16.24.4 | Features  Normal Operation of Individual LEDs: CEP001 & CEE001 Ordering Information                                                                                                                                           | 750<br>750<br>753<br>754<br>763<br>764<br>765<br>767<br>768<br>769<br>769<br>770<br>773 |

Contents xvii

| Section 17  | 7: Terminal Blocks and Interconnect Cables .                 | 779 |
|-------------|--------------------------------------------------------------|-----|
| 17.1        | High-Density Module-Mounted Terminal Blocks                  | 780 |
|             | 17.1.1 Terminal Blocks for High-Density RX3i Modules         | 780 |
|             | 17.1.2 Installing and Removing High-Density Terminal Blocks  | 783 |
| 17.2        | Terminal Block Quick Connect (TBQC) System                   | 786 |
|             | 17.2.1 Low-Density TBQC System Overview                      |     |
|             | 17.2.2 Low-Density TBQC System Variant for 32-Point I/O Modu |     |
|             | with Dual D-Connectors                                       |     |
|             | 17.2.5 Trigit Detisity TDQC System Overview                  |     |
| Appendix    | A: Product Certifications and Installation                   |     |
| Guideline   | s for Conformance                                            | 807 |
| A.1         | RX3i Agency Approvals                                        | 807 |
| A.2         | UL Class 1 Division 2 Hazardous Areas Requirements           | 808 |
| A.3         | ATEX Zone 2 Hazardous Areas Requirements                     | 809 |
| A.4         | DNVGL Type Approval Requirements                             | 809 |
| A.5         | Standards                                                    | 809 |
| A.6         | Additional RX3i Specifications                               | 810 |
| A.7         | Government Regulations                                       | 815 |
| A.8         | Installation Guidelines for Conformance to Standards         | 816 |
| A.9         | Requirements for Installation in a Metal Enclosure           | 818 |
| A.10        | Shielded Cable Alternative to Conduit                        | 818 |
| Appendix    | B: Calculating Heat Dissipation                              | 824 |
| B.1         | Module Heat Dissipation                                      | 824 |
| B.2         | Power Supply Heat Dissipation                                | 825 |
| Appendix    | C: Cable Shield Clamping Assembly                            | 829 |
| C.1         | Installing the Cable Clamp Assembly                          | 830 |
|             | Cable Diameter                                               |     |
|             |                                                              |     |
| General C   | ontact Information                                           | 832 |
| Technical   | Support                                                      | 837 |
| . Cerminear | Jappor C                                                     | 052 |

Contents xviii

# Table of Figures

| Figure 1: 12-Slot Universal Backplane IC695CHS012                                     | 16 |
|---------------------------------------------------------------------------------------|----|
| Figure 2: LRE001                                                                      | 17 |
| Figure 3: 5-Slot RX3i Serial Expansion Backplane IC694CHS398                          | 17 |
| Figure 4: Typical Single-Wide RX3i Power Supply Module                                | 19 |
| Figure 5: RX3i System using One Universal Backplane and One Expansion Backplane       | 21 |
| Figure 6: RX3i System using Multiple Expansion Backplanes                             | 22 |
| Figure 7: Rx3i System using Expansion and Remote Backplanes                           | 22 |
| Figure 8: System Layout Guidelines                                                    |    |
| Figure 9: RX3i Universal Backplane Dimensions and Spacing                             | 27 |
| Figure 10: Vertical Mounting Not Recommended                                          | 28 |
| Figure 11: RX3i Serial Expansion Backplane Dimensions and Spacing                     | 28 |
| Figure 12: System Grounding                                                           | 32 |
| Figure 13: Ground Strap Installation                                                  | 33 |
| Figure 14: Grounding Bar on RX3i Universal Backplane                                  | 34 |
| Figure 15: Location of Mounting Screws for Universal Backplane                        | 35 |
| Figure 16: Universal Backplane Terminal TB1                                           | 36 |
| Figure 17: Expansion Backplane                                                        | 38 |
| Figure 18: Example of Backplane DIP Switch Setting for Rack Number                    | 39 |
| Figure 19: Effect on Load Rating, Vertical Mounting                                   |    |
| Figure 20: Effect on Load Rating, Horizontal Mounting                                 | 40 |
| Figure 21: IC693ACC308 Front Mount Adapter Bracket                                    | 40 |
| Figure 22: Dimensions for Backplane with IC693ACC308 Front Mount Adapter Bracket      | 41 |
| Figure 23: IC693ACC313 Recessed Mount Adapter Bracket                                 | 42 |
| Figure 24: Installing Module in Backplane                                             | 50 |
| Figure 25: Removing Module from Backplane                                             |    |
| Figure 26: Module Door Label Front View                                               |    |
| Figure 27: Wiring Diagram on Reverse Side of Door                                     | 52 |
| Figure 28: Insertion of Door Label following Mark-up for Application                  | 52 |
| Figure 29: 20-Connector removable terminal block with Tie Wrap Landing Location noted | 53 |
| Figure 30: Installing Terminal Block into I/O Module                                  | 54 |
| Figure 31: Release Lever Usage prior to Removal from I/O Module                       | 54 |
| Figure 32: Extraction or Insertion of Terminal Block into its Cover                   | 55 |
| Figure 33: Positive Logic Input Circuit                                               | 56 |
| Figure 34: Positive Logic Output Circuit                                              | 56 |
| Figure 35: Negative Logic Input Circuit                                               | 57 |
| Figure 36: Negative Logic Output Circuit                                              | 57 |
| Figure 37: Analog Input Shield Grounding with a Terminal Strip                        | 59 |
| Figure 38: Analog Input Shield Grounding to Common Connections                        | 60 |
| Figure 39: Analog Input Shields Connected to Module Terminal                          |    |
| Figure 40: 4-Wire Transducer, Externally Powered by AC or DC Supply                   | 62 |
| Figure 41: 2-Wire Transducer, Externally Powered by DC Supply                         |    |
| Figure 42: 3-Wire Transducer, Externally Powered by DC Supply                         | 62 |
| Figure 43: 2-Wire Transducer, Self-Powered                                            |    |
| Figure 44: 2-Wire Transducer Connected to Two Measuring Devices                       | 63 |

| Figure 45: Shield Connections for Analog Output Module                           | 64  |
|----------------------------------------------------------------------------------|-----|
| Figure 46: Analog Output Shield Grounding with a Terminal Strip                  | 65  |
| Figure 47: CPE330 (example of 2-Slot CPU)                                        | 67  |
| Figure 48: Typical RX3i Power Supply Module                                      | 68  |
| Figure 49: Correct Wiring Practice for Power Supply Input Terminals              | 69  |
| Figure 50: IC695 Power Supply Terminals                                          |     |
| Figure 51: IC694 Power Supply Terminals                                          | 69  |
| Figure 52: External Overvoltage Protection                                       | 70  |
| Figure 53: Floating Neutral                                                      | 71  |
| Figure 54: Neutral Not Floating (Tied to Ground)                                 | 71  |
| Figure 55: LRE001 Front View                                                     | 73  |
| Figure 56: LRE001 Attachment Using Captive Screws                                | 73  |
| Figure 57: 12-Slot RX3i Universal Backplane IC695CHS012                          |     |
| Figure 58: Features of RX3i Universal Backplanes                                 | 77  |
| Figure 59: TB1 Terminal Detail                                                   |     |
| Figure 60: RX3i Universal Backplane Dual Connector Slot for PCI Bus & Serial Bus | 79  |
| Figure 61: Expansion Slot Connector is shown at Slot 12                          | 80  |
| Figure 62: Slot 6 of IC695CHS007                                                 |     |
| Figure 63: Configured as CPU in slot 0, Power Supply in Slot 2                   | 81  |
| Figure 64: Invalid: AC Power Supply cannot be in Slot 11                         |     |
| Figure 65: Configured as CPU in slot 0, Power Supply in Slot 6                   |     |
| Figure 66: Invalid: CPU cannot be configured in Slot 11                          |     |
| Figure 67: Configured as Power Supply in slot 0, CPU in Slot 1                   |     |
| Figure 68: Invalid: Only a Power Supply can be installed in Slot                 |     |
| Figure 69: Configured as CPU in slot 0, Power Supply in Slot 2                   |     |
| Figure 70: CPU cannot be configured in Slot 6                                    |     |
| Figure 71: Configured as CPU in slot 0, Power Supply in Slot 5                   | 84  |
| Figure 72: I/O or Option Module cannot be installed in Slot 0                    |     |
| Figure 73: Configured as Power Supply in slot 0, CPU in Slot 1                   |     |
| Figure 74: AC Power Supply cannot be configured in Slot 6                        |     |
| Figure 75: Serial Expansion Backplane                                            |     |
| Figure 76: Example RX3i System with Expansion Backplane Racks                    |     |
| Figure 77: Outputs of Power Supply IC695PSA040                                   |     |
| Figure 78: Outputs of Power Supply IC695PSD040 & IC695PSD140                     |     |
| Figure 79: Outputs of Power Supplies IC694PWR321, IC694PWR330, and IC694PWR331   |     |
| Figure 80: Power Supply Connections for Load Sharing                             |     |
| Figure 81: Redundant Power Supply Connections                                    |     |
| Figure 82: Connections for Power Source Redundancy                               |     |
| Figure 83: Floating Neutral                                                      |     |
| Figure 84: Non-Floating Neutral Wiring                                           |     |
| Figure 85: IC695PSA040                                                           |     |
| Figure 86: PSA040 Showing Terminals & On/Off Switch                              |     |
| Figure 87: Thermal Derating Curves for PSA040                                    |     |
| Figure 88: Field Wiring PSA040                                                   |     |
| Figure 89: Over-Voltage Protection for PSA040                                    |     |
| Figure 90: IC695PSA140.                                                          |     |
| Figure 91: PSA140 Showing Terminals & On/Off Switch                              | 111 |

| Figure 92: Thermal Derating Curves for PSA140                                  | 113 |
|--------------------------------------------------------------------------------|-----|
| Figure 93: Jumper Location PSA140                                              | 114 |
| Figure 94: Field Wiring for PSA140                                             | 115 |
| Figure 95: Over-Voltage Protection for PSA140                                  | 115 |
| Figure 96: IC695PSD040                                                         |     |
| Figure 97: PSD040 Terminals and Switch Locations                               | 117 |
| Figure 98: Thermal Derating Curves for PSD040                                  |     |
| Figure 99: Field Wiring for PSD040                                             |     |
| Figure 100: Over-Voltage Protection for PSD040                                 |     |
| Figure 101: IC695PSD140                                                        |     |
| Figure 102 PSD140 Terminals and On/Off Switch                                  |     |
| Figure 103: Thermal Derating Curves for PSD140                                 |     |
| Figure 104: Jumper Location PSD140                                             |     |
| Figure 105: Field Wiring for PSD140                                            |     |
| Figure 106: Over-Voltage Protection for PSD140                                 |     |
| Figure 107: IC694PWR321                                                        |     |
| Figure 108: Field Wiring for PWR321                                            |     |
| Figure 109: Over-Voltage Protection for PWR321                                 |     |
| Figure 110: IC694PWR330                                                        | 132 |
| Figure 111: Field Wiring for PWR330                                            | 134 |
| Figure 112: Over-Voltage Protection for PWR330                                 |     |
| Figure 113: IC694PWR331                                                        |     |
| Figure 114: Thermal Derating Curve for 5Vdc Output PWR331                      | 137 |
| Figure 115: Field Wiring for PWR331                                            |     |
| Figure 116: Over-Voltage Protection for PWR331                                 | 140 |
| Figure 117: IC695LRE001                                                        | 142 |
| Figure 118: Install LRE001 in Rightmost Connector & Secure with Captive Screws | 143 |
| Figure 119: Cable IC693CBL302                                                  |     |
| Figure 120: Cable IC693CBL302 Usage                                            | 145 |
| Figure 121: Cables IC693CBL300, IC693CBL301, IC693CBL312, or IC693CBL313       | 146 |
| Figure 122: Usage of Wye Cables with Terminating Plug                          | 146 |
| Figure 123: Construction of a Custom Shielded Cable                            | 149 |
| Figure 124: Wiring Diagram – Cable with Continuous Shielding                   | 150 |
| Figure 125: Wiring Diagram – Cable without Continuous Shielding                | 151 |
| Figure 126: IC694MDL230                                                        | 153 |
| Figure 127: Field Wiring MDL230                                                | 155 |
| Figure 128: IC694MDL231                                                        | 156 |
| Figure 129: Field Wiring MDL231                                                |     |
| Figure 130: IC694MDL240                                                        | 159 |
| Figure 131: Thermal Derating MDL240                                            | 160 |
| Figure 132: Field Wiring MDL240                                                | 161 |
| Figure 133: IC694MDL241                                                        | 162 |
| Figure 134: Field Wiring MDL241                                                |     |
| Figure 135: IC694MDL250                                                        | 165 |
| Figure 136: Field Wiring MDL250                                                |     |
| Figure 137: IC694MDL260                                                        | 169 |
| Figure 138: Thermal Derating Curve MDL260                                      |     |

| Figure 139: Field Wiring MDL260                                        | 172 |
|------------------------------------------------------------------------|-----|
| Figure 140: IC694MDL632                                                |     |
| Figure 141: Thermal Derating Curve MDL632                              | 174 |
| Figure 142: Field Wiring MDL632                                        | 175 |
| Figure 143: IC694MDL634                                                | 176 |
| Figure 144: Field Wiring MDL634                                        | 178 |
| Figure 145: IC694MDL635                                                |     |
| Figure 146: Thermal Derating MDL635                                    |     |
| Figure 147: Field Wiring MDL635                                        |     |
| Figure 148: IC694MDL645                                                |     |
| Figure 149: Field Wiring MDL645                                        |     |
| Figure 150: IC694MDL646                                                |     |
| Figure 151: Field Wiring MDL646                                        |     |
| Figure 152: IC694MDL648                                                |     |
| Figure 153: Thermal Derating MDL648                                    |     |
| Figure 154: Field Wiring MDL648                                        |     |
| Figure 155: IC694MDL654                                                |     |
| Figure 156: Thermal Derating MDL654 & MDL655                           |     |
| Figure 157: Left-side and Right-side Connectors MDL654, MDL655, MDL658 |     |
| Figure 158: Attachment to Terminal Blocks for Field Wiring             |     |
| Figure 159: Wiring for Negative Logic MDL654                           |     |
| Figure 160: IC694MDL660                                                |     |
| Figure 161: Thermal Derating Curve MDL660                              |     |
| Figure 162: Field Wiring MDL660                                        |     |
| Figure 163: IC695MDL664                                                |     |
| Figure 164: Thermal Derating Curve MDL664                              | 205 |
| Figure 165: Field Wiring MDL664                                        |     |
| Figure 166: Normal Thresholds MDL664                                   |     |
| Figure 167: Tri-State Input Circuit Diagram                            |     |
| Figure 168: Tri-State Thresholds MDL664                                |     |
| Figure 169: Quad-State Input Circuit Diagram                           |     |
| Figure 170: Quad-State Thresholds MDL664                               |     |
| Figure 171: Effect of Input Filter Time                                |     |
| Figure 172: IC694ACC300                                                |     |
| Figure 173: Mode Switch                                                |     |
| Figure 174: IC694MDL310                                                |     |
| Figure 175: Thermal Derating Curve MDL310                              |     |
| Figure 176: Field Wiring MDL310                                        |     |
| Figure 177: IC694MDL330                                                |     |
| Figure 178: Thermal Derating Curve MDL330                              |     |
| Figure 180: ISCOAMDI 340                                               |     |
| Figure 180: IC694MDL340                                                |     |
| Figure 181: Thermal Derating IC694MDL340C                              |     |
| Figure 182: Field Wiring MDL340                                        |     |
| Figure 184: DIR Switch Setting MDI 350                                 |     |
| Figure 184: DIP Switch Setting MDL350                                  |     |
| Figure 185: Field Wiring MDL350                                        | 230 |

| Figure 186: IC694MDL390                         | 232 |
|-------------------------------------------------|-----|
| Figure 187: Thermal Derating Curve MDL390       | 233 |
| Figure 188: Field Wiring MDL390                 | 234 |
| Figure 189: IC694MDL730                         | 235 |
| Figure 190: Thermal Derating Curve MDL730       | 236 |
| Figure 191: Field Wiring MDL730                 | 237 |
| Figure 192: IC694MDL732                         |     |
| Figure 193: Field Wiring MDL732                 | 240 |
| Figure 194: IC694MDL734                         |     |
| Figure 195: Field Wiring MDL734                 | 243 |
| Figure 196: IC694MDL740                         |     |
| Figure 197: Field Wiring MDL740                 |     |
| Figure 198: IC694MDL741                         |     |
| Figure 199: Field Wiring MDL741                 |     |
| Figure 200: IC694MDL742                         |     |
| Figure 201: Thermal Derating Curve MDL742       |     |
| Figure 202: Field Wiring MDL742                 |     |
| Figure 203: IC694MDL752                         |     |
| Figure 204: Field Wiring Pinouts MDL752         |     |
| Figure 205: Typical Connections Diagram MDL752  |     |
| Figure 206: IC694MDL753                         |     |
| Figure 207: Field Wiring Pinouts MDL753         |     |
| Figure 208: IC694MDL754                         |     |
| Figure 209: LED Layout MDL754                   |     |
| Figure 210: Thermal Derating Curve MDL754       |     |
| Figure 211: DIP Switch Settings MDL754          |     |
| Figure 212: Field Wiring MDL754                 |     |
| Figure 213: IC694MDL758                         |     |
| Figure 214: LED Layout MDL758                   |     |
| Figure 215: Field Wiring MDL758                 |     |
| Figure 216: IC695MDL765                         |     |
| Figure 217: LED Layout MDL765                   |     |
| Figure 218: Thermal Derating Curve MDL765       |     |
| Figure 219: Field Wiring MDL765                 |     |
| Figure 220: Circuit Detail MDL765               |     |
| Figure 221: IC694MDL916                         |     |
| Figure 222: Thermal Derating Curve MDL916       |     |
| Figure 223: Suppression of DC Loads MDL916      |     |
| Figure 224: Suppression of AC Loads MDL916      |     |
| Figure 225: DIP Switch Settings MDL916          |     |
| Figure 226: Typical Relay Output Circuit MDL916 |     |
| Figure 227: IC694MDL930                         |     |
| Figure 228: Thermal Derating Curve MDL930       |     |
| Figure 229: Suppression of DC Loads MDL930      |     |
| Figure 230: Suppression of AC Loads MDL930      |     |
| Figure 231: Field Wiring MDL930                 |     |
| Figure 232: IC694MDL931                         |     |

| Figure 233: Thermal Derating Curve MDL931    | 297 |
|----------------------------------------------|-----|
| Figure 234: Suppression of DC Loads MDL931   | 298 |
| Figure 235: Suppression of AC Loads MDL931   | 298 |
| Figure 236: Field Wiring MDL931              | 299 |
| Figure 237: IC694MDL940                      |     |
| Figure 238: Suppression of DC Loads          | 302 |
| Figure 239: Suppression of AC Loads          |     |
| Figure 240: Field Wiring MDL940              | 303 |
| Figure 241: IC694APU300                      | 305 |
| Figure 242: Input Impedance APU300           | 310 |
| Figure 243: Field Wiring APU300              | 311 |
| Figure 244: IC694APU305                      |     |
| Figure 245: Field Wiring APU305              | 317 |
| Figure 246: Typical Connections APU305       |     |
| Figure 247: IC695HSC308                      | 330 |
| Figure 248: LED Layout HSC304 & HSC308       | 331 |
| Figure 249: Thermal Derating HSC304 Outputs  |     |
| Figure 250: Thermal Derating HSC308 Outputs  | 334 |
| Figure 251: Field Wiring HSC304              |     |
| Figure 252: Field Wiring HSC308              |     |
| Figure 253: IC694MDR390                      |     |
| Figure 254: Suppression of DC Loads MDR390   |     |
| Figure 255: Suppression of AC Loads MDR390   |     |
| Figure 256: Field Wiring Diagram MDR390      | 340 |
| Figure 257: IC695ALG112                      |     |
| Figure 258: Field Wiring ALG106              |     |
| Figure 259: Field Wiring: ALG112             |     |
| Figure 260: Scaling Example ALG106 or ALG112 |     |
| Figure 261: Scaling Example ALG106 or ALG112 |     |
| Figure 262: IC694ALG220                      |     |
| Figure 263: Input Voltage Scaling: ALG220    |     |
| Figure 264: Field Wiring ALG220              |     |
| Figure 265: IC694ALG221                      |     |
| Figure 266: Input Current Scaling ALG221     |     |
| Figure 267: Field Wiring ALG221              |     |
| Figure 268: IC694ALG222                      |     |
| Figure 269: Input Scaling ALG222             |     |
| Figure 270: Field Wiring Single-Ended ALG222 |     |
| Figure 271: Field Wiring Differential ALG222 |     |
| Figure 272: IC694ALG223                      |     |
| Figure 273: Input Scaling ALG223             |     |
| Figure 274: Field Wiring ALG223              |     |
| Figure 275: Connection Example 1 ALG222      |     |
| Figure 276: Connection Example 2 ALG222      |     |
| Figure 277: IC694ALG232                      |     |
| Figure 278: Input Scaling ALG232             |     |
| Figure 279: Input Scaling ALG232             | 388 |

| Figure 280: Field Wiring Single-Ended ALG232                                                     | 393 |
|--------------------------------------------------------------------------------------------------|-----|
| Figure 281: Field Wiring Differential ALG232                                                     | 393 |
| Figure 282: IC694ALG233                                                                          | 394 |
| Figure 283: Input Scaling ALG233                                                                 | 400 |
| Figure 284: Field Wiring ALG223                                                                  |     |
| Figure 285: Connection Example 1 ALG233                                                          | 405 |
| Figure 286: Connection Example 2 ALG233*                                                         |     |
| Figure 287: IC695ALG616                                                                          | 406 |
| Figure 288: Scaling Example ALG608 or ALG616                                                     | 412 |
| Figure 289: Scaling Example ALG608 or ALG616                                                     |     |
| Figure 290: Field Wiring, Single-Ended ALG608 or ALG616                                          | 421 |
| Figure 291: Field Wiring, Differential Mode ALG608 or ALG616                                     |     |
| Figure 292: IC694ALG390                                                                          | 425 |
| Figure 293: D/A Bits versus Output Voltage                                                       | 427 |
| Figure 294: Scaling Units versus Output Voltage                                                  | 427 |
| Figure 295: IC694ALG391                                                                          | 429 |
| Figure 296: Derating Curve ALG391                                                                | 431 |
| Figure 297: Relationship between Output Value (%AQ) and Output Current: ALG391                   | 432 |
| Figure 298: Field Wiring ALG391                                                                  |     |
| Figure 299: Wiring Example ALG391                                                                |     |
| Figure 300: IC694ALG392                                                                          | 435 |
| Figure 301: Derating for Current Outputs: ALG392                                                 | 438 |
| Figure 302: Derating for Mixed Current & Voltage Outputs: ALG392                                 |     |
| Figure 303: Scaling for Current Modes: ALG392                                                    |     |
| Figure 304: Scaling for Voltage Modes: ALG392                                                    |     |
| Figure 305: Field Wiring ALG392                                                                  | 442 |
| Figure 306: IC695ALG708                                                                          | 444 |
| Figure 307: Thermal Derating Curves for ALG708 at selected Voltage Levels (Current Mo            |     |
| Figure 308: Channel Scaling Example                                                              |     |
| Figure 309: Field Wiring ALG704 & ALG708                                                         |     |
| Figure 310: IC695ALG808                                                                          |     |
| Figure 311: Channel Scaling Example                                                              |     |
| Figure 312: Field Wiring: ALG808                                                                 |     |
| Figure 313: Use of Hand-Held HART Calibrator                                                     |     |
| Figure 314: IC695ALG626                                                                          |     |
| Figure 315: Thermal Derating ALG626 Current Mode                                                 |     |
|                                                                                                  |     |
| Figure 316: Scaling Example ALG626/ALG628Figure 317: Scaling Example ALG626/ALG628               |     |
| Figure 317: Stalling Example ALG020/ALG026Figure 318: Field Wiring Single-Ended ALG626 or ALG628 |     |
|                                                                                                  |     |
| Figure 339: HART 3 Wire Current Lean Connection                                                  |     |
| Figure 320: HART 2-Wire Current Loop Connection                                                  |     |
| Figure 323: IGCOEAL G738                                                                         |     |
| Figure 322: IC695ALG728                                                                          |     |
| Figure 323: Thermal Derating Charts ALG728 Current Mode                                          |     |
| Figure 324: Scaling Example ALG728Figure 325: Field Wiring ALG728                                |     |
| FIGURE 372, FIELD WILIDO AT (1/7X                                                                | 525 |

| Figure 326: Attaching HART 2-Wire Output Device                                             | 526 |
|---------------------------------------------------------------------------------------------|-----|
| Figure 327: HART Input Transmitter attached to Analog Output Channel                        | 526 |
| Figure 328: Ladder Logic using ALL_HART_STRUCT & DYN_HART_STRUCT                            | 558 |
| Figure 329: Ladder Logic Using Swap DWord & Swap Word                                       |     |
| Figure 330: Ladder Logic for ACSII Pack                                                     |     |
| Figure 331: Ladder Logic for ACSII Unpack                                                   |     |
| Figure 332: IC694ALG442                                                                     |     |
| Figure 333: Field Wiring ALG442                                                             |     |
| Figure 334: Input Voltage Scaling ALG442                                                    |     |
| Figure 335: Input Current Scaling ALG442                                                    |     |
| Figure 336: Output Voltage Scaling ALG442                                                   |     |
| Figure 337: Output Current Scaling ALG442                                                   |     |
| Figure 338: Ramp Mode Example ALG442                                                        |     |
| Figure 339: COMMREQ usage ALG442                                                            |     |
| Figure 340: COMMREQ Example ALG442                                                          |     |
| Figure 341: IC694ALG542                                                                     |     |
| Figure 342: Field Wiring ALG542                                                             |     |
| Figure 343: Input Scaling Example ALG542                                                    |     |
| Figure 344: Output Scaling Example ALG542                                                   |     |
| Figure 345: Ramp Mode Example ALG542                                                        |     |
| Figure 346: IC695ALG600                                                                     |     |
| Figure 347: Thermocouple / Voltage / Current Field Wiring ALG600                            |     |
| Figure 348: RTD / Resistance Field Wiring ALG600                                            |     |
| Figure 349: Wiring Diagram for ALG600                                                       |     |
| Figure 350: Installing Cold Junction Sensor                                                 |     |
| Figure 351: Input Scaling Example 1: ALG600                                                 |     |
| Figure 352: Input Scaling Example 2: ALG600                                                 |     |
| Figure 353: IC695ALG306                                                                     |     |
| Figure 354: IC695ALG412                                                                     |     |
| Figure 355: Field Wiring ALG306, ALG312, ALG412 (Thermocouple/Voltage)                      |     |
| Figure 356: Installing Cold Junction Sensor                                                 |     |
| Figure 357: Input Scaling Example 1                                                         |     |
| Figure 358: Input Scaling Example 2                                                         |     |
| Figure 359: IC695ALG508                                                                     |     |
| Figure 360: Field Wiring for RTDs ALG508                                                    |     |
| Figure 361: Input Scaling Example ALG508                                                    |     |
| Figure 362: IC694BEM320Figure 363: Removable Cover BEM320                                   |     |
|                                                                                             |     |
| Figure 364: Module Size Selection (JP1) BEM320                                              |     |
| Figure 365: IC694BEM321                                                                     |     |
| Figure 366: Fuse location BEM321                                                            |     |
| Figure 369: Terminal Assignments BEM331                                                     |     |
| Figure 368: Terminal Assignments BEM331Figure 369: Interconnection of Devices on Genius Bus |     |
| Figure 370: Wiring Genius Bus Signals for Continuous Signal Path                            |     |
| Figure 370: Wiring Genius Bus Signals for Continuous Signal Path                            |     |
| Figure 371: Installing Gerilus Bus Terminating Resistor                                     |     |
| I IUUI E J / Z. ICUJJCIVIIVIUU4                                                             | na/ |

| Figure 373: Module LEDs & Ethernet Port LEDs: CMM004                                     | 688 |
|------------------------------------------------------------------------------------------|-----|
| Figure 374: RJ-45 Jack & Pinouts                                                         | 690 |
| Figure 375: Termination RS-485 4-Wire Full Duplex                                        | 691 |
| Figure 376: Termination RS-485 2-Wire Half Duplex                                        | 691 |
| Figure 377: Using Module Internal Jumpers & Built-in 120Ω Resistor for Termination       | 691 |
| Figure 378: Using External Jumper & Built-in 120Ω Resistor for RS-485 4-Wire Full Duplex | 691 |
| Figure 379: Using External Jumper & Built-in 120Ω Resistor for RS-485 2-Wire Half Duplex | 691 |
| Figure 380: IC695CMX128                                                                  | 692 |
| Figure 381: IC695RMX128                                                                  | 695 |
| Figure 382: IC695RMX228                                                                  | 695 |
| Figure 383: IC694DNM200                                                                  |     |
| Figure 384: DeviceNet Bus Topology                                                       | 700 |
| Figure 385: DeviceNet Connector Pinout                                                   |     |
| Figure 386: DeviceNet Terminating Resistor Installation                                  | 702 |
| Figure 387: DeviceNet Wiring for End of Segment                                          | 702 |
| Figure 388: DeviceNet Wiring for Daisy Chain                                             |     |
| Figure 389: IC694DSM314                                                                  | 704 |
| Figure 390: System Overview: DSM314                                                      | 705 |
| Figure 391: DSM314 Features                                                              | 706 |
| Figure 392: IC694DSM324                                                                  | 707 |
| Figure 393: System Overview: DSM324                                                      |     |
| Figure 394: DSM324 Features                                                              |     |
| Figure 395: IC695PMM335                                                                  |     |
| Figure 396: PMM335 with DIN-Rail Mounted FTB001 Terminal Blocks                          |     |
| Figure 397: IC695ECM850                                                                  |     |
| Figure 398: ECM850 Ethernet Connections (Located Underneath Module)                      |     |
| Figure 399: IC695ETM001                                                                  |     |
| Figure 400: IC695ETM001-Kxxx                                                             |     |
| Figure 401: Ethernet Features ETM001-Jx                                                  |     |
| Figure 402: Ethernet Features ETM001-Kxxx                                                |     |
| Figure 403: EDS001 Features at a Glance                                                  |     |
| Figure 404: EIS001 Front View                                                            |     |
| Figure 405: IC695NIU001                                                                  |     |
| Figure 406: IC695NIU001 PLUS                                                             |     |
| Figure 407: IC695PBM300                                                                  |     |
| Figure 408: IC695PBS301                                                                  |     |
| Figure 409: IC695PNC001 (-Bxxx version)                                                  |     |
| Figure 410: IC695PNS001-Bxxx                                                             |     |
| Figure 411: IC695CEP001 with IC694CEE001 Attached                                        |     |
| Figure 412: Mounting Diagram CEP001 & CEE001                                             |     |
| Figure 413: Attaching CEE001 to CEP001                                                   |     |
| Figure 414: DIN Rail Mounting Sequence                                                   |     |
| Figure 415: Panel Mounting Diagram: CEP001 or CEE001                                     |     |
| Figure 416: Ground Connection Diagram                                                    |     |
| Figure 417: Power Terminal Block CEP001                                                  |     |
| Figure 418: CEP001 Power Terminal Wiring                                                 |     |
| Figure 419: Locations of Ethernet Ports CEP001                                           | 762 |

| Figure 420: IC695GCG001                                                            | 764 |
|------------------------------------------------------------------------------------|-----|
| Figure 421: IC695PRS015                                                            | 768 |
| Figure 422: RJ-45 Pinout PRS015                                                    |     |
| Figure 423: Externally-Mounted Terminating Resistor                                | 777 |
| Figure 424: Using the Internal Terminating Resistor PRS015                         | 778 |
| Figure 425: Additional Depth due to Extended High-Density Terminal Blocks          | 780 |
| Figure 426: Depth Comparison: High-Density vs Extended High-Density Terminal Block | 780 |
| Figure 427: 36-Terminal Box-Style Terminal Block                                   |     |
| Figure 428: Wire Preparation and Insertion into Box-Style Terminal Block           | 782 |
| Figure 429: 36-Terminal Spring-Style Terminal Block                                | 782 |
| Figure 430: Inserting Terminal Block into its Cover                                |     |
| Figure 431: Installing a High-Density Terminal Block                               | 784 |
| Figure 432: Removing a High-Density Terminal Block                                 | 785 |
| Figure 433: Low-Density Terminal Block Quick Connect System                        | 787 |
| Figure 434: IC693ACC Terminal Block                                                | 789 |
| Figure 435: IC693ACC329 TBQC Terminal Block                                        | 789 |
| Figure 436: IC693ACC332 TBQC Terminal Block                                        | 790 |
| Figure 437: IC693ACC333 TBQC Terminal Block                                        | 791 |
| Figure 438: Connector Pin Assignments for D-Connector with 20 Terminals            | 792 |
| Figure 439: IC693ACC334 I/O Faceplate Installation                                 | 793 |
| Figure 440: IC693ACC334 I/O Faceplate Snaps into Place                             |     |
| Figure 441: IC693CBL327 and IC693CBL328 Cable Construction                         |     |
| Figure 442: Cable Construction for all other IC693CBL* Cables                      |     |
| Figure 443: Connector Depth for IC693CBL* Cables                                   | 795 |
| Figure 444: D-Connector Pinout                                                     | 797 |
| Figure 445: Allowance for Extra Depth using Straight-On Connectors                 | 797 |
| Figure 446: IC693ACC337 Terminal Block Top and Front Views                         |     |
| Figure 447: IC693ACC337 TBQC Terminal Block                                        | 799 |
| Figure 448: Pinout Assignments on Dual D-Connector Modules                         | 800 |
| Figure 449: High-Density TBQC System Overview                                      |     |
| Figure 450: High-Density Compact Remote Terminal Base IC694RTB032 Usage            | 802 |
| Figure 451: IC694RTB032 High-Density Remote Base, 36-Terminal                      | 804 |
| Figure 452: IC694TBC032 High-Density Terminal Block with Single 36-Pin D Connector | 805 |
| Figure 453: IC694CBL* Cable Wiring Details                                         |     |
| Figure 454: Unshielded I/O Cable, Single Shield (Side View)                        |     |
| Figure 455: Multiple Communication/High-Speed Cables, Single RF Shield (Side View) | 820 |
| Figure 456: Cable Clamp IC697ACC736 Diagrams                                       |     |
| Figure 457: Cable Diameter Maximum with Cable Clamp                                | 830 |
| Figure 458: Insulation Cover Removal                                               |     |
| Figure 459: Typical Cable Clamp Assembly installation with Expansion Backplane     | 831 |

Contents xxviii

### Section 1: Introduction

The PACSystems™ RX3i controller is a member of the PACSystems family of programmable automation controllers (PACs). Like the rest of the PACSystems family, the RX3i features a single control engine and universal programming environment to provide application portability across multiple hardware platforms.

This chapter is an overview of PACSystems RX3i products and features. The rest of the manual describes RX3i products in detail and explains installation procedures.

#### 1.1 Revisions of this Manual

| Rev | Date      | Description                                                                                                                                                                                                                                                                                                        |
|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AD  | Dec-2022  | Corrected ALG626 Field Wiring Differntial Mode Tables                                                                                                                                                                                                                                                              |
| AC  | Nov-2022  | Updates to support the release of CPE310-Bxxx.                                                                                                                                                                                                                                                                     |
| АВ  | Jul- 2022 | <ul> <li>Initial release of EPXCPE family</li> <li>Updates to section 16.21.4 Specifications and 16.21.6 Supported I/O Module for IC695CEP001.</li> <li>Updates to support the release of CPE302/305-Bxxx.</li> <li>Updates to ALG600 Typical Accuracies data up to 1 KHz.</li> </ul>                              |
| AA  | Nov-2021  | Updates for 7, 6, 12 Slot RX3i Backplanes for PCI-only Configurations                                                                                                                                                                                                                                              |
| Z   | Jun- 2021 | Updates with regard to ALG442 and ALG542 hardware obsolescence.                                                                                                                                                                                                                                                    |
| Y   | May- 2021 | Updates regarding the number of supported PROFINET devices for the CPL410.                                                                                                                                                                                                                                         |
| Х   | Apr-2021  | <ul> <li>Added notes for marine Type Approval compliance in Section 2.3, Enclosures.</li> <li>Updated ALG808 table values in Section 4.2, Module Load Requirement</li> <li>Updated the IC695PSAx40 power output budget in Section</li> </ul>                                                                       |
| W   | Dec-2020  | <ul> <li>Note 52 and Note 57 for the specification of ALG223 &amp; ALG233 modules respectively in the presence of conducted RF interference are corrected for the accuracy (+/-0.5% changed to +/- 1%).</li> <li>Corrected information regarding Analog input modules ALG222, ALG223, ALG232 and ALG233</li> </ul> |
| V   | Nov-2020  | <ul> <li>Added compatibility tables for IC693 modules (Sections 1.3.2 and 1.3.3)</li> <li>Minor edits to enhance clarity</li> </ul>                                                                                                                                                                                |

| Rev | Date     | Description                                                                                                                                                                                                                                                                                       |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U   | Jun-2020 | <ul> <li>Repaired internal document links</li> <li>Added ALG600 Wiring Diagram</li> <li>Updated images of power supplies</li> <li>Optimized branding under Emerson style guide</li> <li>Fixed formatting issues in manual</li> </ul>                                                              |
| Т   | Sep-2019 | <ul> <li>Addition of ETM001-Kxxx</li> <li>Updates concerning FW9.90</li> </ul>                                                                                                                                                                                                                    |
| S   | Jul-18   | <ul> <li>Addition of IC695CPL410 (new CPU module)</li> <li>Addition of IC695PNS101 (PNS module for RX3i Sequence of Events)</li> <li>Updated power loadings for CPE330/CPE310/CPE305/CPE302,</li> <li>Updated power loadings for PNC001 &amp; PNS001 which have two hardware versions.</li> </ul> |
| R   | Mar-18   | Added Thermal Derating for MDL340C (Figure 181).                                                                                                                                                                                                                                                  |
| Q   | Feb-18   | Updated throughout for addition of CPE302, CPE115.  Updated Figure 99 & Figure 105 to emphasize the need for connecting DC- to Earth Ground.  Deleted incorrect Isolated Power Supply information for ALG112, ALG221, ALG223, and ALG233.                                                         |
| Р   | Dec-17   | Note in Section0 concerning rackless CPUs  Notes throughout about availability of web-based tool for firmware updates for CPUs with no serial port.  Correction for ALG390 power connection (Section 10.1.3.  Notes concerning concurrent PNC001, PNS001 and GCG001 hardware updates.             |
| N   | Sep-17   | Added footnote #45 for ALG106 & ALG112 modules.  Updated Spec Sheets for ALG106/112/306/412/508/600/704/708/728/808 & CMM002/004.  Update customer care contact info.                                                                                                                             |
| М   | Jul-16   | Updated Chapter 11 for the Remote Hart Get Device Information COMMREQ. Additionally, there were updates to clarify the upper word (command status) of the two-word COMMREQ status word.                                                                                                           |

| Rev | Date   | Description                                                                                                                                                                                                                                                                           |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Feb-16 | Added new sections to Configuration: IC695ALG808                                                                                                                                                                                                                                      |
| L   |        | and Module Data: IC695ALG808.                                                                                                                                                                                                                                                         |
| K   | Dec-15 | Updated RX3i CEP Carrier list of Supported I/O Modules                                                                                                                                                                                                                                |
| J   | Nov-15 | New hardware replaces the existing hardware revision in production after full consumption of previous revision FAB boards (C0 rev). This is applicable for both Rx3i and 90-30 systems.                                                                                               |
|     |        | Updated Output points and voltage range                                                                                                                                                                                                                                               |
| Н   | Sep-15 | Updated module load requirements                                                                                                                                                                                                                                                      |
|     |        | Added new modules IC695EDS001 and IC695EIS001.                                                                                                                                                                                                                                        |
|     |        | Added HART Pass Though functionality.                                                                                                                                                                                                                                                 |
| G   | Jun-15 | Updated list of modules supported by IC695CEP001 (up to firmware rev 2.40) & IC694CEE001.                                                                                                                                                                                             |
|     |        | Revised sense of <i>Module I/O Data Ready</i> bit in <i>Module Status</i> for MDL250, MDL260, MDL350 & MDL660. The sense of this bit was inverted in prior documentation and is corrected in this update.                                                                             |
| F   | Dec-14 | Updates for IC695CEP001 & IC694CEE001                                                                                                                                                                                                                                                 |
|     |        | Added new modules IC694MDL648, IC694MDL730, IC694MDL758, IC694MDR390, IC694ALG542, IC695RMX228, IC695PMM335, IC695ECM850, IC695PNS001, IC695GCG001, IC695CEP001 & IC694CEE001.                                                                                                        |
|     | Jul-14 | Revised Hot Insertion and Removal table in Section 2:.                                                                                                                                                                                                                                |
|     |        | Updated content for IC694APU300 (added <i>Enhanced</i> mode) in Section 8:.                                                                                                                                                                                                           |
| E   |        | Moved IC694APU305 to Section 8:.                                                                                                                                                                                                                                                      |
|     |        | Updated power consumption specifications for ALG106 and ALG112.                                                                                                                                                                                                                       |
|     |        | Corrected Field Wiring diagrams for ALG222 & ALG232                                                                                                                                                                                                                                   |
|     |        | Updated Section 17:. For IC693ACC3xx terminal blocks, added new diagrams and connection info between terminals and D-connectors. Added overview of how this quick-connect system works. Also absorbed former Appendix B (32-point module terminal blocks and cables) into Section 17: |

#### 1.2 Overview

#### 1.2.1 Features

High-speed processor and patented technology for faster throughput

- Universal backplane that supports two different backplane busses per module slot:
  - High-speed, PCI-based for fast throughput of new advanced
     I/O
  - Serial backplane for RX3i serial modules and easy migration of Series 90-30™ I/O
- Selection of CPUs to meet a wide range of programming and performance needs. Refer to the *PACSystems RX3i and RSTi-EP CPU Reference Manual*, GFK-2222. The RX3i product line of CPUs includes:

| CPL410      | AMD G-Series Quad-Core, 64 MB user memory with Linux                   |
|-------------|------------------------------------------------------------------------|
| CPE400      | AMD G-Series Quad-Core, 64 MB user memory with Field Agent             |
| CPE330      | Dual-core CPU with 64 MB of user memory and embedded Ethernet/PROFINET |
| CPE302-Axxx | CPU with 2 MB of user memory and embedded Ethernet                     |
| CPE305-Axxx | CPU with 5 MB¹ of user memory and embedded Ethernet                    |
| CPE310-Axxx | CPU with 10 MB of user memory and embedded Ethernet                    |
| CPE302-Bxxx | CPU with 2 MB of user memory and embedded Ethernet Switch              |
| CPE305-Bxxx | CPU with 6 MB of user memory and embedded Ethernet Switch              |
| CPE310-Bxxx | CPU with 13 MB of user memory and embedded Ethernet Switch             |
| CPE205      | CPU with 512 KB of user memory and embedded Ethernet/PROFINET          |
| CPE210      | CPU with 1.0 MB of user memory and embedded Ethernet/PROFINET          |
| CPE215      | CPU with 1.5 MB of user memory and embedded Ethernet/PROFINET          |
| CPE220      | CPU with 2.0 MB of user memory and embedded Ethernet/PROFINET          |
| CPE240      | CPU with 4.0 MB of user memory and embedded Ethernet/PROFINET          |

<sup>&</sup>lt;sup>1</sup> The CPE305-Axxx only has 5 MB of user memory.

| CPE115  | CPU with 1.5 MB of user memory and embedded Ethernet/PROFINET |
|---------|---------------------------------------------------------------|
| CPE100  | CPU with 1 MB of user memory and embedded Ethernet/PROFINET   |
| CPU310  | CPU with 10 MB of user memory                                 |
| CPU315  | CPU with 20 MB of user memory                                 |
| CPU320  | CPU with 64 MB of user memory                                 |
| CRU320  | Redundancy CPU with 64 MB of user memory                      |
| NIU001  | 300 MHz Ethernet Network Interface Unit                       |
| NIU001+ | 1.1 GHz Ethernet Network Interface Unit                       |

- Memory for ladder logic documentation and machine documentation in the controller to reduce downtime and improve troubleshooting
- Open communications support
- Variety of discrete, analog, and special-purpose modules
- Hot insertion in both the PCI Backplane and Serial Backplane for new and migrated I/O modules. Refer to Section 2.6.4, Hot Insertion and Removal
- Isolated 24 Vdc terminal for I/O modules and a grounding bar that reduces user wiring

#### 1.2.2 Programming and Configuration

PACSystems equipment is configured and programmed using PAC Machine Edition (PME) software. PME features a common user interface across product families and drag-and-drop editing. PME also includes a built-in Web server for real-time data delivery during system operation.

- For more information about programming, instruction sets, syntax, and diagnostics, refer to the *PACSystems RX3i and RSTi-EP CPU Programmer's Reference Manual*, GFK-2950.
- For more information about configuration and CPU features, refer to the *PACSystems RX3i and RSTi-EP CPU Reference Manual*, GFK-2222.

#### 1.2.3 PACSystems Documentation

#### **PACSystems Manuals**

| PACSystems RX3i and RSTi-EP CPU Reference Manual                                 | GFK-2222 |
|----------------------------------------------------------------------------------|----------|
| PACSystems RX3i and RSTi-EP CPU Programmer's Reference Manual                    | GFK-2950 |
| PACSystems RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual           | GFK-2224 |
| PACSystems TCP/IP Ethernet Communications Station Manager User Manual            | GFK-2225 |
| C Programmer's Toolkit for PACSystems                                            | GFK-2259 |
| PACSystems Memory Xchange Modules User's Manual                                  | GFK-2300 |
| PACSystems Hot Standby CPU Redundancy User Manual                                | GFK-2308 |
| PACSystems Battery and Energy Pack Manual                                        | GFK-2741 |
| PAC Machine Edition Logic Developer Getting Started                              | GFK-1918 |
| PAC Process Systems Getting Started Guide                                        | GFK-2487 |
| High-Speed Counter Modules for PACSystems RX3i and Series 90-30 User's<br>Manual | GFK-0293 |
| PACSystems RXi, RX3i, and RSTi-EP Controller Secure Deployment Guide             | GFK-2830 |
| PACSystems HART Pass-Through User Manual                                         | GFK-2929 |

#### **RX3i Manuals**

| DSM324i Motion Controller for PACSystems RX3i and Series 90-30 User's Manual | GFK-2347 |
|------------------------------------------------------------------------------|----------|
| PACSystems RX3i PROFIBUS Modules User's Manual                               | GFK-2301 |
| PACSystems RX3i Max-On Hot Standby Redundancy User's Manual                  | GFK-2409 |
| PACSystems RX3i Ethernet Network Interface Unit User's Manual                | GFK-2439 |
| PACMotion Multi-Axis Motion Controller User's Manual                         | GFK-2448 |
| PACSystems RX3i PROFINET I/O Controller Manual                               | GFK-2571 |
| PACSystems RX3i PROFINET Scanner Manual                                      | GFK-2737 |
| PACSystems RX3i CEP PROFINET Scanner User Manual                             | GFK-2883 |
| PACSystems RX3i IEC 61850 Ethernet Communication Module User Manual          | GFK-2849 |
| PACSystems RX3i Serial Communications Modules User's Manual                  | GFK-2460 |
| PACSystems RX3i Genius Communications Gateway User Manual                    | GFK-2892 |
| PACSystems RX3i DNP3 Outstation Module IC695EDS001 User's Manual             | GFK-2911 |
| PACSystems RX3i IEC 104 Server Module IC695EIS001User's Manual               | GFK-2949 |
| PACSystems RX3i IC695CPE400 1.2GHz 64MB Rackless CPU w/Field Agent QSG       | GFK-3002 |
| PACSystems RX3i IC695CPL410 1.2GHz 64MB Rackless CPU w/Linux QSG             | GFK-3053 |
| PACSystems RX3i Sequence of Events User Manual                               | GFK-3050 |

In addition to these manuals, datasheets and product update documents describe individual modules and product revisions. The most recent PACSystems documentation is available on the Emerson support website. A link is provided at the end of this document.

## 1.3 Modules for RX3i Systems

The tables in this section list the types of modules that can be included in an RX3i system:

RX3i Modules (IC695 and IC694)

*IC695 modules* must be installed in a Universal (IC695CHSxxx) Backplane.

*IC694 modules* are compatible with the RX3i serial bus in Universal Backplanes and RX3i Serial Expansion (IC694CHSxxx) Backplanes.

**Note:** This document assumes the host RX3i CPU is installed in a rack, and compatible modules listed are installed in the main rack or a connected rack. However, for the CPE205, CPE210, CPE215, CPE220, CPE240, CPE100, CPE115, CPE400, and CPL410, which are rackless CPUs, those assumptions are not valid. If the host RX3i CPU is not being installed in an RX3i rack, please refer to the documentation for that particular CPU to determine compatibility.

# 1.3.1 RX3i Modules (IC695 and IC694)

| Description                                                        | Catalog     | Minimum RX3i |
|--------------------------------------------------------------------|-------------|--------------|
| Description                                                        | Number      | CPU Version  |
| RX3i Power Supplies                                                |             |              |
| Power Supply 120/240 Vac 125Vdc 40W                                | IC695PSA040 | All          |
| Power Supply 24Vdc 40W                                             | IC695PSD040 | All          |
| Power Supply 24Vdc 40W Multi-purpose                               | IC695PSD140 | All          |
| Power Supply 120/240 Vac 125Vdc 40W Multi-Purpose                  | IC695PSA140 | All          |
| Power Supply 120/240 Vac 125Vdc 30W Serial Expansion               | IC694PWR321 | All          |
| Power Supply 120/240 Vac 125Vdc 30W High Capacity Serial Expansion | IC694PWR330 | All          |
| Power Supply 24Vdc 30W High Capacity Serial Expansion              | IC694PWR331 | All          |
| Discrete Input Modules                                             |             |              |
| Input Simulator Module                                             | IC694ACC300 | All          |
| Input 120 Vac 8-Pt Isolated                                        | IC694MDL230 | All          |
| Input 240 Vac 8-Pt Isolated                                        | IC694MDL231 | All          |
| Input 120 Vac 16-Pt                                                | IC694MDL240 | All          |
| Input 24Vac 16-Pt                                                  | IC694MDL241 | All          |
| Input 120 Vac 16-Pt Isolated                                       | IC694MDL250 | 3.50         |
| Input 120 Vac 32-Pt Grouped                                        | IC694MDL260 | 3.50         |
| Input 125Vdc 8-Pt Pos/Neg Logic                                    | IC694MDL632 | All          |
| Input 24Vdc 8-Pt Pos/Neg Logic                                     | IC694MDL634 | All          |
| Input 125Vdc 16-Pt Pos/Neg Logic                                   | IC694MDL635 | All          |
| Input 24Vdc 16-Pt Pos/Neg Logic                                    | IC694MDL645 | All          |
| Input 24Vdc 16-Pt Pos/Neg Fast                                     | IC694MDL646 | All          |
| Input 48Vdc 16-Pt Pos/Neg Logic, 1ms filter                        | IC694MDL648 | All          |
| Input 5/12Vdc (TTL) 32-Pt Pos/Neg                                  | IC694MDL654 | All          |
| Input 24Vdc 32-Pt Pos/Neg                                          | IC694MDL655 | All          |
| Input 48Vdc 32-Pt Pos/Neg Logic                                    | IC694MDL658 | All          |
| Input 24Vdc 32-Pt High-Density                                     | IC694MDL660 | 2.90         |
| Input 24Vdc, 16-Pt, Pos Logic                                      | IC695MDL664 | 6.70         |
| Discrete Output Modules                                            |             |              |
| Output 120 Vac 0.5A 12-Pt                                          | IC694MDL310 | All          |
| Output 120/240 Vac 2A 8-Pt                                         | IC694MDL330 | All          |
| Output 120 Vac 0.5A 16-Pt                                          | IC694MDL340 | All          |
| Output 120/240 Vac Isolated 16-Pt                                  | IC694MDL350 | 3.50         |
| Output 120/240 Vac 2A 5-Pt Isolated                                | IC694MDL390 | All          |
| Output 12/24Vdc 2A 8-Pt Positive Logic                             | IC694MDL730 | All          |
| Output 12/24Vdc 0.5A 8-Pt Positive Logic                           | IC694MDL732 | All          |
| Output 125Vdc 1A 6-Pt Isolated Pos/Neg                             | IC694MDL734 | All          |
| Output 12/24Vdc 0.5A 16-Pt Positive Logic                          | IC694MDL740 | All          |

| Paramination.                                                                                  | Catalog         | Minimum RX3i |
|------------------------------------------------------------------------------------------------|-----------------|--------------|
| Description                                                                                    | Number          | CPU Version  |
| Output 12/24Vdc 0.5A 16-Pt Negative Logic                                                      | IC694MDL741     | All          |
| Output 12/24Vdc 1A 16-Pt Positive Logic ESCP                                                   | IC694MDL742     | All          |
| Output 5/24Vdc (TTL) 0.5A 32-Pt Negative Logic                                                 | IC694MDL752     | All          |
| Output 12/24Vdc 0.5A 32-Pt Positive Logic                                                      | IC694MDL753     | All          |
| Output 24Vdc 32-Pt High-Density                                                                | IC694MDL754     | 2.90         |
| Output 12/24Vdc 0.5A 32-Pt Positive Logic with ESCP per group                                  | IC694MDL758     | 7.70         |
| Output 2 Amp 16-Pt Positive Logic                                                              | IC695MDL765     | 6.70         |
| Output 4 Amp 16-Pt Relay                                                                       | IC694MDL916     | 3.81         |
| Output Relay N.O. 4 A 8-Pt Isolated                                                            | IC694MDL930     | All          |
| Output Relay N.C. and Form C 3 A 8-Pt Isolated                                                 | IC694MDL931     | All          |
| Output Relay N.O. 2 A 16-Pt                                                                    | IC694MDL940     | All          |
| Discrete Mixed Modules                                                                         |                 |              |
| High-Speed Counter Module (Classic Mode)                                                       | TCC0 (A PL 1200 | All          |
| High-Speed Counter Module (Enhanced Mode)                                                      | IC694APU300     | 7.13         |
| Special I/O Processor                                                                          | IC694APU305     | 2.90         |
| High-Speed Counter Module, 1.5MHz, 8 Inputs, 7 Outputs                                         | IC695HSC304     | 3.81         |
| High-Speed Counter Module, 1.5MHz, 16 Inputs, 14 Outputs                                       | IC695HSC308     | 3.81         |
| Mixed I/O 24Vdc Input (8-Pt) N.O. Relay Output (8-Pt)                                          | IC694MDR390     | All          |
| Analog Input Modules                                                                           |                 |              |
| Analog Input Module, 6 Channel Isolated Voltage/Current                                        | IC695ALG106     | 5.00         |
| Analog Input Module, 12 Channel Isolated Voltage/Current                                       | IC695ALG112     | 5.00         |
| Input Analog 4pt Voltage                                                                       | IC694ALG220     | All          |
| Input Analog 4pt Current                                                                       | IC694ALG221     | All          |
| Input Analog 16 Single-Ended/8 Differential Voltage                                            | IC694ALG222     | All          |
| Input Analog 16 Single-Ended Current                                                           | IC694ALG223     | All          |
| Input Analog 16 Channel16 Single-Ended/8 Differential Voltage                                  | IC694ALG232     | 6.70         |
| Input Analog 16 Channel Current                                                                | IC694ALG233     | 6.70         |
| Isolated Thermocouple Input Module, 6 Channels                                                 | IC695ALG306     | 5.50         |
| Isolated Thermocouple Input Module, 12 Channels                                                | IC695ALG312     | 5.50         |
| Isolated Thermocouple Input Module, 12 Channels                                                | IC695ALG412     | 6.50         |
| Isolated RTD Input Module, 8 Channels                                                          | IC695ALG508     | 5.50         |
| Universal Analog Input Module, Voltage, Current, Resistance, RTD, TC                           | IC695ALG600     | 2.80         |
| Analog Input Module, 8 Channel Non-Isolated / 4 Channel Differential                           | IC695ALG608     | 3.00         |
| Analog Input Module, 16 Channel Non-Isolated / 8 Channel Differential                          | IC695ALG616     | 3.00         |
| Analog Input Module, 16 Channel Non-Isolated / 8 Channel Differential with HART Communications | IC695ALG626     | 3.50         |
| Analog Input Module, 8 Channel Non-Isolated / 4 Channel Differential with HART Communications  | IC695ALG628     | 3.50         |

|                                                                   | Catalog        | Minimum RX3i   |
|-------------------------------------------------------------------|----------------|----------------|
| Description                                                       | Number         | CPU Version    |
| Analog Output Modules                                             |                |                |
| Output Analog Voltage 2 Channels                                  | IC694ALG390    | All            |
| Output Analog Current 2 Channels                                  | IC694ALG391    | All            |
| Output Analog Current/Voltage 8 Channels                          | IC694ALG392    | All            |
| Output Analog Current/Voltage 4 Channels                          | IC695ALG704    | 3.00           |
| Output Analog Current/Voltage 8 Channels                          | IC695ALG708    | 3.00           |
| Output Analog Current/Voltage 8 Channels with HART Communications | IC695ALG728    | 3.50           |
| Analog Output Current/Voltage 8 Channels, Isolated                | IC695ALG808    | 5.00           |
| Analog Mixed I/O Modules                                          |                |                |
| Analog Module, 4-Inputs, 2-Outputs, Current/Voltage               | IC694ALG442    | All            |
| Analog Module, 4-Inputs, 2-Outputs, Current/Voltage with Advanced | XCC0 4A1 CE 40 | 6.70           |
| Diagnostics                                                       | IC694ALG542    | 6.70           |
| Special Purpose Modules                                           |                |                |
| I/O Link Interface Module                                         | IC694BEM320    | All            |
| I/O Link Master Module                                            | IC694BEM321    | All            |
| Genius Bus Controller Module                                      | IC694BEM331    | All            |
| Serial Communications Module, 2 Ports                             | IC695CMM002    | 3.83           |
| Serial Communications Module, 4 Ports                             | IC695CMM004    | 3.83           |
| Memory Exchange Module                                            | IC695CMX128    | 5.50           |
| DeviceNet Master Module                                           | IC694DNM200    | 3.50           |
| DSM314 Motion Controller                                          | IC694DSM314    | All            |
| DSM324 Motion Controller                                          | IC694DSM324    | 2.80           |
| IEC 61850 Ethernet Communication Module                           | IC695ECM850    | 8.05           |
| RX3i DNP3 Outstation Module                                       | IC695EDS001    | 8.05           |
| RX3i Ethernet 104 Server Module                                   | IC695EIS001    | 8.05           |
| Ethernet Transmitter Module                                       | IC695ETM001    | All            |
| Genius Communications Gateway                                     | IC695GCG001    | 8.15           |
| Serial Bus Transmitter Module                                     | IC695LRE001    | All            |
| Ethernet Network Interface Unit Module                            | IC695NIU001    | NA             |
| PROFIBUS Master Module                                            | IC695PBM300    | 2.90           |
| PROFIBUS Slave Module                                             | IC695PBS301    | 3.00           |
| PACMotion Multi-Axis Motion Controller                            | IC695PMM335    | 5.60           |
|                                                                   |                | CPU315/CPU320  |
| PROFINET Controller Module                                        | IC695PNC001    | 7.00           |
|                                                                   |                | CPE330 8.50    |
|                                                                   |                | CPU315/CPU320  |
|                                                                   |                | CPE302/CPE305/ |
| PROFINET Scanner Module                                           | IC695PNS001    | CPE310 7.10    |
|                                                                   |                | CRU320 8.00    |
|                                                                   |                | CPE330 8.50    |

| Description                                         | Catalog     | Minimum RX3i |
|-----------------------------------------------------|-------------|--------------|
| Description                                         | Number      | CPU Version  |
| PROFINET Scanner Module for RX3i Sequence of Events | IC695PNS101 | CPE330 9.55  |
| Pressure Transducer Module                          | IC695PRS015 | 6.50         |
| Redundancy Memory Xchange Module, Multi-Mode Fiber  | IC695RMX128 | 5.70         |
| Redundancy Memory Xchange Module, Single-Mode Fiber | IC695RMX228 | 5.70         |

# 1.3.2 Series 90-30 (IC693) Modules for RX3i Systems

The following table lists the 90-30 modules that are compatible with the RX3i serial bus in Universal Backplanes, RX3i Serial Expansion Backplanes, and 90-30 Expansion Backplanes.

| Description                                           | Catalog<br>Number | Minimum<br>Revision<br>Supported | CE Mark<br>Approved |
|-------------------------------------------------------|-------------------|----------------------------------|---------------------|
| Discrete Input Modules                                |                   |                                  |                     |
| Series 90-30 Input Simulator Module                   | IC693ACC300       | А                                | D                   |
| Series 90-30 Input 120 Vac 8-Pt Isolated              | IC693MDL230       | А                                | С                   |
| Series 90-30 Input 240 Vac 8-Pt Isolated              | IC693MDL231       | А                                | E                   |
| Series 90-30 Input 120 Vac 16-Pt                      | IC693MDL240       | А                                | E                   |
| Series 90-30 Input 120 Vac 16-Pt Isolated             | IC693MDL250       | Α                                |                     |
| Series 90-30 Input 120 Vac 32-Pt Grouped              | IC693MDL260       | Α                                |                     |
| Series 90-30 Input 24Vac 16-Pt                        | IC693MDL241       | Α                                | D                   |
| Series 90-30 Input 125Vdc 8-Pt Pos/Neg Logic          | IC693MDL632       | Α                                | D                   |
| Series 90-30 Input 24Vdc 8-Pt Pos/Neg Logic           | IC693MDL634       | Α                                | С                   |
| Series 90-30 Input 24Vdc 16-Pt Pos/Neg Logic          | IC693MDL645       | Α                                | D                   |
| Series 90-30 Input 24Vdc 16-Pt Pos/Neg Fast           | IC693MDL646       | Α                                | С                   |
| Series 90-30 Input 48Vdc 16-Pt Pos/Neg Fast           | IC693MDL648       | Α                                | В                   |
| Series 90-30 Input 5/12Vdc (TTL) 32-Pt Pos/Neg        | IC693MDL654       | Α                                | E                   |
| Series 90-30 Input 24Vdc 32-Pt Pos/Neg                | IC693MDL655       | Α                                | E                   |
| Series 90-30 Input High-Density 24Vdc 32-Pt           | IC693MDL660       | Α                                |                     |
| Series 90-30 Output 120 Vac 0.5A 12-Pt                | IC693MDL310       | Α                                | D                   |
| Series 90-30 Output 120/240 Vac 2A 8-Pt               | IC693MDL330       | Α                                | F                   |
| Series 90-30 Output 120 Vac 0.5A 16-Pt                | IC693MDL340       | Α                                | D                   |
| Series 90-30 Output 120/240 Vac Isolated 16-Pt        | IC693MDL350       | Α                                |                     |
| Series 90-30 Output 120/240 Vac 2A 5-Pt Isolated      | IC693MDL390       | Α                                | E                   |
| Series 90-30 Output 12/24Vdc 2A 8-Pt Positive Logic   | IC693MDL730       | Α                                | E                   |
| Series 90-30 Output 12/24Vdc 2A 8-Pt Negative Logic   | IC693MDL731       | Α                                | E                   |
| Series 90-30 Output 12/24Vdc 0.5A 8-Pt Positive Logic | IC693MDL732       | Α                                | С                   |
| Series 90-30 Output 12/24Vdc 0.5A 8-Pt Negative Logic | IC693MDL733       | Α                                | С                   |

|                                                               |              | Minimum   |          |
|---------------------------------------------------------------|--------------|-----------|----------|
| Description                                                   | Catalog      | Revision  | CE Mark  |
| Description                                                   | Number       |           | Approved |
| Discrete Outrot Madules                                       |              | Supported |          |
| Discrete Output Modules                                       | 166021401724 |           | T 6      |
| Series 90-30 Output 125Vdc 1A 6-Pt Isolated Pos/Neg           | IC693MDL734  | A         | D        |
| Series 90-30 Output 12/24Vdc 0.5A 16-Pt Positive Logic        | IC693MDL740  | A         | E        |
| Series 90-30 Output 12/24Vdc 0.5A 16-Pt Negative Logic        | IC693MDL741  | Α         | E        |
| Series 90-30 Output 12/24Vdc 1A 16-Pt Positive Logic ESCP     | IC693MDL742  | Α         | D        |
| Series 90-30 Output 48Vdc 0.5A 8-Pt Positive Logic            | IC693MDL748  | Α         | В        |
| Series 90-30 Output 5/24Vdc (TTL) 0.5A 32-Pt Negative Logic   | IC693MDL752  | Α         | D        |
| Series 90-30 Output 12/24Vdc 0.5A 32-Pt Positive Logic        | IC693MDL753  | Α         | D        |
| Series 90-30 Output High-Density 24Vdc 32-Pt                  | IC693MDL754  | Α         |          |
| Series 90-30 Solenoid Out 11 Pt/24Vdc Out 5-Pt Positive Logic | IC693MDL760  | Α         | В        |
| Series 90-30 Output Relay N.O. 4 A 8-Pt Isolated              | IC693MDL930  | Α         | D        |
| Series 90-30 Output Relay N.C. and Form C 3 A 8-Pt Isolated   | IC693MDL931  | Α         | D        |
| Series 90-30 Output Relay N.O. 2 A 16-Pt                      | IC693MDL940  | Α         | D        |
| Discrete Mixed Modules                                        |              |           |          |
| Series 90-30 High-Speed Counter Module                        | IC693APU300  | D         | Н        |
| Series 90-30 Special I/O Processor                            | IC693APU305  | С         |          |
| Series 90-30 Mixed I/O 8-Pt 120 Vac In / 8-Pt Relay Out       | IC693MAR590  | Α         | С        |
| Series 90-30 Mixed I/O 8-Pt 24Vdc In / 8-Pt Relay Out         | IC693MDR390  | Α         | С        |
| Analog Input Modules                                          |              |           |          |
| Series 90-30 Input Analog 4-Channel Voltage                   | IC693ALG220  | Α         | G and H  |
| Series 90-30 Input Analog 4-Channel Current                   | IC693ALG221  | Α         | G and H  |
| Series 90-30 Input Analog 16 Single-Ended/ 8 Differential     | ICC02A1 C222 | _         | CaralD   |
| Voltage                                                       | IC693ALG222  | A         | C and D  |
| Series 90-30 Input Analog 16 Single-Ended/ 8 Differential     | ICC03ALC333  | ^         | C        |
| Current                                                       | IC693ALG223  | A         | С        |
| Analog Output Modules                                         |              |           |          |
| Series 90-30 Output Analog 2-Channel Voltage                  | IC693ALG390  | А         | F        |
| Series 90-30 Output Analog 2-Channel Current                  | IC693ALG391  | Α         | E        |
| Series 90-30 Output Analog Current/Voltage 8-Channel          | IC693ALG392  | Α         | В        |
| Analog Mixed I/O Modules                                      |              | •         | _        |
| Series 90-30 Analog Current/Voltage 4-Input/2-Output          | IC693ALG442  | В         | В        |
| Communication Modules                                         |              |           |          |
| Series 90-30 I/O Link Module (Master)                         | IC693BEM321  | С         | F        |
| Series 90-30 Genius Bus Controller                            | IC693BEM331  | K         |          |
| Series 90-30 FIP Bus Controller                               | IC693BEM341  |           |          |
| Special Purpose Modules                                       |              |           |          |
| Series 90-30 I/O Link Interface Module                        | IC693BEM320  |           |          |
| Series 90-30 I/O Link Master Module                           | IC693BEM321  |           |          |

| Description                                                  | Catalog<br>Number | Minimum<br>Revision<br>Supported | CE Mark<br>Approved |
|--------------------------------------------------------------|-------------------|----------------------------------|---------------------|
| Series 90-30 DeviceNet Master Module                         | IC693DNM200       | AA                               |                     |
| Series 90-30 DeviceNet Slave Module                          | IC693DNS301       | AA                               |                     |
| Series 90-30 DSM314 Motion Controller                        | IC693DSM314       | AC                               | AA                  |
| Series 90-30 DSM324i Motion Controller                       | IC603DSM324       |                                  |                     |
| Series 90-30 Temperature Controller Module                   | IC693TCM302       | *                                |                     |
| Series 90-30 Temperature Controller Module Extended<br>Range | IC693TCM303       | *                                |                     |
| Series 90-30 Power Transducer Module                         | IC693PTM100       | Α                                |                     |
| Series 90-30 Power Transducer Module                         | IC693PTM101       | Α                                |                     |

# 1.3.3 Series 90-30 Modules that Cannot Be Used in an RX3i System

The Series 90-30 modules listed in the following table cannot be included in a Universal Backplane or any Expansion or Remote Backplane in an RX3i system. For information about whether another company's Series 90-30-compatible module may be suitable for PACSystems RX3i applications, please contact the manufacturer of Module. That includes Series 90-30 modules that have catalog numbers beginning with HE693.

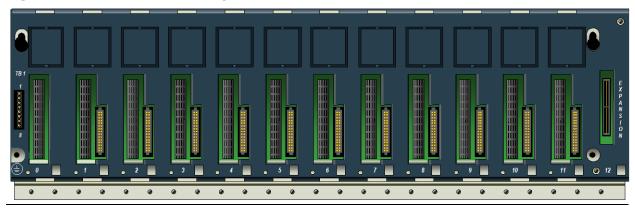
| Description                              | Catalog Number |
|------------------------------------------|----------------|
| CIMPLICITY 90-ADS 9030 Module            | IC693ADC311    |
| CIMPLICITY 90-ADS 9030 System            | IC693ADS301    |
| Axis Position Module (1-Axis)            | IC693APU301    |
| Axis Position Module (2-Axis)            | IC693APU302    |
| Series 90-30 SDS Bus Interface           | IC693BEM310    |
| Remote FIP Interface Module              | IC693BEM330    |
| FIP Remote I/O 2.5MHz                    | IC693BEM332    |
| Remote FIP Interface                     | IC693BEM333    |
| Genius Bus Controller                    | IC693BEM334    |
| FIP Remote I/O 2.5MHz                    | IC693BEM335    |
| Ethernet Network Interface Unit          | IC693BEM350    |
| Cscan Interface Module                   | IC693CDC200    |
| Genius Communications Module             | IC693CMM301    |
| Enhanced Genius Communications Module    | IC693CMM302    |
| Alspa N80 Communications Module          | IC693CMM304    |
| Alspa Enhanced N80 Communications Module | IC693CMM305    |
| Communication Control Module             | IC693CMM311    |

| Description                            | Catalog Number |
|----------------------------------------|----------------|
| Ethernet Interface Module 3.10         | IC693CMM321    |
| Digital Servo Module (2-Axis)          | IC693DSM302    |
| Digital Valve Driver Module            | IC693DVM300    |
| Power Mate "J "Interface Module        | IC693MCM001    |
| Power Mate "J" Interface 2 Axis        | IC693MCM002    |
| PM-J 1-Axis International Only         | IC693MCS001    |
| PM-J 2-Axis International Only         | IC693MCS001    |
| Input 120/240 Vac 8-Pt Isolated        | IC693MDL232    |
| Input 24Vdc 8-Pt Pos Logic             | IC693MDL630    |
| Input 24Vdc 8-Pt Neg Logic             | IC693MDL631    |
| Input 24Vdc 8-Pt Neg Logic             | IC693MDL633    |
| Input 24Vdc 16-Pt Pos Logic            | IC693MDL640    |
| Input 24Vdc 16-Pt Neg Logic            | IC693MDL641    |
| Input 24Vdc 16-Pt Pos Logic Fast (1ms) | IC693MDL643    |
| Input 24Vdc 16-Pt Neg Logic Fast (1ms) | IC693MDL644    |
| Input 24Vdc 32-Pt Pos/Neg              | IC693MDL652    |
| Input 24Vdc 32-Pt Pos/Neg Fast         | IC693MDL653    |
| Output 12/24Vdc 0.3A 32-Pt Neg         | IC693MDL750    |
| Output 12/24Vdc 0.3A 32-Pt Pos         | IC693MDL751    |
| PROFIBUS-DP Master                     | IC693PBM200    |
| PROFIBUS-DP Slave                      | IC693PBS201    |
| Programmable Coprocessor W/Epr         | IC693PCM30     |
| Programmable Coprocessor Module        | IC693PCM300    |
| Programmable Coprocessor Module (64k)  | IC693PCM301    |
| Programmable Coprocessor Module (640k) | IC693PCM311    |
| Clamp Position Module                  | IC693PMC801    |
| Injection Position Module              | IC693PMI800    |

### 1.4 Backplanes and Power Supplies

#### 1.4.1 RX3i Universal Backplane

The RX3i system must include at least one Universal Backplane: it accommodates the RX3i CPU. Three sizes of Universal Backplane are available: 7-slot IC695CHS007, 12-slot IC695CHS012 (Figure 1), and 16-slot (IC695CHS016). These three sizes are available in two variations: dual-bus and PCI-only.


#### **Dual-Bus Backplane**

With its dual-purpose backplane, the RX3i Universal Backplane supports both PCI-based backplane (IC695) and serial backplane (IC693 and IC694) I/O and option modules. It also supports Series 90-30 I/O and option modules.

#### **PCI-Only Backplane**

The PACSystems RX3i 7-slot, 12-slot, and 16-slot Universal Backplanes are also available as PCI-exclusive variations (IC695CHS007PCIONLY, IC695CHS012PCIONLY, IC695CHS016PCIONLY). The PCI-exclusive version of this backplane supports only IC695 modules. Visually, customers can identify the difference between the two models by the absence of the Serial Bus connector, which is located next to the PCI Bus connector on the dual-bus backplane.





# 1.4.2 Expansion (12-slot and 16-slot Universal Backplanes Only)

#### Figure 2: LRE001



Whenever an application requires more modules than the selected Universal Backplane can accommodate (whenever some modules must be installed in another location) an RX3i Serial Bus Transmitter Module, IC695LRE001 (Figure 2), must be installed in the last slot of the Universal Backplane. Note that only 12-slot and 16-slot Universal Backplanes accommodate the LRE001.

The Bus Transmitter module (LRE001) is connected to the first Expansion or Remote backplane via a cable. Subsequent racks are daisy-chained together using cables (see Figure 5 through Figure 7).

The D-connector (right side, Figure 3) is used to connect the Rx3i Serial Expansion backplane to the LRE001.

Remote Backplanes may also be connected to the RX3i system in this manner.

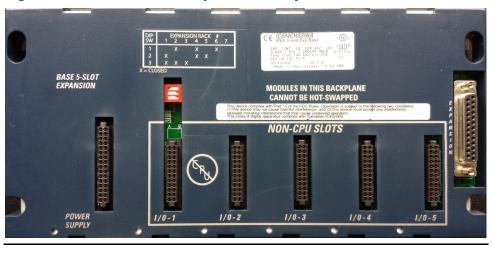



Figure 3: 5-Slot RX3i Serial Expansion Backplane IC694CHS398

Use of Expansion and Remote Backplanes is summarized on the following pages.

For more information about the Serial Bus Transmitter module and cables, refer to.

# 1.4.3 Backplanes Available for the RX3i System

Universal and Expansion Backplanes that are compatible with RX3i systems are listed below. Refer to Chapter 3 of this manual for descriptions and specifications of the RX3i Backplanes. For information about Series 90-30 Expansion Backplanes, refer to the *Series 90-30 I/O Modules Specifications Manual*, GFK-0898.

| Backplanes                                      |             |                    |
|-------------------------------------------------|-------------|--------------------|
| RX3i 16-Slot Universal Backplane                | IC695CHS016 | IC695CHS016PCIOnly |
| RX3i 12-Slot Universal Backplane                | IC695CHS012 | IC695CHS012PCIOnly |
| RX3i 7-Slot Universal Backplane                 | IC695CHS007 | IC695CHS007PCIOnly |
| RX3i 10-Slot Serial Expansion Backplane         | IC694CHS392 |                    |
| RX3i 5-Slot Serial Expansion Backplane          | IC694CHS398 |                    |
| Series 90-30 10-Slot Expansion Backplane        | IC693CHS392 |                    |
| Series 90-30 5-Slot Expansion Backplane         | IC693CHS398 |                    |
| Series 90-30 10-Slot Remote Expansion Backplane | IC693CHS393 |                    |
| Series 90-30 5-Slot Remote Expansion Backplane  | IC693CHS399 |                    |
| Backplanes                                      |             |                    |
| RX3i 16-Slot Universal Backplane                | IC695CHS016 | IC695CHS016PCIOnly |
| RX3i 12-Slot Universal Backplane                | IC695CHS012 | IC695CHS012PCIOnly |
| RX3i 7-Slot Universal Backplane                 | IC695CHS007 | IC695CHS007PCIOnly |
| RX3i 10-Slot Serial Expansion Backplane         | IC694CHS392 |                    |
| RX3i 5-Slot Serial Expansion Backplane          | IC694CHS398 |                    |
| Series 90-30 10-Slot Expansion Backplane        | IC693CHS392 |                    |
| Series 90-30 5-Slot Expansion Backplane         | IC693CHS398 |                    |
| Series 90-30 10-Slot Remote Expansion Backplane | IC693CHS393 |                    |
| Series 90-30 5-Slot Remote Expansion Backplane  | IC693CHS399 |                    |

# 1.4.4 Power Supplies for RX3i Systems

Power Supplies for Universal and Serial Expansion Backplanes are listed below. Refer to Chapter 4 for descriptions and specifications of the RX3i Power Supplies. For information about Series 90-30 Power Supplies, refer to the GFK-0898, *Series 90-30 I/O Modules Specifications Manual*.

| Description                                                                                       | Catalog<br>Number          | Installed in<br>Universal<br>Backplane | Installed in<br>Serial<br>Expansion<br>Backplane |
|---------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|--------------------------------------------------|
| Power Supplies                                                                                    |                            |                                        |                                                  |
| RX3i Power Supply,<br>120/240 Vac, 125Vdc,<br>40 W                                                | IC695PSA040<br>IC695PSA140 | <b>V</b>                               |                                                  |
| RX3i Power Supplies,<br>24Vdc, 40 W                                                               | IC695PSD040<br>IC695PSD140 |                                        |                                                  |
| RX3i Serial Expansion<br>Power Supply, 120/240<br>Vac, 125Vdc                                     | IC694PWR321                |                                        | √                                                |
| RX3i Serial Expansion<br>Power Supply, 120/240<br>Vac, 125Vdc, High<br>Capacity                   | IC694PWR330                |                                        | <b>V</b>                                         |
| RX3i Serial Expansion<br>Power Supply, 24Vdc,<br>High Capacity                                    | IC694PWR331                |                                        | <b>V</b>                                         |
| Series 90-30 Power<br>Supply for Expansion<br>Backplane, 120/240<br>Vac, 125Vdc                   | IC693PWR321                |                                        | √                                                |
| Series 90-30 Power<br>Supply for Expansion<br>Backplane, 120/240<br>Vac, 125Vdc, High<br>Capacity | IC693PWR330                |                                        | √                                                |
| Series 90-30 Power<br>Supply for Expansion<br>Backplane, 24Vdc, High<br>Capacity                  | IC693PWR331                |                                        | $\checkmark$                                     |

Figure 4: Typical Single-Wide RX3i Power Supply Module

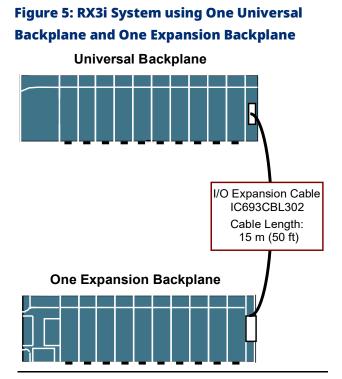


#### 1.5 Expansion Systems

The PACSystems RX3i can include a combination of up to seven Serial Expansion and/or Remote Backplanes. The Expansion Backplanes can be any of the RX3i or Series 90-30 models listed earlier. The Remote Backplanes can be any of the Series 90-30 Remote Backplanes listed in the GEK-0898, *Series 90-30 I/O Module Specifications Manual*.

- If the system includes only Expansion Backplanes, the total distance from the CPU to the last backplane cannot be more than 15 meters (50 feet)
- If the system includes any Remote Backplanes, the total distance from the CPU to the last backplane cannot be more than 213 meters (700 feet).

Remote Backplanes provide the same functionality as Expansion Backplanes over a much greater distance. Remote Backplanes have extra isolation circuitry that lessens the effect of unbalanced ground conditions that can occur when backplanes are located long distances from each other and do not share the same ground system. Communications between the CPU and a Remote Backplane may take slightly longer than communications between the CPU and an Expansion Backplane. This delay is usually small compared to the total CPU scan time.


# 1.5.1 Expansion System with One Expansion or Remote Backplane

An Expansion system can consist of a Universal Backplane with just one Expansion or Remote Backplane.

This example includes one Universal Backplane IC695CHS012 and one Expansion Backplane, IC694CHS392. Each Backplane in this example has a DC Power Supply. Together, they accommodate 19 discrete, analog, and special-function modules.

These backplanes are located 15m (50 ft) apart. They are connected via an Expansion Cable IC693CBL302, which has a built-in terminating resistor.

If it were necessary to locate the second backplane more than 15m (50 ft) from the Universal Backplane, a Series 90-30 Remote Backplane could be used with a customlength cable and external terminating resistor.



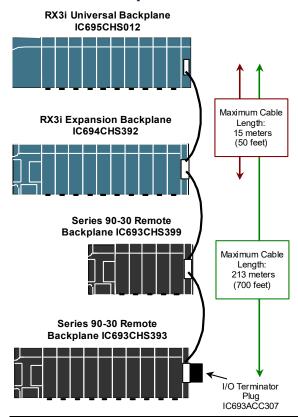
### 1.5.2 Using Multiple Expansion and Remote Backplanes

The next two example systems are similar to each other except for the distance between the backplanes. The example on the left includes two RX3i Expansion Backplanes and a Series 90-30 Expansion Backplane. The Expansion Backplanes can be any combination of RX3i (IC694) and Series 90-30 (IC693) Expansion Backplanes. I/O modules in the system can be any combination of RX3i and Series 90-30 modules.

In the example on the right, two of the backplanes must be installed beyond the 15 m (50-ft) limit of an Expansion system. Two Series 90-30 Remote Backplanes are used in those locations. All other features of the two example systems are the same, including their I/O modules.

Figure 6: RX3i System using Multiple Expansion Backplanes

RX3i Universal Backplane IC695CHS012


RX3i Expansion Backplane IC694CHS392

RX3i Expansion Backplane IC694CHS398

Maximum Cable Length: 15 meters (50 feet)

Series 90-30 Expansion Backplane IC693CHS392

Figure 7: Rx3i System using Expansion and Remote Backplanes



# Section 2: Installation

This chapter provides general instructions for installing PACSystems RX3i equipment.

- Pre-Installation Check
- System Layout Guidelines
- Enclosures
- System Wiring
- System Grounding
- System Installation

For additional information about system installation, refer to the following:

- Section 3: Backplanes, for backplane dimension diagrams
- Section 4: Power Supplies, for power supply specifications and wiring diagrams
- Sections 5-16 for module wiring diagrams and specifications
- Section 17: Terminal Blocks and Interconnect Cables, for information about terminal blocks for some higher-density modules, the Terminal Block Quick Connect System (TBQC) and interconnect cables.
- Appendix A: for general standards information
- Appendix B: for information about calculating heat dissipation
- Appendix C: for information about the Cable Clamping Assembly

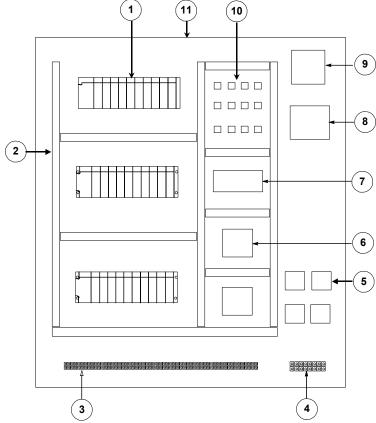
#### 2.1 Pre-Installation Check

Upon receiving your RX3i equipment, carefully inspect all shipping containers for damage. If any part of the system is damaged, notify the carrier immediately. The damaged shipping container should be saved as evidence for inspection by the carrier.

As the consignee, it is your responsibility to register a claim with the carrier for damage incurred during shipment. However, we will fully cooperate with you, should such action be necessary.

After unpacking the RX3i equipment, **record all serial numbers**. Serial numbers are required if you should need to contact Customer Care during the warranty period. All shipping containers and all packing material should be saved should it be necessary to transport or ship any part of the system.

Verify that all components of the system have been received and that they agree with your order. If the system received does not agree with your order, contact Customer Care.


If you need technical help, contact Technical Support. For phone numbers and email addresses, refer to *Contact Information*.

### 2.2 System Layout Guidelines

A good layout helps minimize the chance of electrical shock to personnel working on the system. It lets maintenance technicians easily access the unit to make measurements, load software, check indicator lights, remove and replace modules, etc. It also makes it easier to trace wiring and locate components while troubleshooting. Also, a proper system layout promotes good heat dissipation and helps eliminate electrical noise from the system. Excess heat and noise are two major causes of electronic component failure.

- Locate RX3i equipment away from other components that generate a lot of heat, such as transformers, power supplies, or power resistors.
- Locate RX3i equipment away from components that generate electrical noise such as relays and contacts.
- Locate RX3i equipment away from high-voltage components and wiring, such as circuit breakers and fusible disconnects, transformers, and motor wiring.
- Locate equipment at a convenient level that allows technicians reasonable access for maintaining the system.
- Route sensitive input wires away from electrically-noisy wires such as discrete output and AC wiring. This can be facilitated by grouping I/O modules to keep output modules separated from sensitive input modules.
- Clearance space of 10 cm (4 in) on all four sides of each RX3i backplane for ventilation/cooling is required.
- RX3i backplanes are designed to be mounted horizontally due to thermal considerations. Other mounting orientations may affect system performance, reliability, and agency approvals, and are therefore not recommended.
- Use shielded cable connections with the shield grounded at one end (at source) for all analog modules, including RTD and Thermocouple modules.

**Figure 8: System Layout Guidelines** 



- 1. RX3i
- 2. Wireway (Wire Duct)
- 3. Field device connection terminal block
- 4. Motor connection terminal block
- 5. Motor starters
- 6. Circuit board

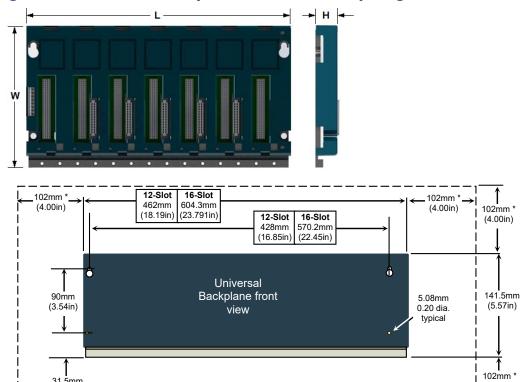
- 7. Power supply
- 8. Control transformer
- 9. Fusible disconnect or circuit breaker
- 10. Control relays
- 11. Protected enclosure

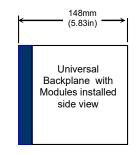
#### 2.3 Enclosures

The RX3i system and its components are considered open equipment [having live electrical parts that may be accessible to users] and must be installed in a protective enclosure or incorporated into other assemblies manufactured to provide safety. At a minimum, the enclosure or assemblies shall provide a degree of protection against solid objects up to 12mm (e.g. fingers). This equates to a NEMA/UL Type 1 enclosure or an IP20 rating (IEC60529) providing at least a pollution degree 2 environment.

When an RX3i system is installed into an area designated as a Hazardous Area, then the enclosure must be one that is only accessible by use of a tool. Refer to Appendix A for reference to specific product certifications, types of Hazardous Area approvals, Hazardous Area warnings, and additional enclosure requirements concerning ATEX. The enclosure must be able to adequately dissipate the heat generated by all of the components mounted inside so that no components overheat. Heat dissipation is also a factor in determining the need for enclosure cooling options such as fans and air conditioning. A minimum space of at least 102 mm (4 in) is required on all sides of the RX3i backplane for cooling. Additional space may be required, depending on the amount of heat generated by the equipment during operation, or on other requirements such as minimum bend radius for system cabling. *Appendix B* explains how to calculate heat dissipation for RX3i modules and field devices in an enclosure.

31.5mm


(1.24in)


#### RX3i Universal Backplane Dimensions and Spacing 2.3.1

**Table 2-1: Backplane Dimensional Details** 

| CAT Number  | Dimensions – Inches (mm) |                          |                    |  |  |  |
|-------------|--------------------------|--------------------------|--------------------|--|--|--|
|             | Length (L)               | Width (W)                | Height (H)         |  |  |  |
| IC695CHS007 | 10.414 +/- 0.014         | 5.55 Max, 5.6 Min        | 0.851 +/- 0.010    |  |  |  |
|             | (264.515 +/- 0.356)      | (140.97 Max, 142.24 Min) | (21.615 +/- 0.254) |  |  |  |
| IC695CHS012 | 18.191 +/- 0.014         | 5.55 Max, 5.6 01Min      | 0.851 +/- 0.010    |  |  |  |
|             | (462.051 +/- 0.356)      | (140.97 Max, 142.26 Min) | (21.615 +/- 0.254) |  |  |  |
| IC695CHS016 | 23.791 +/- 0.014         | 5.55 Max, 5.6 01Min      | 0.851 +/- 0.010    |  |  |  |
|             | (604.291 +/- 0.356)      | (140.97 Max, 142.26 Min) | (21.615 +/- 0.254) |  |  |  |

Figure 9: RX3i Universal Backplane Dimensions and Spacing





\* Allowance for cooling

Side dimension is for standard modules with doors closed.

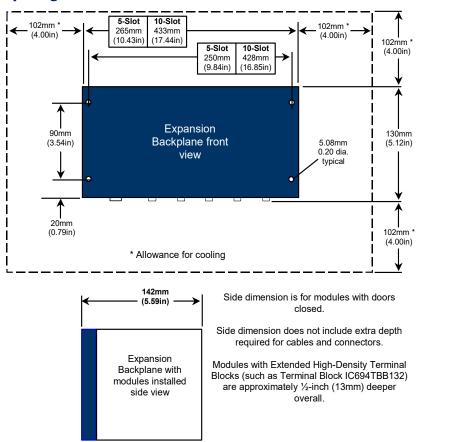
(4.00in)

Side dimension does not include extra depth required for cables and connectors.

Modules with Extended High-Density Terminal Blocks (such as Terminal Block IC694TBB132) are approximately 1/2-inch (13mm) deeper overall.

The mounting holes for the 12-slot RX3i Universal Backplane match the 10-slot Series 90-30 Backplane exactly, for easy upgrades.

Backplanes must be mounted horizontally, as represented above, to meet product performance and reliability specifications by providing adequate airflow around Modules. Other mounting orientations may affect system performance, reliability, and agency approvals, and are therefore not recommended.


Figure 10: Vertical Mounting Not Recommended



# 2.3.2 RX3i Serial Expansion Backplane Dimensions and Spacing

Each backplane has standard attachment flanges for mounting on an electrical panel.

Figure 11: RX3i Serial Expansion Backplane Dimensions and Spacing



### 2.4 System Wiring

Adhere to the following information to avoid possible misrouting of wiring to I/O modules:

- Label all wires to and from I/O devices. Record circuit identification numbers or other pertinent data on the inserts that go into the faceplate door of Module.
- Wires should be dressed so that each field I/O connector is fixed relative to its respective module.

#### **WARNING**

In addition to the information provided here, always follow all wiring and safety codes that apply to your area or your type of equipment. For example, in the United States, most areas have adopted the National Electrical Code standard and specify that all wiring conforms to its requirements. In other countries, different codes will apply. For maximum safety to personnel and property, you must follow these codes. Failure to do so can lead to personal injury or death, property damage or destruction, or both.

# 2.4.1 Color Coding Wires

These color codes are commonly used in industrial equipment manufactured in the United States. Where they differ from codes that apply to your area or your type of equipment, follow your applicable codes instead. Besides satisfying code requirements, wire color coding makes testing and troubleshooting safer, faster, and easier.

- Green or green with stripe- Ground
- Black Primary AC
- Red Secondary AC
- Blue DC
- White Common or neutral
- Yellow Secondary power source not controlled by the main disconnect. Alerts maintenance personnel that there may be power present (from an external source) even if the equipment is disconnected from its main power source.

#### 2.4.2 Wire Routing

To reduce noise-coupling among PLC wires, electrically-noisy wiring such as AC power wiring and discrete output module wiring should be separated from low-level signal wirings such as DC and analog input module wiring or communications cables. Where practical, group separately the following types of wiring:

- AC power wiring includes the AC input to the PLC power supply, as well as other AC devices in the control cabinet.
- **Analog Input or Output Module wiring** should be shielded to further reduce noise coupling.
- **Discrete Output Module wiring** often includes switch-inductive loads that produce noise spikes when switched off.
- **DC Input Module wiring,** although suppressed internally, are low-level inputs that should be further protected against noise coupling by observing these wiring practices.
- Communications Cables are noise-producing wiring cables from which wiring such as Genius bus or serial cables should be kept away.

Where AC or Output wiring bundles must pass near noise-sensitive signal wiring bundles, avoid running them beside each other. If they have to cross, route them at a right angle to minimize coupling between them.

#### **Grouping of Similar Modules to Keep Wires Segregated**

If practical, grouping similar modules together on the backplanes can help keep wiring segregated. For example, one backplane could contain AC modules only, while another could contain DC modules only, with further grouping by input and output types.

# 2.5 System Grounding

All components of a control system and the devices it is controlling must be properly grounded. This is particularly important for the following reasons:

- A low-resistance path from all parts of a system to earth minimizes exposure to shock in the event of short circuits or equipment malfunction.
- The RX3i system requires proper grounding for correct operation.
- All backplanes grouped together in the PLC system must have a common ground connection. This is especially important for backplanes that are not mounted in the same control cabinet.

#### **WARNING**

In addition to observing the grounding procedures described here, it is important to follow local grounding codes. In the United States, most areas have adopted the National Electrical Code standard and specify that all wiring conforms to its requirements. In other countries, different codes apply. For maximum safety to personnel and property, follow these codes. Failure to do so can mean injury or death to personnel, damage to property, or both.

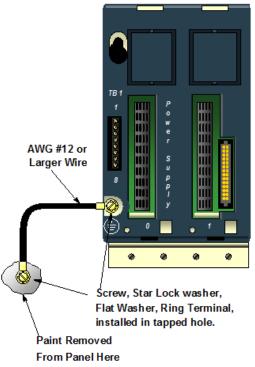
In addition to observing the system grounding procedures, periodic inspections of the ground connections should be performed to ensure that the system remains properly grounded.

 The PLC equipment, other control equipment, and the machine should be interconnected to maintain a common earth ground reference, also called the machine chassis ground.

**MOTOR DRIVES MACHINERY PLC CABINET** AND OTHER **ELECTRICAL** CONTROL RACK **EQUIPMENT PROGRAMMING** RACK **DEVICE** NOTE SIGNAL AND POWER CONNECTIONS **EARTH CENTRAL** ARE NOT SHOWN **GROUND POINT GROUND** 

**Figure 12: System Grounding** 

#### 2.5.1 **Ground Conductors**


Ground conductors should be connected in a tree fashion with branches routed to a central earth ground point, as shown on the previous page. This ensures that no ground conductor carries current from any other branch.

A low inductance path from all parts of a system to earth minimizes emissions and increases immunity to electrical interferences. Ground conductors should be as short and as large in size as possible. Braided straps (maximum 10:1 length to width ratio recommended) or ground cables (typically green insulation with a yellow tracer - AWG #12 (3.3 mm<sup>2</sup>) or larger) can be used to minimize resistance. Conductors must always be large enough to carry the maximum short circuit current of the path being considered.

# 2.5.2 Backplane Safety and EMC Reference Grounding

The metal back of the backplane must be grounded using a separate conductor; the backplane mounting screws alone do not provide an adequate ground connection. At a minimum, use AWG #12 (3.3 mm<sup>2</sup>) wire with a ring terminal and star lock-washer. Connect the other end of this ground wire to a tapped hole in the mounting panel using a machine screw, star lock washer, and flat washer. Alternately, if the panel has a ground stud, use a nut and star lock washer for each wire on the ground stud to ensure adequate grounding. Where connections are made to a painted panel, the paint should be removed so clean, bare metal is exposed at the connection point. Terminals and hardware used should be rated to work with the aluminum backplane material.

Figure 13: Ground Strap Installation



#### **A** WARNING

All backplanes must be grounded to minimize electrical shock hazards. Failure to do so can result in severe personal injury.

All backplanes grouped together in the PLC system must have a common ground connection. This is especially important for backplanes that are not mounted in the same control cabinet.

# 2.5.3 Power Supply Grounding

Refer to the Section 4.1.1 Power Supply Field Wiring.

### 2.5.4 Programmer Grounding

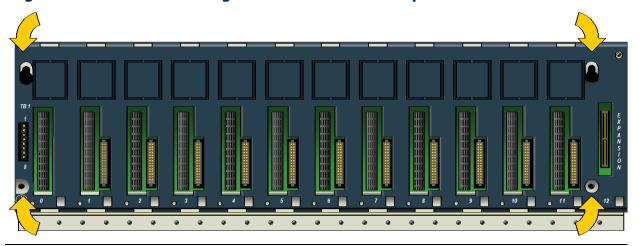
For proper operation, the computer (programmer) running the PLC software must have a ground connection in common with the CPU. Normally, this common ground connection is provided by connecting the power cord of the programming device to the same power source (with the same ground reference point) as the backplane. If the programmer ground is at a different potential than the PLC ground, a shock hazard could exist. Also, damage to the ports could occur when the programmer serial cable is connected between the two.

# 2.5.5 Shield Grounding

In general, the aluminum PLC backplane is used for module shield grounding. On some modules, shield connections to the user terminal connector on Module are routed to the backplane through the backplane connector of Module. Other modules, such as the DSM314 require a separate shield ground, as displayed in Module descriptions in this manual.

For modules installed in a Universal Backplane, shield grounds can be connected to the Grounding Bar at the bottom of the Backplane using size M3 screws. The recommended torque is 0.45 Nm (4 in-lb) maximum.

Grounding Bar


Figure 14: Grounding Bar on RX3i Universal Backplane

# 2.6 System Installation

# 2.6.1 Universal Backplanes

Mount a Universal Backplane using four good quality  $8-32 \times 1/2 (4 \times 12 \text{mm})$  machine screws, lock washers, and flat washers. Install the screws in the four tapped holes displayed in the following figure.

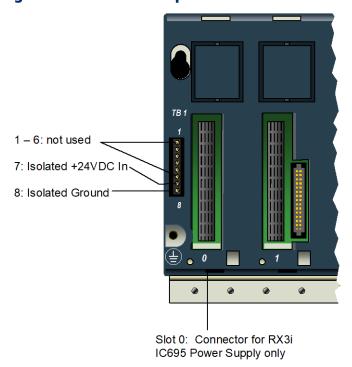
Figure 15: Location of Mounting Screws for Universal Backplane



Backplanes must be mounted horizontally, as represented above, to meet product performance and reliability specifications by providing adequate airflow around Modules. Other mounting orientations may affect system performance, reliability, and agency approvals, and are therefore not recommended.

#### **Universal Backplane Terminal TB1**

The RX3i IC695 Power Supplies do not provide Isolated +24Vdc output power over the backplane.


TB1 Terminals 7 and 8 can be used to connect an optional external source of Isolated +24Vdc (see Ofor details). Isolated +24Vdc is required for some IC693 and IC694 modules as listed in the table of Section 4.2, Module Load Requirements.

These terminals accept individual wires from 14 to 22 AWG.

If modules that require Isolated +24Vdc are installed in an Expansion Backplane rather than in a Universal Backplane, an external Isolated +24Vdc power supply will not be required.

Terminals 1 through 6 are not used.

**Figure 16: Universal Backplane Terminal TB1** 



#### **Power Supply Models and Slot Occupancy**

| Power Supply<br>Catalog Number | #Slots<br>Occupied <sup>2</sup> | Max in<br>Universal<br>Backplane | Redundant<br>Mode | Remote or<br>Expansion<br>Backplane |  |
|--------------------------------|---------------------------------|----------------------------------|-------------------|-------------------------------------|--|
| IC695PSD040                    | 1                               | 1                                | Not supported     | Not supported                       |  |
| IC695PSD140                    | 1                               | 43                               | Supported         | Not supported                       |  |
| IC695PSA040                    | 2                               | 1                                | Not supported     | Not supported                       |  |
| IC695PSA140                    | 2                               | 43                               | Supported         | Not supported                       |  |
| IC693 Power Supplies           | Not permitted                   | Not permitted                    | N/A               | Max 1                               |  |
| IC694 Power Supplies           | Not permitted                   | Not permitted                    | N/A               | Max 1                               |  |

#### **Universal Backplane Slot Occupancy Rules**

- An RX3i CPU module can be installed anywhere in the Universal Backplane except the rightmost (expansion) slot. With the exception of the CPE302/CPE305, CPU modules occupy 2 slots. CPE302 and CPE305 each occupy one slot.
- CPE302, CPE305, I/O, and option modules can be installed in any available slot except the rightmost (expansion) slot and slot 0, which can only accept IC695 Power Supplies. Each I/O slot has two connectors, so can accept either an RX3i PCI-based module or a module with a serial backplane interface.
- The rightmost slot is the expansion slot. It can only be used for optional Serial Bus Transmitter module IC695LRE001.

<sup>&</sup>lt;sup>2</sup> IC695 Power Supply modules may be installed in any Universal Backplane slot.

<sup>&</sup>lt;sup>3</sup> Any combination of IC695PSD140 & IC695PSA140, up to max of four.

### 2.6.2 Expansion Backplanes

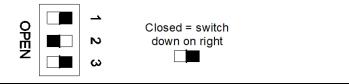
To mount an Expansion Backplane on a panel, use four good-quality 8- $32 \times 1/2 (4 \times 12 \text{ mm})$  machine screws, lock washers, and flat washers. Install the screws in the four tapped holes.

Figure 17: Expansion Backplane



An Expansion Backplane can also be mounted in a 19-inch rack using a mounting bracket as described in this section.

#### **Setting the Rack Number DIP Switch**


Each backplane is identified with a unique number called a Rack Number. Rack number 0 is always automatically assigned to the backplane with the CPU. Rack numbers must not be duplicated in a system. Backplanes do not need to be sequentially numbered, although, for consistency, rack numbers should not be skipped.

Rack Numbers for Expansion and Remote backplanes are set using a DIP switch on the backplane. The following table provides the DIP switch positions for rack number selection.

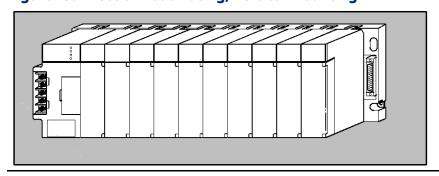
| DIP Switch | Rack Number |        |        |        |        |        |      |  |
|------------|-------------|--------|--------|--------|--------|--------|------|--|
|            | 1           | 2      | 3      | 4      | 5      | 6      | 7    |  |
| 1          | open        | closed | open   | closed | open   | closed | open |  |
| 2          | closed      | open   | open   | closed | closed | open   | open |  |
| 3          | closed      | closed | closed | open   | open   | open   | open |  |

For example, these switch settings select rack number 2:

Figure 18: Example of Backplane DIP Switch Setting for Rack Number



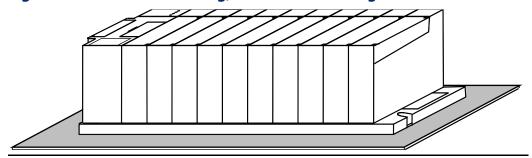
#### **A** CAUTION


Do not use a pencil to set the DIP switches. Graphite from the pencil can damage the switch.

# Recommended Mounting Orientation for Expansion Backplanes

For Expansion and Remote Backplanes, power supply load rating depends on the mounting position of the backplane and the surrounding temperature.

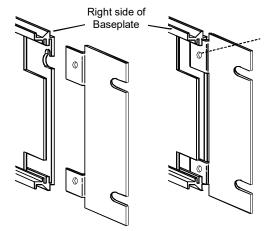
The load rating with the Expansion Backplane mounted upright on a panel is100% at 60°C (140°F).


**Figure 19: Effect on Load Rating, Vertical Mounting** 



Power supply load ratings with the backplane mounted horizontally are:

- The temperature at 25°C (77°F) full load
- The temperature at 60°C (140°F) 50% of full load


Figure 20: Effect on Load Rating, Horizontal Mounting



## 2.6.3 Mounting a Backplane in a 19-Inch Rack

The IC693ACC308 Front Mount Adapter Bracket (Figure 21) can be used to mount a 10-Slot Expansion Backplane, IC694CHS392, to the front face of a 19-inch rack. Install the adapter bracket by inserting the tabs at the top and bottom of the adapter bracket into the corresponding slots at the top and bottom of the plastic backplane cover. It is not necessary to remove the cover to install the bracket. With the bracket in place, insert and tighten the two screws (included with the bracket) through the back of the backplane holes into the threaded holes in the bracket.

Figure 21: IC693ACC308 Front Mount Adapter Bracket



Insert two screws (one at top; one at bottom) from the back of the baseplate through the baseplate mounting holes into tapped holes in the bracket. Tighten both screws to secure the bracket to the baseplate.

Dimensions for rack mounting a backplane with the IC693ACC308 Front Mount Adapter Bracket are displayed in Figure 22.

480 mm (18.89 in) 469 mm (18.47 in)

Figure 22: Dimensions for Backplane with IC693ACC308 Front Mount Adapter Bracket

The **IC693ACC313 Recessed Mount Adapter Bracket** can be used to recess-mount a 10-Slot Expansion Backplane, IC694CHS392, inside a 19" rack. This bracket cannot be used with a Universal Backplane.

An Expansion Backplane mounts on the rear panel of this adapter bracket using four 8-32 (4mm) screws, nuts, lock washers, and flat washers. The Adapter Bracket bolts through its four slotted holes to the face of the 19" rack using applicable hardware (lock washers recommended).

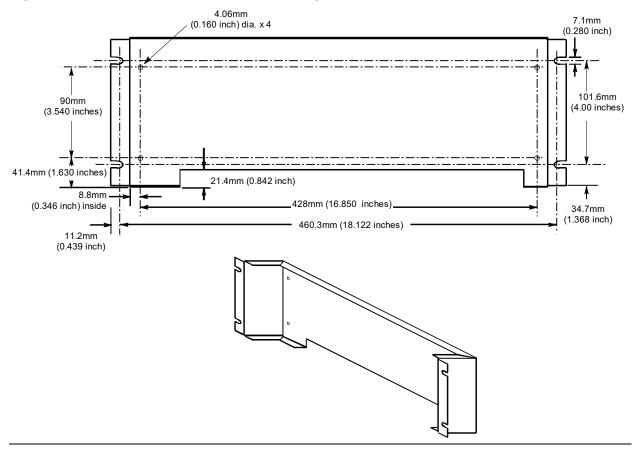



Figure 23: IC693ACC313 Recessed Mount Adapter Bracket

#### **Grounding Rack-Mounted Expansion Backplanes**

If an Expansion Backplane is mounted in a 19-inch rack using an Adapter bracket, the rack must be properly grounded as described in the section, *System Grounding Procedures*. Also, the backplane should be grounded according to the guidelines in the section, *Backplane Safety Grounding*, using a separate ground wire from the PLC backplane.

- For a Recessed Mount Adapter Bracket (IC693ACC313), the ground wire can be installed with the ground attached to the Recessed Mount Adapter Bracket. An additional ground wire should be installed that connects the Adapter Bracket to solid chassis ground.
- For a Surface Mount Adapter Bracket (IC693ACC308), the ground wire should be run from the backplane to a solid chassis ground on the rack.

## 2.6.4 Modules

#### **Hot Insertion and Removal**

In general, modules in a Universal Backplane (IC695CHS007, CHS012, or CHS016) can be installed or removed while power is applied to the system. This includes backplane power and field power supplied to Module. However, no CPU modules fall into this category. The following table lists the I/O modules that do not support this feature or have not yet been verified to support this feature.

**Note:** For products that support hot insertion, Module must be properly seated on the carrier with the latch engaged and all pins connected within 2 seconds. For removal, Module must be completely disengaged from the carrier within 2 seconds. It is important that Module not remain partially inserted during the insertion or removal process. There must be a minimum of two seconds between the removal and insertion of modules.

**Note:** A CPU module cannot be installed or removed from a Universal Backplane while power is applied to the system. System power must be removed before installing or removing the CPU.

**Note:** The hot swap feature is not supported in any of the Rx3i Expansion and Remote expansion backplanes. Doing so may damage the module or backplane hardware and disrupt the module operations.

The following modules support hot insertion and removal, with restrictions as noted:

| <b>Catalog Number</b> | Hot-Swap Compatible       | Notes / Restrictions on Hot Swap Capability   |
|-----------------------|---------------------------|-----------------------------------------------|
| IC693ACC300           | Yes                       |                                               |
| IC694ACC300           | Yes                       |                                               |
| IC695ALG106           | Yes                       |                                               |
| IC695ALG112           | Yes                       |                                               |
| IC693ALG222           | Yes - Revision FA & later | Revision E & earlier do not support hot swap. |
| IC694ALG222           | Yes - Revision BA & later | Revision A does not support hot-swap.         |
| IC693ALG223           | Yes - Revision EA & later | Revision D & earlier do not support hot swap. |
| IC694ALG223           | Yes - Revision BA & later | Revision A does not support hot-swap.         |
| IC694ALG232           | Yes                       |                                               |
| IC694ALG233           | Yes                       |                                               |
| IC695ALG306           | Yes                       |                                               |
| IC695ALG312           | Yes                       |                                               |
| IC693ALG391           | Yes                       |                                               |
| IC693ALG392           | Yes                       |                                               |
| IC694ALG392           | Yes                       |                                               |

| Catalog Number | <b>Hot-Swap Compatible</b> | Notes / Restrictions on Hot Swap Capability                                                                                                                                                                                                                                                                                                   |  |
|----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IC695ALG412    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC693ALG442    | Yes - Revision DA & later  | Revision C & earlier do not support hot swap.                                                                                                                                                                                                                                                                                                 |  |
| IC694ALG442    | Yes - Revision BA & later  | Revision A does not support hot-swap.                                                                                                                                                                                                                                                                                                         |  |
| IC695ALG508    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC694ALG542    | Yes                        | Hot-swap can be performed only on main rack with field side terminal block removed from the odule. The terminal block is to be removed before hot extraction from the RX3i Universal Backplane and re-installed after hot insertion.                                                                                                          |  |
| IC695ALG600    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG608    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG616    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG626    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG628    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG704    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG708    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG728    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ALG808    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC693APU300    | Yes – Revision MA & later  | Revision L and earlier do not support hot swap.                                                                                                                                                                                                                                                                                               |  |
| IC694APU300    | Yes – Revision CA & later  | Revision -BA and earlier do not support hot swap.                                                                                                                                                                                                                                                                                             |  |
| IC693APU305    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC694APU305    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC693BEM331    | Yes                        | Genius Bus Controller modules that are included in a Max-ON redundancy system should not be installed or removed from the PLC that is operating as a Master. If a module is removed from the Master and then reinstalled, the outputs for that module will not be enabled until the next Backup-to-Master transition.                         |  |
| IC694BEM331    | Yes                        | Any time a Genius Bus Controller is removed from an active system, there is a possibility that the bus may be disrupted with a subsequent impact on the corresponding I/O devices. For systems that require online maintainability, it is recommended that dual (redundant) Genius busses be used.  Otherwise, the BEM331 can be hot-swapped. |  |
| IC695CMM002    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695CMM004    | Yes                        | _                                                                                                                                                                                                                                                                                                                                             |  |
| IC695CMX128    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC693DSM324    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC694DSM324    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |
| IC695ECM850    | Yes                        |                                                                                                                                                                                                                                                                                                                                               |  |

| Catalog Number | Hot-Swap Compatible | Notes / Restrictions on Hot Swap Capability                                                                                                                                                                                                                                                                                                                                |
|----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC695EDS001    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC695EIS001    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC695ETM001    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC695GCG001    | Yes                 | The Genius Communications Gateway requires an external 24Vdc power supply and does not draw power from the RX3i backplane. Swapping out the GCG001 will therefore not impact the PLC. However, this cannot be performed without disconnecting its power supply. If configured to support Genius Hot Standby, the loss of a single GCG001 will be tolerated; otherwise not. |
| IC695HSC304    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC695HSC308    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL230    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL230    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL231    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL231    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL240    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL240    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL241    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL241    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL250    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL250    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL260    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL260    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL310    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL310    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL330    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL330    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL340    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL340    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL350    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL350    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL390    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL390    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL632    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC694MDL632    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |
| IC693MDL634    | Yes                 | Hot-swap can only be performed with field-side terminal block removed from Module. The terminal block is to be                                                                                                                                                                                                                                                             |
| IC694MDL634    | Yes                 | removed before hot extraction from the RX3i Universal<br>Backplane and re-installed after hot insertion.                                                                                                                                                                                                                                                                   |
| IC693MDL635    | Yes                 |                                                                                                                                                                                                                                                                                                                                                                            |

| Catalog Number | Hot-Swap Compatible | Notes / Restrictions on Hot Swap Capability                                                                    |
|----------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| IC694MDL635    | Yes                 |                                                                                                                |
| IC693MDL645    | Yes                 | Hot-swap can only be performed with field-side terminal block removed from Module. The terminal block is to be |
| IC694MDL645    | Yes                 | removed before hot extraction from the RX3i Universal<br>Backplane and re-installed after hot insertion.       |
| IC693MDL646    | Yes                 | Hot-swap can only be performed with field-side terminal block removed from Module. The terminal block is to be |
| IC694MDL646    | Yes                 | removed before hot extraction from the RX3i Universal<br>Backplane and re-installed after hot insertion.       |
| IC693MDL648    | Yes                 | Hot-swap can only be performed with field-side terminal block removed from Module. The terminal block is to be |
| IC694MDL648    | Yes                 | removed before hot extraction from the RX3i Universal<br>Backplane and re-installed after hot insertion.       |
| IC693MDL654    | Yes                 |                                                                                                                |
| IC694MDL654    | Yes                 |                                                                                                                |
| IC693MDL655    | Yes                 |                                                                                                                |
| IC694MDL655    | Yes                 |                                                                                                                |
| IC694MDL658    | Yes                 |                                                                                                                |
| IC693MDL660    | Yes                 |                                                                                                                |
| IC694MDL660    | Yes                 |                                                                                                                |
| IC695MDL664    | Yes                 |                                                                                                                |
| IC693MDL730    | Yes                 |                                                                                                                |
| IC694MDL730    | Yes                 |                                                                                                                |
| IC693MDL731    | Yes                 |                                                                                                                |
| IC693MDL732    | Yes                 |                                                                                                                |
| IC694MDL732    | Yes                 |                                                                                                                |
| IC693MDL733    | Yes                 |                                                                                                                |
| IC693MDL734    | Yes                 |                                                                                                                |
| IC694MDL734    | Yes                 |                                                                                                                |
| IC693MDL740    | Yes                 |                                                                                                                |
| IC694MDL740    | Yes                 |                                                                                                                |
| IC693MDL741    | Yes                 |                                                                                                                |
| IC694MDL741    | Yes                 |                                                                                                                |
| IC693MDL742    | Yes                 |                                                                                                                |
| IC694MDL742    | Yes                 |                                                                                                                |
| IC693MDL748    | Yes                 |                                                                                                                |
| IC693MDL752    | Yes                 |                                                                                                                |
| IC694MDL752    | Yes                 |                                                                                                                |
| IC693MDL753    | Yes                 |                                                                                                                |
| IC694MDL753    | Yes                 |                                                                                                                |
| IC693MDL754    | Yes                 |                                                                                                                |

| Catalog Number | Hot-Swap Compatible | Notes / Restrictions on Hot Swap Capability                                           |
|----------------|---------------------|---------------------------------------------------------------------------------------|
| IC694MDL754    | Yes                 |                                                                                       |
| IC694MDL758    | Yes                 |                                                                                       |
| IC695MDL765    | Yes                 |                                                                                       |
| IC693MDL916    | Yes                 |                                                                                       |
| IC694MDL916    | Yes                 |                                                                                       |
| IC695PBM300    | Yes                 |                                                                                       |
| IC695PBS301    | Yes                 |                                                                                       |
| IC695PMM335    | Yes                 | Hot-Swap can only be performed while PLC is in STOP mode                              |
| IC695PNC001    | Yes                 |                                                                                       |
| IC695PRS015    | Yes                 |                                                                                       |
| IC695PSA140    | Yes                 | Hot-swappable only when redundant power supplies are present, and each is powered up. |
| IC695PSD140    | Yes                 | Hot-swappable only when redundant power supplies are present, and each is powered up. |
| IC694PSM001    | Yes                 |                                                                                       |
| IC695RMX128    | Yes                 |                                                                                       |
| IC695RMX228    | Yes                 |                                                                                       |

## **A** WARNING

Inserting or removing a module with power applied to the system may cause an electrical arc. This can result in unexpected and potentially dangerous action by field devices. Arcing is an explosion risk in hazardous locations. Be sure that the area is non-hazardous or remove system power before removing or inserting a module.

# **A** WARNING

Do not insert or remove modules in RX3i Serial Expansion Backplanes or Series 90-30 Expansion Backplanes with power applied to the backplane. This could cause the PLC to stop or malfunction. Injury to personnel and damage to Module or backplane may result. If the PLC is in RUN mode, I/O data to/from this backplane will not be updated while the power is removed.

# **Hot Insertion and Removal Not Supported**

The following modules **do not support** hot Insertion and removal. Do not attempt to insert or remove them while power is applied to the rack.

| Catalog Number | Notes                                                             |
|----------------|-------------------------------------------------------------------|
| IC693ALG220    |                                                                   |
| IC694ALG220    |                                                                   |
| IC693ALG221    |                                                                   |
| IC694ALG221    |                                                                   |
| IC693ALG222    | Revision E & earlier do not support hot swap.                     |
| IC694ALG222    | Revision A does not support hot swap.                             |
| IC693ALG223    | Revision D & earlier do not support hot swap.                     |
| IC694ALG223    | Revision A does not support hot swap.                             |
| IC693ALG390    |                                                                   |
| IC694ALG390    |                                                                   |
| IC694ALG391    |                                                                   |
| IC693ALG442    | Revision C & earlier do not support hot swap.                     |
| IC694ALG442    | Revision A does not support hot-swap.                             |
| IC693APU300    | Revision L and earlier do not support hot swap.                   |
| IC694APU300    | Revision -BA and earlier do not support hot swap.                 |
| IC693BEM320    |                                                                   |
| IC694BEM320    |                                                                   |
| IC693BEM321    |                                                                   |
| IC694BEM321    |                                                                   |
| IC693BEM341    |                                                                   |
| IC695CMU310    | Head-end unit - shuts down everything if removed.                 |
| IC695CPE302    | Head-end unit - shuts down everything if removed.                 |
| IC695CPE305    | Head-end unit - shuts down everything if removed.                 |
| IC695CPE310    | Head-end unit - shuts down everything if removed.                 |
| IC695CPE330    | Head-end unit - shuts down everything if removed.                 |
| IC695CPU310    | Head-end unit - shuts down everything if removed.                 |
| IC695CPU311    | Head-end unit - shuts down everything if removed.                 |
| IC695CPU315    | Head-end unit - shuts down everything if removed.                 |
| IC695CPU320    | Head-end unit - shuts down everything if removed.                 |
| IC695CRU320    | Head-end unit - shuts down everything if removed.                 |
| IC693DNM200    |                                                                   |
| IC694DNM200    |                                                                   |
| IC693DSM314    |                                                                   |
| IC694DSM314    |                                                                   |
| IC695LRE001    | Can cause communications issues with remote racks if hot-swapped. |
| IC693MAR590    |                                                                   |

| Catalog Number | Notes                                                                          |
|----------------|--------------------------------------------------------------------------------|
| IC693MDL760    |                                                                                |
| IC693MDL930    |                                                                                |
| IC694MDL930    |                                                                                |
| IC693MDL931    |                                                                                |
| IC694MDL931    |                                                                                |
| IC693MDL940    |                                                                                |
| IC694MDL940    |                                                                                |
| IC693MDR390    |                                                                                |
| IC694MDR390    |                                                                                |
| IC695NIU001    | Head-end unit - shuts down everything if removed.                              |
| IC695PNS001    | Head-end unit - shuts down everything if removed.                              |
| IC695PNS101    | Head-end unit - shuts down everything if removed.                              |
| IC695PSA040    | The only power source in the rack - shuts everything off and can cause corrupt |
| 1C033F3A040    | user memory if hot removed.                                                    |
| IC695PSD040    | The only power source in the rack - shuts everything off and can cause corrupt |
| 100731 30040   | user memory if hot removed.                                                    |

# **Installing Modules**

### **A** WARNING

Potentially dangerous voltages may be present on the screw terminals of Module, even though the power to the backplane is turned off. Always be careful when handling the removable terminal board of Module and any wires connected to it.

- Be sure Module catalog number matches the intended slot configuration.
- Holding Module firmly, align Module with the correct slot and connector.
- Engage the rear pivot hook(s) of Module (Figure 24) in the notch(es) on the top of the backplane (1).
- Swing Module down (2) until the connector of Module engages the backplane connector, and the release lever(s) on the bottom of Module snaps into place in the bottom module retainer (3).
- Visually inspect Module to be sure it is properly seated.
- If there are any issues encountered during installation of a module, verify the backplane connector pins of the module to ensure that all the pins are intact, before trying to insert the same module second time following the above procedure.

Figure 24: Installing Module in Backplane



# **Removing Modules**

- If Module has a removable terminal board, remove it as described later in this section.
- Locate the release lever(s) at the bottom of Module (Figure 25) and firmly press upward (1), toward Module. Wider modules have two release levers that must both be pressed up at the same time.
- While holding Module firmly and fully depressing the release lever(s), pivot Module upward until its connector is out of the backplane (2).
- Lift Module up and away from the backplane to disengage the pivot hook.

Figure 25: Removing Module from Backplane



#### I/O Module Terminal Block Assemblies

Most PACSystems RX3i I/O modules have removable front terminal block assemblies. Each module of this type has a door label that can be removed, marked up as required for the application, then re-inserted into the retaining grooves, (Figure 28). The front of the label (Figure 26) displays the catalog number of Module and a color band to indicate Module type. It also provides space to record identifying application information about the inputs or outputs wired to Module. The wiring diagram is printed on the reverse side and is visible to the technician (Figure 27) once the door is swung open.

The terminal blocks have fully-hinged doors that can be opened to either the left or right to access wiring.

Figure 26: Module Door Label Front View

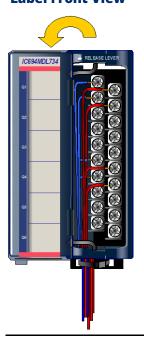



Figure 27: Wiring Diagron Reverse Side of Doo

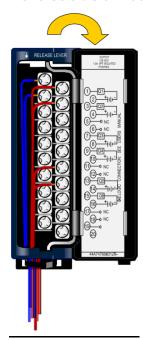
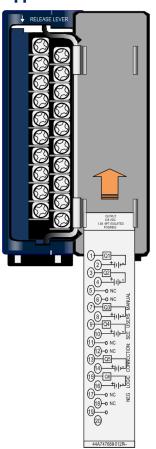
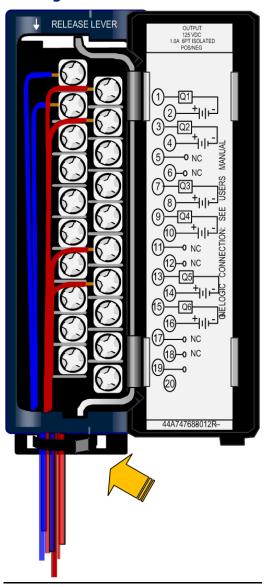




Figure 28: Insertion of Door Label following Mark-up for Application



#### I/O Module Connections

For most RX3i I/O modules, connections are made to the removable terminal board of Module. Specific wiring information for each module is printed on the door insert and also shown in Module description in this manual.


This section describes the 20-Connector removable terminal block (Figure 29), which is used by most RX3i I/O modules. Higher-density modules use other connection methods.

Refer to Chapter 17 for details concerning the following:

- 36-pin removable terminal blocks are used for most higher-density modules.
- Connections to I/O modules that have two 20-Connector connectors on the front of Module.
- Terminal Board Quick Connect (TBQC) system that allows users to land the field wiring on interposing terminal strips and complete the connection to the I/O module using prefabricated interconnect cables.

Screw terminals on a 20-Connector terminal block accept from two AWG #22 (0.36 mm²) to two AWG #16 (1.3 mm²), or one AWG #14 (2.1 mm²) copper 90°C (194°F) wire(s). Each terminal can accept solid or stranded wires, but the wires into any given terminal should be the same type (both solid or both stranded) to ensure a good connection. Wires are routed to and from the terminals out of the bottom of the terminal board cavity. The suggested torque for the I/O terminal board connection screws is from 1.1 to1.3 Nm (9.6 to 11.5 in-lb).

Figure 29: 20-Connector removable terminal block with Tie Wrap Landing Location noted



After the wiring is completed, wires should be bundled and fastened at the bottom of the terminal block, as shown in Figure 29.

# **Installing or Removing a 20-Connector Terminal Block Assembly**

Refer to Section 17: for instructions for installing or removing a 36-pin terminal assembly. Compare Module catalog number on the label on the terminal assembly door and the label on the side of the to be sure they match. If a wired terminal block is installed on the wrong module type, Module may be damaged when the system is powered up.

# **WARNING**

Field power must be turned off when installing or removing a Terminal Block assembly.

#### **Installing a Terminal Block**

To install a terminal block (Figure 30):

- Insert the pivot hook on the bottom of the terminal block assembly into the slot on the bottom of Module.
- 2. Pivot the terminal block assembly upward to engage the connector.
- 3. Press the terminal block assembly toward Module until the release lever latch snaps into place. Check to be sure the terminal block is firmly seated.

Figure 31: Release Lever Usage prior to Removal from I/O Module



Figure 30: Installing Terminal Block into I/O Module



### Removing a Terminal Block

To remove a terminal block:

- 1. Open the terminal block door.
- 2. Push up the release lever (Figure 31) to unlock the terminal block.
- 3. Pull the terminal block away from Module until the contacts have separated and the bottom pivot hook has disengaged.

# **Installing or Removing a Terminal Block Cover**

The terminal block assembly cover can be removed for easier access to the terminals.

# **WARNING**

Potentially dangerous voltages from user devices may be present on the screw terminals of Module, even though the power to the backplane is turned off. Always be careful when handling the removable terminal block assembly of Module and any wires connected to it.

# Figure 32: Extraction or Insertion of Terminal Block into its Cover



#### Removing a Terminal Block from its Cover

To remove a Terminal Block from its cover:

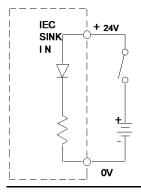
- 1. Grasp the sides of the Terminal Block cover.
- 2. Pull down on the bottom of the Terminal Block as shown in Figure 32.

### Inserting a Terminal Block in its Cover

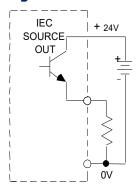
To re-insert a Terminal Block in its cover:

- Align the top of the Terminal Block with the bottom of the cover, making sure that the notches in the Terminal Block match up with the grooves in the cover.
- 2. Slide the Terminal Block upward (Figure 32) until it clicks into place.

# Positive and Negative Logic Connections to Discrete Modules


The IEC definitions for positive logic and negative logic for PACSystems RX3i modules are described in the following sections.

#### **Positive Logic**


Positive logic input modules (Figure 33) sink current from the input device to the user common or negative power bus. The input device is connected between the positive power bus and the input terminal.

Positive logic output modules (Figure 34) source current to the loads from the user common or positive power bus. The load is connected between the negative power bus and Module output.

**Figure 33: Positive Logic Input Circuit** 



**Figure 34: Positive Logic Output Circuit** 



### **Negative Logic**

Negative logic input modules (Figure 35) source current through the input device to the user common or positive power bus. The input device is connected between the negative power bus and the input terminal.

Negative logic output modules (Figure 36) sink current from the loads to the user common or negative power bus. The load is connected between the positive power bus and the output terminal.

Figure 35: Negative Logic Input Circuit

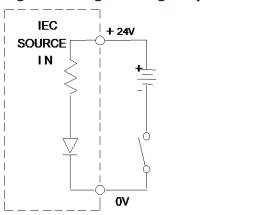
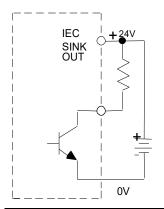




Figure 36: Negative Logic Output Circuit



# **Wiring for Analog Modules**

A twisted, shielded instrumentation cable is strongly recommended for analog module input or output signal connections. Proper grounding of the shield is also important. For maximum electrical noise suppression, the cable shield should only be grounded at one end of the cable.

It is generally best to ground the cable shield as close to the source of the noise as possible. For Analog Input modules, ground the end that is in the noisiest environment (usually the field device end). Cut the shield off at Module end of the cable and insulate with shrink tubing. For Analog Output modules, the ground at Module end. Cut the shield off at the device end of the cable and insulate with shrink tubing.

It is best to keep the length of stripped cable leads as short as possible to minimize the length of unshielded conductors exposed to the noisy environment.

Connections can be made directly to Module terminals, or via an intermediate terminal block. The diagrams in this section show wiring for various types of analog input and analog output installations.

### **Shielding for Analog Input Modules**

Generally, the shield for analog input cables should be grounded at the analog source. However, ground connections for each channel, labeled COM and GND, can be used to connect shields at the analog input module if appropriate. The COM terminals of the analog input module connect to the analog circuit common in Module. The GND terminals connect to the backplane (frame ground). Shields may be connected to either COM or GND. This section shows four shields grounding examples for analog input modules.

#### Analog Input Shield Grounding with a Terminal Strip

For an unbalanced source, the ground shield should be connected to the source common or ground at the source end. If all source inputs to Module come from the same location and are referenced to the same common, all shield grounds should be connected to the same ground point. If there is an additional terminal strip between the analog input module and the field devices (analog sources), use the method displayed in the following figure to continue each cable shield using a terminal on the terminal strip. Each cable is only grounded at one end - the end closer to the field devices (analog sources). Shield connections are shown in red (bold) in Figure 37.

Terminal Strip  $\bigcirc$ 0 0 0 Analog 4 Source Q 0 Analog † 0 Source ١ 0 0 0 0 0 Analog <sup>1</sup> Source 0 0 0 Analog \* 0 0 Source Connection to Frame Analog Input Ground Module Machine or 0 Equipment **Enclosure** 

Figure 37: Analog Input Shield Grounding with a Terminal Strip

#### Analog Input Shield Grounding to Common Connections

In some applications, noise rejection can be improved by connecting the source common points at the source end, then connecting a common line to Module at only one module COM terminal. That will eliminate multiple grounding or ground loops that could cause false input data. The common connections here are shown in red (bold) in Figure 38.

Analog  $\bigcirc$ Input  $\bigcirc$ Analog + Module Source  $\Diamond$  $\Diamond$ COM  $\bigcirc$ Analog +  $\bigcirc$ Source  $\bigcirc$ 0  $\bigcirc$ Analog + + Source 0  $\bigcirc$  $\bigcirc$ Analog +  $\bigcirc$ Source 1 1  $\bigcirc$ 

Figure 38: Analog Input Shield Grounding to Common Connections

#### Analog Input Shields Connected to Module Terminal Board

It is usually preferable to ground cable shields at the source end. If that is difficult, or if electrical noise is not a concern, it may be acceptable to ground cable shields at the analog input module end. They can be connected to one of the GND terminals of Module (which are connected to the frame ground through an internal path) as shown left below. If necessary to improve noise immunity, a conductor can be used to connect a GND terminal on Module to the earth ground as displayed in Figure 39. This will bypass noise around Module.

**Analog** 0 Input 0 Analog + Module 6 Source Q 0 0 Analog <sup>+</sup> 0 Source 0 0 **Board** 0 Analog <sup>+</sup> Source 0 Optional 0 0 Ground Analog Conductor 0 **GND** Source Earth Ground

Figure 39: Analog Input Shields Connected to Module Terminal

#### Wiring for Current Transducers

For all of the examples displayed in Figure 40 through Figure 43, connect the (-) conductor to the Analog Input module COM terminal, if the source is floating, to limit common-mode voltages. Common mode voltage is limited to 11 volts.

If noise causes inaccurate readings, the (-) conductor can also be connected to the Analog Input module GND terminal.

Figure 40: 4-Wire Transducer, Externally Powered by AC or DC Supply

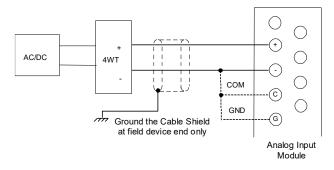



Figure 41: 2-Wire Transducer, Externally Powered by DC Supply

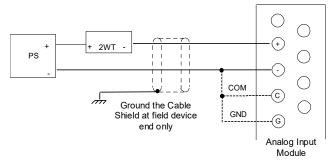



Figure 42: 3-Wire Transducer, Externally Powered by DC Supply

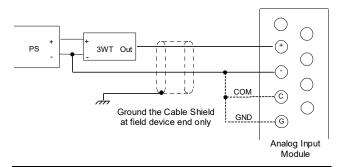
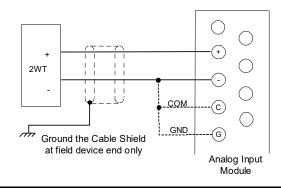
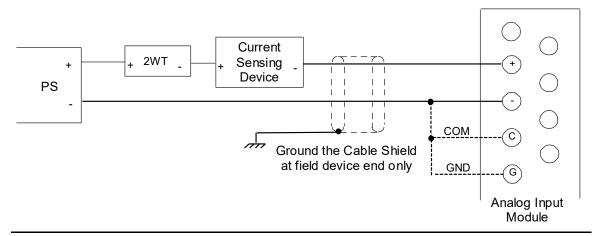




Figure 43: 2-Wire Transducer, Self-Powered




#### 2-Wire Transducer Connected to Two Measuring Devices

As shown in Figure 44, connect the (-) conductor to the Analog Input module COM terminal, if the source is floating, to limit common-mode voltages. Common mode voltage is limited to 11 volts.

If noise causes inaccurate readings, the (-) conductor can also be connected to the Analog Input module GND terminal.

The analog module must be the last device on the circuit. When grounding the (-) return side of the Analog Input Module, the other current-sensing device must be floating and able to withstand a common-mode voltage of at least 20 V, including the noise level.

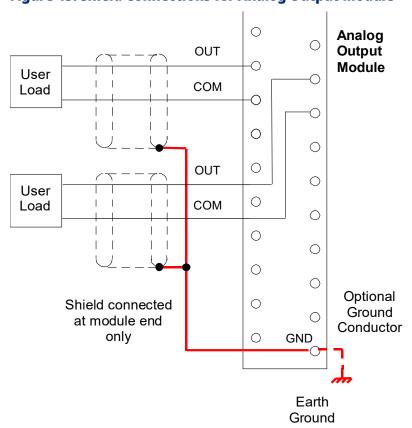
Figure 44: 2-Wire Transducer Connected to Two Measuring Devices



## Verifying Analog Input Current

RX3i Analog Current Input Modules have an internal  $250\Omega$  resistor across the input terminals. You can measure the voltage across the input terminals using a voltmeter, then use Ohm's Law to determine the input current:

Input Current (in Amps) = V / 250

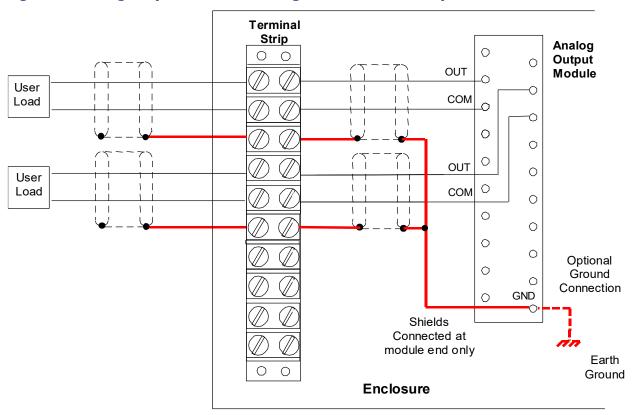

For example, if you measured 3 V across the input terminals:

Input Current (in Amps) = 3/250

Input Current (in Amps) = 0.012 (or 12 mA)

#### Shield Connections for Analog Output Modules

For analog output modules, the shield is normally grounded only at the source end (i.e. at Module - Figure 45). The GND connection provides access to the backplane (frame ground) resulting in superior rejection of noise caused by any shield drain currents. In extreme-noise environments, you can connect an optional ground braid from the GND terminal to an external earth ground to bypass noise around Module.




**Figure 45: Shield Connections for Analog Output Module** 

#### Analog Output Shield Grounding with a Terminal Strip

If there is a terminal strip between the analog output module and the field devices (user loads), use the method in Figure 46 for grounding the cable shields. Each cable is only grounded at one end, the end closer to the Analog Output Module. An optional external ground connection to the GND terminal of Module is illustrated for installations that require extra noise suppression.

Figure 46: Analog Output Shield Grounding with a Terminal Strip



# **Module Fuse List**

# **A** WARNING

Replace fuse only with the correct size and type. Using an incorrect fuse can result in harm to personnel, damage to equipment, or both.

| Module Catalog Module Type |                 | Current | Quantity on | <b>Emerson Fuse</b> | Other Sources        |
|----------------------------|-----------------|---------|-------------|---------------------|----------------------|
| Number <sup>(note)</sup>   | Module Type     | Rating  | Module      | Part Number         | and Part Numbers     |
| IC694MDL310 <sup>4</sup>   | 120 Vac, 0.5A   | 3A      | 2           | 44A724627-111       | Bussman – GMC-3      |
| 1C034WDE310                | 120 vac, 0.5/1  | 3/1     |             |                     | Littlefuse – 239003  |
| IC694MDL330 <sup>4</sup>   | 120/240 Vac, 1A | 5A      | 2           | 42G6101-0013        | Bussman - S506-5-R   |
| 1C034WDL330                | 120/240 Vac, 1A | JA.     |             | 4200101-0015        | Schurter - 034.3124  |
| IC694MDL340 <sup>4</sup>   | 120 Vac, 0.5A   | 3A      | 2           | 44A724627-111       | Bussman – GMC-3      |
| TC034WDL340                |                 |         |             |                     | Littlefuse – 239003  |
| IC694MDL3904               | 120/240 Vac, 2A | ЗА      | 5           | 44A724627-111       | Bussman – GMC-3      |
| TC054WDL550                | 120/240 Vac, 2A |         |             |                     | Littlefuse – 239003  |
|                            | 120/240 Vac or  |         |             |                     | Bussman – 215-002    |
| IC694PWR321 <sup>5</sup>   | 125Vdc Input,   | 2A      | 1           | 44A724627-109       | (GDC-2 or GMC-2)     |
| IC694PWR330⁵               | 30 W Power      | 271     | 1           | 44/1/2402/ 103      | Littlefuse – 239-002 |
|                            | Supply          |         |             |                     | 237 002              |
|                            | 24Vdc Input,    |         |             |                     |                      |
| IC694PWR331 <sup>5</sup>   | 30 W Power      | 5A      | 1           | 44A724627-114       | Bussman – GMC-5-R    |
|                            | Supply          |         |             |                     |                      |

<sup>&</sup>lt;sup>4</sup> Fuse is mounted in clip accessible by removing circuit board from module housing.

 $<sup>^{\</sup>rm 5}$  Power input fuse mounted in clip and accessible by removing front of module.

#### 2.6.5 CPU Installation

#### To install the CPU:

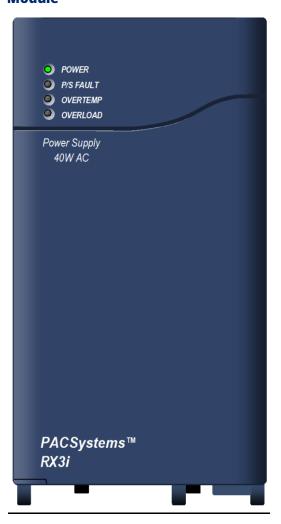
- 1. Make sure that rack power is off.
- Install the CPU module in the appropriate slot (refer to Universal Backplane Slot Occupancy Rules.) With the exception of CPE302/CPE305, the CPU occupies two slots and can use any slots except the highest numbered (rightmost) slot. CPE302/CPE305 occupies one slot.
- Turn on the power. When the CPU has successfully completed initialization, the OK LED stays on and the RUN and EN LEDs are off. The CPU is now ready to be programmed.
- 4. For CPUs with battery back-up, connect the battery to either of the battery connectors on Module. (You can connect the battery at any step in the installation process, but it will begin to drain immediately unless power is applied. To maximize battery life, install it after power has been turned on).
- For CPUs backed up by an Energy Pack, follow the installation instructions for the specific Energy Pack.
- 6. Where appropriate, communications cables can be secured to the tie-downs on the bottom of Module.

Figure 47: CPE330 (example of 2-Slot CPU)



After the program has been verified, the mode switch can be moved to the appropriate operation mode position: RUN I/O ENABLED, RUN OUTPUT DISABLE, or STOP. The LEDs indicate the position of the mode switch and the status of serial port activity.

#### **A** CAUTION


CPUs may NOT be hot-inserted in the backplane; power must be removed before installing or removing the CPU.

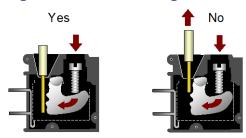
# 2.6.6 Power Supplies

#### To install the power supplies

- 1. Install the Power Supply module(s) in the appropriate slot(s).
  - a) Universal Power Supplies (IC695) can be installed in any slot except the highest numbered (rightmost) slot in a Universal Backplane.
  - b) Expansion Power Supplies (IC694) must be installed in the Power Supply (leftmost) slot in an Expansion Backplane.
  - Where multiple power supplies are to be used, refer to Section 2.6.1, Power Supply Models and Slot Occupancy)
- 2. Connect wiring to the Power Supply per the installation instructions for that specific power supply.
- 3. Use the three wiring tie-downs on the bottom of Module to secure the power and ground wires after installation.

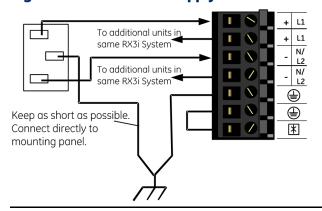
# Figure 48: Typical RX3i Power Supply Module



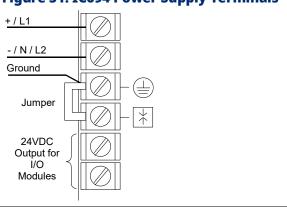

# **A** WARNING

For all Power Supplies, if the same input power source is used to provide power to two or more power supplies in the system, connection polarity must be identical at each power supply. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

# **Power Supply Field Wiring**


• For IC695 Power Supplies, each terminal accepts one AWG #14 to AWG #22 wire. Figure 49 (below) is a cross-section of one of the terminals on an IC695 Power Supply. The end of each wire should be stripped at least 3/8-inch (9mm). The terminal can accept a wire that is stripped up to 11 mm (.433 in) while providing full seating for the insulator. The wire must be fully inserted into the terminal block as illustrated in Figure 49 at left so that the insulation meets the insulation stop position inside the terminal. Tightening the terminal screw pivots the clamp firmly against the stripped end of the wire, holding it in place. If the wire is not fully inserted, as shown on the right, tightening the clamp may push the wire upward so that it is not connected.

**Figure 49: Correct Wiring Practice for Power Supply Input Terminals** 




For IC694 Power Supplies, each terminal accepts one AWG #14
 (2.1mm²) or two AWG #16 (1.3mm²) copper 75°C (167°F) wires. The suggested torque for the Power Supply terminals is 1.36 Nm (12 in-lb). Each terminal can accept solid or stranded wires. Multiple wires in the same terminal should be of the same type (solid or stranded) and size.

**Figure 50: IC695 Power Supply Terminals** 



**Figure 51: IC694 Power Supply Terminals** 



 For Expansion (IC694) Power Supplies only, the bottom terminals provide access to the Isolated +24Vdc output of the Expansion Backplane, which can be used to power input circuits for certain IC694 modules. Refer to the table in Section 4.2, Module Load Requirements for information.

#### **A** CAUTION

If the Isolated 24Vdc supply is overloaded or shorted, the PLC will stop operation.

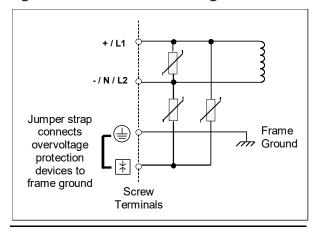
#### **AC Power Source Connections**

Connect the hot and neutral wires or lines L1 and L2 to the appropriate Power Supply terminals.

#### **DC Power Source Connections**

All RX3i Power Supplies have DC input capabilities. Connect the + and - wires from the DC source to the appropriate terminals. These connections are polarity-sensitive DC-only supplies.

#### **Ground Connection**

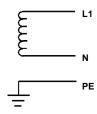

Connect the safety ground wire to the terminal marked with a ground symbol.

# **External Overvoltage Protection**

The Ground and MOV terminals on a Power Supply module are normally connected to frame ground with a user-installed jumper (as shown in Figure 52). If over-voltage protection is not required or is supplied upstream, no jumper is needed.

In systems with a floating neutral input (the neutral line is not referenced to Protective Earth Ground), this jumper must NOT be installed. Also, in a floating neutral system, voltage surge protection devices such as MOVs **must** be installed from L1 to earth ground, and from L2 (Neutral) to earth ground.

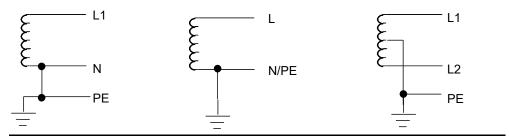
Figure 52: External Overvoltage Protection




# AC Power Supply Connections for Floating Neutral (IT) Systems

If an AC input power supply is installed in a system where the Neutral line is not referenced to Protective Earth Ground, special installation instructions must be followed to prevent damage to the power supply.

A *Floating Neutral System* is a system of power distribution wiring where Neutral and Protective Earth Ground are not tied together by negligible impedance. In Europe, this is referred to as an IT system (refer to IEC950). In a *Floating Neutral System*, voltages measured from input terminals to protective earth ground may exceed the 264Vac maximum input voltage power supply specification.


**Figure 53: Floating Neutral** 



# AC Power Supply Connections for Non-Floating Neutral System

Systems, where one leg of the power distribution wiring is tied to Protective Earth or a tap between two legs of the power distribution wiring, is tied to Protective Earth are not *Floating Neutral Systems*. Non-floating neutral systems **do not** require special installation procedures.

Figure 54: Neutral Not Floating (Tied to Ground)



# **Instructions for Floating Neutral Systems**

- 1. The input power terminals should be wired as shown in Figure 49 through Figure 51 above.
- 2. No jumper may be installed jumper between terminals 3 and 4 of the Power Supply module.
- 3. Voltage surge protection devices such as MOVs must be installed:
  - From L1 to earth ground
  - From L2 (Neutral) to earth ground

The voltage surge devices must be rated such that the system is protected from power line transients that exceed  $Line\ voltage + 100\ Vac + (N-PE)_{MAX}$ . The expression N-PE refers to the voltage potential between neutral and Protective Earth (PE) ground.

For example, in a 240 Volt AC system with neutral floating 50 Vac above earth ground, the transient protection should be rated at 240 Vac + 100 Vac + 50 Vac= 390 Vac

# 2.6.7 Serial Bus Transmitter Module

The RX3i Serial Bus Transmitter Module, IC695LRE001, provides communications between a PACSystems RX3i Universal Backplane (IC695-model number), and serial expansion, and remote backplanes (IC694- or IC693-model numbers). It must reside in the expansion connector on the right end of a Universal Backplane.

#### **Module Installation**

This module may NOT be hot-inserted in the backplane; power must be removed before installing or removing the Bus Transmitter Module.

Insert the Serial Bus Transmitter Module straight into its slot as displayed in Figure 56 below. This module does not have the same pivoting and latching mechanisms as other RX3i modules.

Tighten the two captive screws in the corners of Module. Recommended torque is 0.5 Nm (4.4 in-lb) maximum.

Figure 56: LRE001 Attachment Using Captive Screws

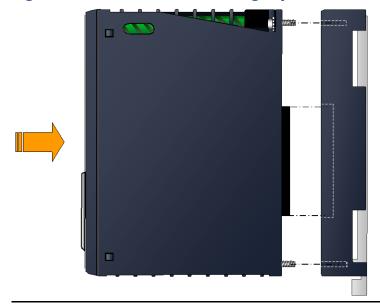



Figure 55: LRE001 Front View



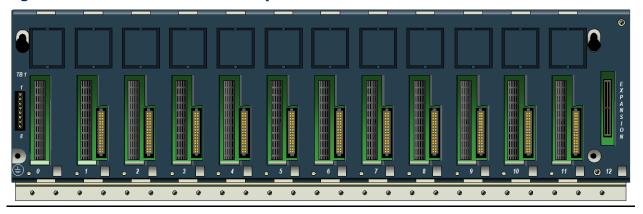
# **Expansion Cable Installation**

Subsequent backplanes in the system are linked by expansion cables as described in Section 5:. The expansion cable may not be attached or removed while the expansion rack has power applied.

# Section 3: Backplanes

This section describes the types of the backplane that can be included in an RX3i system:

| Backplane Type                           | Catalog Number           | Section |
|------------------------------------------|--------------------------|---------|
| 7-Slot RX3i Universal Backplane          | IC695CHS007              | 3.1     |
| 12-Slot RX3i Universal Backplane         | IC695CHS012              | 3.1     |
| 16-Slot RX3i Universal Backplane         | IC695CHS016              | 3.1     |
| 5-Slot RX3i Serial Expansion Backplane   | IC694CHS398              | 3.2     |
| 10-Slot RX3i Serial Expansion Backplane  | IC694CHS392              | 3.2     |
| 5-Slot Series 90-30 Expansion Backplane  | IC693CHS3986             |         |
| 10-Slot Series 90-30 Expansion Backplane | IC693CHS392 <sup>6</sup> |         |
| 5-Slot Series 90-30 Remote Backplane     | IC693CHS399 <sup>6</sup> |         |
| 10-Slot Series 90-30 Remote Backplane    | IC693CHS393 <sup>6</sup> |         |


<sup>&</sup>lt;sup>6</sup> For information about the IC693 Series 90-30 Expansion and Remote Backplanes, refer to the Series 90-30 PLC Installation Manual, GFK-0356.

# 3.1 RX3i Universal Backplanes: IC695CHS007, IC695CHS012, IC695CHS016

Six Universal Backplanes are available for RX3i PACSystems:

| Dual-Bus            | PCI-Exclusive              |
|---------------------|----------------------------|
| Part Numbers        | Part Numbers               |
| 7-slot IC695CHS007  | 7-slot IC695CHS007PCIONLY  |
| 12-slot IC695CHS012 | 12-slot IC695CHS012PCIONLY |
| 16-slot IC695CHS016 | 16-slot IC695CHS016PCIONLY |

Figure 57: 12-Slot RX3i Universal Backplane IC695CHS012



The RX3i Universal Backplane supports both PCI (IC695) and serial (IC694) I/O and option modules with its dual-bus backplane. The RX3i Universal Backplane also supports 90-30 IO and option modules.

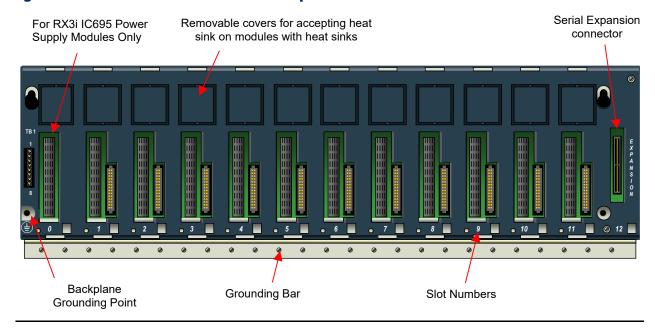
RX3i modules (IC695 catalog numbers) communicate over the backplane PCI bus.

RX3i modules (IC694 catalog numbers) and Series 90-30 modules (IC693) communicate over the backplane serial bus.

# 3.1.1 Dual-Bus Backplane

The dual-bus RX3i Universal Backplane supports both PCI (IC695) and serial (IC694) I/O and option modules with its dual-bus backplane. The RX3i Universal Backplane also supports 90-30 IO and option modules.

RX3i modules (IC695 catalog numbers) communicate over the backplane PCI bus.


RX3i modules (IC694 catalog numbers) and Series 90-30 modules (IC693) communicate over the backplane serial bus.

# 3.1.2 PCI-Only Backplane

The PACSystems RX3i 7-slot, 12-slot, and 16-slot Universal Backplanes are also available as PCI-exclusive variations (IC695CHS007PCIONLY, IC695CHS012PCIONLY, IC695CHS016PCIONLY). The PCI-exclusive version of this backplane supports only IC695 modules. Visually, customers can identify the difference between the two models by the absence of the Serial Bus connector, which is located next to the PCI Bus connector on the dual-bus backplane

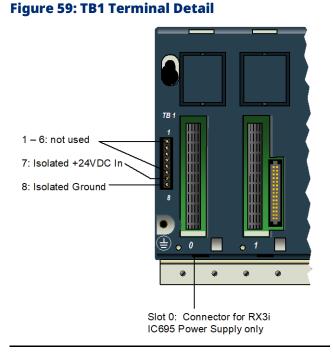
# 3.1.3 RX3i Universal Backplane Features

Figure 58: Features of RX3i Universal Backplanes



RX3i Universal Backplane features include:

- Terminal Strip on the left (Figure 58) for Isolated +24Vdc input.
- Backplane grounding point as described in Section 2.5.2.
- An integral grounding bar for connecting module/shield grounds as described in Section 2.5.5.
- Removable covers that, when knocked out, allow heat sinks on modules equipped with heat sinks to be inserted.
- Serial Expansion connector for connection (Figure 58, far right) to Serial Expansion and Remote Backplanes (12- and 16-slot models only).
- Slot numbers are printed on the backplane (Figure 58) and are used for reference for configuration in PAC Machine Edition (PME). Slots and connectors are described on the following pages. Most modules occupy one slot. Some modules, such as CPUs and AC Power Supplies occupy two slots.


# **Universal Backplane TB1 Input Terminals**

The RX3i IC695 Power Supplies do not provide Isolated +24Vdc output power over the backplane. Terminals 7 and 8 can be used to connect an optional external source of Isolated +24Vdc, which is required for some IC693 and IC694 modules as listed in the table in Section 4.2, Module Load Requirements.

These terminals accept individual wires from 14 to 22 AWG.

If modules that require Isolated +24Vdc are installed in an Expansion Backplane instead, an external Isolated +24Vdc power supply is not required.

Terminals 1 through 6 are not used.



#### Slot 0

The leftmost slot in a Universal Backplane is slot 0. Only the backplane connector of IC695 Power Supplies can be installed in slot 0 (note: IC695 Power Supplies can be installed in any slot). However, 2-slot wide modules that have right-justified connectors, such as the CPU310, can be plugged into slot 1 and also cover slot 0.

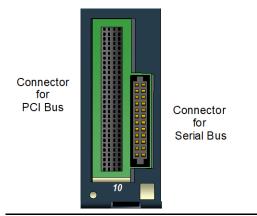
The CPU is referenced for configuration and application logic by the leftmost slot occupied by the entire module, not by the slot the physical connector is located in. For example, if the CPU has its physical connector inserted in slot 3, Module occupies slots 2 and 3 and the CPU is referenced as being located in slot 2. A double-wide CPU may therefore be located in slot 0 with its backplane connector inserted in slot 1.

#### **Dual-Connector Slots**

Dual-connector slots are identified as follows:

CHS016: 0 through 15

CHS012: 0 through 11


CHS007: 0 through 5

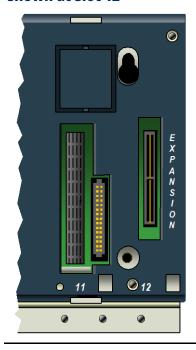
They have two connectors, a connector for the RX3i PCI bus, and a connector for the RX3i serial bus. Each of these slots can accept any type of compatible module: IC695 Power Supply, IC695 CPU, or IC695, IC694, and IC693 I/O or option modules.

Provided the *Hot Insertion and Removal* procedure described in Section 2.6.4 is carefully followed, I/O and option modules in a Universal Backplane may be removed and replaced without powering down.

**Note**: The connector for the Serial Bus is not available on the PCI-Exclusive version of the Universal Backplane.

# Figure 60: RX3i Universal Backplane Dual Connector Slot for PCI Bus & Serial Bus

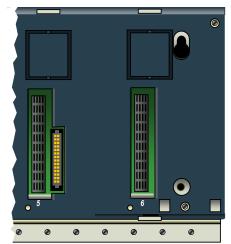



# **Expansion Slot (Slot 12 or Slot 16)**

The rightmost slot in a Universal Backplane has a different connector than the other slots. It can only be used for an RX3i Serial Expansion Module, IC695LRE001.

An RX3i 2-slot module may not occupy this expansion slot.

The 7-slot CHS007 rack does not provide an expansion slot or support the LRE001 Serial Expansion Module.


Figure 61: Expansion Slot Connector shown at Slot 12



### **Slot 6 of 7-Slot Rack**

In the CHS007 seven-slot rack, slot 6 has one RX3i PCI connector and can accept only IC695 single-width I/O or option modules.

Figure 62: Slot 6 of IC695CHS007



# 3.1.4 Module Locations in a 12- or 16-Slot Universal Backplane

- IC695 Power Supply modules may be installed in any slot. DC Power Supplies IC695PSDx40 occupy one slot and AC Power Supplies IC695PSAx40 occupy two slots. RX3i (IC694) and Series 90-30 (IC693) Power Supplies cannot be installed in Universal Backplanes.
- An RX3i CPU module can be installed anywhere in the backplane except the Expansion slot. CPU modules occupy two slots.
- I/O and option modules can be installed in any available slot except slot 0, which can only accept IC695 Power Supplies, and the Expansion slot. Each I/O slot has two connectors, so either an RX3i PCI-based module or a serial module can be installed in any I/O slot.
- The rightmost slot is the expansion slot. It can only be used for optional serial expansion module IC695LRE001. Refer to Chapter 5 for information about the LRE001 Serial Expansion Module and expansion cables.

Figure 63: Configured as CPU in slot 0, Power Supply in Slot 2

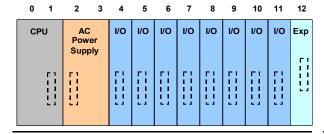



Figure 64: Invalid: AC Power Supply cannot be in Slot 11

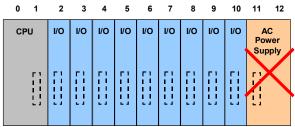



Figure 65: Configured as CPU in slot 0, Power Supply in Slot 6

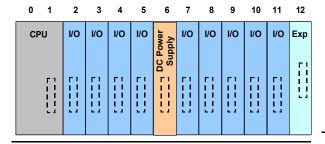



Figure 66: Invalid: CPU cannot be configured in Slot 11

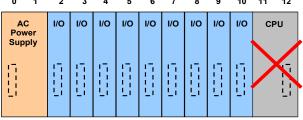



Figure 67: Configured as Power Supply in slot 0, CPU in Slot 1

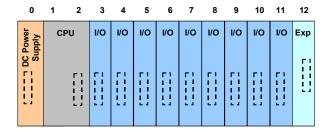
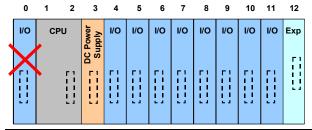




Figure 68: Invalid: Only a Power Supply can be installed in Slot



## Locating the CPU in Slot 1

Whenever the CPU is installed in slot 1, only a single-wide power supply may be used in slot 0. Either DC power supply can be used (IC695PSD040 or IC695PSD140). If for a given application, the CPU must be located in slot 1, and also uses an AC power supply, the RX3i AC power-supply must then be located in the slot to the right of that CPU.

## Locating the CPU in a Slot Other than 1

Before deciding to place the CPU in a slot other than slot 1, it is important to consider possible issues that could arise as follows.

**Communications:** For Service Request #15 (Read Last-Logged Fault Table Entry) and Service Request #20 (Read Fault Tables), the location of CPU faults is not the standard 0.1 location, but the slot the CPU is located in. The logic that decodes fault table entries retrieved by these service requests may need updating.

COMMREQs directed to the CPU (e.g. those directed to the serial ports of the CPU) will need to be updated with the correct CPU slot reference.

**Hardware Configuration:** The slot location of the CPU must be updated in the hardware configuration to reflect the true location of the CPU.

**Fault Tables:** Faults logged for the CPU in the fault table will reflect the actual slot of the CPU.

**Remote Series 90 PLCs that use SRTP Channels COMMREQs** expect the CPU to be in slot 1 or slot 2. To support communications with Series 90 SRTP clients such as Series 90 PLCs using SRTP Channels, the RX3i internally redirects incoming SRTP requests destined for {backplane 0,

slot 1} to {backplane 0, slot 2}, provided that the CPU is located in backplane 0 slot 2 (and the remote client has not issued an SRTP Destination service on the connection to discover the backplane and slot of the CPU). This special redirection permits Series 90-30 applications that expect the power supply to be located leftmost and the CPU to be located to the right of the power supply to function. Attempts to establish channels with CPUs in slots other than 1 or 2 will fail if initiated from Series 90 PLCs.

All external communication devices that interact with the CPU should be checked for compatibility with CPU slot locations other than slot 1. Problems may arise with but are not limited to, initial connection sequences and fault reporting. Machine Edition View users should select SRTP as their communications driver as it can communicate with a CPU in any slot.

# 3.1.5 Module Locations in a 7-Slot Universal Backplane

- DC Power Supplies IC695PSDx40 occupy one slot and can be installed in any slot. AC Power Supplies IC695PSAx40 occupy two slots and cannot be installed in slot 6. IC694 and IC693 Power Supplies cannot be installed in Universal Backplanes.
- Any I/O or option module can be installed in slots 1 through 5, which have two connectors and can accommodate either an RX3i PCIbased module or a serial module. Slot 6 can accommodate only RX3i PCI-based single-wide modules. I/O and option modules cannot be installed in slot 0, which can only accept IC695 Power Supplies.
- An RX3i CPU can be installed anywhere in the backplane except slot 6. CPU modules occupy two slots. Installing the CPU in slot 1 means only a single-wide power supply can be used in slot 0. If the application must maintain a slot 1 CPU and use an AC power supply, the AC power supply must be located in a slot to the right of the RX3i CPU in slot 1. Before deciding to place the CPU in a slot other than slot 1, it is important to consider the factors listed in the section, Locating the CPU in a Slot Other than 1.

**Allowed** 

**Not Allowed** 

Figure 69: Configured as CPU in slot 0, Power Supply in Slot 2

| 0  | 1  | 2                | 3   | 4   | 5     | 6           |
|----|----|------------------|-----|-----|-------|-------------|
| CI | PU | A(<br>Pow<br>Sup | /er | I/O | I/O   | RX3i<br>I/O |
|    |    | 11111            |     |     | 17777 | 12222       |

Figure 70: CPU cannot be configured in Slot 6

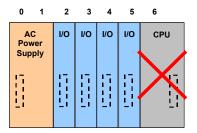



Figure 71: Configured as CPU in slot 0, Power Supply in Slot 5

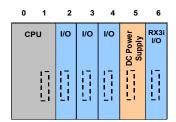



Figure 72: I/O or Option Module cannot be installed in Slot 0

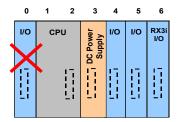
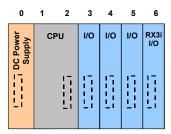
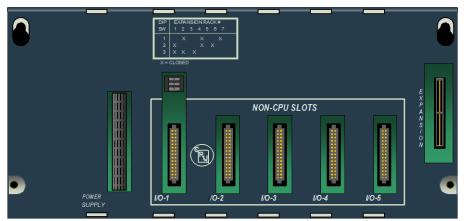
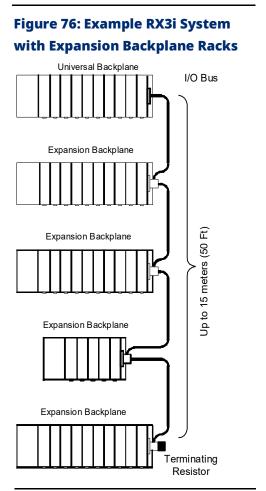



Figure 73: Configured as Power Supply in slot 0, CPU in Slot 1





Figure 74: AC Power Supply cannot be configured in Slot 6

| 0   | 1   | 2 3   | 4   | 5   | 6                     |
|-----|-----|-------|-----|-----|-----------------------|
| CPU | 1/0 | 0 1/0 | 1/0 | I/O | AC<br>Power<br>Supply |
| !   |     |       | 1   | 1   | ×                     |


# 3.2 Serial Expansion Backplanes: IC694CHS392, IC694CHS398

The RX3i system can include any combination of up to seven RX3i Serial Expansion backplane and/or Series 90-30 Expansion/Remote Backplanes. RX3i Serial Expansion Backplanes are available with either five I/O slots (IC694CHS398, displayed in the following figure) or ten I/O slots (IC694CHS392).

**Figure 75: Serial Expansion Backplane** 



- The leftmost module in an RX3i Serial Expansion
   Backplane must be a Serial Expansion Power Supply:
  - IC694PWR321: Serial Expansion Power Supply, 120/240 Vac, 125Vdc
  - IC694PWR330: Serial Expansion Power
     Supply, 120/240 Vac, 125Vdc, High Capacity
  - IC694PWR331: Serial Expansion Power Supply, 24Vdc, High Capacity
- Module Hot Insertion and Removal are NOT permitted on Expansion Backplanes.
- Each Expansion Backplane has a Rack Number
   Selection DIP switch (Figure 18) that must be set
   before module installation.
- Each Expansion Backplane has a Bus Expansion connector at its right end for attaching an optional expansion cable. There can be no more than 50 feet (15 meters) of cable connecting Expansion backplanes with the Universal Backplane. If the system includes Series 90-30 Remote Backplanes, the additional requirements summarized in Section 1.3 through Section 1.5 must also be observed.



# Section 4: Power Supplies

This chapter describes power supplies for RX3i PACSystems:

| Power Supply Description                                            | Catalog     | Section |
|---------------------------------------------------------------------|-------------|---------|
|                                                                     | Number      |         |
| 120/240 Vac 125Vdc 40 W Power Supply                                | IC695PSA040 | 4.4     |
| 120/240 Vac 125Vdc 40 W Multi-Purpose Power Supply                  | IC695PSA140 | 4.5     |
| 24Vdc 40 W Power Supply                                             | IC695PSD040 | 4.6     |
| 24Vdc 40 W Multi-Purpose Power Supply                               | IC695PSD140 | 4.7     |
| 120/240 Vac 125Vdc 30 W Serial Expansion Power Supply               | IC694PWR321 | 4.8     |
| 120/240 Vac 125Vdc 30 W High Capacity Serial Expansion Power Supply | IC694PWR330 | 4.9     |
| 24Vdc 30 W High Capacity Serial Expansion Power Supply              | IC694PWR331 | 4.10    |

# 4.1 Power Supply Overview

This section provides a general description of the IC695 Power Supplies, which must be used in RX3i (IC695) Universal Backplanes, and IC694 Power Supplies, which must be used in RX3i Serial Expansion (IC694) Backplanes. Individual power supply specifications are listed in the following sections.

The IC695 Power Supplies provide up to 40 W each. The IC694 (Expansion) Power Supplies provide up to 30 W each. However, IC694PWR321 is limited to 15 Watts on the +5Vdc output.

The total of all outputs combined cannot exceed the stated load capacity in Watts. PME Logic Developer will automatically calculate the power consumption of modules as they are added to the system configuration. Power requirements of system modules are shown in this section, for reference when planning the system.

The maximum load for each type of power supply is displayed in the following table.

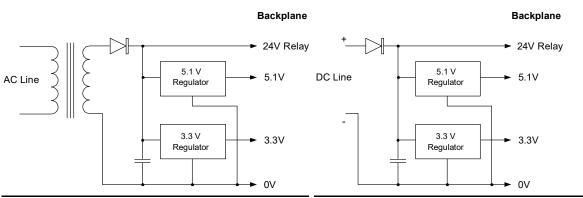
| Catalog     | Can be     | Nominal | Load                  | Load Sharing, | Max     | Max   | Max +24Vdc | Max +24Vdc |  |
|-------------|------------|---------|-----------------------|---------------|---------|-------|------------|------------|--|
| Number      | Located In | Input   | Capacity <sup>7</sup> | Redundancy    | +3.3Vdc | +5Vdc | Isolated   | Relay      |  |
|             | Universal  | 120/240 |                       |               |         |       |            |            |  |
| IC695PSA040 | Backplane  | Vac or  | 40 W                  | No            | 30 W    | 30 W  | -          | 40 W       |  |
|             | Баскріапе  | 125Vdc  |                       |               |         |       |            |            |  |
|             | Universal  | 120/240 |                       |               |         |       |            |            |  |
| IC695PSA140 | Backplane  | Vac or  | 40 W                  | Yes           | 30 W    | 30 W  | _          | 40 W       |  |
|             | Баскріапе  | 125Vdc  |                       |               |         |       |            |            |  |
| IC695PSD040 | Universal  | 24Vdc   | 40 W                  | No            | 30 W    | 30 W  | _          | 40 W       |  |
| 1093730040  | Backplane  | 24700   | 40 00                 | INO           | 30 00   | 30 00 | _          | 40 00      |  |
| IC695PSD140 | Universal  | 24Vdc   | 40 W                  | Yes           | 30 W    | 30 W  | _          | 40 W       |  |
| 10093130140 | Backplane  | 24Vuc   | 40 00                 | 163           | J0 VV   | 30 00 |            | 40 00      |  |
|             | Serial     | 100/240 |                       |               |         |       |            |            |  |
| IC694PWR321 | Expansion  | Vac or  | 30 W                  | No            | -       | 15 W  | 20 W       | 15 W       |  |
|             | Backplane  | 125Vdc  |                       |               |         |       |            |            |  |
|             | Serial     | 100/240 |                       |               |         |       |            |            |  |
| IC694PWR330 | Expansion  | Vac or  | 30 W                  | No            | -       | 30 W  | 20 W       | 15 W       |  |
|             | Backplane  | 125Vdc  |                       |               |         |       |            |            |  |
|             | Serial     |         |                       |               |         |       |            |            |  |
| IC694PWR331 | Expansion  | 24Vdc   | 30 W                  | No            | -       | 30 W  | 20 W       | 15 W       |  |
|             | Backplane  |         |                       |               |         |       |            |            |  |

<sup>&</sup>lt;sup>7</sup> A power supply must be able to provide the total of the internal and external loads that may be placed upon it by all the hardware components in the backplane as well as by all the loads that may be connected to the Isolated +24Vdc supply on an expansion backplane.

# 4.1.1 Power Supply Field Wiring

Refer to Section 2.6.6 Power Supplies subheadings *Power Supply Field Wiring, AC Power Source Connections*, and *DC Power Source Connections* as appropriate for how each power supply is being applied.

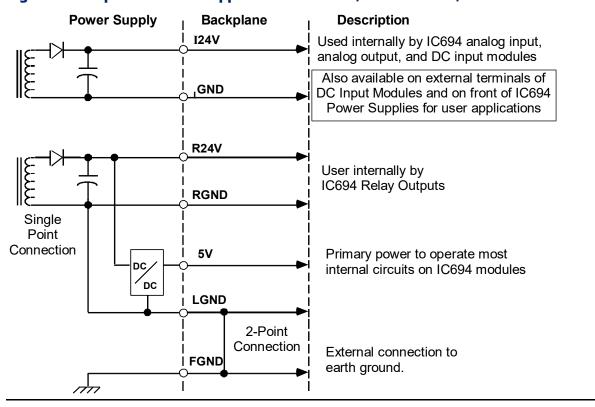
### 4.1.2 24Vdc Isolated Power


The IC695 Power Supplies do not have Isolated +24Vdc output terminals. The RX3i Universal Backplane provides external input terminals (TB1) for connecting an optional Isolated +24Vdc external supply. Modules that draw +24Vdc from the backplane are listed in the table of *Section 4.2, Module Load Requirements*. Refer to *Universal Backplane TB1 Input Terminals* for details on how to wire to terminal TB1.

# 4.1.3 RX3i IC695 Power Supply Outputs

The IC695 power supplies have +5.1Vdc, +24Vdc Relay, and 3.3Vdc outputs that are connected internally on the backplane. The voltage and power required by modules installed on the backplane are supplied through the backplane connectors.

# Figure 77: Outputs of Power Supply IC695PSA040


# Figure 78: Outputs of Power Supply IC695PSD040 & IC695PSD140



# 4.1.4 RX3i IC694 Power Supply Outputs

The IC694 power supplies have +5Vdc, Relay +24Vdc, and Isolated +24Vdc outputs that are connected internally on the backplane. The voltage and power required by modules installed on the backplane are supplied through the backplane connectors.

Figure 79: Outputs of Power Supplies IC694PWR321, IC694PWR330, and IC694PWR331



# **4.2 Module Load Requirements**

The following table summarizes the maximum load requirements in milliamps and Watts for RX3i modules. Modules are listed alphabetically by the last six characters of the catalog number. For I/O modules, the actual load may depend on the number of points on at the same time.

|             |                                                                           |       |       |            |              | +24V   | dc     | +24\        | /dc               |
|-------------|---------------------------------------------------------------------------|-------|-------|------------|--------------|--------|--------|-------------|-------------------|
| Catalog     | Description                                                               | +3.3\ | /dc   | +5Vd       | С            | Relay  | ,      | Isola       | ated              |
| Number      |                                                                           | mA    | W     | mA         | W            | mA     | W      | mA          | W                 |
| IC694ACC300 | Input Simulator                                                           | -     | -     | 120        | 0.60         | -      | -      | -           | -                 |
| IC694ACC307 | Expansion Bus Termination Plug                                            | -     | _     | 72         | 0.36         | -      | -      | -           | -                 |
| IC695ALG106 | Analog Input Module, 6-Channel<br>Isolated Current/Voltage                | 390   | 1.287 | 225        | 1.125        | -      | -      | -           | -                 |
| IC695ALG112 | Analog Input Module, 12-Channel<br>Isolated Current/Voltage               | 370   | 1.221 | 425        | 2.125        | -      | -      | -           | -                 |
| IC694ALG220 | Analog Input, Voltage, 4-Channel                                          | _     | -     | 27         | 0.135        | -      | -      | 98          | 2.35              |
| IC694ALG221 | Analog Input, Current, 4-Channel                                          | -     | _     | 25         | 0.125        | -      | ı      | 100         | 2.4               |
| IC694ALG222 | Analog Input, 8-/16-Channel  Voltage  Version -AA  Versions –BA and later |       | -     | 112<br>112 | 0.56<br>0.56 | -<br>- | -<br>- | 0 41<br>110 | 0.98<br>4<br>2.64 |
| IC694ALG223 | Analog Input, 16-Channel Current                                          | -     | _     | 120        | 0.60         | -      | -      | 65          | 1.56              |
| IC694ALG232 | Advanced Diagnostics, 8/ 16-<br>Channel Input Analog Voltage<br>Module    | -     | -     | 112        | 0.56         | -      | -      | 110         | 2.64              |
| IC694ALG233 | Advanced Diagnostics, 16-<br>Channel Input Analog Current<br>Module       | -     | _     | 120        | 0.60         | ı      | -      | 65          | 1.56              |
| IC695ALG306 | Thermocouple Input Module,<br>6-Channel Isolated                          | 400   | 1.320 | 225        | 1.125        | -      | -      | -           | -                 |
| IC695ALG312 | Thermocouple Input Module,<br>12-Channel Isolated                         | 400   | 1.320 | 425        | 2.125        | -      | -      | -           | -                 |
| IC694ALG390 | Analog Output 2-Channel Voltage                                           | -     | -     | 32         | 0.16         | -      | -      | 120         | 2.88              |
| IC694ALG391 | Analog Output 2-Channel Current                                           | -     | -     | 30         | 0.15         | -      | -      | 215         | 5.16              |
| IC694ALG392 | Analog Output 8-Channel<br>Current/Voltage                                | -     | -     | 110        | 0.55         | -      | -      | 315         | 7.56              |
| IC694ALG542 | Analog Module 4-Input 2-Output Current /Voltage with Advanced Diagnostics | -     | -     | 95         | 0.475        | -      | -      | 150         | 3.6               |

| Catalog<br>Number | Description                                                               | +3.3\ | /dc   | +5Vd       | С              | +24Vo |   | +24Vdc<br>Isolated |           |
|-------------------|---------------------------------------------------------------------------|-------|-------|------------|----------------|-------|---|--------------------|-----------|
| Number            |                                                                           | mA    | W     | mA         | W              | mA    | W | mA                 | W         |
| IC695ALG412       | Isolated Thermocouple Input<br>Module 12-Channel                          | 400   | 1.320 | 425        | 2.125          | -     | - | -                  | -         |
| IC694ALG442       | Analog Module 4-Input 2-Output<br>Current/Voltage                         | -     | -     | 95         | 0.475          | -     | - | 129                | 3.09<br>6 |
| IC695ALG508       | RTD Input Module, 8-Channel<br>Isolated                                   | 400   | 1.320 | 200        | 1.00           | -     | - | -                  | -         |
| IC695ALG600       | Universal Analog Input Module                                             | 350   | 1.155 | 400        | 2.00           | -     | - | -                  | -         |
| IC695ALG608       | Analog Input 8-/4-Channel<br>Current/Voltage                              | 330   | 1.089 | 600        | 3.00           | -     | - | -                  | _         |
| IC695ALG616       | Analog Input 16-/8-Channel<br>Current/Voltage                             | 450   | 1.485 | 600        | 3.00           | _     | - | -                  | _         |
| IC695ALG626       | Analog Input 16-/8-Channel<br>Current/Voltage with HART<br>Communications | 625   | 2.063 | 600        | 3.00           | -     | - | -                  | -         |
| IC695ALG628       | Analog Input 8-/4-Channel Current/Voltage with HART Communications        | 625   | 2.063 | 450        | 2.25           | -     | - | -                  | -         |
| IC695ALG704       | Analog Output, 4-Channel<br>Current/Voltage                               | 375   | 1.238 | -          | -              | _     | - | 150                | 3.6       |
| IC695ALG708       | Analog Output, 8-Channel<br>Current/Voltage                               | 375   | 1.238 | -          | _              | _     | - | 250                | 6         |
| IC695ALG728       | Analog Output, 8-Channel Current/Voltage with HART Communications enabled | 380   | 1.255 | -          | -              | -     | - | -                  | -         |
| IC695ALG808       | Analog Output 8-Channel Current/Voltage Isolated                          | 450   | 1.485 | 25         | -              | 0.138 | - | 600                | 14.4      |
| IC694APU300       | High-Speed Counter                                                        | -     | -     | 250        | 1.25           | -     | _ | -                  | -         |
| IC694APU305       | Special I/O Processor<br>(360mA module +10mA per<br>output on)            | -     | -     | 440        | 2.2            | -     | - | 80                 | 1.92      |
| IC694BEM320       | I/O Link Interface Module<br>with Optical Adapter                         | -     | -     | 205<br>405 | 1.025<br>2.025 | -     | - | -                  | -         |
| IC694BEM321       | I/O Link Master Module<br>with Optical Adapter                            | -     | -     | 415<br>615 | 2.075<br>3.075 | -     | - | -                  | -         |
| IC694BEM331       | Genius Bus Controller Module                                              | -     | -     | 1300       | 6.50           | _     | - | -                  | -         |
| IC695CHS007       | Universal Backplane 7-Slot                                                | 600   | 1.98  | 240        | 1.20           | -     | - | -                  | -         |
| IC695CHS012       | Universal Backplane 12-Slot                                               | 600   | 1.98  | 240        | 1.20           | -     | - | -                  | -         |
| IC695CHS016       | Universal Backplane 16-Slot                                               | 600   | 1.98  | 240        | 1.20           | -     | - | -                  | -         |

| Catalog              | Description                                                                  | +3.3V | 'dc   | +5Vd             | С             | +24V             |     | +24Vdc<br>Isolated |   |
|----------------------|------------------------------------------------------------------------------|-------|-------|------------------|---------------|------------------|-----|--------------------|---|
| Number               | Description                                                                  | mA    | w     | mA               | w             | mA               | w   | mA                 | W |
| IC694CHS392          | Expansion/Remote Backplane 10-<br>Slot                                       | -     | -     | 150              | 0.75          | -                | -   | -                  | - |
| IC694CHS398          | Expansion/Remote Backplane 5-<br>Slot                                        | -     | -     | 170              | 0.85          | -                | -   | -                  | - |
| IC695CMM00<br>2      | Serial Communications Module, 2<br>Ports                                     | 700   | 2.310 | 115              | 0.508         | -                | -   | -                  | - |
| IC695CMM00<br>4      | Serial Communications Module, 4<br>Ports                                     | 700   | 2.310 | 150              | 0.75          | -                | -   | -                  | - |
| IC695CMX128          | Control Memory Xchange Module                                                | 660   | 2.178 | 253              | 1.27          | -                | -   | -                  | - |
| IC695CPE302-<br>Axxx | CPU with 2 MB of user memory and embedded Ethernet                           | 1000  | 3.300 | 500 <sup>8</sup> | 2.50          | 100 <sup>9</sup> | 2.4 | -                  | - |
| IC695CPE305-<br>Axxx | CPU with 5 MB of user memory and embedded Ethernet                           | 1000  | 3.300 | 500 <sup>8</sup> | 2.50          | 100 <sup>9</sup> | 2.4 | -                  | - |
| IC695CPE310-<br>Axxx | CPU with 10 MB of user memory and embedded Ethernet                          | 1000  | 3.300 | 500 <sup>8</sup> | 2.50          | 100°             | 2.4 | -                  | - |
| IC695CPE302-<br>Bxxx | Dual Core CPU with 2 MB of user<br>memory and embedded Ethernet<br>Switch    | 1000  | 3.300 | 1500             | 7.50          | 100°             | 2.4 | _                  | _ |
| IC695CPE305-<br>Bxxx | Dual Core CPU with 6 MB of user<br>memory and embedded Ethernet<br>Switch    | 1000  | 3.300 | 1500             | 7.50          | 100 <sup>9</sup> | 2.4 | _                  | _ |
| IC695CPE310-<br>Bxxx | Dual Core CPU with 13 MB of user<br>memory and embedded Ethernet<br>Switch   | 1250  | 4.125 | 1500             | 7.50          | 100 <sup>9</sup> | 2.4 | _                  | _ |
| IC695CPE330          | Dual Core CPU with 64 MB of user<br>memory and embedded<br>Ethernet/PROFINET | 0     | 0     | 0                | 0             | 750              | 18  | _                  | _ |
| IC695CPU310          | CPU, 10 MB user memory                                                       | 1250  | 4.125 | 1000             | 5.00          | -                | -   | -                  | - |
| IC695CPU315          | CPU, 20 MB of user memory                                                    | 1000  | 3.300 | 1200             | 6.00          | -                | -   | -                  | - |
| IC695CPU320          | CPU, 64 MB of user memory                                                    | 1000  | 3.300 | 1200             | 6.00          | _                | -   | -                  | - |
| IC695CRU320          | Redundancy CPU, 64 MB of user memory                                         | 1000  | 3.300 | 1200             | 6.00          | -                | -   | -                  | - |
| IC694DNM200          | DeviceNet Master Module                                                      | -     | -     | 450              | 2.25          | -                | -   | -                  | - |
| IC694DSM314          | Motion Controller<br>(+ external encoder, if used)                           | -     | -     | 800<br>+500      | 4.00<br>+2.50 | -                | -   | -                  | - |
| IC694DSM324          | Motion Controller<br>(+ external encoder, if used)                           | -     | -     | 860<br>+500      | 4.30<br>+2.50 | -                | -   | -                  | - |

<sup>&</sup>lt;sup>8</sup> Greater if USB present at start-up. Refer to GFK-2222AD or later, Section 2.2.

 $<sup>^{9}</sup>$  Note that the current at power-up is 500mA. 100mA is the steady-state condition.

| Catalog     |                                                             | +3.3V | /dc   | +5Vd | С     | +24V  |     | +24\  |           |
|-------------|-------------------------------------------------------------|-------|-------|------|-------|-------|-----|-------|-----------|
| Number      | Description                                                 | _     |       |      |       | Relay |     | Isola | 1         |
|             |                                                             | mA    | W     | mA   | W     | mA    | W   | mA    | W         |
| IC695ETM001 | Ethernet Module                                             | 840   | 2.772 | 614  | 3.07  | -     | -   | -     | -         |
| IC695ECM850 | IEC 61850 Ethernet Communication Module                     | 1900  | 6.270 | 1100 | 5.500 | -     | -   | -     | -         |
| IC695GCG001 | Genius Communications Gateway                               | N/A   | N/A   | N/A  | N/A   | N/A   | N/A | N/A   | N/A       |
| IC695HSC304 | High-Speed Counter Module, 1.5MHz, 8 inputs, 7 outputs      | 457   | 1.51  | 64   | 0.32  | _     | -   | -     | -         |
| IC695HSC308 | High-Speed Counter Module,<br>1.5MHz, 16 inputs, 14 outputs | 561   | 1.85  | 94   | 0.47  | -     | -   | _     | -         |
| IC695LRE001 | Expansion Module                                            | -     | -     | 132  | 1.60  | -     | -   | -     | -         |
| IC694MDL230 | Input 120 Vac Isolated 8-Pt                                 | -     | -     | 60   | 0.30  | -     | -   | -     | -         |
| IC694MDL231 | Input 240 Vac Isolated 8-Pt                                 | _     | -     | 60   | 0.30  | -     | -   | -     | -         |
| IC694MDL240 | Input 120 Vac 16-Pt                                         | _     | -     | 90   | 0.45  | -     | -   | -     | -         |
| IC694MDL241 | Input 24Vac/Vdc Pos/Neg Logic<br>16-Pt                      | -     | -     | 80   | 0.40  | -     | -   | 125   | 3.00      |
| IC694MDL250 | Input 120 Vac 16-Pt Isolated (all inputs on)                | -     | -     | 220  | 1.10  | -     | -   | -     | _         |
| IC694MDL260 | Input 120 Vac 32-Pt Isolated (all inputs on)                | _     | -     | 220  | 1.10  | -     | -   | -     | -         |
| IC694MDL310 | Output 120 Vac 0.5A 12-Pt<br>(all outputs on)               | -     | -     | 210  | 1.05  | -     | -   | -     | -         |
| IC694MDL330 | Output 120/240 Vac 0.5A 16-Pt (all outputs on)              | -     | -     | 160  | 0.80  | -     | -   | -     | -         |
| IC694MDL340 | Output 120 Vac 0.5A 16-Pt<br>(all outputs on)               | -     | -     | 315  | 1.575 | -     | -   | -     | -         |
| IC694MDL350 | Output 120/240 Vac Isolated 16-<br>Pt<br>(all outputs on)   | -     | _     | 315  | 1.575 | -     | -   | -     | -         |
| IC694MDL390 | Output 120/240 Vac Isolated 2A<br>5-Pt (all outputs on)     | -     | -     | 110  | 0.55  | -     | -   | -     | -         |
| IC694MDL632 | Input 125Vdc Pos/Neg Logic 8-Pt                             | -     | -     | 40   | 0.20  | -     | -   | -     | -         |
| IC694MDL634 | Input 24Vdc Pos/Neg Logic 8-Pt                              | -     | -     | 45   | 0.225 | _     | -   | 62    | 1.48<br>8 |
| IC694MDL635 | Input 125Vdc Pos/Neg, 16-Pt<br>(all inputs on)              | -     | -     | 80   | 0.40  | -     | -   | -     | -         |
| IC694MDL645 | Input 24Vdc Pos/Neg Logic 16-Pt                             | -     | -     | 80   | 0.40  | -     | -   | 125   | 3.00      |
| IC694MDL646 | Input 24Vdc Pos/Neg Logic FAST 16-<br>Pt                    | -     | -     | 80   | 0.40  | -     | -   | 125   | 3.00      |
| IC694MDL648 | Input 48Vdc 16-Pt Pos/Neg Logic,<br>1ms filter              | -     | -     | 80   | 0.40  | -     | -   | -     | -         |

| Catalog          |                                         | +3.3\ | /dc   | +5Vd  | c      | +24V  | dc   | +24\  | /dc   |
|------------------|-----------------------------------------|-------|-------|-------|--------|-------|------|-------|-------|
| Number           | Description                             | 13.31 | ruc   | 1344  | C      | Relay | y    | Isola | ated  |
| Number           |                                         | mA    | W     | mA    | W      | mA    | W    | mA    | W     |
|                  | Input 5/12Vdc (TTL) Pos/Neg 32-Pt       |       |       |       |        |       |      |       |       |
|                  | 195 = (29mA + 0.5mA/point ON +          |       |       |       |        |       |      |       |       |
|                  | 4.7mA/LED ON)                           |       |       | 195   | 0.975  |       |      |       |       |
| IC694MDL654      | 440mA (maximum) from +5V bus on         | -     | -     | / 440 | / 2.20 | -     | -    | -     | -     |
|                  | the backplane (if module isolated       |       |       | 7 440 | 7 2.20 |       |      |       |       |
|                  | +5V supply used to power inputs &       |       |       |       |        |       |      |       |       |
|                  | all 32 inputs ON)                       |       |       |       |        |       |      |       |       |
|                  | Input 24Vdc Pos/Neg 32-Pt               |       |       |       |        |       |      | 224   |       |
| IC694MDL655      | (29mA +0.5mA/point ON                   | -     | -     | 195   | 0.975  | _     | -    | (typ) | 5.376 |
|                  | +4.7mA/LED ON)                          |       |       |       |        |       |      | (96)  |       |
| IC694MDL658      | Input 48Vdc 32-Pt Pos/Neg Logic         | -     | -     | 195   | 0.975  | -     | -    | -     | -     |
| IC694MDL660      | Input 24Vdc 32-Pt Pos/Neg               | -     | -     | 300   | 1.50   | -     | -    | -     | -     |
| IC695MDL664      | Input 24Vdc 16-Pt, Pos Logic            | 95    | 0.314 | 225   | 1.125  | -     | -    | -     | -     |
| IC694MDL730      | Output 12/24Vdc 2A 8-Pt Pos Logic       | -     | -     | 55    | 0.275  | -     | -    | -     | -     |
| IC694MDL732      | Output 12/24Vdc 0.5A 8-Pt Pos           | _     | _     | 50    | 0.25   | _     | _    | _     | _     |
| 1003 11113 2732  | Logic                                   |       |       | 30    | 0.23   |       |      |       |       |
| IC694MDL734      | Output 125Vdc Pos/Neg Logic 6 Pt        | _     | 1_    | 90    | 0.45   | _     | _    | _     | _     |
| TCOS+IVIDE7S+    | (all outputs on)                        |       |       | 30    | 0.43   |       |      |       |       |
| IC694MDL740      | Output 12/24Vdc 0.5A 16-Pt Pos          | _     | _     | 110   | 0.55   | _     | _    | _     | _     |
| 1003410102740    | Logic (all outputs on)                  |       |       | 110   | 0.55   |       |      |       |       |
| IC694MDL741      | Output 12/24Vdc 0.5A 16-Pt Neg          | _     | _     | 110   | 0.55   | _     | _    | _     | _     |
| 1003 11110 27 11 | Logic (all outputs on)                  |       |       | 110   | 0.55   |       |      |       |       |
| IC694MDL742      | Output 12/24Vdc 1A 16-Pt Pos Logic      | _     | _     | 130   | 0.65   | _     | _    | _     | _     |
| 1005 11112 17 12 | ESCP (all outputs on)                   |       |       | .50   | 0.00   |       |      |       |       |
|                  | Output 5/24Vdc (TTL) 0.5A 32-Pt         |       |       |       |        |       |      |       |       |
| IC694MDL752      | Neg Logic (13mA + 3 mA/point ON +       | -     | -     | 260   | 1.30   | -     | -    | -     | -     |
|                  | 4.7 mA/LED)                             |       |       |       |        |       |      |       |       |
|                  | Output 12/24Vdc 0.5A 32-Pt Pos          |       |       |       |        |       |      |       |       |
| IC694MDL753      | Logic (13mA + 3mA/point ON +            | -     | -     | 260   | 1.3    | _     | -    | -     | -     |
|                  | 4.7mA/LED)                              |       |       |       |        |       |      |       |       |
| IC694MDL754      | Output 24Vdc High-Density 32-Pt         | _     | _     | 300   | 1.50   | _     | _    | 264   | 6.336 |
|                  | (with all outputs on)                   |       |       |       |        |       |      |       |       |
| IC694MDL758      | Output 12/24Vdc 0.5A 32-Pt Positive     | _     | -     | 250   | 1.25   | _     | _    | 66    | 1.584 |
|                  | Logic with ESCP per group               |       |       |       |        |       |      |       |       |
| IC695MDL765      | Output Module, 24/125Vdc 16-Pt          |       | 0.502 | 540   | 2.7    |       |      |       |       |
|                  | Pos Logic                               |       |       |       |        |       |      |       |       |
| IC694MDL916      | Output 4 Amp 16-Pt Relay                | -     | -     | 300   | 1.50   | -     | -    | -     | -     |
| IC694MDL930      | MDL930 Relay NO 4A Isolated 8-Pt Output |       | _     | 6     | 0.03   | 70    | 1.68 | _     | _     |
|                  | (all outputs on)                        |       | ļ     |       |        |       |      |       |       |
| IC694MDL931      | Relay NC and Form C 8 A Isolated 8-     | _     | _     | 6     | 0.03   | 110   | 2.64 | _     | _     |
|                  | Pt Output (all outputs on)              |       |       |       |        |       |      |       |       |

| Catalog          |                                                                  | +3.3\ | Idc   | +5Vd | c     | +24V | dc    | +24\  | /dc  |
|------------------|------------------------------------------------------------------|-------|-------|------|-------|------|-------|-------|------|
| Catalog          | Description                                                      | T3.3V | uc    | -5vu | C     | Rela | y     | Isola | ated |
| Number           |                                                                  | mA    | W     | mA   | W     | mA   | W     | mA    | W    |
| IC694MDL940      | Relay NO 2A 16-Pt Output                                         | _     | _     | 7    | 0.035 | 135  | 3.24  | _     | _    |
| 1003 11115 23 10 | (all outputs on)                                                 |       |       |      | 0.055 | 133  | J.2 1 |       |      |
| IC694MDR390      | Mixed I/O 24Vdc Input (8-Pt) N.O. Relay Output (8-Pt)            |       | -     | 80   | 0.40  | 70   | 1.68  | -     | -    |
| IC695NIU001      | Ethernet Network Interface Unit                                  | 1250  | 4.125 | 1000 | 5.00  | -    | -     | -     | -    |
| IC695NIU001      | Ethernet Network Interface Unit<br>Plus (version AAAA and later) | 520   | 1.716 | 950  | 4.750 | -    | -     | _     | -    |
| IC695PBM300      | PROFIBUS Master Module                                           | 440   | 1.452 | -    | -     | -    | -     | -     | _    |
| IC695PBS301      | PROFIBUS Slave Module                                            | 440   | 1.452 | -    | -     | -    | -     | -     | _    |
| ICCOEDNANA 225   | PACMotion Multi-Axis Motion                                      | 1010  | 2 222 | 440  | 2.2   |      |       |       |      |
| IC695PMM335      | Controller                                                       | 1010  | 3.333 | 440  | 2.2   | -    | -     | -     | -    |
| IC695PNC001-     | PROFINET Controller Module                                       |       |       |      |       |      |       |       |      |
| Ax               | (maximum with 2 SFP devices                                      | 1200  | 3.960 | 1500 | 7.5   | -    | -     | -     | -    |
|                  | installed, 0.35 A per SFP device)                                |       |       |      |       |      |       |       |      |
| IC695PNC001-     | PROFINET Controller Module                                       |       |       |      |       |      |       |       |      |
| Bxxx             | (maximum with 2 SFP devices                                      | 1200  | 3.960 | 750  | 4.125 | -    | -     | -     | -    |
|                  | installed, 0.35 A per SFP device)                                |       |       |      |       |      |       |       |      |
| IC695PNS001-     | PROFINET Scanner Module                                          |       |       |      |       |      |       |       |      |
| Axxx             | (maximum with 2 SFP devices                                      | 1900  | 6.270 | 1100 | 5.5   | -    | -     | -     | -    |
|                  | installed, 0.35 A per SFP device)                                |       |       |      |       |      |       |       |      |
| IC695PNS001-     | PROFINET Scanner Module                                          |       |       |      |       |      |       |       |      |
| Bxxx             | (maximum with 2 SFP devices                                      | 1300  | 4.290 | 700  | 3.5   | -    | -     |       | -    |
| DAAA             | installed, 0.35 A per SFP device)                                |       |       |      |       |      |       |       |      |
|                  | PROFINET Scanner Module RX3i SoE                                 |       |       |      |       |      |       |       |      |
| IC695PNS101      | (maximum with 2 SFP devices                                      | 1300  | 4.290 | 700  | 3.5   | -    | -     | -     | -    |
|                  | installed, 0.35 A per SFP device)                                |       |       |      |       |      |       |       |      |
| IC695PRS015      | Pressure Transducer Module                                       | 700   | 2.310 | 115  | 0.575 | -    | -     | -     | -    |
| ICCOEDNAVA 20    | Redundancy Memory Xchange                                        | F00   | 264   | 220  | 1 1   |      |       |       |      |
| IC695RMX128      | Module, Multi-Mode Fiber                                         | 580   | .264  | 220  | 1.1   | -    | -     | -     | -    |
| IC695RMX228      | Redundancy Memory Xchange                                        | 580   | .264  | 220  | 1.1   |      | _     |       | _    |
| 1C032KIVIXZZ8    | Module, Single-Mode Fiber                                        | 300   | .204  | 220  | '.'   | -    | _     | -     | _    |

# 4.2.1 Power Supply Loading Example

To determine the total load placed on a power supply, add the current requirements of each module and the backplane. The following table provides an example of power supply loading.

| Catalog<br>Number | Module                                                           | +3.3Vdc       | +5.1Vdc          | +24Vdc<br>Relay | +24Vdc<br>Isolated <sup>10</sup> |
|-------------------|------------------------------------------------------------------|---------------|------------------|-----------------|----------------------------------|
| IC695CPU310       | 300MHz CPU 10 Meg memory                                         | 1250          | 1000             | -               | -                                |
| IC695CHS012       | Universal Backplane, 12-Slot                                     | 600           | 240              | -               | -                                |
| IC695ETM001       | Ethernet Module                                                  | 840           | 614              | -               | -                                |
| IC695LRE001       | Expansion Module                                                 | -             | 132              | -               | -                                |
| IC694ALG220       | Analog Input, Voltage, 4-Ch                                      | -             | 27               | -               | 98 <sup>10</sup>                 |
| IC694ALG390       | Analog Output 2-Ch Voltage                                       | -             | 32               | -               | 12010                            |
| IC694ALG442       | Analog Current/Voltage 4-Ch In /<br>2-Ch Out                     | -             | 95               | _               | -                                |
| IC694APU300       | High-Speed Counter                                               | -             | 250              | -               | 400010                           |
| IC694MDL340       | 120 Vac 0.5A 16-Pt Output                                        | -             | 315              | -               | -                                |
| IC694MDL230       | 120 Vac Isolated, 8-Pt Input                                     | -             | 60               | -               | -                                |
| IC694MDL240       | 120 Vac 16-Pt Input                                              | -             | 90               | -               | -                                |
| IC694MDL930       | Relay NO 4A Isolated 8-Pt Output (all outputs on)                | -             | 6                | 70              | -                                |
| IC694MDL931       | Relay NC and Form C 8 A Isolated<br>8-Pt Output (all outputs on) | -             | 6                | 110             | -                                |
|                   | Total Amps                                                       | 2.690         | 2.867            | 0.180           | -                                |
|                   | Converted to Watts                                               | (x3.3V)       | (x5.1V)          | (x24V)          | -                                |
|                   | Power Consumption from Power<br>Supply                           | =8.877W       | =14.622W         | =4.32W          | -                                |
| Total Power Con   | sumption from Power Supply                                       | 8.877 + 14.62 | 22 + 4.32 = 27.8 | 17 W            |                                  |

At ambient temperatures, up to 32°C, power supply IC695PSA040 provides the following power outputs:

- 40 W maximum total
- 5.1Vdc = 30 W maximum
- 3.3Vdc = 30 W maximum

In this example, all of Module power requirements are met by Power Supply PSA040.

<sup>&</sup>lt;sup>10</sup> Because the IC695 power supply does not provide +24Vdc Isolated power, an external +24Vdc supply, wired via terminal TB1 on the Universal Backplane, is required for modules ALG220, ALG221, ALG222 and APU300.

# 4.2.2 Load Sharing / Redundancy

To meet the power needs of the application, as many as four multipurpose power supplies can be installed in a Universal Backplane. These power supplies can be combined to provide:

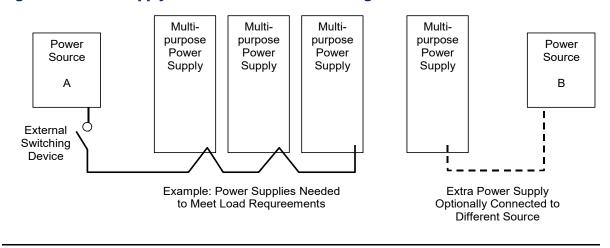
- Load Sharing
- Power Supply Module Redundancy
- Power Source Redundancy

No other types of RX3i power supply can be included in these applications.

## **Load Sharing**

Multi-purpose power supplies can be combined into load sharing applications. The following rules must be observed:

If multiple power supplies are required to meet the system load requirements, Multi-purpose power supplies must be wired to the same power source in such a way that they all can be powered up or powered down simultaneously. The On/Off switch on the front panel of each of the power supplies must be left in the On position.


### **A** CAUTION

In a load-sharing application, it is important to ensure that the load-sharing power supply modules' On/Off switches cannot be inadvertently used. The minimum number of power supplies needed to meet the system power requirements MUST have their switches always kept in the On position. Also, the load-sharing power supplies must be connected to the system power source through the same external switch. The system must be powered up and powered down only from the external switch. If individual power supplies are powered up or powered down using their On/Off switches *or separate external switches*, resulting in insufficient power capacity, equipment damage may result. It may be necessary to re-load the PLC operating system to resume operation.

# **Connections for Load Sharing**

In load-sharing installations, additional multi-purpose power supplies above the minimum required for the system load may be wired to the same power source, or a different source.

**Figure 80: Power Supply Connections for Load Sharing** 



## **Connections for Power Supply Module Redundancy**

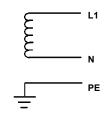
Power supply module redundancy can be provided by using one additional multi-purpose power supply above the minimum required for the system power load (Figure 81). In this type of installation, all Multi-purpose power supplies contribute a share of the backplane power and run at a correspondingly reduced load. This results in longer life for the individual power supplies. Also, should one power supply module fail, system operation is not interrupted. The front panel switch can be used to remove a redundant unit. Note that this type of system does not protect against loss of the input power source. If more than one power supply is switched off, the remaining power supplies may become overloaded and shut down. An External switching device must be used to remove power from more than one power supply at a time in the Power Supply Redundancy mode.

**Figure 81: Redundant Power Supply Connections** Multi-Multi-Multi-Multipurpose purpose purpose purpose Power Optional Power Power Power Power Source Power Supply Supply Supply Supply Source Α B This Extra Power Supply **Example: Three Power Supplies Provides Power Supply** Needed to Meet Load Requirements Module Redundancy

## **Power Source Redundancy**

If the overall power needs of the system can be met using either one or two Multi-purpose power supplies, then power source redundancy can be provided. This requires using twice the minimum number of Multi-purpose power supplies required to meet the system load requirements. In this type of system, half of the Multi-purpose power supplies must be connected to one power source and the other half must be connected to a separate source. This arrangement provides all the advantages of a Basic Redundancy system, as described above, plus power source redundancy. The front panel switch may be used to remove an individual power supply as long as the minimum number of units remains powered up.

**Figure 82: Connections for Power Source Redundancy** 




# 4.3 AC Power Supply Connections for Floating Neutral (IT) Systems

If an AC input power supply is installed in a system where the Neutral line is not referenced to Protective Earth Ground, special installation instructions must be followed to prevent damage to the power supply.

A *Floating Neutral System* is a system of power distribution wiring where Neutral and Protective Earth Ground are not tied together by negligible impedance. In Europe, this is referred to as an IT system (refer to IEC950). In a *Floating Neutral System*, voltages measured from input terminals to protective earth ground may exceed the 264Vac maximum input voltage power supply specification.

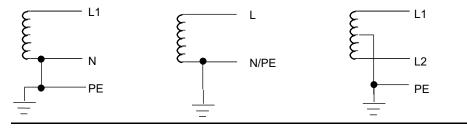
Figure 83: Floating Neutral



# 4.3.1 Special Instructions for Floating Neutral Systems

The input power terminals should be wired according to the instructions under Section 2.6.6, *Power Supply Field Wiring* with the following exceptions.

- 1. For IC695 power supplies, no jumper may be installed between terminal 5 or 6 and terminal 7.
- 2. For IC694 and IC693 power supplies, no jumper may be installed between terminals 3 and 4 of the power supply module.
- 3. Voltage surge protection devices such as MOVs must be installed:
  - From L1 to earth ground
  - From L2 (Neutral) to earth ground


The voltage surge devices must be rated such that the system is protected from power line transients that exceed *Line voltage* + 100V + (N-PE)<sub>MAX</sub>. The expression N-PE refers to the voltage potential between neutral and Protective Earth (PE) ground. For example, in a 240 Volt AC system with neutral floating 50 Vac above earth ground, the transient protection should be rated at:

240 Vac + 100 Vac + 50 Vac = 390 Vac

# 4.3.2 <u>Non</u>-Floating Neutral System

Systems, where one leg of the power distribution wiring is tied to Protective Earth or a tap between two legs of the power distribution wiring, is tied to Protective Earth are not *Floating Neutral Systems*. Nonfloating neutral systems **do not** require special installation procedures.

**Figure 84: Non-Floating Neutral Wiring** 



# 4.4 Power Supply, 120/240 Vac or 125Vdc, 40 W: IC695PSA040

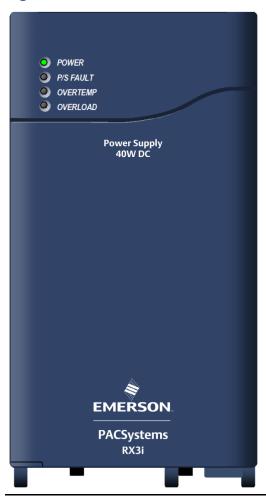
Power Supply IC695PSA040 is a 40-Watt supply that operates from an input voltage source in the range of 85 to 264Vac or 100 Vdc to 300 Vdc.

This power supply provides three outputs:

- +5.1Vdc output,
- +24Vdc relay output that can be used to power circuits on Output Relay modules.
- +3.3Vdc. This output is used internally by RX3i modules with IC695 catalog numbers.

### **A** CAUTION

Only one IC695PSA040 can be used in a PACSystems RX3i (IC695 catalog number) Universal Backplane.


This power supply cannot be used with other RX3i power supplies in redundant or increased capacity modes.

Power supply version IC695PSA040C or earlier may cause equipment damage if inadvertently installed in the same backplane as another RX3i power supply.

If the number of modules required exceeds the capacity of the power supply, the additional modules must be installed in Expansion or Remote backplanes.

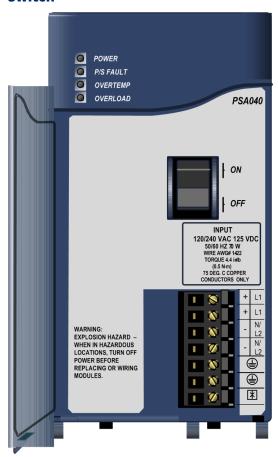
The power supply indicates when an internal fault occurs so the CPU can detect loss of power or log the appropriate fault code.

**Figure 85: IC695PSA040** 



#### **LEDs**

Four LEDs on the power supply indicate:


- Power (Green/Amber). When this LED is green, it indicates power is being supplied to the backplane. When this LED is amber, power is applied to the power supply, but the Power Supply switch is off.
- P/S Fault (Red). When this LED is lit, it indicates the power supply has failed and is no longer supplying sufficient voltage to the backplane.
- Over Temperature (Amber). When this LED is lit, it indicates the power supply is approaching or exceeding its maximum operating temperature.
- Overload (Amber). When this LED is lit, it indicates the power supply is approaching or exceeding its maximum output capability on at least one of its outputs.

The CPU Fault Table shows a fault if any Overtemperature, Overload, or Power Supply fault occurs.

#### On/Off Switch

The ON/OFF switch is located behind the door on the front of Module. The switch controls the operation of the outputs of the supply. It does NOT interrupt line power. Projecting tabs next to the switch help prevent accidentally turning it on or off.

# Figure 86: PSA040 Showing Terminals & On/Off Switch



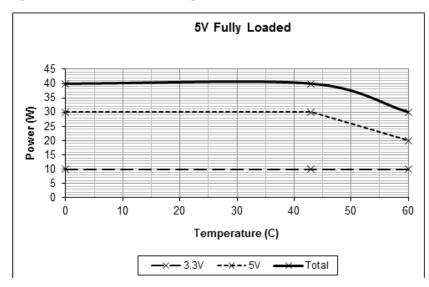
## **Wiring Terminals**

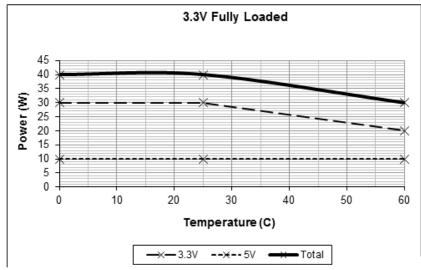
Terminals for power, ground, and MOV disconnect accept individual 14 to 22 AWG wires.

# 4.4.1 Specifications: PSA040

| PSA040                                | Specification                                                |
|---------------------------------------|--------------------------------------------------------------|
| Nominal Rated Voltage                 | 120/240 Vac or 125 Vdc                                       |
| Input Voltage Range                   | 85 to 264 Vac                                                |
|                                       | 100 to 300 Vdc                                               |
| Input Power                           | 70 W maximum                                                 |
| (Maximum with Full Load)              |                                                              |
| Inrush Current <sup>11</sup>          | 4 A, 250 ms maximum                                          |
| Output Power                          | 40 W maximum total                                           |
|                                       | 5.1 Vdc = 30 W maximum                                       |
|                                       | 3.3 Vdc = 30 W maximum                                       |
|                                       | The maximum total output power available depends on the      |
|                                       | ambient temperature, as shown.                               |
| Output Voltage                        | 24 Vdc: 19.2 to 28.8 Vdc                                     |
|                                       | 5.1 Vdc: 5.0 to 5.2Vdc (5.1 Vdc nominal)                     |
|                                       | 3.3 Vdc: 3.1 to 3.5Vdc (3.3 Vdc nominal)                     |
| Output Current                        | 24 Vdc: 0 to 1.6 A                                           |
|                                       | 5.1 Vdc: 0 to 6 A                                            |
|                                       | 3.3 Vdc: 0 to 9 A                                            |
| Isolation (input to backplane):       | 250 Vac continuous; 1500 Vac for 1 minute                    |
| Ripple (all outputs)                  | 150 mV                                                       |
| Noise (all outputs)                   | 150 mV                                                       |
| Ride-through time                     | 20 ms is the length of time the power supply maintains valid |
|                                       | outputs if the power source is interrupted                   |
| Wiring Terminals                      | Each terminal accepts one 14 AWG to 22 AWG wire              |
| Current per Terminal                  | 6 A                                                          |
| Number of Daisy-Chained PSA040        | Up to 4                                                      |
| Supplies                              |                                                              |
| For product standards and general spe | ecifications, refer to <i>Appendix A</i> :.                  |

## **A** WARNING


The door of the power supply module must be closed. During normal operation with an AC power source, either 120 Vac or 240 Vac is present on the AC power supply. The door protects against accidental shock hazards that could cause severe or fatal injury to personnel.


<sup>&</sup>lt;sup>11</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PSA040. Peak inrush current may be higher for shorter durations.

# **Thermal Derating: PSA040**

The maximum output power for power supply PSA040 depends on the ambient temperature, as displayed in the following figure. Full output power is available up to at least 32°C (89.6°F).

**Figure 87: Thermal Derating Curves for PSA040** 



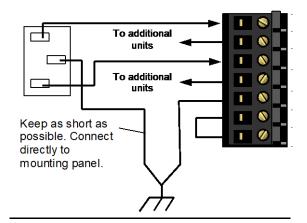


#### **Over-Current Protection: PSA040**

The 5.1 Vdc output is electronically limited to 7 A. The 3.3Vdc output is limited to 10 A. If an overload (including a short circuit) occurs, it is sensed internally, and the power supply shuts down. The power supply continually tries to restart until the overload condition is removed. An internal, non-repairable, fusible link in the input line is provided as a backup. The power supply usually shuts down before the fusible link blows. The fusible link also protects against internal supply faults. The CPU Fault Table displays a fault if any Over-temperature, Overload, or Power Supply fault occurs. There is no additional indication if the power supply fusible link blows.

# 4.4.2 Field Wiring: PSA040

#### **Power Source and Ground Connections**

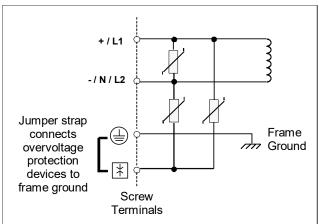

The wires from the power source and ground connect to the terminals on the power supply as shown in Figure 88. Each terminal accepts one AWG 14 to AWG 22 wire.

When tightening the screw terminals, do not exceed the maximum torque limit of 0.5 Nm (4.4 in-lb).

## **WARNING**

If the same external AC power source is used to provide power to two or more RX3i power supplies in the system, connection polarity must be identical at each power supply. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

Figure 88: Field Wiring PSA040




## **Input Over-Voltage Protection**

The bottom terminal is normally connected to the frame ground with a user-installed jumper as shown in Figure 89. If over-voltage protection is not required or is supplied upstream, no jumper is needed.

To Hi-pot test this supply, over-voltage protection must be disabled during the test by removing the jumper. Re-enable over-voltage protection after testing by reinstalling the jumper.

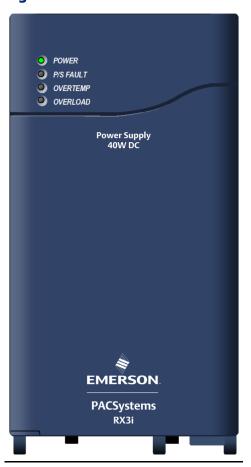
Figure 89: Over-Voltage Protection for PSA040



In systems with a floating neutral input (Figure 83 - the neutral line is not referenced to Protective Earth Ground), this jumper must NOT be installed. Also, in a floating neutral system, voltage surge protection devices such as MOVs **must** be installed from L1 to earth ground, and from L2 (Neutral) to earth ground, as discussed in Section 4.3.1, Special Instructions for Floating Neutral Systems.

# 4.5 Multi-purpose Power Supply, 120/240 Vac or 125Vdc, 40 W: IC695PSA140

Power Supply IC695PSA140 is a multi-purpose 40 W supply that operates from an input voltage source in the range of 85 to 264Vac or 100 Vdc to 300 Vdc.


This power supply provides three outputs:

- +5.1Vdc output
- +24Vdc relay output that can be used to power circuits on Output Relay modules.
- +3.3Vdc. This output is used internally by RX3i modules with IC695 catalog numbers.

This power supply is suitable for use in load-sharing and redundancy applications. Up to four multipurpose power supplies (PSA140 and/or PSD140) can be used in a PACSystems RX3i (IC695 catalog number) Universal Backplane. Use these Power Supplies if the number of modules required exceeds the capacity of one power supply. This power supply occupies two backplane slots.

The power supply indicates when an internal fault occurs so the CPU can detect loss of power or log the appropriate fault code.

**Figure 90: IC695PSA140** 



### **A** CAUTION

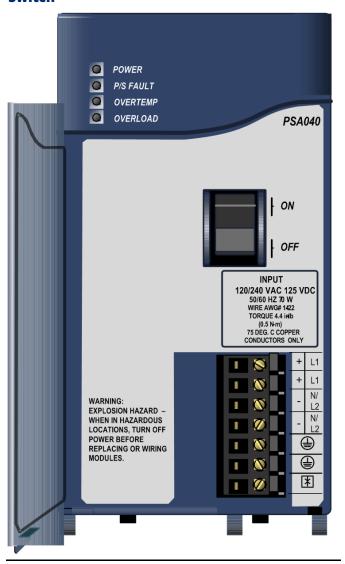
This power supply cannot be used with RX3i IC695PSD040 or IC695PSA040 Power Supplies in redundant or increased capacity modes. Damage to equipment may result.

#### **LEDs**

Four LEDs on the power supply indicate:

- Power (Green/Amber). When this LED is green, it indicates that power is being supplied to the backplane. When this LED is amber, power is applied to the power supply, but the Power Supply switch is off.
- P/S Fault (Red). When this LED is lit, it indicates the power supply has failed and is no longer supplying sufficient voltage to the backplane.
- Over Temperature (Amber). When this LED is lit, it indicates the power supply is approaching or exceeding its maximum operating temperature.
- Overload (Amber). When this LED is lit, it indicates the Power Supply is approaching or exceeding its maximum output capability on at least one of its outputs.

The CPU Fault Table shows a fault if any Overtemperature, Overload, or Power Supply fault occurs.


#### On/Off Switch

The ON/OFF switch is located behind the door on the front of Module. The switch controls the operation of the outputs of the supply. It does NOT interrupt line power. Projecting tabs next to the switch help prevent accidentally turning it on or off.

# **Wiring Terminals**

Terminals for power, ground, and MOV disconnect accept individual 14 to 22 AWG wires.

Figure 91: PSA140 Showing Terminals & On/Off Switch

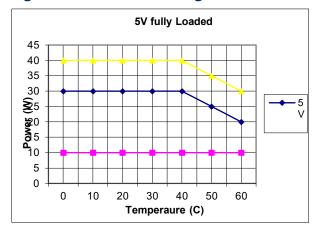


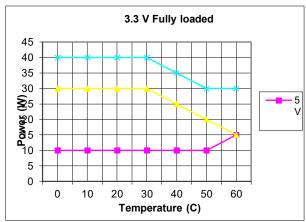
# 4.5.1 Specifications: PSA140

| PSA140                                                    | Specification                                                |
|-----------------------------------------------------------|--------------------------------------------------------------|
| Nominal Rated Voltage                                     | 120/240 Vac or 125 Vdc                                       |
| Input Voltage Range                                       | 85 to 264 Vac                                                |
|                                                           | 100 to 300 Vdc                                               |
| Input Power                                               | 70 W maximum                                                 |
| (Maximum with Full Load)                                  |                                                              |
| Inrush Current <sup>12</sup>                              | 4 A, 250 ms maximum                                          |
| Output Power                                              | 40 W maximum total                                           |
|                                                           | 5.1 Vdc = 30 W maximum                                       |
|                                                           | 3.3 Vdc = 30 W maximum                                       |
|                                                           | The maximum total output power available depends on the      |
|                                                           | ambient temperature.                                         |
| Output Voltage                                            | 24 Vdc: 19.2 to 28.8 Vdc                                     |
|                                                           | 5.1 Vdc: 5.0 to 5.2 Vdc (5.1 Vdc nominal)                    |
|                                                           | 3.3 Vdc: 3.1 to 3.5 Vdc (3.3 Vdc nominal)                    |
| Output Current                                            | 24 Vdc: 0 to 1.6 A                                           |
|                                                           | 5.1 Vdc: 0 to 6 A                                            |
|                                                           | 3.3 Vdc: 0 to 9 A                                            |
| Isolation (input to backplane):                           | 250 Vac continuous; 1500 Vac for 1 minute                    |
| Ripple (all outputs)                                      | 150 mV                                                       |
| Noise (all outputs)                                       | 150 mV                                                       |
| Ride-through time                                         | 20 ms. This is the length of time the power supply maintains |
|                                                           | valid outputs if the power source is interrupted             |
| Wiring Terminals                                          | Each terminal accepts one 14 AWG to 22 AWG wire.             |
| Current per Terminal                                      | 6 A                                                          |
| Number of Daisy-Chained PSA140 Supplies                   | Up to 4                                                      |
| Number of PSA140 Power Supplies in<br>Universal Backplane | Up to 4                                                      |

For product standards and general specifications, refer to Appendix A:.

# **A** WARNING


The door of the power supply module must be closed. During normal operation with an AC power source, either 120 Vac or 240 Vac is present on the AC power supply. The door protects against accidental shock hazards that could cause severe or fatal injury to personnel.

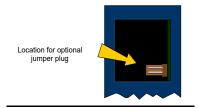

<sup>&</sup>lt;sup>12</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PSA140. Peak inrush current may be higher for shorter durations.

# **Thermal Derating: PSA140**

The maximum output power for power supply PSA140 depends on the ambient temperature.

**Figure 92: Thermal Derating Curves for PSA140** 






#### **Over-Current Protection: PSA140**

The 5.1Vdc output is electronically limited to 7 Amps. The 3.3Vdc output is limited to 10 A. If an overload (including short circuits) occurs, it is sensed internally, and the power supply shuts down. Because it is designed for redundancy applications, this power supply latches off in fault conditions. It does not automatically try to restart until the overload condition is removed. Input power must be cycled to clear a latched fault. However, if the power supply is used in a non-redundant application where automatic restarting is required, a jumper plug can be installed.

An internal non-repairable fusible link in the input line is provided as a backup. The power supply usually shuts down before the fusible link blows. The fusible link also protects against internal supply faults. The CPU Fault Table shows a fault if any Over-temperature, Overload or P/S Fault occurs. There is no additional indication if the power supply fusible link blows.

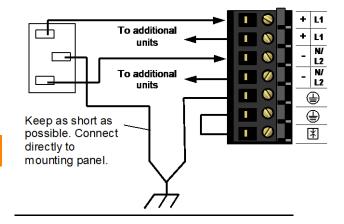
Figure 93: Jumper Location PSA140



In a non-redundancy application, where automatic restarting may be appropriate, a jumper plug (or shunt) can be installed at the rear of Module as shown in Figure 93. The jumper plug must have 0.100 inch spacing on the center and accommodate 0.25-inch pins. Example parts are Radio Shack DIP Programming Shunt #276-1512 and DIGI-Key #59000-ND. Module must be removed from the backplane to install the jumper plug.

#### 4.5.2 Field Wiring: PSA140

#### **Power Source and Ground Connections**


The wires from the power source and ground connect to the terminals on the power supply as shown in Figure 94. Each terminal accepts one AWG 14 to AWG 22 wire.

When tightening the screw terminals, do not exceed the maximum torque limit of 0.5 Nm (4.4 in-lb).

#### **A** WARNING

If the same external AC power source is used to provide power to two or more RX3i power supplies in the system, connection polarity must be identical at each power supply. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

Figure 94: Field Wiring for PSA140



#### **Input Over-Voltage Protection**

The bottom terminal is normally connected to frame ground with a user-installed jumper as shown in Figure 95. If over-voltage protection is not required or is supplied upstream, no jumper is needed.

To Hi-pot test this supply, over-voltage protection must be disabled during the test by removing the jumper. Re-enable over-voltage protection after testing by reinstalling the jumper.

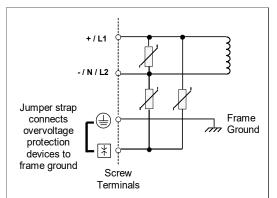



Figure 95: Over-Voltage Protection for PSA140

In systems with a floating neutral input (Figure 83 - the neutral line is not referenced to Protective Earth Ground), this jumper must NOT be installed. Also, in a floating neutral system, voltage surge protection devices such as MOVs **must** be installed from L1 to earth ground, and from L2 (Neutral) to earth ground, as discussed in Special Instructions for Floating Neutral Systems, Section 4.3.1.

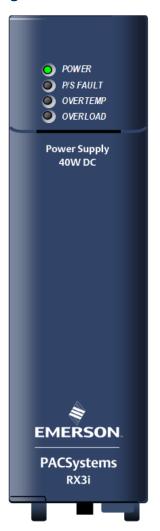
#### 4.6 Power Supply, 24Vdc, 40 W: IC695PSD040

Power Supply IC695PSD040 is a 40 W supply that operates from an input voltage source in the range of 18Vdc to 30 Vdc.

- +5.1Vdc output
- +24Vdc relay output that can be used to power circuits on Output Relay modules
- +3.3Vdc. This output is used internally by RX3i modules with IC695 catalog numbers

#### **A** CAUTION

Only one IC695PSD040 can be installed in a PACSystems RX3i (IC695 catalog number) Universal Backplane.


This Power supply cannot be used with other RX3i power supplies in redundant or increased capacity modes.

Power supply version IC695PSD040C or earlier may cause equipment damage if inadvertently installed in the same backplane as another RX3i power supply.

This power supply occupies one slot. If the number of modules required exceeds the capacity of the power supply, the additional modules must be installed in expansion or remote backplanes.

The power supply indicates when an internal fault occurs so the CPU can detect loss of power or log the appropriate fault code.

**Figure 96: IC695PSD040** 



#### **LEDs**

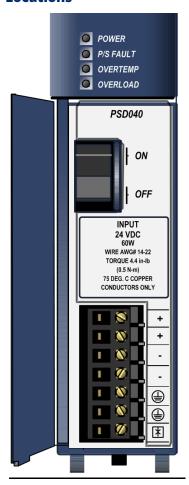
Four LEDs on the power supply indicate:

- Power (Green/Amber). When this LED is green, it indicates power is being supplied to the backplane. When this LED is amber, power is applied to the power supply, but the power supply switch is off.
- P/S Fault (Red). When this LED is lit, it indicates the Power Supply has failed and is no longer supplying sufficient voltage to the backplane.
- Over Temperature (Amber). When this LED is lit, it indicates the power supply is approaching or exceeding its maximum operating temperature.
- Overload (Amber). When this LED is lit, it indicates the Power Supply is approaching or exceeding its maximum output capability on at least one of its outputs.

If the red P/S FAULT LED is lit, the power supply has failed and is no longer supplying sufficient voltage to the backplane.

The amber OVERTEMP and OVERLOAD LEDs light to warn of high temperature or high load conditions.

The CPU Fault Table shows a fault if any Overtemperature, Overload, or Power Supply fault occurs.


#### **On/Off Switch**

The ON/OFF switch is located behind the door on the front of Module. The switch controls the operation of the outputs of the supply. It does NOT interrupt line power. A projecting tab next to the switch helps prevent accidentally turning it on or off.

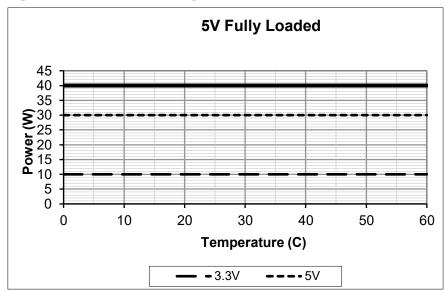
#### **Wiring Terminals**

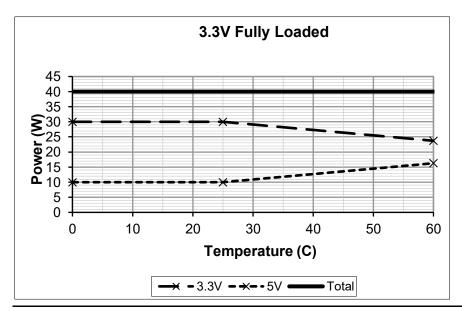
Terminals for +24V and -24V power, ground, and MOV disconnect accept individual 14 to 22AWG wires.

Figure 97: PSD040
Terminals and Switch
Locations



# 4.6.1 Specifications: PSD040


| PSD040                         | Specification                                                       |  |
|--------------------------------|---------------------------------------------------------------------|--|
| Nominal Rated Voltage          | 24 Vdc                                                              |  |
| Input Voltage Range            | 18 to 30 Vdc                                                        |  |
| Input Power                    | 60 W maximum at full load                                           |  |
| Inrush Current <sup>13</sup>   | 4 A, 100 ms maximum                                                 |  |
|                                | 40 W maximum total of both outputs                                  |  |
| Output Power                   | 5.1 Vdc = 30 W maximum                                              |  |
| Output Power                   | 3.3 Vdc = 30 W maximum                                              |  |
|                                | Maximum output power depends on ambient temperature                 |  |
| Output Voltage                 | 5.1 Vdc: 5.0 to 5.2 Vdc (5.1 Vdc nominal)                           |  |
| Output voitage                 | 3.3 Vdc: 3.1 to 3.5 Vdc (3.3 Vdc nominal)                           |  |
| Output Comment                 | 5.1Vdc: 0 to 6 A                                                    |  |
| Output Current                 | 3.3 Vdc: 0 to 9 A                                                   |  |
| Isolation                      | None                                                                |  |
| Ripple (all outputs)           | 50 mV                                                               |  |
| Noise (all outputs)            | 50 mV                                                               |  |
|                                | 10 ms is the length of time the Power Supply maintains valid        |  |
| Ride-through time              | outputs if the power source is interrupted. If this Power Supply is |  |
| Ride-till odgif tillle         | used with IC694 and IC693 modules that have relay outputs, note     |  |
|                                | that dropouts longer than 10ms will cause dropouts on Modules.      |  |
| Wiring Terminals               | Each terminal accepts one 14 AWG to 22 AWG wire.                    |  |
| Terminal Current               | 6 A                                                                 |  |
| Number of Daisy-chained PSD040 | Up to 2                                                             |  |
| Supplies                       |                                                                     |  |


<sup>&</sup>lt;sup>13</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PSD040. Peak inrush current may be higher for shorter durations.

#### **Thermal Derating: PSD040**

The maximum output power for power supply PSD040 depends on the ambient temperature. Full output power is available up to at least 40°C (89.6°F).







#### **Over-Current Protection: PSD040**

The 5.1Vdc output is electronically limited to 7 A. The 3.3Vdc output is limited to 10 A. If an overload (including short circuits) occurs, it is sensed internally, and the power supply shuts down. The power supply continually tries to restart until the overload condition is removed. An internal non-repairable fusible link in the input line is provided as a backup. The power supply usually shuts down before the fusible link blows. The fusible link also protects against internal supply faults. The CPU Fault Table shows a fault if any Over-temperature, Overload, or Power Supply fault occurs. There is no additional indication if the power supply fusible link blows.

#### 4.6.2 Field Wiring: PSD040

#### **Power Source and Ground Connections**

The wires from the power source and ground connect to the terminals on the power supply as shown in Figure 99. Each terminal accepts one AWG 14 to AWG 22 wire.

When tightening the screw terminals, do not exceed the maximum torque limit of 0.5 Nm (4.4 in-lb).

Important: Be sure to connect DC- to Earth Ground.

DC+ To additional units

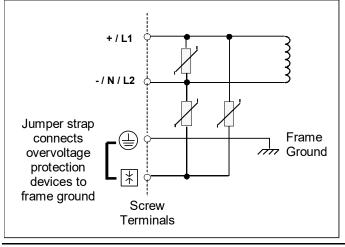
To additional units

To additional units

Connect DC - to Earth Ground to prevent damaging ground potentials mounting panel.

Figure 99: Field Wiring for PSD040

#### **A WARNING**


If the same external DC power source is used to provide power to two or more power supplies in the system, connection polarity must be identical at each RX3i power supply. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

#### **Input Over-Voltage Protection**

The bottom terminal is normally connected to the frame ground with a user-installed jumper as shown in Figure 100. If over-voltage protection is not required or is supplied upstream, no jumper is required.

To Hi-pot test this supply, over-voltage protection must be disabled during the test by removing the jumper. Re-enable over-voltage protection after testing by reinstalling the jumper.

Figure 100: Over-Voltage Protection for PSD040



#### **A** WARNING

This power supply is not isolated and is therefore not compatible with floating or positive grounded systems.

# 4.7 Multi-Purpose Power Supply, 24Vdc, 40 W: IC695PSD140

Power supply IC695PSD140 is a multi-purpose 40-Watt supply that operates from an input voltage source in the range of 18Vdc to 30 Vdc.

This power supply provides three outputs:

- +5.1Vdc output
- +24Vdc relay output that can be used to power circuits on Output Relay modules
- +3.3Vdc. This output is used internally by RX3i modules with IC695 catalog numbers

Multi-purpose power supply IC695PSD140 is suitable for use in loadsharing and redundancy applications. It must be installed in a PACSystems RX3i (IC695 catalog number) Universal Backplane. It can be used as the only power supply in the backplane or combined with up to three additional multi-purpose power supplies.

The power supply indicates when an internal fault occurs so the CPU can detect loss of power or log the appropriate fault code.

#### Figure 101: IC695PSD140



#### **A** CAUTION

This power supply cannot be used with RX3i IC695PSD040 or IC695PSA040 power supplies in redundant or increased capacity modes. Damage to equipment may result.

#### **LEDs**

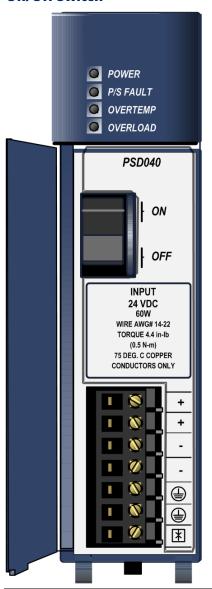
Four LEDs on the power supply indicate:

- Power (Green/Amber). When this LED is green, it indicates power is being supplied to the backplane. When this LED is amber, power is applied to the power supply, but the power supply switch is off.
- P/S Fault (Red). When this LED is lit, it indicates the Power Supply has failed and is no longer supplying sufficient voltage to the backplane.
- Over Temperature (Amber). When this LED is lit, it indicates that the power supply is approaching or exceeding its maximum operating temperature.
- Overload (Amber). When this LED is lit, it indicates the power supply is approaching or exceeding its maximum output capability on at least one of its outputs.

If the red P/S FAULT LED is lit, the power supply has failed and is no longer supplying sufficient voltage to the backplane.

The amber OVERTEMP and OVERLOAD LEDs light to warn of high temperature or high load conditions.

The CPU Fault Table shows a fault if any Overtemperature, Overload, or Power Supply fault occurs.


#### **Wiring Terminals**

Terminals for +24V and –24V power, ground, and MOV disconnect accept individual 14 to 22 AWG wires.

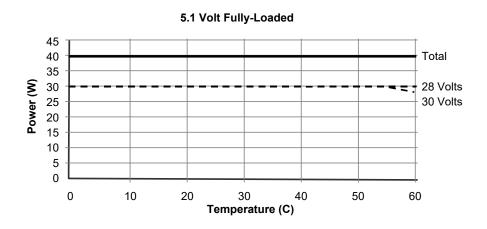
#### **On/Off Switch**

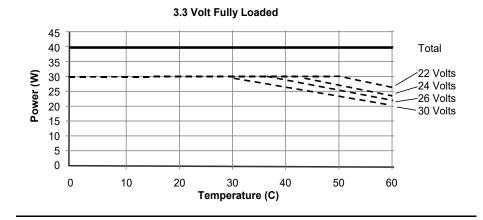
The ON/OFF switch is located behind the door on the front of Module. The switch controls the operation of the outputs of the supply. It does NOT interrupt line power. A projecting tab next to the switch helps prevent accidentally turning it on or off.

# Figure 102 PSD140 Terminals and On/Off Switch



# 4.7.1 Specifications: PSD140


| PSD140                         | Specifications                                                      |  |  |
|--------------------------------|---------------------------------------------------------------------|--|--|
| Nominal Rated Voltage          | 24 Vdc                                                              |  |  |
| Input Voltage Range            | 18 to 30 Vdc                                                        |  |  |
| Input Power                    | 60 W maximum at full load                                           |  |  |
| Inrush Current <sup>14</sup>   | 4 A, 100 ms maximum                                                 |  |  |
|                                | 40 W maximum total of both outputs                                  |  |  |
| Output Power                   | 5.1 Vdc = 30 W maximum                                              |  |  |
| Output Power                   | 3.3 Vdc = 30 W maximum                                              |  |  |
|                                | Maximum output power depends on ambient temperature                 |  |  |
| Output Voltage                 | 5.1 Vdc: 5.0V to 5.2 Vdc (5.1Vdc nominal)                           |  |  |
| Output voltage                 | 3.3 Vdc: 3.1V to 3.5 Vdc (3.3Vdc nominal)                           |  |  |
| Output Current                 | 5.1 Vdc: 0 to 6 A                                                   |  |  |
| Output Current                 | 3.3 Vdc: 0 to 9 A                                                   |  |  |
| Isolation                      | None                                                                |  |  |
| Ripple (all outputs)           | 50 mV                                                               |  |  |
| Noise (all outputs)            | 50 mV                                                               |  |  |
|                                | 10 ms is the length of time the power supply maintains valid        |  |  |
|                                | outputs if the power source is interrupted. If this power supply is |  |  |
| Ride-through time              | used with IC694 and IC693 modules that have relay outputs,          |  |  |
| inde-unough time               | special precautions should be taken because dropouts in the         |  |  |
|                                | source voltage will be seen by Module and may cause relay           |  |  |
|                                | dropouts.                                                           |  |  |
| Wiring Terminals               | Each terminal accepts one 14 AWG to 22 AWG wire                     |  |  |
| Terminal Current               | 6 A                                                                 |  |  |
| Number of Daisy-Chained PSD140 | Up to 4                                                             |  |  |
| Supplies                       | ορτο 4                                                              |  |  |
| Number of PSD140 Supplies in   | Up to 4                                                             |  |  |
| Universal Backplane            | op to ¬                                                             |  |  |


<sup>&</sup>lt;sup>14</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PSD140. Peak inrush current may be higher for shorter durations.

#### **Thermal Derating: PSD140**

The maximum output power for power supply PSD140 depends on the ambient temperature. Full output power is available up to at least 40°C (89.6°F).

**Figure 103: Thermal Derating Curves for PSD140** 





#### **Over-Current Protection: PSD140**

The 5.1Vdc output is electronically limited to 7 A. The 3.3Vdc output is limited to 10 A. If an overload (including short circuits) occurs, it is sensed internally, and the power supply shuts down. Because it is designed for redundancy applications, this power supply latches OFF in fault conditions and will not automatically try to restart. Input power must be cycled to clear a latched fault.

An internal non-repairable fusible link in the input line is provided as a backup. The power supply usually shuts down before the fusible link blows. The fusible link also protects against internal supply faults. The CPU Fault Table shows a fault if any Over-temperature, Overload or P/S Fault occurs. There is no additional indication if the power supply fusible link blows.

In a non-redundancy application, where automatic restarting may be appropriate, a jumper plug (or shunt) can be installed at the rear of Module as shown in Figure 104. The jumper plug must have 0.100 inch spacing on the center and accommodate 0.25-inch pins. Example parts are Radio Shack DIP Programming Shunt #276-1512 and DIGI-Key #59000-ND. Module must be removed from the backplane to install the jumper plug.

# Figure 104: Jumper Location PSD140

Location for optional jumper plug



## 4.7.2 Field Wiring: PSD140

#### **Power Source and Ground Connections**

The wires from the power source and ground connect to the terminals on the power supply as shown in Figure 105. Each terminal accepts one AWG 14 to AWG 24 wire.

**Important:** Be sure to connect DC- to Earth Ground.

Figure 105: Field Wiring for PSD140

DC POWER SOURCE

DC+

To additional units

To additional units

Connect DC - to Earth Ground to prevent damaging ground potentials


#### **Input Over-Voltage Protection**

The bottom terminal is normally connected to the frame ground with a user-installed jumper as shown in Figure 106. If over-voltage protection is not required or is supplied upstream, no jumper is required.

To Hi-pot test this supply, over-voltage protection must be disabled during the test by removing the jumper. Re-enable over-voltage protection after testing by reinstalling the jumper.

**Figure 106: Over-Voltage Protection for PSD140** 

mounting panel.



#### **A** WARNING

This power supply is not isolated and is therefore not compatible with floating or positive grounded systems.

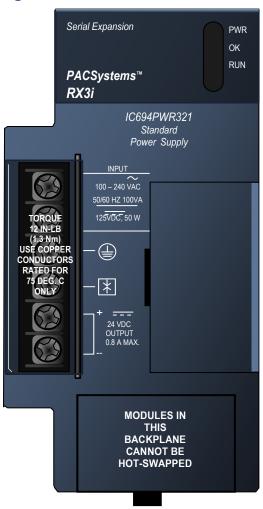
# 4.8 Power Supply, 120/240 Vac or 125Vdc: IC694PWR321

Power Supply IC694PWR321 is a 30-Watt supply that operates from an input voltage source in the range of 85Vac to 264Vac or 100 Vdc to 300 Vdc.

This power supply provides three outputs:

- +5Vdc output
- Relay +24Vdc output that can be used to power circuits on Output Relay modules
- Isolated +24Vdc. This power is used internally by some modules. It can also be used to power field devices connected to 24Vdc Input modules

Power Supply IC694PWR321 can be used in an Expansion backplane in an RX3i system. The battery backup and serial port functions are not available in Expansion Backplanes.


#### **LEDs**

The green PWR LED shows the operating state of the Power Supply. PWR is ON when the power supply has a correct source of power and is operating properly. It is OFF when a power supply fault occurs, or power is not applied.

The green OK LED is steady ON if the PLC is operating properly. It is OFF if a problem is detected by the PLC.

The green RUN LED is ON when the PLC is in Run mode.

**Figure 107: IC694PWR321** 



#### 4.8.1 Specifications: PWR321

| PWR321                          | Specifications                                              |  |
|---------------------------------|-------------------------------------------------------------|--|
| Nominal Rated Voltage           | 120/240 Vac or 125 Vdc                                      |  |
| Input Voltage Range             | 85 Vdc to 264 Vac                                           |  |
|                                 | 100 Vdc to 300 Vdc                                          |  |
| Input Power                     | 90 VA with Vac Input                                        |  |
| (Maximum with Full Load)        | 50 W with Vdc Input                                         |  |
| Inrush Current <sup>15</sup>    | 4 A peak, 250 ms maximum                                    |  |
|                                 | 5Vdc and 24 Vdc Relay: 15 W maximum                         |  |
| Output Power                    | 24 Vdc Relay: 15 W maximum                                  |  |
| Output Power                    | 24 Vdc Isolated: 20 W maximum                               |  |
|                                 | NOTE: 30 W maximum total (all three outputs)                |  |
|                                 | 5Vdc: 5.0 Vdc to 5.2 Vdc (5.1Vdc nominal)                   |  |
| Output Voltage                  | Relay 24 Vdc: 24 to 28 Vdc                                  |  |
|                                 | Isolated 24 Vdc: 21.5 to 28 Vdc                             |  |
| Isolation (input to backplane): | 1500 Vac (for 1 minute)                                     |  |
| Protective Limits               |                                                             |  |
| Over-voltage:                   | 5 Vdc output: 6.4 Vdc to 7Vdc                               |  |
| Over-current:                   | 5 Vdc output: 4 A maximum                                   |  |
| Ride-through Time:              | 20 ms minimum This is the length of time the power supply   |  |
|                                 | maintains valid outputs if the power source is interrupted. |  |
| Fuse                            | 2 A, part number 44A724627-109.                             |  |
| ruse                            | Refer to Section 2.6.4, Module Fuse List.                   |  |

#### **Over-Current Protection: PWR321**

The 5 Vdc output is electronically limited to 3.5 A. If an overload (including short circuits) occurs, it is sensed internally, and the power supply shuts down. The power supply continually tries to restart until the overload condition is removed. An internal replaceable fuse in the input line is provided as a backup. The power supply usually shuts down before the fuse blows. The fuse also protects against internal supply faults.

#### **A** WARNING

The door of the power supply module must be closed. During normal operation with an AC power source, either 120 Vac or 240 Vac is present on the AC Power Supply. The door protects against accidental shock hazards that could cause severe or fatal injury to personnel.

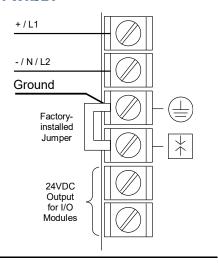
<sup>&</sup>lt;sup>15</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PWR321. Peak inrush current may be higher for shorter durations.

#### 4.8.2 Field Wiring: PWR321

#### **AC Power Source Connections**

The Hot, Neutral, and Ground wires from the 120 Vac power source or L1, L2, and Ground wires from the 240 Vac power source connected to the top three terminals on the Power Supply.

#### **DC Power Source Connections**


Connect the + and - wires from the 125Vdc power source to the top two terminals. These connections are not polaritysensitive on power supply PWR321.

#### **A** WARNING

If the same external DC power source is used to provide power to two or more power supplies in the system, connection polarity must be identical at each RX3i power supply. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

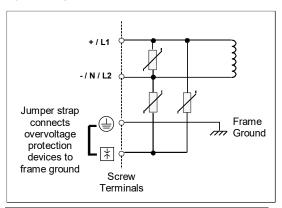
The bottom two terminals of the power supply terminal strip provide output connections to the Isolated +24Vdc. This output can be used to provide power for external circuits (within limitations of the power supply).

# Figure 108: Field Wiring for PWR321



#### **A** CAUTION

If the Isolated 24Vdc supply is overloaded or shorted, the PLC will stop operation


#### **Input Over-Voltage Protection: PWR321**

Terminal 4 is normally connected to frame ground (terminal 3) with a factory-installed jumper strap, as shown in Figure 109. If over-voltage protection is not required or is supplied upstream, this feature can be disabled by removing the jumper.

To Hi-pot test this supply, over-voltage protection must be disabled during the test by removing the terminal strip jumper. Re-enable over-voltage protection after testing by reinstalling the strap.

In systems with a floating neutral input (Figure 83 - the neutral line is not referenced to Protective Earth Ground), this jumper must NOT be installed. In a floating neutral system, voltage surge protection devices such as MOVs **must** be installed from L1 to earth ground, and from L2 (Neutral) to earth ground, as discussed in Special Instructions for Floating Neutral Systems, Section 4.3.1.

# Figure 109: Over-Voltage Protection for PWR321



# 4.9 Power Supply, 120/240 Vac or 125Vdc High Capacity: IC694PWR330

High-Capacity Power Supply IC694PWR330 is rated for 30 W. It allows all 30 W to be consumed from the +5Vdc output. This power supply operates from an input voltage source in the range of 85 to 264Vac or 100 to 300 Vdc.

PWR330 Power supplies provide the following outputs:

- +5Vdc output
- Relay +24Vdc which provides power to circuits on Output Relay modules
- Isolated +24Vdc, which is used internally by some modules, can also be used to provide external power for 24Vdc Input modules

Power Supply IC694PWR330 must be installed in an Expansion backplane in an RX3i system. The battery backup and serial port functions are not available in Expansion Backplanes.

#### **LEDs**

The green PWR LED shows the operating state of the Power Supply. PWR is ON when the power supply has a correct source of power and is operating properly. It is OFF when a Power Supply fault occurs, or power is not applied.

The green OK LED is steady ON if the PLC is operating properly. It is OFF if a problem is detected by the PLC.

The green RUN LED is ON when the PLC is in Run mode.

**Figure 110: IC694PWR330** 



#### 4.9.1 Specifications: PWR330

| PWR330                         | Specifications                                      |  |
|--------------------------------|-----------------------------------------------------|--|
| Nominal Rated Voltage          | 120/240 Vac or 125 Vdc                              |  |
| Inner Voltage Denge            | 85 Vac to 264 Vac                                   |  |
| Input Voltage Range            | 100 Vdc to 300 Vdc                                  |  |
| Input Power                    | 100 VA with Vac Input                               |  |
| (Maximum with Full Load)       | 50 W with Vdc Input                                 |  |
| Inrush Current <sup>16</sup>   | 4 A peak, 250ms maximum                             |  |
| Output Power                   | 5 Vdc: 30 W maximum                                 |  |
|                                | 24 Vdc Relay: 15 W maximum                          |  |
|                                | 24 Vdc Isolated: 20 W maximum                       |  |
|                                | <b>NOTE:</b> 30 W maximum total (all three outputs) |  |
|                                | 5 Vdc: 5.0 to 5.2 Vdc (5.1 Vdc nominal)             |  |
| Output Voltage                 | 24 Vdc Relay: 24 to 28 Vdc                          |  |
|                                | 24 Vdc Isolated: 21.5 to 28 Vdc                     |  |
| Isolation (input to backplane) | 1500 Vac (for 1 minute)                             |  |
| Protective Limits              |                                                     |  |
| Over-voltage:                  | 5 Vdc output: 6.4 to 7 Vdc                          |  |
| Over-current:                  | 5 Vdc output: 7 A maximum                           |  |

#### **Over-Current Protection**

The 5 Vdc output is electronically limited to 7 Amps. If an overload (including short circuits) occurs, it is sensed internally, and the power supply shuts down. The power supply continually tries to restart until the overload condition is removed. An internal replaceable fuse in the input line is provided as a backup. The power supply usually shuts down before the fuse blows. The fuse also protects against internal supply faults.

#### **A** WARNING

The door of the power supply module must be closed. During normal operation with an AC power source, either 120 Vac or 240 Vac is present on the AC Power Supply. The door protects against accidental shock hazards that could cause severe or fatal injury to personnel.

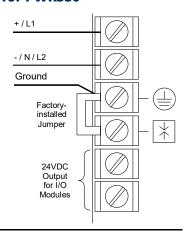
<sup>&</sup>lt;sup>16</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PWR330. Peak inrush current may be higher for shorter durations.

#### 4.9.2 Field Wiring: PWR330

#### **AC Power Source Connections**

The Hot, Neutral, and Ground wires from the 120 Vac power source or L1, L2, and Ground wires from the 240 Vac power source connected to the top three terminals on the Power Supply.

#### DC Power Source Connections


Connect the + and - wires from the 125Vdc power source to the top two terminals. These connections are not polarity-sensitive on Power Supply PWR330.

#### **A** WARNING

For UL 61010 system certification these units are considered Basic insulation, supplemental insulation will be required for accessible circuits powered by this supply or be restricted to only use Class 1 wiring methods.

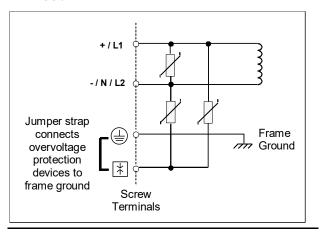
If the same external DC power source is used to provide power to two or more power supplies in the system, connection polarity must be identical at each RX3i power supply. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

Figure 111: Field Wiring for PWR330



The bottom two terminals of the power supply terminal strip provide output connections to the Isolated +24Vdc. This output can be used to provide power for external circuits (within the power limitations of the supply).

#### **A** CAUTION


If the Isolated 24Vdc supply is overloaded or shorted, the PLC will stop operation

#### **Input Over-Voltage Protection**

Terminal 4 is normally connected to frame ground (terminal 3) with a factory-installed jumper strap. If over-voltage protection is not required or is supplied upstream, this feature can be disabled by removing the jumper.

To Hi-pot test this supply, over-voltage protection must be disabled during the test by removing the terminal strip jumper. Reenable over-voltage protection after testing by reinstalling the strap.

Figure 112: Over-Voltage Protection for PWR330



In systems with a floating neutral input (Figure 83 - the neutral line is not referenced to Protective Earth Ground), this jumper must NOT be installed. In a floating neutral system, voltage surge protection devices such as MOVs **must** be installed from L1 to earth ground, and from L2 (Neutral) to earth ground, as discussed in Special Instructions for Floating Neutral Systems, Section 4.3.1.

# 4.10 Power Supply, 24Vdc High-Capacity: IC694PWR331

High Capacity Power Supply IC694 PWR331 is rated for 30 W output. For applications requiring greater +5Vdc current capacity than is available with a standard supply (PWR321), a High-Capacity Power Supply allows all 30 W to be consumed from the +5Vdc supply. This supply can operate from an input voltage source in the range of 12Vdc to 30 Vdc. Although it is capable of maintaining all outputs within specifications with input voltages as low as 12Vdc, it requires an initial input voltage of 18Vdc to start up.

PWR331 Power supplies provide the following outputs:

- +5Vdc output
- Relay +24Vdc, which provides power to circuits on Output Relay modules
- Isolated +24Vdc, which is used internally by some modules, can also be used to provide external power for 24Vdc Input modules

Power Supply IC694PWR331 must be installed in an Expansion backplane in an RX3i system. The battery backup and serial port functions are not available in Expansion Backplanes.

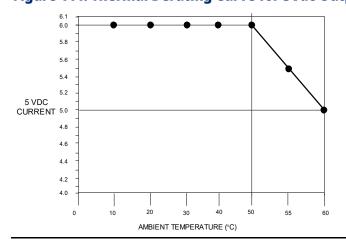
**Figure 113: IC694PWR331** 



#### **LEDs**

The green PWR LED shows the operating state of the Power Supply. PWR is ON when the power supply has a correct source of power and is operating properly. It is OFF when a power supply fault occurs, or power is not applied.

The green OK LED is steady ON if the PLC is operating properly. It is OFF if a problem is detected by the PLC.


The green RUN LED is ON when the PLC is in Run mode.

## 4.10.1 Specifications: PWR331

| PWR331                         | Specifications                                             |  |
|--------------------------------|------------------------------------------------------------|--|
| Nominal Rated Voltage          | 24 Vdc                                                     |  |
| Input Voltage Range            |                                                            |  |
| Start                          | 18 to 30 Vdc                                               |  |
| Run                            | 12 to 30 Vdc                                               |  |
| Input Power                    | 50 W maximum at full load                                  |  |
| Inrush Current <sup>17</sup>   | 4 A peak, 100 ms, maximum                                  |  |
|                                | 5 Vdc: 30 W maximum (De-rate per Figure 114)               |  |
| Output Power                   | 24 Vdc Relay: 15 W maximum                                 |  |
|                                | 24 Vdc Isolated: 20 W maximum                              |  |
|                                | NOTE: 30 W maximum total (all three outputs)               |  |
|                                | 5 Vdc: 5.0 to 5.2 Vdc (5.1 Vdc nominal)                    |  |
| Output Voltage                 | 24 Vdc Relay: 19.2 to 28.8 Vdc                             |  |
|                                | 24 Vdc Isolated: 19.2 to 28.8 Vdc                          |  |
| Isolation (input to backplane) | 1500 Vac (for 1 minute)                                    |  |
| Protective Limits              |                                                            |  |
| Over-voltage:                  | 5 Vdc output: 6.4 to 7 Vdc                                 |  |
| Over-current;                  | 5 Vdc output: 7 A maximum                                  |  |
| Ride-through Time:             | 10 ms minimum. This is the length of time the power supply |  |
|                                | maintains valid outputs if the power source is interrupted |  |
| Fuse                           | 5 A, part number 44A724627-114.                            |  |
| i use                          | Refer to Section 2.6.4, Module Fuse List.                  |  |

## **Thermal Derating: PWR331**





<sup>&</sup>lt;sup>17</sup> The Inrush Current specification is given as a guide for sizing the external power source for the IC695PWR331. Peak inrush current may be higher for shorter durations.

#### **Over-Current Protection: PWR331**

The 5 Vdc output is electronically limited to 7 A. If an overload (including short circuits) occurs, it is sensed internally, and the power supply shuts down. The power supply continually tries to restart until the overload condition is removed. An internal replaceable fuse in the input line is provided as a backup. The power supply usually shuts down before the fuse blows. The fuse also protects against internal supply faults.

#### **Calculating Input Power Requirements: PWR331**

Use the following procedure to determine input power requirements for the 24Vdc High Capacity Power Supply:

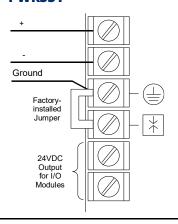
- Determine total output power load from typical specifications listed for individual modules in this chapter
  - Multiply the output power by 1.5 to determine the input power value
- Divide the input power value by the operating source voltage to determine the input current requirements
- Use the lowest input voltage to determine the maximum input current
- Allow for start-up surge current requirements
- Allow margins (10% to 20%) for variations

#### 4.10.2 Field Wiring: PWR331

The + wire connects to the top terminal screw, and the - wire connects to the second. These connections are polarity-sensitive for PWR331.

Ground connects to the third screw.

#### **WARNING**

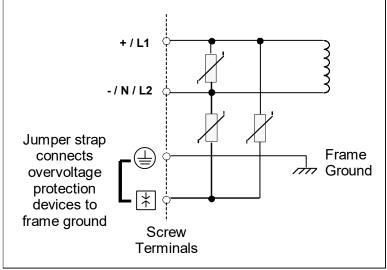

If the same external DC power source is used to provide power to two or more power supplies in the system, connection polarity must be identical at each power supply. Do not cross the Positive (+) and Negative (-) lines. A resulting difference in potential can injure personnel or cause damage to equipment. Also, each backplane must be connected to a common system ground.

The bottom two terminals of the power supply terminal strip provide connections to the Isolated +24Vdc output. This output can be used to provide power for external circuits (within the power limitations of the supply).

#### **A** CAUTION

If the Isolated 24Vdc supply is overloaded or shorted, the PLC will stop operation.

Figure 115: Field Wiring for PWR331

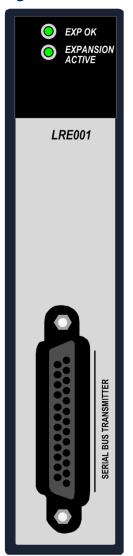



#### **Input Over-Voltage Protection**

Terminal 4 is normally connected to frame ground (terminal 3) with a factory-installed jumper strap, as shown in Figure 116. If over-voltage protection is not required or is supplied upstream, this feature can be disabled by removing the jumper.

To Hi-pot test this supply, overvoltage protection must be disabled during the test by removing the terminal strip jumper. Re-enable over-voltage protection after testing by reinstalling the jumper.

Figure 116: Over-Voltage Protection for PWR331




# Section 5: Serial Bus Transmitter & Expansion Cables

This chapter describes the serial expansion module and expansion cables for PACSystems RX3i controllers. It also gives specifications for building custom expansion cables.

| Description                                                               | Catalog Number | Section |
|---------------------------------------------------------------------------|----------------|---------|
| Serial Bus Transmitter Module                                             | IC695LRE001    | 5.1     |
| Expansion Cable, Wye, 1m (3 ft) Length                                    | IC693CBL300    | 5.2.2   |
| Expansion Cable, Wye, 2m (6 ft)                                           | IC693CBL301    | 5.2.2   |
| Expansion Cable, 2 Connectors, Built-in Terminating Resistor, 15m (50 ft) | IC693CBL302    | 0       |
| Expansion Cable, Wye, 0.15m (0.5 ft)                                      | IC693CBL312    | 5.2.2   |
| Expansion Cable, Wye, 8m (25 ft)                                          | IC693CBL313    | 5.2.2   |
| Termination Resistor Pack                                                 | IC693ACC307    | 5.3.3   |

#### 5.1 Serial Bus Transmitter Module: IC695LRE001



The RX3i Serial Bus Transmitter Module, IC695LRE001, provides Figure 117: IC695LRE001 communications between a PACSystems RX3i Universal Backplane (IC695-model number), and serial expansion, and remote backplanes (IC694- or IC693-model numbers). It converts the signal levels present in the Universal Backplane to the signal levels required by a Serial Expansion Backplane.

> The Serial Bus Transmitter Module must reside in the special expansion connector on the right end of the Universal Backplane.

Two green LEDs indicate the operating status of Module and the status of the expansion link.

- The EXP OK LED is lit when backplane 5Vdc power is applied to Module.
- The Expansion Active LED indicates the status of the expansion bus. This LED is ON when the Expansion module is communicating with expansion backplanes. It is OFF when they are not communicating.

The connector on the front of Module is used to attach the expansion cable.

## 5.1.1 Specifications: LRE001

| LRE001 Specifications                                         |                                                 |  |
|---------------------------------------------------------------|-------------------------------------------------|--|
| Comment Described from Describes                              | 5.0 Vdc: 132mA                                  |  |
| Current Required from Backplane                               | 3.3 Vdc: 0 mA                                   |  |
| Maximum Total Expansion Cable Langth                          | 15 m (50 ft) – Expansion Backplanes             |  |
| Maximum Total Expansion Cable Length                          | 213 m (700 ft) – Remote Backplanes              |  |
| Effective Data Rate                                           | 500 k Bytes per second                          |  |
|                                                               | if the expansion bus includes Remote backplanes |  |
| Electrical Isolation Non-isolated differential communications |                                                 |  |

For product standards and general specifications, refer to Appendix A:.

#### 5.1.2 Expansion Module Installation

The Serial Bus Transmitter Module (LRE001) resides in the special expansion connector located on the right-hand end of the 12- or 16-slot RX3i Universal Backplane. It does not latch into the backplane. Secure LRE001 with the captive screws supplied (Figure 118).

This module may NOT be hot-inserted in the backplane; power must be removed before installing or removing the Expansion Module. Also, the expansion cable may not be attached or removed while the expansion rack has power applied.

Figure 118: Install LRE001 in Rightmost Connector & Secure with Captive Screws



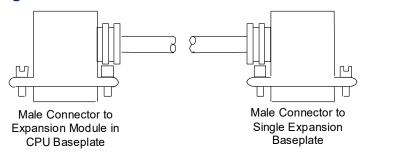
# 5.1.3 Powering Down Individual Expansion or Remote Backplanes

Expansion and Remote Backplanes can be powered down individually without affecting the operation of other backplanes; however, powering off a backplane generates a loss of module (LOSS\_OF\_MODULE) fault in the PLC Fault Table for each module in the backplane. When this fault condition occurs, and until the backplane is powered back on and all modules recovered, the lost I/O modules are not scanned.

# 5.2 I/O Bus Expansion Cables: IC693CBL300, 301, 302 ,312, 313

I/O Bus Expansion Cables are used to connect a Serial Bus Transmitter Module, IC695LRE001, in a Universal Backplane (IC695CHS012 or IC695CHS016) to a Serial Expansion Backplane (IC694CHS392, IC694CHS398, IC693CHS392 or IC693CHS398).

These cables are also used to interconnect additional expansion and remote backplanes (as listed above) in the RX3i system.


Several lengths and configurations of prefabricated cables are available (part numbers IC693CBL300, IC693CBL301, IC693CBL302, IC693CBL312, and IC693CBL313), as described in this section.

The prefabricated cables described in this section are made with a *continuous*, 100% shield. The braided cable shield is connected to the metal shell of the connector around the entire perimeter of the connector. That provides a low-impedance path to frame ground for any noise energy that is coupled onto the cable shield.

#### 5.2.1 Cable with Two Connectors: IC693CBL302

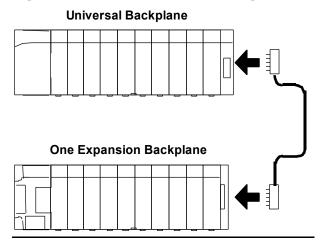
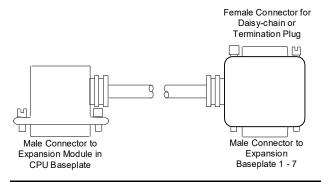

Cable IC693CBL302 (shown in Figure 119) is 15 meters (50 feet) long and has one male connector on each end. This cable has I/O bus terminating resistors built into the end connector on the cable.

Figure 119: Cable IC693CBL302



This cable does not require a separate termination block. It can only be used in a system with just one expansion backplane (Figure 120).


Figure 120: Cable IC693CBL302 Usage



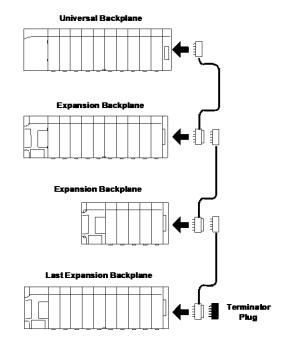
# 5.2.2 Cables with Three Connectors: IC693CBL300, 301, 312, 313

Cables IC693CBL300, IC693CBL301, IC693CBL312, and IC693CBL313 (shown in Figure 121) have a male and female connector on one end and a male connector on the other end ("wye" cables).

Figure 121: Cables IC693CBL300, IC693CBL301, IC693CBL312, or IC693CBL313



These cables are the same except for their lengths:


- IC693CBL312: 0.15 m (0.5 ft)
- IC693CBL300: 1 m (3 ft)
- IC693CBL301: 2 m (6 ft)
- IC693CBL313: 8 m (25 ft)

Combinations of these cables can be used to daisy-chain up to seven expansion backplanes to the main backplane (Figure 122). Custom cables can also be made. The wiring information is given in this section.

These cables can also be used to provide connection points for custom point-to-point cables (IC693CBL300 is often used for this).

These cables do not have built-in termination. The last cable in the expansion system must be terminated as displayed in the bottom right of Figure 122. Terminator Plug IC693ACC307 can be used for this purpose.

Figure 122: Usage of Wye Cables with Terminating Plug



The maximum number of cables that can be included in an I/O expansion system is seven, and the total maximum cable length between the Universal Backplane and the last expansion backplane is 15 m (50 ft). Failure to observe these limits could result in erratic system operation.

## 5.3 Specifications: IC693CBL300, 301, 302, 312, 313

| Subject                    | Description                                                  |  |
|----------------------------|--------------------------------------------------------------|--|
|                            | Belden 8107 only (no substitutes):                           |  |
|                            | Computer cable, overall braid over foil shield, twisted-pair |  |
| Cable                      | 30 volt/80°C (176°F)                                         |  |
| Cable                      | 24 AWG (.22mm²) tinned copper, 7 x 32 stranding              |  |
|                            | Velocity of propagation = 70%                                |  |
|                            | Nominal impedance = $100\Omega$                              |  |
| 25 Dia Mala Compartes      | Crimp Plug = Amp 207464-7; Pin = Amp 66506-9                 |  |
| 25-Pin Male Connector      | Solder Plug = Amp 5-747912–2                                 |  |
| 25-Pin Female Connector    | Crimp Receptacle = Amp 207463–1; Pin = Amp 66504–9           |  |
| 25-Pili Fernale Conflector | Solder Receptacle = Amp 5-747913–2                           |  |
|                            | Kit – Amp 5745833–5:                                         |  |
| Connector Shell            | Metal–plated plastic (plastic with nickel over copper)       |  |
|                            | Crimp ring – Amp 745508–1, split ring ferrule                |  |

Connector part numbers are provided for reference only. Any part meeting the same specifications could be used for making custom cables.

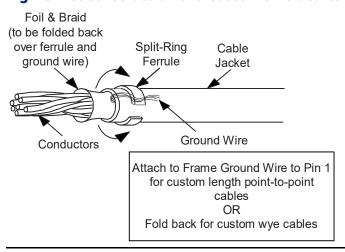
## 5.3.1 Expansion Port Pin Assignments

All connections between cables are point-to point, that is, pin 2 of one end to pin 2 of the opposite end, pin 3 to pin 3, and such.

| Pin Number | Signal Name | Function                      | Termination Pairings |  |
|------------|-------------|-------------------------------|----------------------|--|
| 16         | DIODT       | I/O Serial Data Positive      | 1                    |  |
| 17         | DIODT/      | I/O Serial Data Negative      | }                    |  |
| 24         | DIOCLK      | I/O Serial Clock Positive     | 1                    |  |
| 25         | DIOCLK/     | I/O Serial Clock Negative     | }                    |  |
| 20         | DRSEL       | Remote Select Positive        | 1                    |  |
| 21         | DRSEL/      | Remote Select Negative        | }                    |  |
| 12         | DRPERR      | Parity Error Positive         | 1                    |  |
| 13         | DRPERR/     | Parity Error Negative         | }                    |  |
| 8          | DRMRUN      | Remote Run Positive           | 1                    |  |
| 9          | DRMRUN/     | Remote Run Negative           | }                    |  |
| 2          | DFRAME      | Cycle Frame Positive          | 1                    |  |
| 3          | DFRAME/     | Cycle Frame Negative          | }                    |  |
| 1          | FGND        | Frame Ground for Cable Shield |                      |  |
| 7          | OV          | Logic Ground                  |                      |  |

The I/O expansion bus *must be terminated* at the last backplane in an expansion system. Each signal pair must be terminated with  $120\Omega$ ,  $\frac{1}{4}$ -watt resistors wired between the appropriate pins, as indicated by the brackets above:

#### 5.3.2 Building Custom Cables

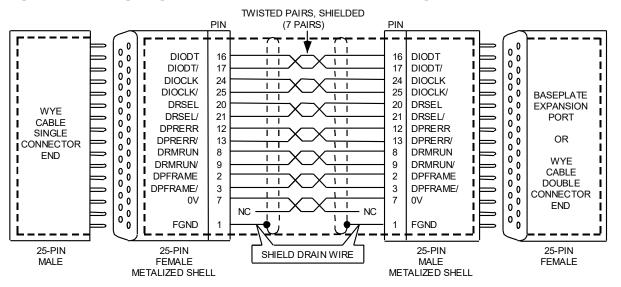

For custom length cables, the best noise immunity is achieved when using a metalized connector cover that makes contact with the braided wires and foil shield in the cable and with the connector shell on the terminating end. *It is not sufficient* to only solder the drain wire to the connector shell. The shield must be continuous across the entire length of the cable, <u>including at the terminations</u>.

When using 100% shielded cables all CPU and expansion backplanes in the system must be solidly referenced to the same ground point or a potential difference between backplanes could disturb signal transmission.

Use the following steps to build a 100% shielded cable:

- 1. Strip approximately 5/8 inch of insulation from the cable to expose the shield.
- 2. Put a split-ring ferrule over the cable insulation.
- 3. Fold the shield back over the top of the cable insulation and ferrule.

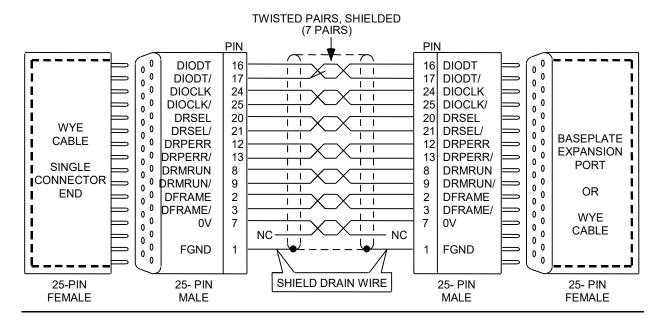
Figure 123: Construction of a Custom Shielded Cable




- 4. Place the collar of the metal hood over the top of the folded shield, and securely clamp the hood.
- Test the cable for continuity between both connector shells.
   Connect an ohmmeter between the shells and flex the cable at both ends. If the metallic connector hood is not making proper

- contact with the cable shield at either end, the connection will show intermittent continuity on the ohmmeter.
- 6. Plug the metal hooded cable into an expansion port and securely tighten the two screws. Installing and tightening the screws electrically connects the shield to the backplane frame ground, which should be connected to earth ground.

#### **Cable with Continuous Shielding**


Figure 124: Wiring Diagram - Cable with Continuous Shielding



## **NOTE:**Bold dashed line shows continuous (100%) shielding when metallized shell connectors are plugged together.

#### **Cable for Applications Requiring Less Noise Immunity**

Figure 125: Wiring Diagram - Cable without Continuous Shielding



# 5.3.3 Termination Requirement for Expansion or Remote System

When two or more backplanes are connected via the I/O Bus Expansion System, the I/O Expansion Bus must be properly terminated. The most common method of terminating the I/O Expansion Bus is by installing a termination resistor pack (IC693ACC307) on the open connector on the last (i.e. most distant from the CPU) expansion or remote backplane in the system.

The resistor pack is physically mounted inside of a connector. Although a termination resistor pack is shipped with each backplane, only the last backplane in the chain needs to have this termination connector installed. Unused termination packs may be discarded. The prewired 50-foot (15-meter) cable (IC693CBL302) has termination resistors wired inside the connector on one end of the cable. This cable can be used if only one expansion rack is needed in a system and a 50-foot cable link is required (the IC693ACC307 resistor pack is not needed in this case). Also, a custom-built cable with built-in resistors would eliminate the need for the IC693ACC307 resistor pack.

## Section 6: Discrete Input Modules

This chapter describes discrete input modules for PACSystems RX3i systems.

| Discrete Input Module Description            | Catalog     | Section |
|----------------------------------------------|-------------|---------|
|                                              | Number      |         |
| Input 120 Vac 8-Pt Isolated                  | IC694MDL230 | 6.1     |
| Input 240 Vac 8-Pt Isolated                  | IC694MDL231 | 6.2     |
| Input 120 Vac 16-Pt                          | IC694MDL240 | 6.3     |
| Input 24Vac/Vdc 16-Pt Pos/Neg Logic          | IC694MDL241 | 6.4     |
| Input 120 Vac 16-Pt Isolated                 | IC694MDL250 | 6.5     |
| Input 120 Vac 32-Pt Grouped                  | IC694MDL260 | 6.6     |
| Input 125Vdc 8-Pt Pos/Neg Logic              | IC694MDL632 | 6.7     |
| Input 24Vdc 8-Pt Pos/Neg Logic               | IC694MDL634 | 0       |
| Input 125Vdc 16-Pt Pos/Neg Logic             | IC694MDL635 | 6.9     |
| Input 24Vdc 16-Pt Pos/Neg Logic              | IC694MDL645 | 6.10    |
| Input 24Vdc 16-Pt Pos/Neg Logic Fast         | IC694MDL646 | 6.11    |
| Input 48Vdc, 16-Pt Isolated Pos/Neg Logic    | IC694MDL648 | 6.12    |
| Input 5/12Vdc (TTL) 32-Pt Pos/Neg Logic      | IC694MDL654 | 6.13    |
| Input 24Vdc 32-Pt Pos/Neg Logic              | IC694MDL655 | 6.13    |
| Input 48Vdc 32-Pt Pos/Neg Logic              | IC694MDL658 | 6.13    |
| Input 24Vdc 32-Pt Pos/Neg Logic              | IC694MDL660 | 6.14    |
| Input 24Vdc 16-Pt Pos Logic with Diagnostics | IC695MDL664 | 6.15    |
| Input Simulator Module                       | IC694ACC300 | 6.16    |

# 6.1 Input Module, 120 Vac, 8-Point Isolated: IC694MDL230

**Figure 126: IC694MDL230** 



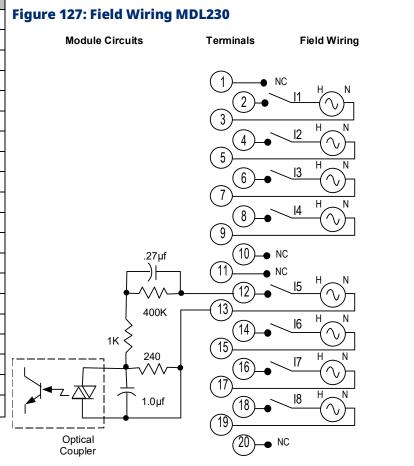
The **120 Vac Isolated Input** module, IC694MDL230, provides eight isolated input points, each with a common power input terminal. Because the inputs are isolated, each input can be powered by a separate AC power source.

The input circuits are reactive (resistor/capacitor) inputs. Current passing into an input point results in a logic 1 in the input status table (%I). Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Power to operate the field devices must be supplied by the user. This module requires an AC power source; *it cannot be used with a DC power source*.

Eight green LEDs indicate the ON/OFF status of points 1 through 8. The red bands on the label show that MDL230 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.


## 6.1.1 Specifications: MDL230

| MDL230                                 | Specifications                                                |  |
|----------------------------------------|---------------------------------------------------------------|--|
| Rated Voltage                          | 120 Vac, 50/60 Hz                                             |  |
| Input Voltage Range                    | 0 to 132 Vac, 50/60 Hz                                        |  |
| Inputs per Module                      | 8 (each input point has a separate common)                    |  |
| Isolation:                             |                                                               |  |
| Field to Backplane (optical) and frame | 250 Vac continuous;                                           |  |
| ground                                 | 1500 Vac for one minute                                       |  |
| Point to Point                         | 250 Vac continuous;                                           |  |
|                                        | 1500 Vac for one minute                                       |  |
| Input Current                          | 14.5 mA (typical) at rated voltage                            |  |
| Input Characteristics:                 |                                                               |  |
| On–state Voltage                       | 74 to 132 Vac                                                 |  |
| Off-state Voltage                      | 0 to 20 Vac                                                   |  |
| On-state Current                       | 6 mA minimum                                                  |  |
| Off-state Current                      | 2.2 mA maximum                                                |  |
| On response Time                       | 30 ms maximum                                                 |  |
| Off response Time                      | 45 ms maximum                                                 |  |
| Power Consumption                      | 60 mA (all inputs on) sourced from 5 Vdc bus on the backplane |  |

For product standards and general specifications, refer to Appendix A:.

## 6.1.2 Field Wiring: MDL230

| Terminals | Connections    | -   |  |
|-----------|----------------|-----|--|
| 1         | No connection  | F   |  |
| 2         | Input 1        |     |  |
| 3         | Input 1 Return |     |  |
| 4         | Input 2        |     |  |
| 5         | Input 2 Return |     |  |
| 6         | Input 3        |     |  |
| 7         | Input 3 Return |     |  |
| 8         | Input 4        | •   |  |
| 9         | Input 4 Return |     |  |
| 10        | No connection  |     |  |
| 11        | No connection  |     |  |
| 12        | Input 5        |     |  |
| 13        | Input 5 Return |     |  |
| 14        | Input 6        |     |  |
| 15        | Input 6 Return |     |  |
| 16        | Input 7        |     |  |
| 17        | Input 7 Return |     |  |
| 18        | Input 8        | ſ   |  |
| 19        | Input 8 Return |     |  |
| 20        | No connection  | ] ¦ |  |



# 6.2 Input Module, 240 Vac, 8-Point Isolated: IC694MDL231

Figure 128: IC694MDL231



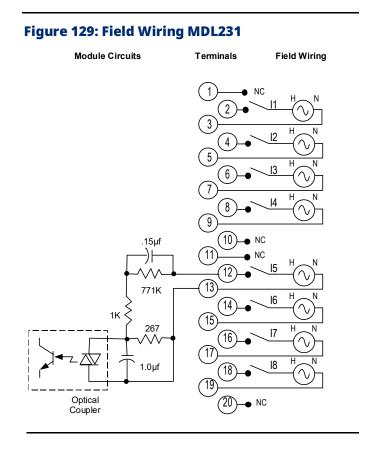
The **240 Vac Isolated Input** module, IC694MDL231, provides eight isolated input points, each with a common power input terminal. The input circuits are reactive (resistor/capacitor) inputs. Current passing into an input point results in a logic 1 in the input status table (%I). Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches.

Because the inputs are isolated, each input can be powered by a separate AC power source. Power to operate the field devices must be supplied by the user. This module requires an AC power source; *it* cannot be used with a DC power source.

Eight green LEDs indicate the ON/OFF status of points 1 through 8. The red bands on the label show that MDL231 is a high-voltage module.

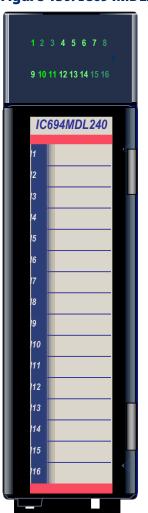
This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.


## 6.2.1 Specifications: MDL231

| MDL321                                 | Specifications                         |
|----------------------------------------|----------------------------------------|
| Rated Voltage                          | 240 Vac, 50/60 Hz                      |
| Input Voltage Range                    | 0 to 264 Vac, 50/60 Hz                 |
| Inputs per Module                      | 8 (each input point has a separate     |
|                                        | common)                                |
| Isolation:                             |                                        |
| Field to Backplane (optical) and frame | 250 Vac continuous;                    |
| ground                                 | 1500 Vac for one minute                |
| Point to Point                         | 250 Vac continuous;                    |
|                                        | 1500 Vac for one minute                |
| Input Current                          | 15 mA (typical) at rated voltage       |
| Input Characteristics:                 |                                        |
| On–state Voltage                       | 148 to 264 Vac                         |
| Off-state Voltage                      | 0 to 40 Vac                            |
| On–state Current                       | 6 mA minimum                           |
| Off-stateCurrent                       | 2.2 mA maximum                         |
| On response Time                       | 30 ms maximum                          |
| Off response Time                      | 45 ms maximum                          |
| Power Consumption                      | 60mA (all inputs on) from 5 Vdc bus on |
|                                        | backplane                              |

For product standards and general specifications, refer to Appendix A:.


## 6.2.2 Field Wiring: MDL231

| Terminals | Connections    |  |
|-----------|----------------|--|
| 1         | No connection  |  |
| 2         | Input 1        |  |
| 3         | Input 1 Return |  |
| 4         | Input 2        |  |
| 5         | Input 2 Return |  |
| 6         | Input 3        |  |
| 7         | Input 3 Return |  |
| 8         | Input 4        |  |
| 9         | Input 4 Return |  |
| 10        | No connection  |  |
| 11        | No connection  |  |
| 12        | Input 5        |  |
| 13        | Input 5 Return |  |
| 14        | Input 6        |  |
| 15        | Input 6 Return |  |
| 16        | Input 7        |  |
| 17        | Input 7 Return |  |
| 18        | Input 8        |  |
| 19        | Input 8 Return |  |
| 20        | No connection  |  |



#### 6.3 Input Module, 120 Vac, 16-Point: IC694MDL240

**Figure 130: IC694MDL240** 

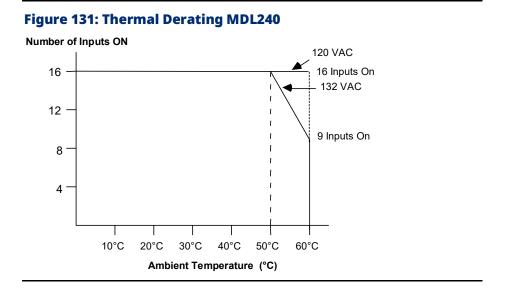


The **120 Vac Input** module, IC694MDL240, provides sixteen input points with one common power input terminal. The input circuits are reactive (resistor/capacitor) inputs. Current passing into an input point results in a logic 1 in the input status table (%I). Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches.

Power to operate the field devices must be supplied by the user. This module requires an AC power source; *it cannot be used with a DC power source.* 

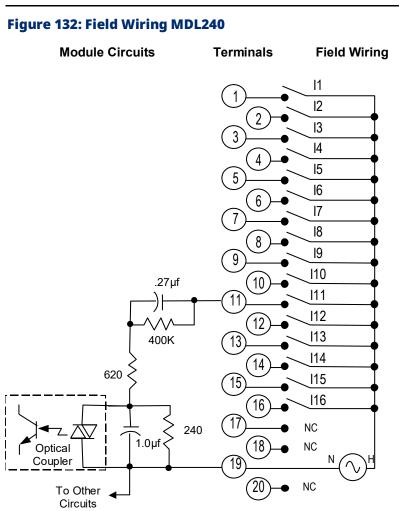
Sixteen green LEDs indicate the ON/OFF status of points 1 through 16. The red bands on the label show that MDL240 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.


Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

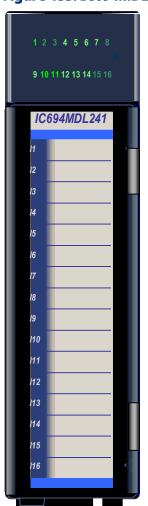
## 6.3.1 Specifications: MDL240

| MDL240                                            | Specifications                                        |
|---------------------------------------------------|-------------------------------------------------------|
| Rated Voltage                                     | 120 Vac                                               |
| Input Voltage Range                               | 0 to 132 Vac, 50/60 Hz                                |
| Inputs per Module                                 | 16 (one group with a single common)                   |
|                                                   | The maximum number of inputs at the same time         |
|                                                   | depends on the ambient temperature (Figure 131).      |
| Isolation: Field to Backplane (optical) and frame | 250 Vac continuous;                                   |
| ground                                            | 1500 Vac for one minute                               |
| Input Current                                     | 12 mA (typical) at rated voltage                      |
| Input Characteristics:                            |                                                       |
| On-state Voltage                                  | 74 to 132 Vac                                         |
| Off-state Voltage                                 | 0 to 20 Vac                                           |
| On-state Current                                  | 6 mA minimum                                          |
| Off-state Current                                 | 2.2mA maximum                                         |
| On response Time                                  | 30 ms maximum                                         |
| Off response Time                                 | 45 ms maximum                                         |
| Power Consumption                                 | 90 mA (all inputs on) from 5 Vdc bus on the backplane |


For product standards and general specifications, refer to Appendix A:.

### 6.3.2 Thermal Derating: MDL240




6.3.3 Field Wiring: MDL240

| Terminals | Connections   |  |
|-----------|---------------|--|
| 1         | Input 1       |  |
| 2         | Input 2       |  |
| 3         | Input 3       |  |
| 4         | Input 4       |  |
| 5         | Input 5       |  |
| 6         | Input 6       |  |
| 7         | Input 7       |  |
| 8         | Input 8       |  |
| 9         | Input 9       |  |
| 10        | Input 10      |  |
| 11        | Input 11      |  |
| 12        | Input 12      |  |
| 13        | Input 13      |  |
| 14        | Input 14      |  |
| 15        | Input 15      |  |
| 16        | Input 16      |  |
| 17        | No connection |  |
| 18        | No connection |  |
| 19        | Inputs 1-16   |  |
|           | Common        |  |
|           | (Return)      |  |
| 20        | No connection |  |



# 6.4 Input Module, 24Vac/Vdc 16-Point Pos/Neg Logic IC694MDL241

Figure 133: IC694MDL241



The 24Vac/Vdc 16-Point C Positive/Negative Logic Input module, IC694MDL241, provides sixteen input points in one group with a common power input terminal. This module can be used with AC or DC field inputs. In DC mode, it can be wired for either positive or negative logic. Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the input status table (%I).

Power to operate AC and DC input devices must be supplied by the user.

Sixteen green LEDs indicate the ON/OFF status of points 1 through 16. The blue bands on the label show that MDL241 is a low-voltage module.

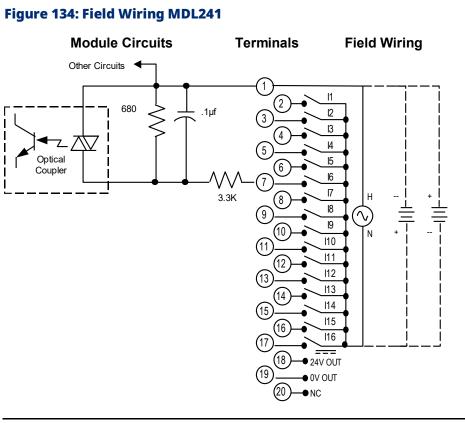
This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 6.4.1 Specifications: MDL241

| MDL241                                   | Specifications                                                       |  |
|------------------------------------------|----------------------------------------------------------------------|--|
| Rated Voltage                            | 24 Vac or 24 Vdc                                                     |  |
| Input Voltage Range                      | 0 to +30 Vdc or 0 to +30 Vac, 50/60Hz                                |  |
| Inputs per Module                        | 16 (one group with a single common)                                  |  |
| Isolation: Field to Backplane            | 250 Vac continuous;                                                  |  |
| (optical) and frame ground               | 1500 Vac for one minute                                              |  |
| Input Current                            | 7 mA (typical) at rated voltage                                      |  |
| Input Characteristics                    |                                                                      |  |
| On–state Voltage                         | 11.5 to 30 Vac or DC                                                 |  |
| Off-state Voltage                        | 0 to +4 Vac or DC                                                    |  |
| On–state Current                         | 3.2mA minimum                                                        |  |
| Off-state Current                        | 1 mA maximum                                                         |  |
| On response Time                         | 12 ms typical                                                        |  |
| Off response Time                        | 28 ms typical                                                        |  |
| Power Consumption: 5 Vdc                 | 80 mA (all inputs on) from 5 Vdc bus on backplane                    |  |
| Power Consumption <sup>18</sup> : 24 Vdc | 125 mA from the Isolated 24 Vdc backplane bus or user-supplied power |  |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

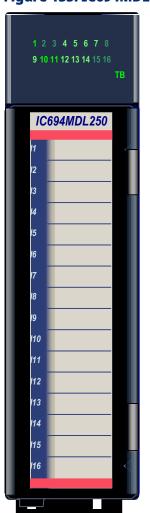

<sup>&</sup>lt;sup>18</sup> If terminals 18 & 19 are employed, the following applies:

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24Vdc is required. The external source must be connected via the TB1 connector located on the left side of the backplane.

If this module is located in an RX3i Expansion Backplane or Series 90-30 backplane, the backplane power supply provides the Isolated +24Vdc for Module.

### 6.4.2 Field Wiring: MDL241

| Terminal | Connections     |     |
|----------|-----------------|-----|
|          | Inputs 1-16     |     |
| 1        | Common          |     |
|          | (Return)        |     |
| 2        | Input 1         |     |
| 3        | Input 2         |     |
| 4        | Input 3         |     |
| 5        | Input 4         |     |
| 6        | Input 5         |     |
| 7        | Input 6         |     |
| 8        | Input 7         |     |
| 9        | Input 8         |     |
| 10       | Input 9         |     |
| 11       | Input 10        |     |
| 12       | Input 11        |     |
| 13       | Input 12        |     |
| 14       | Input 13        |     |
| 15       | Input 14        |     |
| 16       | Input 15        |     |
| 17       | Input 16        |     |
| 18       | 24Vdc for input |     |
| 10       | devices         |     |
| 19       | 0V for input    | ] - |
| ıJ       | devices         |     |
| 20       | No connection   |     |




**Note:** If the 24V OUT pin is used to connect to input devices in the field, the isolation specification for this module changes to:

Field to Backplane (optical) and frame ground: 50 Vac continuous; 500 Vac for 1 minute

# 6.5 Input Module, 120 Vac 16-Point Isolated: IC694MDL250

Figure 135: IC694MDL250



The **120 Vac 16-Point Isolated Input** module, IC694MDL250, provides sixteen isolated input points. Input points can be used on different phases of the AC supply or powered from the same supply. An RC snubber protects each input against transient electrical noise on the power line.

The input filtering time of Module can be changed during system operation by the application program. No DIP switch settings are required.

This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth typically needed for field wiring to AC devices. Refer to Chapter 17 for more information about Terminal Blocks. Terminal Blocks are ordered separately.

Individually numbered LEDs show the ON/OFF status of each Input point. The TB LED is green when the removable terminal block of Module is locked in place. It is red when the terminal block is not locked. Module also sends an *Addition of Terminal Block* or *Loss of Terminal Block* message to the RX3i CPU to report the terminal block status.

The red bands on the door card indicate the MDL250 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module cannot be used with a Series 90-30 PLC CPU.

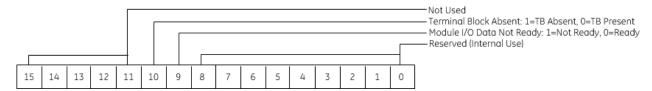
## 6.5.1 Specifications: MDL250

| MDL250                 | Specifications                                       |  |
|------------------------|------------------------------------------------------|--|
| Rated Voltage          | 120 Vac                                              |  |
| Input Voltage Range    | 0 – 132 Vac (47 to 63 Hz), 120 Vac nom.              |  |
| Inputs per Module      | 16 isolated                                          |  |
| Isolation:             |                                                      |  |
| Field to Backplane     | 250 Vac continuous; 1500 Vac for 1 minute            |  |
| Group to Group         | 250 Vac continuous; 1500 Vac for 1 minute            |  |
| Input Current          | 7.0 mA per point (typical) at rated voltage          |  |
| Input Filter Times     | 20 ms – 2540 ms in 20 ms increments. Sent from CPU.  |  |
| ON response Time       | 0.5ms, 1.0ms, 2.0ms, 5.0ms, 10.0ms, 50.0ms & 100.0ms |  |
|                        | (as per filter setting)                              |  |
| Power Consumption      | 220 mA (all inputs on) from 5 V bus on backplane     |  |
| Diagnostics            | Fieldside terminal block reported to RX3i CPU.       |  |
| Input Characteristics: |                                                      |  |
| On–state Voltage       | 70-132 Vac                                           |  |
| Off-state Voltage      | 0 to 20 Vac                                          |  |
| On–state Current       | 5 mA minimum                                         |  |
| Off-state Current      | 2.5 mA maximum                                       |  |
| On/Off Response Time   | ±0-1 AC cycles for filter times up to 840 ms         |  |
|                        | ±1-2 AC cycles for filter times of 840 to 1600 ms    |  |
|                        | ±2-3 AC cycles for filter times of 1600 to 1920 ms   |  |
|                        | ±3-4 AC cycles for filter times of 1920 ms or more   |  |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

#### 6.5.2 Input Filter Setup: MDL250

If an input filter time should be applied to all Module inputs, input filtering should be enabled in the software configuration of Module. The Digital Filter Settings Length must be set to 16, and a memory location to be used for the filter value must be specified. Configuring a Digital Filter Settings Length of 0 disables the input filter.


During system operation, the input filter time can be changed from the programmer by entering a filter setting value from 1 to 127 decimal ( $1_{hex}$  to  $7F_{hex}$ ) into the assigned memory location. This filter setting value is equal to the new filter time divided by 20 decimal. For example, to change the filter time to 200ms, enter the value  $10_{dec}$  ( $0A_{hex}$ ) into the memory location. Some example filter times and their hexadecimal setting values are listed below.

| Setting       | Filter Time | Setting       | Filter Time | Setting       | Filter Time |
|---------------|-------------|---------------|-------------|---------------|-------------|
| (hexadecimal) | in ms       | (hexadecimal) | in ms       | (hexadecimal) | in ms       |
| 0A            | 200         | 21            | 660         | 5A            | 1800        |
| 0F            | 300         | 22            | 680         | 5F            | 1900        |
| 11            | 340         | 2A            | 840         | 71            | 2260        |
| 12            | 360         | 2F            | 940         | 72            | 2280        |
| 1A            | 520         | 51            | 1620        | 7A            | 2240        |
| 1F            | 620         | 52            | 1660        | 7F            | 2540        |

#### 6.5.3 Module Status Data: MDL250

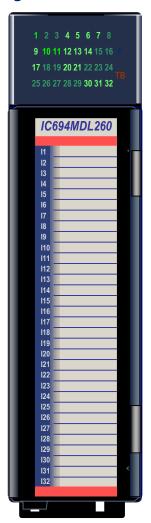
Discrete input module IC694MDL250 optionally provides sixteen bits of status data to the CPU in the assigned Module Status Reference location. By default, the configured length of this status area is 0. To access this data, the length must be changed from 0 to 16.

Module uses the lower eleven input bits to report its internal status information to the RX3i CPU, as follows:



**Note**: the sense of bit 9 is inverted compared to most other modules. Here "1" indicates not ready.

## 6.5.4 Field Wiring: MDL250


| Connections    | Terminal |
|----------------|----------|
| Input 1        | 1        |
| Input 1 Return | 2        |
| Input 2        | 3        |
| Input 2 Return | 4        |
| Input 3        | 5        |
| Input 3 Return | 6        |
| Input 4        | 7        |
| Input 4 Return | 8        |
| Input 5        | 9        |
| Input 5 Return | 10       |
| Input 6        | 11       |
| Input 6 Return | 12       |
| Input 7        | 13       |
| Input 7 Return | 14       |
| Input 8        | 15       |
| Input 8 Return | 16       |
| No connection  | 17       |
| No connection  | 18       |

| Figure 136: F                                                                                                          | ield Wiri                                                                                                                                                                                    | ng MDL250    |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Field Wiring                                                                                                           | Terminals                                                                                                                                                                                    | Field Wiring |
| H 2 11RTN  H 12  N 12RTN  H 13  N 13RTN  H 14  N 14RTN  H 15  N 15RTN  H 16  N 16RTN  H 17  N 17RTN  H 18  N 18RTN  NC | (-1) (19) (-2) (20) (-3) (21) (-4) (22) (-5) (23) (-6) (24) (-7) (25) (-8) (26) (-9) (27) (-10) (28) (-11) (29) (-12) (30) (-13) (31) (-14) (32) (-15) (33) (-16) (34) (-17) (35) (-18) (36) | 19RTN        |

| Terminal | Connections     |
|----------|-----------------|
| 19       | Input 9         |
| 20       | Input 9 Return  |
| 21       | Input 10        |
| 22       | Input 10 Return |
| 23       | Input 11        |
| 24       | Input 11 Return |
| 25       | Input 12        |
| 26       | Input 12 Return |
| 27       | Input 13        |
| 28       | Input 13 Return |
| 29       | Input 14        |
| 30       | Input 14 Return |
| 31       | Input 15        |
| 32       | Input 15 Return |
| 33       | Input 16        |
| 34       | Input 16 Return |
| 35       | No connection   |
| 36       | No connection   |

#### 6.6 Input Module, 120 Vac, 32-Point: IC694MDL260

**Figure 137: IC694MDL260** 



The **120 Vac Grouped Input** module, IC694MDL260, provides thirty-two discrete input points. The inputs are arranged in four isolated groups of eight. Isolation is provided between the four groups of inputs; however, all inputs within a group are referenced to the same user common connection.

Module MDL260 can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth typically needed for field wiring to AC devices. Refer to Chapter 17 for more information about Terminal Blocks. The Terminal Block is ordered separately.

Input filter times can be set from the programmer using the assigned output data references of Module.

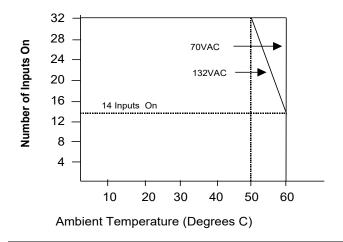
Individually-numbered LEDs indicate the ON/OFF status of points 1 through 32. The red/green TB LED is green when the removable terminal block of Module is locked in place. It is red when the terminal block is not locked. Module also sends an *Addition of Terminal Block* or *Loss of Terminal Block* message to the RX3i CPU to report the terminal block status.

The red bands on the label show that MDL260 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module cannot be used with a Series 90-30 PLC CPU.


## 6.6.1 Specifications: MDL260

| MDL260                       | Specifications                                     |
|------------------------------|----------------------------------------------------|
| Rated Voltage                | 120 Vac                                            |
| Input Voltage Range          | 0 to 132 Vac (47 to 63Hz)                          |
| Inputs per Module            | 32 (four isolated groups of 8 inputs)              |
| Input Filter Times           | 20 to 2540ms in 20 ms increments. Sent from CPU.   |
| Input Current                | 7.0 mA per point (typical) at rated voltage        |
| Isolation:                   | 264 Vac continuous; 1500 Vac for one minute        |
| Field to Backplane (optical) |                                                    |
| Group to Group               | 264 Vac continuous; 1500 Vac for one minute        |
| Thermal Derating             | Refer to Figure 138.                               |
| Power Consumption            | 220 mA at 5 Vdc with all inputs on                 |
| Diagnostics                  | Terminal block presence reported to RX3i CPU       |
| Input Characteristics        |                                                    |
| On–state Voltage             | 70 to 132 Vac                                      |
| Off-state Voltage            | 0 to 20 Vac                                        |
| On–state Current             | 5 mA minimum                                       |
| Off-state Current            | 2.5 mA maximum                                     |
| On/Off Response Time         | ±0-1 AC cycles for filter times up to 840 ms       |
|                              | ±1-2 AC cycles for filter times of 840 to 1600 ms  |
|                              | ±2-3 AC cycles for filter times of 1600 to 1920 ms |
|                              | ±3-4 AC cycles for filter times of 1920 ms or more |

## 6.6.2 Thermal Derating: MDL260

The number of inputs that can be on at the same time depends on the ambient temperature:

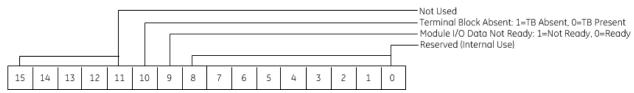
Figure 138: Thermal Derating Curve MDL260



#### 6.6.3 Input Filter Setup: MDL260

If an input filter time should be applied to all Module inputs, input filtering should be enabled in the software configuration of Module. For an MDL260 module installed in an RX3i main backplane, this is done by setting the Digital Filter Settings Length to 16 and specifying a memory location for the data. Configuring a Digital Filter Settings Length of 0 disables the input filter.

During system operation, the input filter time can easily be changed from the programmer by entering a filter setting value from 1 to 127 decimal ( $1_{\text{hex}}$  to  $7F_{\text{hex}}$ ) into the assigned memory location. This filter setting value is equal to the new filter time divided by 20. For example, to change the filter time to 200ms, enter the value  $10_{\text{dec}}$  (200 / 20 = 10) into the memory location. The input filter time is automatically sent to Module each scan.


Some example filter times and their hexadecimal setting values are listed below.

| Setting       | Filter Time | Setting       | Filter Time | Setting       | Filter Time |
|---------------|-------------|---------------|-------------|---------------|-------------|
| (hexadecimal) | in ms       | (hexadecimal) | in ms       | (hexadecimal) | in ms       |
| 0A            | 200         | 21            | 660         | 5A            | 1800        |
| OF            | 300         | 22            | 680         | 5F            | 1900        |
| 11            | 340         | 2A            | 840         | 71            | 2260        |
| 12            | 360         | 2F            | 940         | 72            | 2280        |
| 1A            | 520         | 51            | 1620        | 7A            | 2240        |
| 1F            | 620         | 52            | 1660        | 7F            | 2540        |

#### 6.6.4 Module Status Data: MDL260

Discrete input module IC694MDL260 optionally provides sixteen bits of status data to the CPU in its assigned Module Status Reference location. By default, the configured length of this status area is 0. To access this data, the length must be changed from 0 to 16.

Module uses the lower eleven input bits to report its internal status information to the RX3i CPU, as follows:



**Note**: the sense of bit 9 is inverted compared to most other modules. Here "1" indicates not ready.

## 6.6.5 Field Wiring: MDL260

| Connections   | Terminal | ]                                     |                             |                   | Terminal | Connections    |
|---------------|----------|---------------------------------------|-----------------------------|-------------------|----------|----------------|
| Input 1       | 1        | Figure 139: F                         | ield Wiring I               | MDL260            | 19       | Input 17       |
| Input 2       | 2        | Field Wiring                          | Terminals                   | Field Wiring      | 20       | Input 18       |
| Input 3       | 3        | Input 1                               |                             | Input 17 Input 18 | 21       | Input 19       |
| Input 4       | 4        | Input 3                               | <u></u>                     | Input 19          | 22       | Input 20       |
| Input 5       | 5        | Input 4                               |                             | Input 20          | 23       | Input 21       |
| Input 6       | 6        | Input 5                               | -5  23                      | Input 21          | 24       | Input 22       |
| Input 7       | 7        | Input 6                               | <u> </u>                    | Input 22          | 25       | Input 23       |
| Input 8       | 8        | Input 7                               | <del></del>                 | Input 23          | 26       | Input 24       |
| Common 1 - 8  | 9        | Input 8                               | 8 26—                       | Input 24          | 27       | Common 17 - 24 |
| Input 9       | 10       | Input 9                               | <u> </u>                    | Input <u>25</u>   | 28       | Input 25       |
| Input 10      | 11       | Input 10                              | — <u>(10)</u> <u>(28)</u> — | Input 26          | 29       | Input 26       |
| Input 11      | 12       | Input 11                              | —(1) (29—<br>—(12) (30—     | Input 27          | 30       | Input 27       |
| Input 12      | 13       | Input 12                              | —(13) (31)—                 | Input 28          | 31       | Input 28       |
| Input 13      | 14       | Input 13                              | <u> </u>                    | Input 29          | 32       | Input 29       |
| Input 14      | 15       | Input 14                              | <u></u>                     | Input 30          | 33       | Input 30       |
| Input 15      | 16       | Input 15                              | <u></u>                     | Input 31          | 34       | Input 31       |
| Input 16      | 17       | I I I I I I I I I I I I I I I I I I I | — <u>(17) 35</u> —          | iliput 32         | 35       | Input 32       |
| Common 9 - 16 | 18       |                                       |                             |                   | 36       | Common 25 - 32 |

# 6.7 Input Module, 125Vdc Pos/Neg, 8-Point IC694MDL632

**Figure 140: IC694MDL632** 

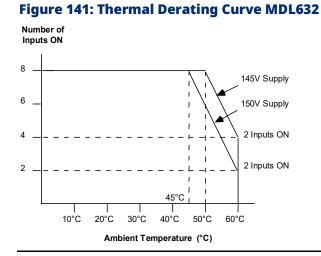


The 125Vdc Positive/Negative Logic Input module, IC694MDL632, provides eight input points in two isolated groups with four points in each group. Each group has a separate common (the two commons are not tied together inside Module). Each group can be wired for either positive or negative logic. Current passing into an input point results in a logic 1 in the input status table (%I). Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches.

Power to operate field devices must be supplied by the user.

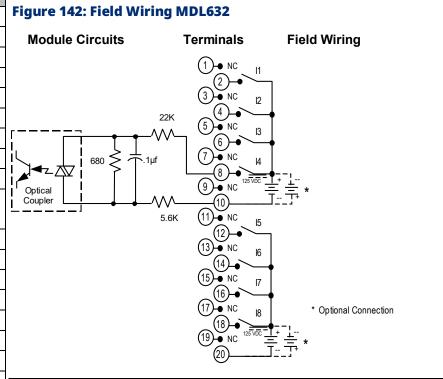
Eight green LEDs indicate the ON/OFF status of points 1 through 8. The red bands on the label show that MDL632 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.


Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 6.7.1 Specifications: MDL632

| MDL632                        | Specifications                                                   |  |
|-------------------------------|------------------------------------------------------------------|--|
| Rated Voltage                 | 125 Vdc (Positive or Negative Logic)                             |  |
| Input Voltage Range           | 0 to +150 Vdc                                                    |  |
|                               | 8 (two groups of four inputs)                                    |  |
| Inputs per Module             | The maximum number of inputs at the same time depends on ambient |  |
|                               | temperature (Figure 141).                                        |  |
| Isolation: Field to Backplane | 250 Vac continuous: 1500 Vac for one minute                      |  |
| (optical) and frame ground    | 250 Vac continuous; 1500 Vac for one minute                      |  |
| Group to Group                | 250 Vac continuous; 1500 Vac for one minute                      |  |
| Input Current                 | 4.5 mA typical                                                   |  |
| Input Characteristics         |                                                                  |  |
| Input Characteristics         |                                                                  |  |
| On–state Voltage              | 90 to 150 Vdc                                                    |  |
| Off-state Voltage             | 0 to 30 Vdc                                                      |  |
| On-state Current              | 3.1 mA                                                           |  |
| Off-state Current             | 1.1 mA maximum                                                   |  |
| On response Time              | 7 ms typical                                                     |  |
| Off response Time             | 7 ms typical                                                     |  |
| Power Consumption             | 40 mA from the 5 V bus on the backplane                          |  |
| rower Consumption             | 36 mA (typical) from user input supply (all inputs ON)           |  |


For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

### 6.7.2 Thermal Derating: MDL632



## 6.7.3 Field Wiring: MDL632

| Terminal | Connections   |
|----------|---------------|
| 1        | No connection |
| 2        | Input 1       |
| 3        | No connection |
| 4        | Input 2       |
| 5        | No connection |
| 6        | Input 3       |
| 7        | No connection |
| 8        | Input 4       |
| 9        | No connection |
| 10       | Inputs 1-4    |
|          | Common        |
| 11       | No connection |
| 12       | Input 5       |
| 13       | No connection |
| 14       | Input 6       |
| 15       | No connection |
| 16       | Input 7       |
| 17       | No connection |
| 18       | Input 8       |
| 19       | No connection |
| 20       | Inputs 5-8    |
|          | Common        |



Negative logic connections are shown with dashed lines in Figure 142 above.

# 6.8 Input Module, 24Vdc Pos/Neg, 8-Point IC694MDL634

Figure 143: IC694MDL634



The 24Vdc Positive/Negative Logic Input module, IC694MDL634, provides eight input points in one group with a common power input terminal. This input module can be wired for either positive logic or negative logic. Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the input status table (%I). Field devices can be powered from an external supply. Depending on their requirements, some input devices can be powered from the +24V OUT and 0V OUT terminals of Module.

Eight green LEDs indicate the ON/OFF status of points 1 through 8. The blue bands on the label show that MDL634 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

**Note**: field-side terminal block must be removed from Module during such a procedure.

## 6.8.1 Specifications: MDL634

| MDL634                                      | Specifications                                               |
|---------------------------------------------|--------------------------------------------------------------|
| Rated Voltage                               | 24 Vdc                                                       |
| Input Voltage Range                         | 0 to +30 Vdc                                                 |
| Inputs per Module                           | 8 (one group with a single common)                           |
| Isolation: Field to Backplane (optical) and | 250 Vac continuous;                                          |
| frame ground                                | 1500 Vac for one minute                                      |
| Input Current                               | 7 mA (typical) at rated voltage                              |
| Input Characteristics                       |                                                              |
| On-state Voltage                            | 11.5 to 30 Vdc                                               |
| Off-state Voltage                           | 0 to +5 Vdc                                                  |
| On–state Current                            | 3.2 mA minimum                                               |
| Off-state Current                           | 1.1 mA maximum                                               |
| On response Time                            | 7 ms typical                                                 |
| Off response Time                           | 7 ms typical                                                 |
| Power Consumption: 5Vdc                     | 45 mA (all inputs on) from 5Vdc bus on backplane             |
| Power Consumption: 24Vdc <sup>19</sup>      | 62 mA from the Isolated 24Vdc backplane bus or user-supplied |
| 1 ower consumption, 24vac                   | power                                                        |

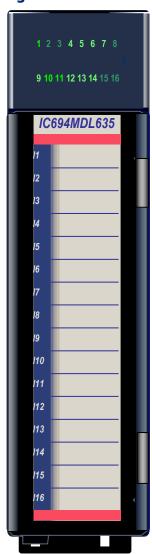
For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

<sup>&</sup>lt;sup>19</sup> If terminals 18 & 19 are employed, the following applies:

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24 Vdc is required. The external source must be connected through the TB1 connector located on the left side of the backplane.

If this module is located in an RX3i Expansion Backplane or Series 90-30 backplane, the backplane power supply provides the isolated +24 Vdc for Module.

## 6.8.2 Field Wiring: MDL634


| Terminal | Connections     | <u> </u>                                                                |
|----------|-----------------|-------------------------------------------------------------------------|
| 1        | Inputs 1-8      | Figure 144: Field Wiring MDL634                                         |
|          | Common          | Module Circuits Terminals Field Wiring                                  |
| 2        | Input 1         |                                                                         |
| 3        | Input 2         | Other Circuits (1)                                                      |
| 4        | Input 3         |                                                                         |
| 5        | Input 4         | $1 = \frac{1}{3}$                                                       |
| 6        | Input 5         | 1µf 4 1 1µf 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       |
| 7        | Input 6         | (5)                                                                     |
| 8        | Input 7         | Optical Optical AAA (3)                                                 |
| 9        | Input 8         | Coupler 17                                                              |
| 10       | No connection   | 3.3K (8)                                                                |
| 11       | No connection   | 9) 10) NC                                                               |
| 12       | No connection   | (1) NC                                                                  |
| 13       | No connection   | 12 NC                                                                   |
| 14       | No connection   | 13) NC NC                                                               |
| 15       | No connection   | (15) NC                                                                 |
| 16       | No connection   | 16 NC                                                                   |
| 17       | No connection   | 17 <u>NC</u><br>(18) 0 24√ 0 ŪT                                         |
| 18       | 24Vdc for input | 19 24√ 001<br>(19) 0∨ 0∪T                                               |
|          | devices         |                                                                         |
| 19       | 0V for input    |                                                                         |
|          | devices         |                                                                         |
| 20       | No connection   | Negative logic connections are displayed with dashed lines in Figure 14 |
|          |                 | above.                                                                  |

**Note:** If the 24V OUT pin is used to connect to input devices in the field, the isolation specification for this module changes to:

Field to Backplane (optical) and frame ground: 50 Vac continuous; 500 Vac for 1 minute

# 6.9 Input Module, 125Vdc Pos/Neg, 16-Point IC694MDL635

**Figure 145: IC694MDL635** 

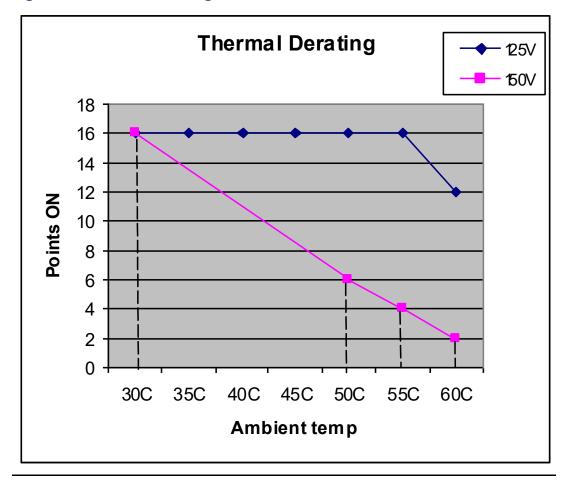


The 125Vdc Positive/Negative Logic Input module, IC694MDL635, provides sixteen input points in one group with a common power input terminal. This input module can be wired for either positive logic or negative logic. Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the input status table (%I).

Power to operate field devices must be supplied by the user.

Sixteen green LEDs indicate the ON/OFF status of points 1 through 16. The red bands on the label show that MDL635 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.


Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 6.9.1 Specifications: MDL635

| MDL635                                      | Specifications                                    |
|---------------------------------------------|---------------------------------------------------|
| Rated Voltage                               | 125 Vdc                                           |
| Input Voltage Range                         | 0 to +150 Vdc                                     |
| Inputs per Medule                           | 16 (one group with a single common). See Thermal  |
| Inputs per Module                           | Derating Figure 146.                              |
| Isolation: Field to Backplane (optical) and | 250 Vac continuous;                               |
| frame ground                                | 1500 Vac for one minute                           |
| Input Current                               | 1.97 mA (typical) at rated voltage                |
| Input Characteristics                       |                                                   |
| On–state Voltage                            | 90 to 150 Vdc                                     |
| Off-stateVoltage                            | 0 to +30 Vdc                                      |
| On–state Current                            | 1.41 mA minimum                                   |
| Off-state Current                           | 0.46 mA maximum                                   |
| On response Time                            | 8 ms typical                                      |
| Off response Time                           | 8 ms typical                                      |
| Power Consumption: 5Vdc                     | 80 mA (all inputs on) from 5 Vdc bus on backplane |
| Power Consumption: 125Vdc                   | 31.5 mA from user-supplied power                  |
| rower Consumption, 125vac                   | (all inputs ON at 125 Vdc)                        |

### **Thermal Derating: MDL635**

Figure 146: Thermal Derating MDL635



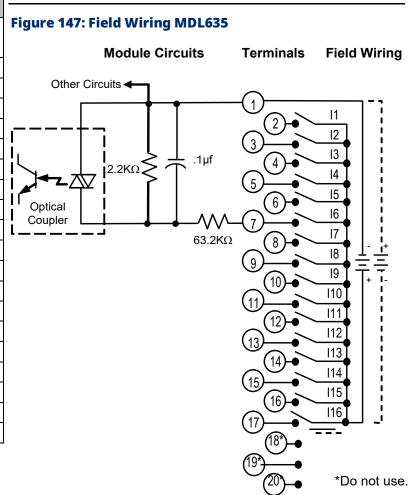
#### 6.9.2 Field Wiring: MDL635

#### **Terminal Block Wiring**

**Torque**: 1.08 to 1.30 Nm (9.6 to 11.5 in-lb)

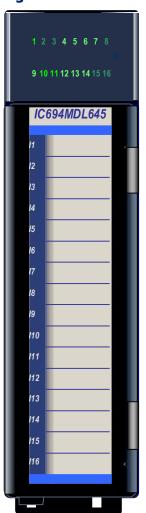
Wiring: Copper conductors stranded or solid 90°C rated: One 14-22 AWG

or two 16-22 AWG


Wiring Notes: No combination of solid or stranded wires is to be

used in the same terminal.

No combination of different wire sizes is to be used


in one terminal.

**Terminal** Connection Inputs 1-16 1 Common 2 Input 1 3 Input 2 4 Input 3 5 Input 4 6 Input 5 7 Input 6 8 Input 7 9 Input 8 Input 9 10 11 Input 10 12 Input 11 13 Input 12 14 Input 13 15 Input 14 16 Input 15 17 Input 16 18 Not used 19 Not used 20 Not used



# 6.10 Input Module, 24Vdc Pos/Neg, 16-Point IC694MDL645

Figure 148: IC694MDL645



The 24Vdc Positive/Negative Logic Input module, IC694MDL645, provides sixteen input points in one group with a common power input terminal. This input module can be wired for either positive logic or negative logic. Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the input status table (%I).

Field devices can be powered from an external supply. Depending on their requirements, some input devices can be powered from the +24 V OUT and 0 V OUT terminals of Module.

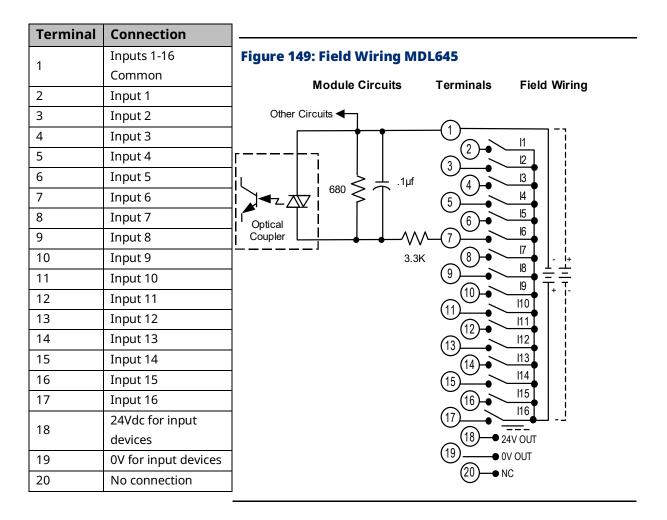
Sixteen green LEDs indicate the ON/OFF status of points 1 through 16. The blue bands on the label show that MDL645 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*. Note that field-side terminal block must be removed from Module during such a procedure.

## 6.10.1 Specifications: MDL645

| MDL645                                      | Specifications                                             |
|---------------------------------------------|------------------------------------------------------------|
| Rated Voltage                               | 24 Vdc                                                     |
| Input Voltage Range                         | 0 to +30 Vdc                                               |
| Inputs per Module                           | 16 (one group with a single common)                        |
| Isolation: Field to Backplane (optical) and | 250 Vac continuous;                                        |
| frame ground                                | 1500 Vac for one minute                                    |
| Input Current                               | 7 mA (typical) at rated voltage                            |
| Input Characteristics                       |                                                            |
| On-state Voltage                            | 11.5 to 30 Vdc                                             |
| Off-state Voltage                           | 0 to +5 Vdc                                                |
| On–state Current                            | 3.2 mA minimum                                             |
| Off-state Current                           | 1.1 mA maximum                                             |
| On response Time                            | 7 ms typical                                               |
| Off response Time                           | 7 ms typical                                               |
| Power Consumption: 5Vdc                     | 80 mA (all inputs on) from 5Vdc bus on backplane           |
| Power Consumption: 24Vdc <sup>20</sup>      | 125 mA from the Isolated 24Vdc backplane bus or from user- |
| r ower consumption. 24vac                   | supplied power                                             |


For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

<sup>&</sup>lt;sup>20</sup> If terminals 18 & 19 are employed, the following applies:

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24 Vdc is required. The external source must be connected via the TB1 connector located on the left side of the backplane.

If this module is located in an RX3i Expansion Backplane or Series 90-30 backplane, the backplane power supply provides the isolated +24 Vdc for Module.

### 6.10.2 Field Wiring: MDL645



**Note**: If the 24V OUT pin is used to connect to input devices in the field, the isolation specification for this module changes to:

Field to Backplane (optical) and frame ground: 50 Vac continuous; 500 Vac for 1 minute

## 6.11 Input Module: 24Vdc 16-Point Pos/Neg Logic IC694MDL646

Figure 150: IC694MDL646



The 24Vdc Positive/Negative Logic 16-Point Input module, IC694MDL646, provides sixteen input points in one group with a common power input terminal. The on and off response times for this module are typically 1 ms. This input module can be wired for either positive logic or negative logic. Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the input status table (%I).

Field devices can be powered from an external supply. Depending on their requirements, some input devices can be powered from the +24 V OUT and 0V OUT terminals of Module.

Sixteen green LEDs indicate the ON/OFF status of points 1 through 16. The blue bands on the label show that MDL646 is a low-voltage module.

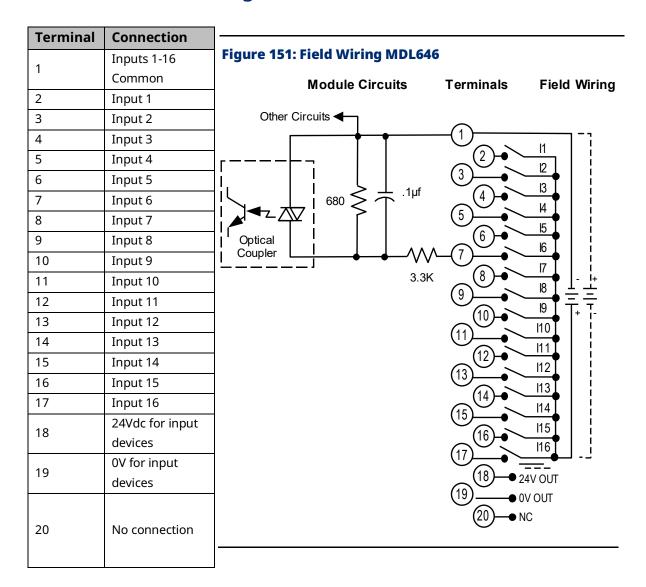
This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

**Note:** field-side terminal block must be removed from Module during such a procedure.

## 6.11.1 Specifications: MDL646

| MDL646                                      | Specifications                                        |
|---------------------------------------------|-------------------------------------------------------|
| Rated Voltage                               | 24 Vdc                                                |
| Input Voltage Range                         | 0 to +30 Vdc                                          |
| Inputs per Module                           | 16 (one group with a single common)                   |
| Isolation: Field to Backplane (optical) and | 250 Vac continuous;                                   |
| frame ground                                | 1500 Vac for one minute                               |
| Input Current                               | 7 mA (typical) at rated voltage                       |
| Input Characteristics                       |                                                       |
| On-state Voltage                            | 11.5 to 30 Vdc                                        |
| Off-state Voltage                           | 0 to +5 Vdc                                           |
| On-state Current                            | 3.2 mA minimum                                        |
| Off-state Current                           | 1.1 mA maximum                                        |
| On response Time                            | 1 ms typical                                          |
| Off response Time                           | 1 ms typical                                          |
| Power Consumption: 5Vdc                     | 80 mA (all inputs on) from 5Vdc bus on backplane      |
| Power Consumption: 24Vdc <sup>21</sup>      | 125 mA from the Isolated 24Vdc backplane bus or user- |
|                                             | supplied power                                        |


For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

<sup>&</sup>lt;sup>21</sup> If terminals 18 & 19 are employed, the following applies:

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24 Vdc is required. The external source must be connected via the TB1 connector located on the left side of the backplane.

If this module is located in an RX3i Expansion Backplane or Series 90-30 backplane, the backplane power supply provides the isolated +24 Vdc for Module.

### 6.11.2 Field Wiring: MDL646



**Note:** If the 24V OUT pin is used to connect to input devices in the field, the isolation specification for this module changes to:

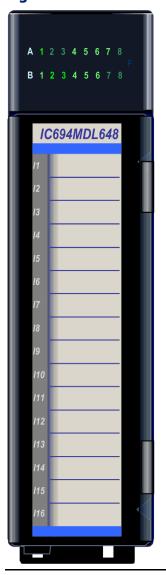
Field to Backplane (optical) and frame ground: 50 Vac continuous; 500 Vac for 1 minute

## 6.12 Input Module: 48 Vdc 16-Point Isolated Pos/Neg Logic IC694MDL648

The 48Vdc Positive/Negative Logic 16-Point Input module, IC694MDL648, provides sixteen isolated input points in one group with a common power input terminal. The ON and OFF response times for this module are 1ms maximum. This input module is designed to be used in either positive logic or negative logic applications. Input characteristics are compatible with a wide range of user-supplied input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the Controller's input status table (%I).

The blue bands on the label indicate that this is a low-voltage module.

This module can be installed in any I/O slot in an RX3i PLC System.


Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*. Note that field-side terminal block must be removed from Module during such a procedure.

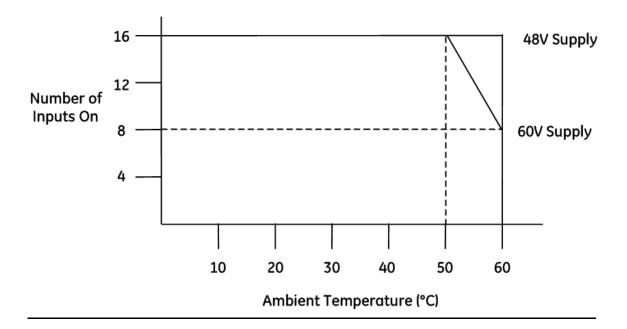
Power to operate input devices is derived from an external 48Vdc power source supplied by the user

#### **LED Indicators**

LED indicators to provide the ON/OFF status of each point. They may be viewed via the lens at the top of Module. This LED block has two horizontal rows with eight green LEDs in each row: the top row is labeled A1 through 8 (corresponding to points 1 through 8); the bottom row is labeled B1 through 8 (points 9 through 16).

**Figure 152: IC694MDL648** 

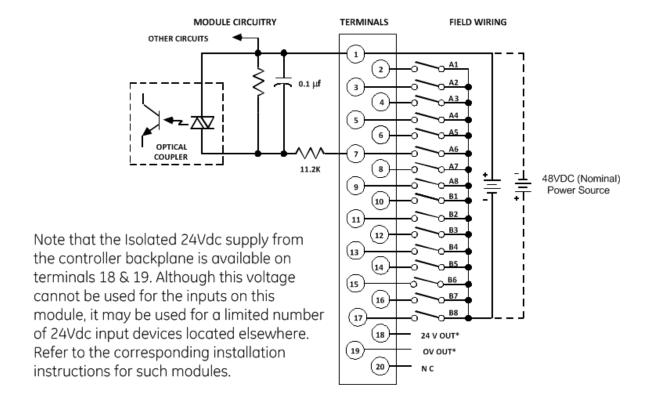



## 6.12.1 Specifications: MDL648

| MDL647                   | Specifications                                       |
|--------------------------|------------------------------------------------------|
| Rated Voltage            | 48 Vdc                                               |
| Input Voltage Range      | 0 to 60 Vdc                                          |
| Inputs per Module        | 16 (one group with a single common).                 |
|                          | Note Thermal Derating (Figure 153)                   |
| Isolation                | 1500 V between the field-sideand the logic side      |
| Input Current            | 4.2 mA (typical) at rated voltage                    |
| Input Characteristics    |                                                      |
| On–state Voltage         | 34 to 60 Vdc                                         |
| Off-state Voltage        | 0 to 10 Vdc                                          |
| On-state Current         | 3 mA minimum                                         |
| Off-state Current        | 1.1 mA maximum                                       |
| On response Time         | 1 ms maximum                                         |
| Off response Time        | 1 ms maximum                                         |
| Power Consumption: 5Vdc  | 80 mA (all inputs on) from 5Vdc bus on PLC backplane |
| Power Consumption: 48Vdc | 74 mA from the user-supplied 48Vdc power supply      |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

## 6.12.2 Thermal Derating: MDL648


Figure 153: Thermal Derating MDL648



### 6.12.3 Field Wiring: MDL648

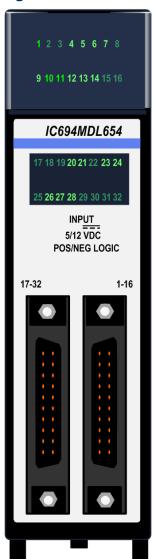

Figure 154 provides wiring information for connecting user-supplied input devices and power source to the 48Vdc positive/negative logic input module.

Figure 154: Field Wiring MDL648



# 6.13 Input Modules, 5/12Vdc (TTL) 32-Point Pos/Neg Logic IC694MDL654, IC694MDL655, IC694MDL658

Figure 155: IC694MDL654



PACSystems RX3i 32-Point Positive/Negative Logic input modules each provide thirty-two positive or negative logic input points in four isolated groups of eight. Each group is referenced to its own common connection.

5/12Vdc (TTL) 32-Point Positive/Negative Logic Input module, IC694MDL654, provides thirty-two discrete TTL voltage threshold input points that operate at levels up to 15V. A single, regulated +5V supply (current limited to approximately 150mA) is available through the I/O connectors on the front of Module. This supply is generated on Module and is isolated from the backplane. Its power input comes from the +5V logic supply on the PLC backplane. By installing jumpers on the I/O connector, you can choose to power the inputs from this internal supply instead of powering them with an external user-provided supply.

24Vdc 32-Point Positive/Negative Logic Input module, IC694MDL655, provides thirty-two discrete input points that operate at levels up to 30V. Power to operate field devices can come from an external supply or the isolated +24Vdc output of Module.

48Vdc 32-Point Positive/Negative Logic Input module, IC694MDL658, provides thirty-two discrete input points that operate at levels up to 60V. Power to operate field devices must be provided using an external supply.

The blue band on the front label indicates a low-voltage module.

These modules do not report a special fault or alarm diagnostics. Green LEDs indicate the ON/OFF status of each input point.

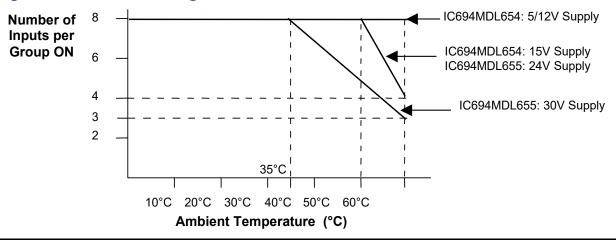
These modules can be installed in any I/O slot in the RX3i system.

These modules support insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 6.13.1 Specifications: MDL654, MDL655, MDL658

| Specifications                        | IC694MDL654                                                                     | IC694MDL655            | IC694MDL658           |  |
|---------------------------------------|---------------------------------------------------------------------------------|------------------------|-----------------------|--|
| Rated Voltage,                        | 5 to12 Vdc                                                                      | 24 Vdc                 | 48 Vdc                |  |
| Positive or Negative Logic            |                                                                                 |                        |                       |  |
| Input Voltage Range                   | 0 to 15 Vdc                                                                     | 0 to 30 Vdc            | 0 to 60 Vdc           |  |
| Input Current (typical ON current     | 3.0 mA at 5 Vdc                                                                 | 7.0 mA at 24Vdc        | 1.7mA at 48 Vdc       |  |
| at rated voltage)                     | 8.5 mA at 12 Vdc                                                                |                        |                       |  |
| Input Characteristics                 |                                                                                 |                        |                       |  |
| On–state Voltage                      | 4.2 to 15 Vdc                                                                   | 11.5 to 30 Vdc         | 34 to 60 Vdc          |  |
| Off-state Voltage                     | 0 to 2.6 Vdc                                                                    | 0 to 5Vdc              | 0 to 10 Vdc           |  |
| On-state Current                      | ≥2.5 mA (min) guaranteed on                                                     | ≥3.2mA (min)           | ≥1.0 mA (min)         |  |
|                                       |                                                                                 | guaranteed on          | guaranteed on         |  |
| Off-state Current                     | ≤1.2 mA (max) guaranteed off                                                    | <1.1 mA (max)          | <0.4 mA (max)         |  |
|                                       |                                                                                 | guaranteed off         | guaranteed off        |  |
| On or Off Response Time <sup>22</sup> | 1 ms maximum                                                                    | 2 ms maximum           | 2 ms maximum          |  |
| Inputs per Module                     | 32 (four groups of eight inputs each)                                           |                        |                       |  |
|                                       | 30 m (98.4 ft), maximum cable length                                            | for module IC694MDL65  | 4.                    |  |
|                                       | For modules MDL654 and MDL655, th                                               | ne maximum number of i | nputs per group that  |  |
|                                       | can be on at the same time depends on the ambient temperature as displayed in   |                        |                       |  |
|                                       | Figure 156.                                                                     |                        |                       |  |
|                                       | There is no thermal derating for mod                                            | ule MDL658.            |                       |  |
| Isolation:                            |                                                                                 |                        |                       |  |
| Field to Backplane                    | 250 Vac continuous; 1500 Vac for one minute                                     |                        |                       |  |
| (optical) and                         | For modules IC694MDL654 and IC694MDL655, if the 5V OUT / 24V OUT pin is used to |                        |                       |  |
| to frame ground                       | connect to input devices in the field, the isolation is                         |                        |                       |  |
|                                       | 50 Vac continuous; 500 Vac for one m                                            | inute.                 |                       |  |
| Group to Group                        | 50 Vac continuous; 500 Vac for one m                                            | inute                  |                       |  |
| Internal Power Consumption            | 440 mA (max) from +5 Vdc bus on                                                 | 195 mA (max) from +5   | 195 mA (max) from +5  |  |
|                                       | backplane (if module isolated +5 Vdc                                            | Vdc bus on backplane;  | Vdc bus on backplane; |  |
|                                       | supply used to power inputs and all                                             | (29 mA + 0.5mA/point   | (29 mA + 0.5 mA/point |  |
|                                       | 32 inputs ON)                                                                   | ON + 4.7 mA/LED ON)    | ON + 4.7 mA/LED ON)   |  |
|                                       | 96 mA (typical) from user input                                                 | 224 mA (typical) from  |                       |  |
|                                       | supply at 5 Vdc and 32 inputs ON);                                              | isolated +24 Vdc       |                       |  |
|                                       | 272 mA (typical) from user input                                                | supply <sup>23</sup>   |                       |  |
|                                       | supply at 12 Vdc and 32 inputs ON)                                              |                        |                       |  |
| Isolated +5 Vdc Supply                | For MDL654: +5Vdc ±5%                                                           |                        |                       |  |
| Current limit                         | For MDL654: 150mA (typical)                                                     |                        |                       |  |

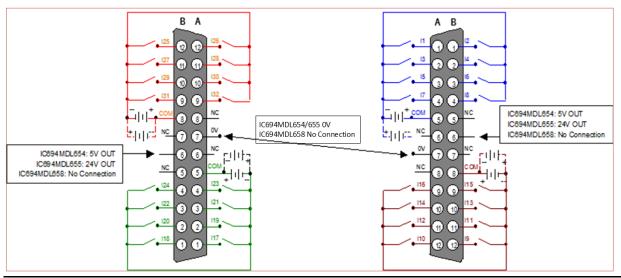
For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.


<sup>&</sup>lt;sup>22</sup> Within Module; does not include communications with CPU

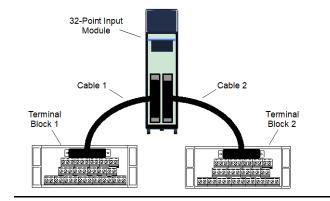
<sup>&</sup>lt;sup>23</sup> If Module is located in an RX3i Universal Backplane, an external source of Isolated +24Vdc is required. The external source must be connected via the TB1 connector located on the left side of the backplane.

If this module is located in an RX3i Expansion Backplane or Series 90-30 backplane, the backplane power supply provides the isolated +24Vdc for Module.

## 6.13.2 Thermal Derating: MDL654 & MDL655







#### 6.13.3 Field Wiring: MDL654, MDL655, MDL658

Connections are made to two male 24–pin connectors (Fujitsu FCN–365P024–AU) on the front of Module. Inputs are arranged in four groups of eight. Each group has its own common connection. Within each group, four points attach to the A half of the connector and four points attach to the B half of the connector.

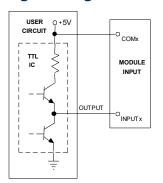
Figure 157: Left-side and Right-side Connectors MDL654, MDL655, MDL658



## Figure 158: Attachment to Terminal Blocks for Field Wiring

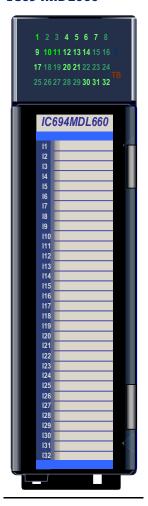


Wiring from each module connector to field devices is made through a cable. Prewired cables are available, or custom cables can be used. Input devices can be wired directly to the cables, or intermediate Terminal Blocks, IC693ACC337. Refer to Chapter 17 for information about prewired cables, custom cables, and Terminal Block IC693ACC337.


#### **TTL Wiring: MDL654**

Conventional TTL wiring practices should be followed when installing module IC694MDL654.

For noise immunity, I/O control lines connected to Module must be less than 30 meters in length (signal attenuation limits wiring length to less than this maximum).


To be compatible with TTL outputs, the negative logic configuration should be used as shown in Figure 159.

## Figure 159: Wiring for Negative Logic MDL654



## 6.14 Input Module, 24Vdc 32-Point Grouped IC694MDL660

## Figure 160: IC694MDL660



The *24Vdc Positive/Negative Logic Input* module, IC694MDL660, provides thirty-two discrete input points. The inputs are positive or negative logic inputs and will operate at levels up to 30V.

The inputs are arranged in four isolated groups of eight; each group has its own common. Isolation is provided between the four groups of inputs; however, each group of eight inputs is referenced to the same user common connection.

Module MDL660 provides seven selectable input filter times. Filter times can be set from the programmer using the assigned output data references of Module.

32 green LEDs indicate the ON/OFF status of points 1 through 32. The red/green TB LED is green when the removable terminal block of Module is locked in place. It is red when the terminal block is not locked. Module also sends an *Addition of Terminal Block* or *Loss of Terminal Block* message to the RX3i CPU to report the terminal block status.

The blue bands on the label show that MDL660 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i system. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal.* 

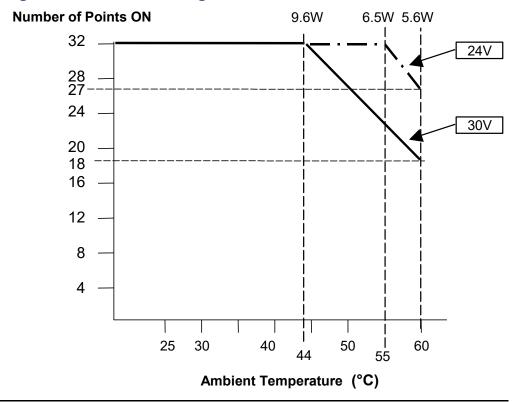
Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth typically needed for field wiring to AC devices. Refer to Section 17: for more information about Terminal Blocks. The Terminal Block is ordered separately.

This module cannot be used with a Series 90-30 PLC CPU.

<sup>&</sup>lt;sup>24</sup> At time of publication, only PNC and ETM modules contained updated instructions. Refer to either of these in the event your update instructions do not include the web-based utility.

## 6.14.1 Specifications: MDL660


| MDL660                       | Specifications                                              |
|------------------------------|-------------------------------------------------------------|
| Rated Voltage                | 24 Vdc                                                      |
| Input Voltage Range          | 0 to 30 Vdc                                                 |
| Inputs per Module            | 32 (four isolated groups of 8 inputs)                       |
| Isolation:                   |                                                             |
| Field to Backplane (optical) | 250 Vac continuous; 1500 Vac for one minute                 |
| Group to Group               | 250 Vac continuous; 1500 Vac for one minute                 |
| Input Current                | 7.0 mA per point (typical) at rated voltage                 |
| Thermal De-Rating            | Refer to Figure 161.                                        |
| Input Characteristics:       |                                                             |
| On–state Voltage             | 11.5 to 30 Vdc                                              |
| Off-state Voltage            | 0 to 5 Vdc                                                  |
| On-state Current             | 3.2 mA minimum                                              |
| Off-state Current            | 1.1 mA maximum                                              |
| Input Filter Times           | 0.5 ms, 1.0 ms, 2.0 ms, 5 ms, 10 ms, 50 ms, and 100 ms,     |
|                              | selectable per module                                       |
| On response time             | 0.5 ms, 1.0 ms, 2.0 ms, 5.0 ms, 10.0 ms, 50.0 ms & 100.0 ms |
|                              | (as per filter setting)                                     |
| Off response time            | 0.5 ms, 1.0 ms, 2.0ms, 5.0 ms, 10.0 ms, 50.0 ms & 100.0 ms  |
|                              | (as per filter setting)                                     |
| Power Consumption            | 300 mA (all inputs on) from 5 Vdc bus on the backplane      |
| Diagnostics                  | Terminal block presence/absence reported to RX3i CPU        |

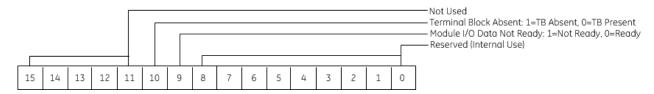
For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

## 6.14.2 Thermal Derating: MDL660

The number of points that can be on at the same time depends on the ambient temperature and the voltage.

Figure 161: Thermal Derating Curve MDL660




## 6.14.3 Field Wiring: MDL660

| Connection       | Terminal |          |              |                       |              | Terminal | Connection        |
|------------------|----------|----------|--------------|-----------------------|--------------|----------|-------------------|
| Input 1          | 1        | Figure   | 162: Field W | Viring MI             | 01 660       | 19       | Input 17          |
| Input 2          | 2        | rigure   | Field Wiring | Terminals             | Field Wiring | 20       | Input 18          |
| Input 3          | 3        |          | Input 1      | —(1) (19)             | I 47         | 21       | Input 19          |
| Input 4          | 4        | ]        | Input 2      | -2 20                 | 1 (40        | 22       | Input 20          |
| Input 5          | 5        | 1        | Input 3      | -3 $21$               | Input 19     | 23       | Input 21          |
| Input 6          | 6        |          | Input 4      | <u>4</u> 22           | I t 04       | 24       | Input 22          |
| Input 7          | 7        | 1 崇      | Input 6      | <u> </u>              |              | 25       | Input 23          |
| Input 8          | 8        | 1        | Input 7      | —6 24<br>—7 25        | 1 100        | 26       | Input 24          |
| Common<br>1 – 8  | 9        |          | Input 8      | -8 26<br>-9 27        | Input 24     | 27       | Common<br>17 - 24 |
| Input 9          | 10       | ]<br>    | Input 9      | —(10) (28)            | 1 105        | 28       | Input 25          |
| Input 10         | 11       | ]        | Input 10     | -1)  29               | Input 26     | 29       | Input 26          |
| Input 11         | 12       |          | Input 11     | <u>12</u> 30          | 1 100        | 30       | Input 27          |
| Input 12         | 13       | <u> </u> | Input 13     | —(13) (31)            | Innut 29     | 31       | Input 28          |
| Input 13         | 14       | =        | Input 14     |                       | 1 100        | 32       | Input 29          |
| Input 14         | 15       | ]        | Input 15     | —(16) (34)            | 1 104        | 33       | Input 30          |
| Input 15         | 16       |          | Input 16     | — <u>17</u> 35        | 1 (00        | 34       | Input 31          |
| Input 16         | 17       |          |              | — <u>18</u> <u>36</u> | )            | 35       | Input 32          |
| Common<br>9 – 16 | 18       |          |              |                       |              | 36       | Common 25 - 32    |

#### 6.14.4 Module Status Data: MDL660

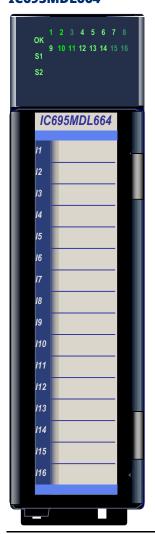
Discrete Input Module IC694MDL660 can optionally be configured to provide 16 bits of status data. By default, the length assigned to Module status data is 0. To use the status data, the length must be changed to 16.

If a length of 16 has been assigned to Module status data, Module uses the lower eleven input bits to report its internal status information to the RX3i CPU, as follows:



**Note:** the sense of bit 9 is inverted compared to most other modules. Here "1" indicates not ready.

#### 6.14.5 Input Filter Setup: MDL660


If an input filter time should be applied to all Module inputs, input filtering should be enabled in the software configuration of Module. The Digital Filter Settings Length must be set to 16, and a memory location to be used for the filter value must be specified. Configuring a Digital Filter Settings Length of 0 disables the input filter.

During system operation, the input filter time can be changed from the application by modifying the memory location used for the filter value. Bits 0-7 contain the filter time configuration data as displayed in the following table. Bits 8 - 15 are not used.

| Binary Value in the   | Filter Time |  |
|-----------------------|-------------|--|
| Output Reference Bits |             |  |
| 0000 0000             | 0.5ms       |  |
| 0000 0001             | 1ms         |  |
| 0000 0011             | 2ms         |  |
| 0000 1001             | 5ms         |  |
| 0001 0011             | 10ms        |  |
| 0110 0011             | 50ms        |  |
| 1100 0111             | 100ms       |  |

## 6.15 Input Module, 24 Vdc 16-Point Grouped IC695MDL664

## Figure 163: IC695MDL664



The *Smart Digital Input* module, IC695MDL664 provides sixteen positive logic input channels in two groups of eight. Module uses 24Vdc field input power.

Each group of eight inputs is referenced to an isolated common connection. Input characteristics are compatible with a wide range of input devices, such as pushbuttons, limit switches, and electronic proximity switches. Current passing into an input point results in a logic 1 in the input status table (%I).

Power to operate field devices must be supplied by the user.

Sixteen dual LEDs indicate the ON/OFF/FAULT status of points 1 through 16. Two LEDs, S1 and S2 indicate whether field power is applied to each of the two input channel groups, and the status of the terminal block. Module also logs an *Addition of Terminal Block* or *Loss of Terminal Block* message to the I/O fault table to report the terminal block status.

The blue bands on the label show that MDL664 is a low-voltage module. Features of the Smart Digital input module include:

- Selectable Input Filter Time from 0.5 ms to 100 ms.
- Open wire / Short to DC- (with external sense resistor)
- Short to DC + (with external sense resistor and external pull-up resistor)
- Input Pulse Test

This module can be installed in any I/O slot in an RX3i system. Module supports insertion into and removal from an RX3i Universal

Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth typically needed for field wiring to AC devices. Refer to Section 17: for more information about Terminal Blocks. The Terminal Block is ordered separately.

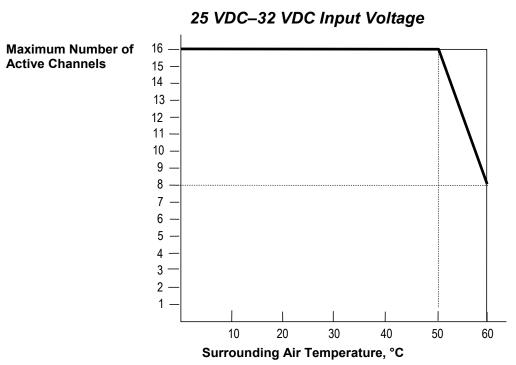
### 6.15.1 LED Operation: MDL664

The Smart Input Module has 19 bi-color LEDs on the faceplate. The states of the input points are indicated by 16 green and amber channel status LEDs. Module OK LED indicates module status. The field status LEDs (S1 and S2) indicate whether the external +24Vdc power supply is present and is above the minimum level, whether faults are present, and whether the terminal block is locked into place.

| LED Name | Function                 | LED Indications                                                                 |  |
|----------|--------------------------|---------------------------------------------------------------------------------|--|
| ОК       | Module                   | <b>Off:</b> Module is not receiving power from the RX3i backplane or Module has |  |
|          | status                   | failed self-test.                                                               |  |
|          |                          | Solid green: Module OK and configured.                                          |  |
|          |                          | Blinking green: Module has not received configuration from the CPU. If          |  |
|          |                          | the configuration is not successful, Module will continue to blink in this      |  |
|          |                          | mode.                                                                           |  |
|          |                          | Amber: Module hardware watchdog timeout                                         |  |
|          |                          | Blinking amber: Module internal error. Record the blink pattern and             |  |
|          |                          | contact technical support.                                                      |  |
| 1-16     | Channel<br>status        | Off: Input is off                                                               |  |
|          |                          | Green: Input is on                                                              |  |
|          |                          | Amber: Input fault                                                              |  |
| S1, S2   | Terminal                 | Off: Terminal present and field power not present                               |  |
|          | block and<br>field power | Green: Terminal and field power present                                         |  |
|          | status                   | Red: Terminal did not present or field power over-voltage                       |  |

**Note:** The OK, S1, and S2 LEDs blink green in unison when Module is in firmware update mode.

## 6.15.2 Specifications: MDL664


| MDL664                                       | Specifications                                              |
|----------------------------------------------|-------------------------------------------------------------|
| Inputs per Module                            | 16 (two isolated groups of 8 inputs each)                   |
| Power Requirements                           |                                                             |
| Input Voltage (24V nominal), V <sub>IN</sub> | 18Vdc-32Vdc                                                 |
| Ripple Voltage, maximum                      | 10% Vpp                                                     |
| Backplane Power Consumption                  |                                                             |
| +3.3Vdc                                      | 95 mA                                                       |
| +5.1Vdc                                      | 225 mA (worst-case, i.e. with all channels on.)             |
| Thermal De-Rating                            | None required with input voltages in the 18Vdc-24Vdc range. |
|                                              | For the 25Vdc–32Vdc range, refer to Figure 164 below.       |
| Input Resistance                             | 1966 Ω                                                      |
| Input Capacitance                            | 0.05 μf                                                     |
| Input Current (at 24Vdc)                     | 12.2 mA                                                     |
| Input Voltage ON (Logic 1)                   | $0.5 \times V_{IN}Vdc$                                      |
| Input Voltage OFF (Logic 0)                  | $0.3 \times V_{IN} Vdc$                                     |
| AC Characteristics                           |                                                             |
| Turn On Delay, typical                       | 20.6 ms                                                     |
| Turn Off Delay, typical                      | 20.6 ms                                                     |
| Digital Input Filter Time                    | 0.5–100 ms, 20 ms default                                   |
| Field to Backplane                           |                                                             |
| Continuous                                   | 250 Vac                                                     |
| For 1 minute                                 | 1500 Vac                                                    |
| Group to Group                               |                                                             |
| Continuous                                   | 250 Vac                                                     |
| For 1 minute                                 | 1500 Vac                                                    |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

### 6.15.3 Thermal Derating: MDL664

With input voltage in the 18Vdc to 24Vdc range, no temperature derating is required, and all input channels can operate within the entire Surrounding Air temperature range. With input voltage greater than 24Vdc, the number of active channels must be reduced as temperature increases, according to the following de-rating curve.

Figure 164: Thermal Derating Curve MDL664



Connection

Input 9
NC
Input 10
NC

Input 11 NC Input 12 NC

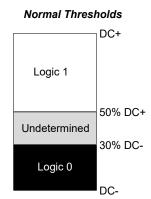
Input 13 NC

Input 14 NC

Input 15 NC

Input 16
NC
DC+
DC-

## 6.15.4 Field Wiring: MDL664


|            |          | 1            |                 |          |               |                 |          |
|------------|----------|--------------|-----------------|----------|---------------|-----------------|----------|
| Connection | Terminal | Figu         | re 165: Field   | Wirin    | a MDL         | 664             | Terminal |
| Input 1    | 1        |              | Field Wiring    |          | _             | Field Wiring    | 19       |
| NC         | 2        |              | ←Input 1 → ←    | _1       | (19)——        | → Input 9 —     | 20       |
| Input 2    | 3        | ] i          |                 | 2        | 20            |                 | 21       |
| NC         | 4        | 1!           | Input 2 —       | <b>3</b> | <u>(21)</u> — | → Input 10      | 22       |
| Input 3    | 5        |              |                 | 4        | <u>22</u>     |                 | 23       |
| NC         | 6        |              | Input 3 → ⊢     | $\sim$   | $\sim$        | → —Input 11—    | 24       |
| Input 4    | 7        |              | Input 4   ✓  ✓  | 6        | 24)           | → Input 12 →    | 25       |
| NC         | 8        |              | Imput 4 —       | 8        | 26            | I I             | 26       |
| Input 5    | 9        | <br> -<br> - | Input 5 → ⊢     |          |               | → Input 13 - 1+ | 27       |
| NC         | 10       | -<br>        |                 | 10       | 28)           | 1               | 28       |
| Input 6    | 11       |              | Input 6         | —(1)     | 29—           | → Input 14      | 29       |
| NC         | 12       | 1 [          |                 | 12       | 30            | ;               | 30       |
| Input 7    | 13       | I<br>  !     | ←Input 7 → ←    | ~        | $\sim$        | → Input 15      | 31       |
| NC         | 14       | ]            | Input 8         | (14)     | (32)<br>(33)  | → Input 16      | 32       |
| Input 8    | 15       |              |                 |          | (34)          | input 10        | 33       |
| NC         | 16       | 1            | DC +            | $\sim$   | _             | DC +            | 34       |
| DC+        | 17       | į            | <b>—</b> DC - — | <u></u>  | <u>36</u> —   | DCi             | 35       |
| DC -       | 18       | Ī            |                 |          |               |                 | 36       |

#### 6.15.5 Circuit Operation: MDL664

#### **Normal Operation**

The input circuit references the input to the common (DC -) on the field-side of Module. An ON condition for the input device is read as a logic 1, and an OFF condition for the input device is read as a logic 0.

Figure 166: Normal Thresholds MDL664



## Tri-State Operation (Open Wire / Short to DC-Detection)

Figure 167: Tri-State Input Circuit Diagram

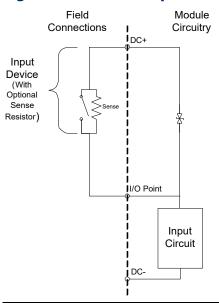
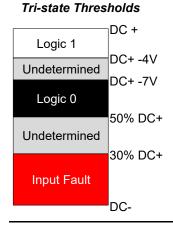




Figure 168: Tri-State Thresholds MDL664



The Open Wire / Short to Ground diagnostic can be enabled on any circuit configured as a tri-state input. In addition to being configured as a tri-state input, the circuit must have a non-inductive sense resistor placed as close as practical to the actual dry contacts (such as across the field device terminals).

## **Quad-State Operation (Open Wire / Short to DC- and Short to DC+ Detection)**

Figure 169: Quad-State Input Circuit Diagram

#### **Quadstate Input Diagram**

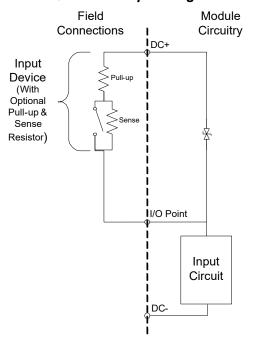
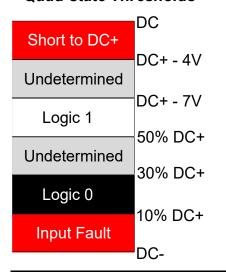




Figure 170: Quad-State Thresholds MDL664

#### **Quad-state Thresholds**



The Open Wire / Short to DC- diagnostic and the Short to DC+ diagnostic can be enabled on any circuit configured as a quad-state input. In addition to being configured as a quad-state input, the circuit must have a non-inductive sense resistor placed as close as practical to the actual dry contacts (such as across the field device terminals) and a pull-up resistor between the high side of the Input Device and DC+.

#### **External Resistor Selection**

For Tri-State and Quad-State, the external resistor values must be calculated to allow the logic levels to fall within the ranges for the selected Input mode when driven by the expected voltage of the device connected to the input point.

#### Example

Consider an ideal situation with an input configured for Quad-state, a DC+ reference of 24V, and the input point connected to normally open contact that is driven by a voltage between 22V and 24V. A sense resistor is placed across the contact and a pull-up resistor connects the contact to the voltage source.

Select the pull-up resistor first, using the logic 1 voltage levels. For Quadstate logic 1, the voltage at the input point must be between 12Vdc (50% of DC+) and 17Vdc (DC+ -7V.) The closed contact shorts the sense resistor, so the voltage at the input point is determined by a divider between the internal resistance and the external pull-up resistor. To achieve the best margin across the range of input voltages, two resistances are determined to complete the divider from the maximum and minimum device voltage to the midpoint of the logic 1 range (14.5Vdc.) From these two results, a standard resistor value that lies between the limits is chosen, such as  $1100\Omega$ .

$$14.5 = 22 * \left(\frac{^{1966}}{^{1966+Rp}}\right) \qquad \qquad Rp = 1017$$

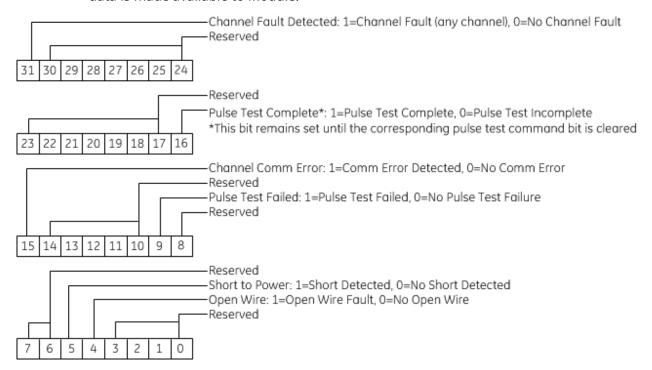
The sense resistor across the contact is solved next, using the logic 0 voltage levels. For Quad-state logic 0, the voltage at the input point must be between 2.4Vdc (10% of DC+) and 7.2Vdc (30% of DC+.) The voltage at the input point is determined by a voltage divider between the internal resistance and the two external resistors. To achieve the best margin across the range of input voltages, two resistances are determined to complete the divider from the maximum and minimum device voltage to the midpoint of the logic 0 range (4.8Vdc.) From these two results, a standard resistor value that lies between the limits is chosen, such as  $6200\Omega$ .

$$4.8 = 22 * \left(\frac{^{1966}}{^{1966+1100+Rs}}\right) \qquad Rs = 5945$$

$$4.8 = 24 * \left(\frac{1966}{1966 + 1100 + Rs}\right)$$
 Rs = 6764

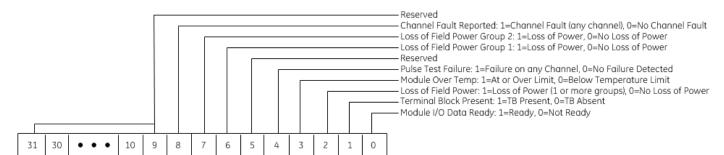
#### 6.15.6 Input and Output Data Formats: MDL664

#### **Channel Value Data**


Module reports its input channel data in one bit per input, beginning at the configured *Channel Value Reference Address*.

#### **Channel Diagnostic and Status Data**

Module can be configured to report channel diagnostic and status data to the CPU. The CPU stores this data at the configured *Diagnostic Reference Address* of Module. The use of this feature is optional.


The data for each channel occupies two words whether or not the channel is used.

**Note:** At least two sweeps must occur to clear the diagnostic bits: one scan to send the %Q data to Module and one scan to return the %I data to the CPU. Because module processing is asynchronous to the controller sweep, more than two sweeps may be needed to clear the bits, depending on the sweep rate and the point at which the data is made available to Module.



#### **Module Status Data: MDL664**

Module can be configured to return two words of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data* reference area configured for Module.



#### **Pulse Test Command Output Data**

Module uses these bits (one bit per input), beginning at the configured *Pulse Command Output Reference Address* to command an on-demand pulse test. To command an on-demand pulse test, the Pulse Test Enable parameter for the channel must be set to *Enabled – Manual*.

#### 6.15.7 Diagnostics: MDL664

Module always performs a set of standard diagnostic checks. Individual circuits can be configured not to log a fault to the CPU if a fault occurs. Module returns current diagnostics for all circuits to %I bits.

#### **Input Pulse Test**

The Input Pulse Test is an optional diagnostic feature that exercises the input points to confirm they can detect and respond to changes in the actual input state. Pulse testing verifies the ability of the input circuits to detect a change in state. Pulse Testing should be enabled if Module has loads that hold state for long periods of time. The application must be capable of withstanding the loss of the input feedback for up to 16 ms.

When the pulse test occurs, the input point power is removed, and then the input is connected internally to DC+. This verifies the ability of the input to detect a change in state. Each of the input points is tested individually to ensure there are no shorts between inputs. If a change in state is not detected, a fault is logged with the CPU. Valid field power must be present for the pulse test to run successfully.

#### On Demand Pulse Test

To use this feature, the Pulse Test Enable parameter for the channel must be set to *Enabled-Manual*. To command, a pulse test, set the Pulse Test Command bit for the channel(s) to be pulse tested.

Module will perform one or more pulse tests for each channel selected. Since this will take many sweeps, you should keep the Pulse Test Command bit set until the Pulse Test Complete bit is set for that channel in the Channel Diagnostic and Status Data.

Module will keep the Pulse Test Complete bit set as long as the Pulse Test Command bit is set. One output scan with the Pulse Test Command bit cleared clears the Pulse Test Complete status bit and the Pulse Test Failure diagnostic bit.

#### **Automatic Pulse Test**

To use this feature, the Pulse Test Enable parameter for the channel must be set to *Enabled-Auto*.

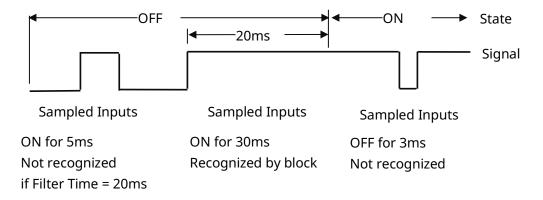
The Input Pulse Test occurs at a frequency selected in the Hardware Configuration, with no intervention from the CPU. The pulse test execution is based on the Time of Day clock set in the CPU, and the frequency is relative to 12:00 am. For example, a frequency of 12 hours will result in a pulse test run at 12:00 am and 12:00 pm.

If the pulse test fails, the Pulse Test Failed bit is set.

## 6.15.8 Configuration: MDL664

## **Module Settings: MDL664**

| Parameter                    | Function                                                                   |
|------------------------------|----------------------------------------------------------------------------|
| Channel Value Reference      | Specifies the memory location where Module reports 16 bits of channel      |
| Address                      | values.                                                                    |
| Channel Value Reference      |                                                                            |
| Length                       |                                                                            |
| Diagnostic Reference Address | Specifies the starting address for reporting channel diagnostics data.     |
| Diagnostic Reference Length  | Provides thirty-two bits of diagnostic data per channel.                   |
|                              | Setting this value to 0 disables channel diagnostics reporting.            |
| Module Status Reference      | Specifies the starting address for reporting module status data.           |
| Address                      |                                                                            |
| Module Status Reference      | Provides thirty-two bits of module status data. Setting this value to 0    |
| Length                       | disables channel diagnostics reporting.                                    |
| Pulse Test Command Output    | Specifies the memory location for manual pulse test command data.          |
| Reference Address/           |                                                                            |
| Pulse Test Command Output    |                                                                            |
| Reference Length             |                                                                            |
| Channel Faults w/o Terminal  | Enables or disables the generation of channel faults and alarms after a    |
| Block                        | Terminal Block has been removed.                                           |
| Inputs Default w/o Terminal  | Enables or disables defaulting inputs when the terminal block is removed.  |
| Block                        |                                                                            |
| Loss of Terminal Block       | Enables or disables logging of a fault to indicate a Terminal Block has    |
| Detection                    | been removed.                                                              |
| Loss of Field Power Group 1  | Enables or disables loss of field power detection for the specified group. |
| Detection/                   |                                                                            |
| Loss of Field Power Group 2  |                                                                            |
| Detection                    |                                                                            |
| Inputs Default               | Specifies whether inputs will go to Force Off or Hold the Last State if    |
|                              | Module loses communication with the CPU.                                   |
| I/O Scan Set                 | Assigns Module I/O status data to a scan set defined in the CPU            |
|                              | configuration. Determines how often the RX3i polls the data.               |


## **Channel Settings: MDL664**

| Parameter                   | Function                                                      | Input      |
|-----------------------------|---------------------------------------------------------------|------------|
|                             |                                                               | Туре       |
| Input Type                  | Selects the input operation, along with enabling the          |            |
|                             | corresponding fault logging. Choices are: Dual state, Tri-    |            |
|                             | state, or Quad-state.                                         |            |
| Digital Filter              | Enables or disables the digital filter for the input.         | All        |
| Digital Filter Frequency    | Selects the digital filter frequency in 0.5ms increments. For | All        |
|                             | details, refer to Input Filter Time: MDL664.                  |            |
| Pulse Test Enable           | Enables or disables pulse testing of input. Allows you to     | All        |
|                             | select Manual or Automatic pulse testing. For details         |            |
|                             | about this feature, refer to Diagnostics: MDL664.             |            |
| Pulse Test Frequency        | If Pulse Test Enable is set to Auto, allows you to select the | All        |
|                             | frequency of pulse testing.                                   |            |
| Diagnostic Reporting Enable | Enables or disables channel diagnostics. If enabled,          | All        |
|                             | channel diagnostic data is written to the Channel             |            |
|                             | Diagnostic and Status Data.                                   |            |
| Open Wire Reporting Enable  | If enabled, an open wire condition is reported in the         | Tri-State  |
|                             | Channel Diagnostic and Status Data.                           | Quad-State |
| Short to Power Reporting    | If enabled, a short to power is reported in the Channel       | Quad-State |
| Enable                      | Diagnostic and Status Data.                                   |            |
| Pulse Test Failed Enable    | If enabled, the results of manual or automatic pulse          | All        |
|                             | testing are reported in the Channel Diagnostic and Status     |            |
|                             | Data.                                                         |            |
| Fault Reporting Enable      | If enabled, channel faults are reported to the I/O fault      | All        |
|                             | table.                                                        |            |
| Open Wire Reporting Enable  | If enabled and the corresponding diagnostic reporting is      | Tri-State  |
|                             | enabled, an open wire condition is reported in the I/O        | Quad-State |
|                             | fault table.                                                  |            |
| Short to Power Reporting    | If enabled and the corresponding diagnostic reporting is      | Quad-State |
| Enable                      | enabled, a short to power is reported in the I/O fault table. |            |
| Pulse Test Failed Enable    | If enabled and the corresponding diagnostic reporting is      | All        |
|                             | enabled, a failed pulse test is reported in the I/O fault     |            |
|                             | table.                                                        |            |

#### **Input Filter Time: MDL664**

An input filter time of 0.5 ms to 100 ms can be selected for Module, in 0.5ms increments. The default filter time is 20 ms. The input filter can be disabled.

Figure 171: Effect of Input Filter Time



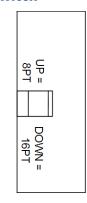
The filter is a digital low-pass filter. Module continuously samples an input for the length of the filter time period. The input must remain at a constant state for the length of the Filter Time for Module to recognize the state.

An input filter helps reject spurious noise spikes and multiple inputs generated by the bounce of mechanical devices. In controlled, noise-free environments, signals generated by clean, solid-state electronics may be unnecessarily slowed by a filter, delaying system response. In such an environment, no additional filter time is needed. In noisy environments, use a longer filter time to prevent noise from possibly causing erratic or unsafe system operations.

#### 6.16 Input Simulator, 8-/16-Point IC694ACC300

## Figure 172: IC694ACC300




The *Input Simulator* module, IC694ACC300, can be used to simulate the operation of 8-point or 16-point discrete input modules. The Input Simulator has no field connections.

The Input Simulator can be substituted for actual inputs until the program or system is debugged. It can also remain permanently installed to provide either 8 or 16 conditional input contacts for manual control of output devices.

Before the Input Simulator module is installed, a switch in the back of Module (Figure 173) can be used to set it up for either 8-point or 16 point-operation. When this switch is set for 8 points, only the first 8 toggle switches on the front of the Input Simulator can be used.

Toggle switches on the front of the Input Simulator simulate the operation of discrete input devices. A switch in the ON position results in a logic 1 in the input table (%I).

Figure 173: Mode Switch



Individual green LEDs indicate the ON or OFF position of each toggle switch.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

#### 6.16.1 Specifications: ACC300

| ACC300                     | Specifications                  |
|----------------------------|---------------------------------|
| Inputs per Module          | 8 or 16 (switch selectable)     |
| Off Response Time          | 20 ms maximum                   |
| On Response Time           | 30 ms maximum                   |
| Internal Power Consumption | 120 mA (all inputs on)          |
|                            | from 5 Vdc bus on the backplane |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

## Section 7: Discrete Output Modules

This chapter describes discrete output modules for PACSystems RX3i controllers.

| Discrete Output Module Description                                       | Catalog<br>Number | Section |
|--------------------------------------------------------------------------|-------------------|---------|
| Output 120 Vac 0.5A 12-Pt                                                | IC694MDL310       | 7.1     |
| Output 120/240 Vac 2A 8-Pt                                               | IC694MDL330       | 7.2     |
| Output 120 Vac 0.5A 16-Pt                                                | IC694MDL340       | 7.3     |
| Output 120/240 Vac 16-Pt Isolated                                        | IC694MDL350       | 7.4     |
| Output 120/240 Vac 2A 5-Pt Isolated                                      | IC694MDL390       | 7.5     |
| Output 12/24Vdc 2A 8-Pt Positive Logic                                   | IC694MDL730       | 7.6     |
| Output 12/24Vdc 0.5A 8-Pt Positive Logic                                 | IC694MDL732       | 7.7     |
| Output 125Vdc 1A 6-Point Isolated Positive/Negative Logic                | IC694MDL734       | 7.8     |
| Output 12/24Vdc 0.5A 16-Pt Positive Logic                                | IC694MDL740       | 7.9     |
| Output 12/24Vdc 0.5A 16-Pt Negative Logic                                | IC694MDL741       | 7.10    |
| Output 12/24Vdc 1A 16-Pt Positive Logic with ESCP per Group              | IC694MDL742       | 7.11    |
| Output 5/24Vdc (TTL) 0.5A 32-Pt Negative Logic                           | IC694MDL752       | 7.12    |
| Output 12/24Vdc 0.5A 32-Pt Positive Logic                                | IC694MDL753       | 7.13    |
| Output 12/24Vdc 0.75A 32-Pt Positive Logic with ESCP per Group           | IC694MDL754       | 0       |
| Output 12/24Vdc 0.5A 32-Pt Positive Logic with ESCP per Group            | IC694MDL758       | 7.15    |
| Output 24/125Vdc 2A 16-Pt Grouped Positive Logic with ESCP & Diagnostics | IC695MDL765       | 7.16    |
| Output Relay 4 Amp 16-Pt                                                 | IC694MDL916       | 7.17    |
| Output Isolated Relay N.O. 4 A 8-Pt                                      | IC694MDL930       | 7.18    |
| Output Isolated Relay N.C. and Form C 3 A 8-Pt                           | IC694MDL931       | 7.19    |
| Output Relay N.O. 2A 16-Pt                                               | IC694MDL940       | 7.20    |

## 7.1 Output Module, 120 Vac, 0.5 Amp, 12-Point: IC694MDL310

## Figure 174: IC694MDL310



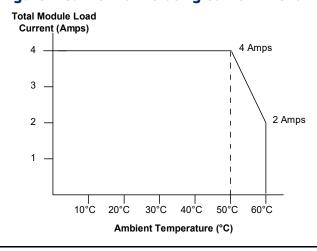
The *120 Vac 0.5 Amp Output* module, IC694MDL310, provides 12 output points in two isolated groups of six points. Each group has a separate common. The two commons are not tied together inside Module. The groups can be used on different phases of the AC supply or powered from the same supply. Each group is protected with a 3 Amp fuse. An RC snubber for each output protects against transient electrical noise on the power line. This module provides a high degree of inrush current (10x the rated current) so the outputs can control a wide range of inductive and incandescent loads.

AC power to operate loads connected to outputs must be usersupplied. This module requires an AC power source; *it cannot be used with a DC power source*.

Individual numbered LEDs show the ON/OFF status of each output point. The red LED (F) turns ON if an output fuse blows. The red bands on the label show that MDL310 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.


## 7.1.1 Specifications: MDL310

| MDL310                       | Specifications                                             |  |
|------------------------------|------------------------------------------------------------|--|
| Rated Voltage                | 120 Vac                                                    |  |
| Output Voltage Range         | 85Vac to 132Vac, 50/60 Hz                                  |  |
| Outputs per Module           | 12 (two groups of six outputs each)                        |  |
| Isolation:                   |                                                            |  |
| Field to Backplane (optical) | 250 Vac continuous; 1500 Vac for 1 minute                  |  |
| and to Frame Ground          |                                                            |  |
| Group to Group               | 250 Vac continuous; 1500 Vac for 1 minute                  |  |
| Output Current               | 0.5 Amp maximum per point                                  |  |
|                              | 1 Amp maximum per group at 60°C (140°F)                    |  |
|                              | 2 Amps maximum per group at 50°C (122°F)                   |  |
|                              | Maximum load current depends on ambient temperature as     |  |
|                              | displayed in Figure 175.                                   |  |
| Output Characteristics       |                                                            |  |
| Inrush Current               | 5 Amps maximum for one cycle                               |  |
| Minimum Load Current         | 50mA                                                       |  |
| Output Voltage Drop          | 1.5 volts maximum                                          |  |
| Output Leakage Current       | 3mA maximum at 120 Vac                                     |  |
| On Response Time             | 1ms maximum                                                |  |
| Off Response Time            | 1/2 cycle maximum                                          |  |
| Power Consumption            | 210mA (all outputs on) from 5Vdc bus on the backplane      |  |
| Fuses (quantity 2)           | 3 Amps, part number 44A724627-111. Refer to Section 2.6.4, |  |
|                              | Module Fuse List for more information.                     |  |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

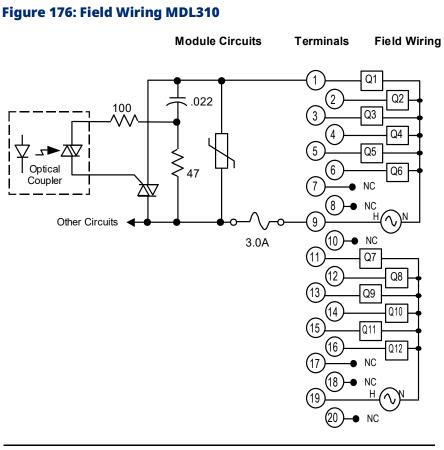
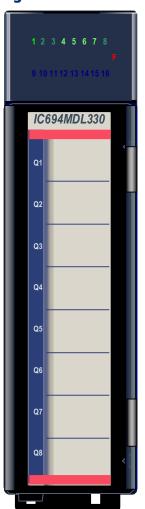

### 7.1.2 Thermal Derating: MDL310

Figure 175: Thermal Derating Curve MDL310




## 7.1.3 Field Wiring: MDL310

| Terminal | Connection    |                     |
|----------|---------------|---------------------|
| 1        | Output 1      | Figure 176: Field W |
| 2        | Output 2      |                     |
| 3        | Output 3      |                     |
| 4        | Output 4      |                     |
| 5        | Output 5      | 100                 |
| 6        | Output 6      | <del></del> -\\     |
| 7        | No connection | ]                   |
| 8        | No connection |                     |
| 9        | Outputs 1 - 6 | Optical Coupler     |
|          | common        |                     |
|          | (return)      | Other Circuits <    |
| 10       | No connection |                     |
| 11       | Output 7      |                     |
| 12       | Output 8      |                     |
| 13       | Output 9      |                     |
| 14       | Output 10     |                     |
| 15       | Output 11     |                     |
| 16       | Output 12     |                     |
| 17       | No connection |                     |
| 18       | No connection |                     |
| 19       | Outputs 7-10  |                     |
|          | common        |                     |
|          | (return)      |                     |
| 20       | No connection |                     |
|          |               |                     |



## 7.2 Output Module, 120/240 Vac, 2 Amp, 8-Point: IC694MDL330

**Figure 177: IC694MDL330** 



The **120/240 Vac 2 Amp Output** module, IC694MDL330, provides eight output points in two isolated groups of four points. Each group has a separate common. The two commons are not tied together inside Module.

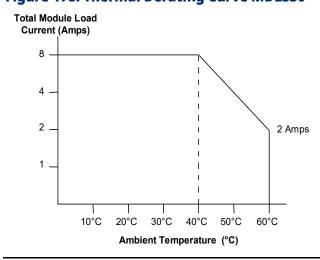
The groups can be used on different phases of the AC supply or powered from the same supply. AC power to operate loads connected to outputs must be user-supplied. This module requires an AC power source; it cannot be used with a DC power source.

Each group is protected with a 5 Amp fuse for each common. An RC snubber for each output protects against transient electrical noise on the power line. This module provides a high degree of inrush current (10 times the rated current) so the outputs can control a wide range of inductive and incandescent loads.

Individual numbered LEDs show the ON/OFF status of each output point. The red LED (F) turns ON if an output fuse blows. The red bands on the label show that MDL330 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.


## 7.2.1 Specifications: MDL330

| MDL330                                 | Specifications                                                   |  |
|----------------------------------------|------------------------------------------------------------------|--|
| Rated Voltage                          | 120/240 Vac                                                      |  |
| Output Voltage Range                   | 85 to 264Vac, 50/60 Hz                                           |  |
| Outputs per Module                     | 8 (two groups of four outputs each)                              |  |
| Isolation:                             |                                                                  |  |
| Field to Backplane (optical) and Frame | 250 Vac continuous; 1500 Vac for 1 minute                        |  |
| Ground                                 |                                                                  |  |
| Group to Group                         | 250 Vac continuous; 1500 Vac for 1 minute                        |  |
| Output Current                         | 2 Amp maximum per point                                          |  |
|                                        | 4 Amps maximum per group at 40°C (104°F) Maximum load current    |  |
|                                        | depends on ambient temperature as displayed in Figure 178.       |  |
| Output Characteristics                 |                                                                  |  |
| Inrush Current                         | 20 Amps maximum for one cycle                                    |  |
| Minimum Load Current                   | 100mA                                                            |  |
| Output Voltage Drop                    | 1.5 volts maximum                                                |  |
| Output Leakage Current                 | 3mA maximum at 120 Vac                                           |  |
|                                        | 6mA maximum at 240 Vac                                           |  |
| On Response Time                       | 1ms maximum                                                      |  |
| Off Response Time                      | 1/2 cycle maximum                                                |  |
| Power Consumption                      | 160mA (all outputs on) from 5 Vdc bus on the backplane           |  |
| Fuses (quantity 2)                     | 5 Amp, part number 44A724627-114. Refer to Section 2.6.4, Module |  |
|                                        | Fuse List for more information.                                  |  |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

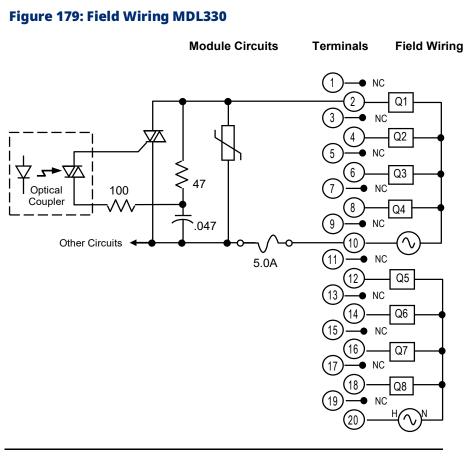
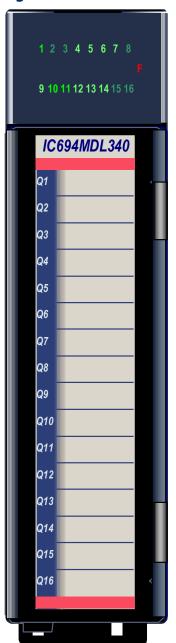

### 7.2.2 Thermal Derating: MDL330

Figure 178: Thermal Derating Curve MDL330




### 7.2.3 Field Wiring: MDL330

| Terminal | Connection    |
|----------|---------------|
| 1        | No connection |
| 2        | Output 1      |
| 3        | No connection |
| 4        | Output 2      |
| 5        | No connection |
| 6        | Output 3      |
| 7        | No connection |
| 8        | Output 4      |
| 9        | No connection |
| 10       | Outputs 1 - 4 |
|          | common        |
|          | (return)      |
| 11       | No connection |
| 12       | Output 5      |
| 13       | No connection |
| 14       | Output 6      |
| 15       | No connection |
| 16       | Output 7      |
| 17       | No connection |
| 18       | Output 8      |
| 19       | No connection |
| 20       | Outputs 5 - 8 |
|          | common        |
|          | (return)      |



## 7.3 Output Module, 120 Vac, 0.5 Amp, 16-Point: IC694MDL340

Figure 180: IC694MDL340



The **120 Vac 0.5 Amp Output** module, IC694MDL340, provides sixteen output points in two isolated groups of eight points. Each group has a separate common. The two commons are not tied together inside Module. The groups can be used on different phases of the AC supply or powered from the same supply. Each group is protected with a 3 Amp fuse. An RC snubber protects each output against transient electrical noise on the power line. This module provides a high degree of inrush current; so the outputs can control a wide range of inductive and incandescent loads.

AC Power to operate loads connected to outputs must be supplied by the user. This module requires an AC power source.

Individual numbered LEDs show the ON/OFF status of each output point. The red LED (F) turns ON if either of the fuses blows. A load must be connected to the blown fuse for the indicator to light. The red bands on the label show that MDL340 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

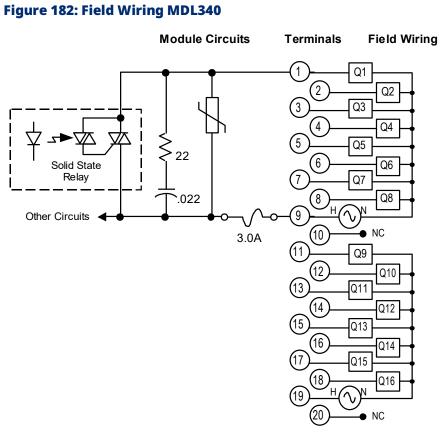
Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal.* 

### 7.3.1 Specifications: MDL340

| MDL340                       | Specifications                                          |
|------------------------------|---------------------------------------------------------|
| Rated Voltage                | 120 Vac                                                 |
| Output Voltage Range         | 85 to 132Vac, 50/60 Hz                                  |
| Outputs per Module           | 16 (two groups of eight outputs each)                   |
| Isolation:                   |                                                         |
| Field to Backplane (optical) | 250 Vac continuous;                                     |
| Frame Ground                 | 1500 Vac for 1 minute                                   |
| Group to Group               | 250 Vac continuous; 1500 Vac for 1 minute               |
| Output Current               | 0.5 amp maximum per point                               |
|                              | 3 amps maximum per group                                |
| Output Characteristics       |                                                         |
| Inrush Current               | 20 amps maximum for one cycle                           |
| Minimum Load Current         | 50 mA                                                   |
| Output Voltage Drop          | 1.5 volts maximum                                       |
| Output Leakage Current       | 2 mA maximum at 120 Vac                                 |
| On Response Time             | 1 ms maximum                                            |
| Off Response Time            | 1/2 cycle maximum                                       |
| Power Consumption            | 315 mA (all outputs ON) from 5 Vdc bus on the backplane |
| Fuses (quantity 2)           | 3 Amps, part number 44A724627-111. Refer to Section     |
|                              | 2.6.4, <i>Module Fuse List</i> for more information.    |

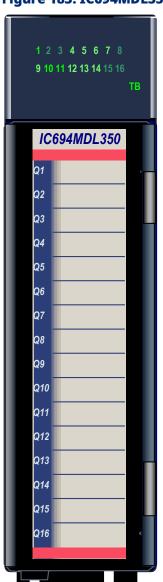
For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

### 7.3.2 Thermal Derating: MDL340


Effective with IC694MDL340C, the following thermal derating applies:






### 7.3.3 Field Wiring: MDL340

| Terminal | Connection     |
|----------|----------------|
| 1        | Output 1       |
| 2        | Output 2       |
| 3        | Output 3       |
| 4        | Output 4       |
| 5        | Output 5       |
| 6        | Output 6       |
| 7        | Output 7       |
| 8        | Output 8       |
| 9        | Outputs 1 – 8  |
|          | common         |
|          | (return)       |
| 10       | No connection  |
| 11       | Output 9       |
| 12       | Output 10      |
| 13       | Output 11      |
| 14       | Output 12      |
| 15       | Output 13      |
| 16       | Output 14      |
| 17       | Output 15      |
| 18       | Output 16      |
| 19       | Outputs 9 - 16 |
|          | common         |
|          | (return)       |
| 20       | No connection  |



## 7.4 Output Module, 120/240 Vac 16-Point Isolated: IC694MDL350

Figure 183: IC694MDL350



The **120/240 Vac 16-Point Isolated Output** module, IC694MDL350, provides sixteen individually-isolated output points. A high level of noise immunity minimizes the need for external snubbers to protect the outputs against transient electrical noise on the power line. The outputs can control a wide range of inductive and incandescent loads.

Power to operate the output loads must be provided with an external AC power supply.

A DIP switch at the rear of Module is used to select the outputs' default mode: Force Off or Hold the Last State. Module must be removed from the backplane to set this switch.

This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth typically needed for field wiring to AC devices. Refer to Chapter 17 for more information on Terminal Blocks. Terminal Blocks are ordered separately.

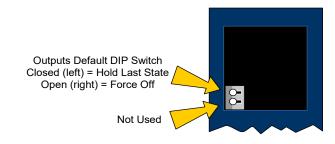
Individually-numbered LEDs show the ON/OFF status of each output point. The TB LED indicates the presence of the removable Terminal Block. The TB LED is green when the Terminal Block is present or red when the Terminal Block is not present. The red bands on the door card indicate the MDL350 is a high-voltage module.

The IC694MDL350 module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module cannot be used with a Series 90-30 PLC CPU.

### 7.4.1 Specifications: MDL350


| MDL350                 | Specification                                                |  |
|------------------------|--------------------------------------------------------------|--|
| Rated Voltage          | 120/240 Vac                                                  |  |
| Output Voltage Range   | 74 – 265Vac (47 to 63 Hz), 120/240 Vac nominal               |  |
| Outputs per Module     | 16 isolated                                                  |  |
| Isolation:             |                                                              |  |
| Field to Logic Side    | 250 Vac continuous; 1500 Vac for 1 minute                    |  |
| Group to Group         | 250 Vac continuous; 1500 Vac for 1 minute                    |  |
| Power Consumption      | 315 mA (with all outputs ON) from 5Vdc bus on the backplane  |  |
| Diagnostics            | Fieldside terminal block status reported to RX3i CPU         |  |
| Output Current         | Per Point 2A max. at 30°C, 1A max. at 60°C                   |  |
| (Linear de-rating)     | Per Module 5A max. at 30°C, 4A max. at 60°C                  |  |
| Output Characteristics |                                                              |  |
| Inrush Current         | 20 Amps maximum for one cycle                                |  |
| Minimum Load Current   | 10 mA per point                                              |  |
| Output Voltage Drop    | 1.5 volts maximum                                            |  |
| Output Leakage Current | 2 mA maximum                                                 |  |
| On, Off Response Times | 1/2 cycle maximum                                            |  |
| Fuses                  | No internal fusing. The use of appropriate external fuses is |  |
|                        | recommended for short circuit protection.                    |  |

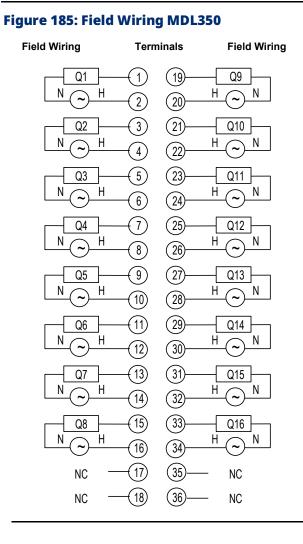
For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

#### **Setting the Output Defaults**

The DIP switch at the rear of Module selects the default operation for the output circuits of this module. Module must be removed from the backplane to set this switch. Note that there are two DIP switches on Module. Only the upper switch is used for this module.

Figure 184: DIP Switch Setting MDL350



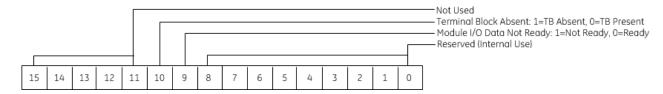

With the Outputs Default Mode switch in the right (open) position, the outputs will turn off whenever communication with the CPU is lost. When the switch is in the left position, the outputs will hold their last programmed value whenever communication with the CPU is lost.

Backplane power and power to the outputs must be present to Hold the Last State. Otherwise, Module will default outputs regardless of the DIP switch setting.

The Outputs Default Mode selection made with the DIP switch must match the selection made for this feature in the software configuration of this module. If the two do not match, a warning message is displayed in the fault table.

### 7.4.2 Field Wiring: MDL350

|               | I        |
|---------------|----------|
| Connection    | Terminal |
| Output 1      | 1        |
| Output 1      | 2        |
| Supply        |          |
| Output 2      | 3        |
| Output 2      | 4        |
| Supply        |          |
| Output 3      | 5        |
| Output 3      | 6        |
| Supply        |          |
| Output 4      | 7        |
| Output 4      | 8        |
| Supply        |          |
| Output 5      | 9        |
| Output 5      | 10       |
| Supply        |          |
| Output 6      | 11       |
| Output 6      | 12       |
| Supply        |          |
| Output 7      | 13       |
| Output 7      | 14       |
| Supply        |          |
| Output 8      | 15       |
| Output 8      | 16       |
| Supply        |          |
| No connection | 17       |
| No connection | 18       |




| Terminal | Connection    |
|----------|---------------|
| 19       | Output 9      |
| 20       | Output 9      |
|          | Supply        |
| 21       | Output 10     |
| 22       | Output 10     |
|          | Supply        |
| 23       | Output 11     |
| 24       | Output 11     |
|          | Supply        |
| 25       | Output 12     |
| 26       | Output 12     |
|          | Supply        |
| 27       | Output 13     |
| 28       | Output 13     |
|          | Supply        |
| 29       | Output 14     |
| 30       | Output 14     |
|          | Supply        |
| 31       | Output 15     |
| 32       | Output 15     |
|          | Supply        |
| 33       | Output 16     |
| 34       | Output 16     |
|          | Supply        |
| 35       | No connection |
| 36       | No connection |

#### 7.4.3 Module Status Data: MDL350

Discrete output module IC694MDL350 provides sixteen bits of status data to the CPU in the assigned Module Status Reference location. By default, the configured length of this status area is 0. To access this data, the length must be changed from 0 to 16.

Module uses the lower 11 input bits to report its status information to the RX3i CPU. It has the following content:



**Note:** the sense of bit 9 is inverted compared to most other modules. Here "1" indicates not ready.

## 7.5 Output Module, 120/240 Vac Isolated, 2 Amp, 5-Point: IC694MDL390

Figure 186: IC694MDL390



The **120/240 Vac 2 Amp Isolated Output** module, IC694MDL390, provides five isolated output points, each with a separate common. Each output circuit is isolated from the others relative to the AC power source. The commons are not tied together inside Module. The output circuits can be used on different phases of the AC supply or powered from the same supply.

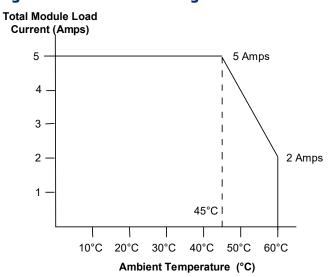
AC Power to operate the loads connected to the outputs must be supplied by the user. *This module requires an AC power source, it cannot be used with a DC power source.* 

Outputs are individually fused with a 3 Amp fuse. An RC snubber protects each output against transient electrical noise on the power line. This module provides a high degree of inrush current (greater than 10 times the rated current) so the outputs can control a wide range of inductive and incandescent loads.

Individual numbered LEDs show the ON/OFF status of each output point. The red LED (F) turns ON if an output fuse blows. The red bands on the label show that MDL390 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system. It should be configured as an 8-point output module with programs referencing the five least significant bits.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.


### 7.5.1 Specifications: MDL390

| MDL390                              | Specifications                                                              |
|-------------------------------------|-----------------------------------------------------------------------------|
| Rated Voltage                       | 120/240 Vac                                                                 |
| Output Voltage Range                | 85 to 264Vac, 50/60 Hz                                                      |
| Outputs per Module                  | 5 (each output isolated from the others)                                    |
| Isolation:                          |                                                                             |
| Field to Backplane (optical) and to | 250 Vac continuous;                                                         |
| Frame Ground                        | 1500 Vac for 1 minute                                                       |
| Point to Point                      | 250 Vac continuous; 1500 Vac for 1 minute                                   |
| Output Current                      | 2 Amps maximum per point                                                    |
|                                     | 5 Amps maximum per module at 45°C (113°F)                                   |
|                                     | 2 Amps maximum per module at 60°C (140°F) Maximum load current              |
|                                     | depends on ambient temperature as displayed in Figure 187.                  |
| Output Characteristics              |                                                                             |
| Inrush Current                      | 25 Amps maximum for one cycle                                               |
| Minimum Load Current                | 100mA                                                                       |
| Output Voltage Drop                 | 1.5 volts maximum                                                           |
| Output Leakage Current              | 3mA maximum at 120 Vac                                                      |
|                                     | 6mA maximum at 240 Vac                                                      |
| On Response Time                    | 1ms maximum                                                                 |
| Off Response Time                   | 1/2 cycle maximum                                                           |
| Power Consumption                   | 110mA (all outputs on) from 5Vdc bus on the backplane                       |
| Fuses (quantity 5)                  | 3 Amps, part number 44A724627-111. Refer to Section 2.6.4, Module Fuse List |
|                                     | for more information.                                                       |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

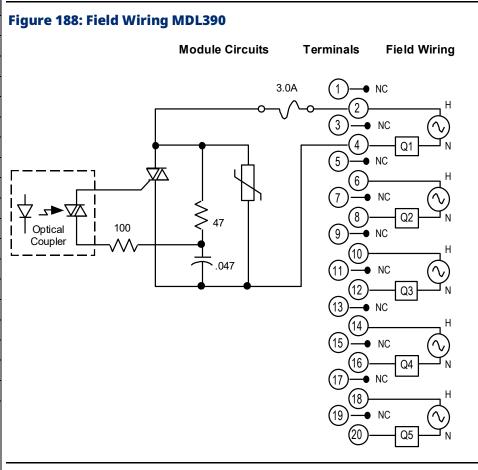

### 7.5.2 Thermal Derating MDL390

Figure 187: Thermal Derating Curve MDL390



### 7.5.3 Field Wiring: MDL390

| Terminal | Connection      |
|----------|-----------------|
| 1        | No connection   |
| 2        | Output 1 return |
| 3        | No connection   |
| 4        | Output 1        |
| 5        | No connection   |
| 6        | Output 2return  |
| 7        | No connection   |
| 8        | Output 2        |
| 9        | No connection   |
| 10       | Output 3 return |
| 11       | No connection   |
| 12       | Output 3        |
| 13       | No connection   |
| 14       | Output 4 return |
| 15       | No connection   |
| 16       | Output 4        |
| 17       | No connection   |
| 18       | Output 5 return |
| 19       | No connection   |
| 20       | Output 5        |
|          |                 |
|          |                 |
| 20       | Output 5        |



## 7.6 Output Module, 12/24Vdc 2A Positive Logic 8-Point: IC694MDL730

#### The 12/24Vdc 2 Amp Positive Logic Output module,

IC694MDL730, provides one group of eight outputs with a common power output terminal. This module has positive logic characteristics; it sources current to the loads from the user common or positive power bus. The output device is connected between the negative power bus and Module output. The output characteristics are compatible with a wide range of load devices, such as motor starters, solenoids, and indicators.

Individual numbered LEDs show the ON/OFF status of each output point.

The red LED (F) turns ON if either of the fuses blows. A load must be connected to the blown fuse for the indicator to light up. Module has two 5-Amp fuses with each fuse protecting four outputs: the first fuse protects A1 – A4; the second fuse protects A5 – A8. The fuses are electrically connected to the same common.

The blue bands on the label indicate that MDL730 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i or Series 90 30 system.

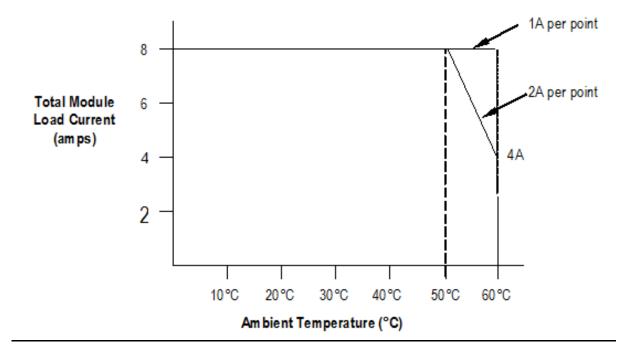
Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

DC power to operate the field devices is supplied by the user.

#### 7.6.1 LEDs

| LED           | Status | Description                       |
|---------------|--------|-----------------------------------|
| Output Status | Green  | Output is ON                      |
| (1-8)         | OFF    | Output is OFF                     |
| Γυσο (Γ)      | OFF    | Fuses are OK                      |
| Fuse (F)      | Red    | One or more of the fuses is blown |

Figure 189: IC694MDL730

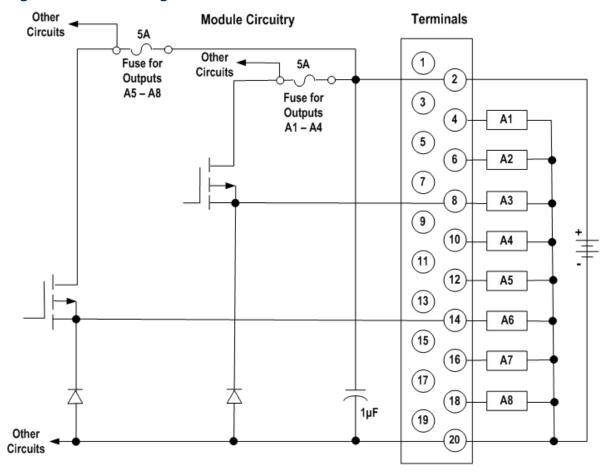



### 7.6.2 Specifications: MDL730

| MDL730                       | Specifications                                   |
|------------------------------|--------------------------------------------------|
| Rated Voltage                | 12/24 Vdc                                        |
| Output Voltage Range         | 12 to 24 Vdc (+20%, -15%)                        |
| Outputs per Module           | 8 (one group of eight outputs)                   |
| Isolation                    | 1500 volts between the field-side and logic side |
| Output Current <sup>25</sup> | 2 Amps maximum per point                         |
|                              | 2 Amps maximum per fuse at 60°C (140°F)          |
|                              | 4 Amps maximum per fuse at 50°C (122°F)          |
| Output Characteristics       |                                                  |
| Inrush Current               | 9.4 Amps for 10 ms                               |
| Output Voltage Drop          | 1.2-volt maximum                                 |
| Off-state Leakage            | 1mA maximum                                      |
| On Response Time             | 2ms maximum                                      |
| Off Response Time            | 2ms maximum                                      |
| Power Consumption            | 55mA (all outputs on) from 5Vdc bus on backplane |

### 7.6.3 Thermal Derating MDL730

Figure 190: Thermal Derating Curve MDL730



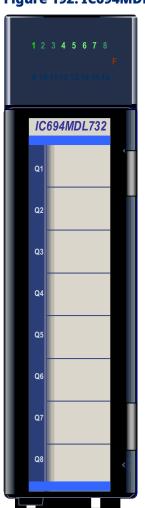

 $<sup>^{25}</sup>$  Maximum load current depends upon surrounding air temperature.

#### 7.6.4 Field Wiring: MDL730

Field wiring connections to Module are made via the removable terminal assembly described below.

Figure 191: Field Wiring MDL730




#### **Terminal Assemblies**

The MDL730 module has a special terminal assembly that is equipped with holding screws. These screws prevent the terminal assembly to module connections from deteriorating in applications where the controller is subject to severe vibration. To install these terminal assemblies, follow the standard installation instructions in Chapter 17, then tighten the two holding screws to 8 to 10 in-lbs (1 Nm).

Screw terminals accept two copper wires in the range AWG #22 (0.36 mm²) to AWG #16 (1.3 mm²), or one AWG #14 (2.1 mm²) copper 90°C (194°F) wire. Each terminal can accept solid or stranded wires, but the wires into any given terminal must be the same type (both solid or both stranded) and the same size. Screw torque is from 9.6 in-lbs to 11.5 in-lbs (1.1 Nm to1.3 Nm).

## 7.7 Output Module, 12/24Vdc 0.5A Positive Logic 8-Point: IC694MDL732

Figure 192: IC694MDL732



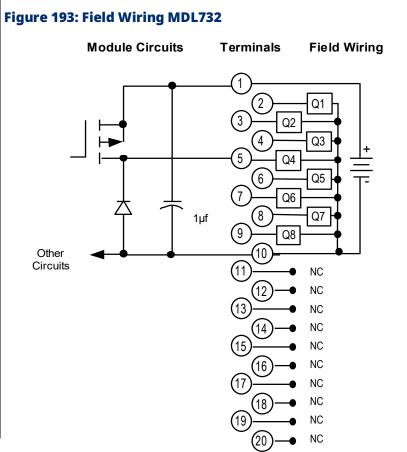
The 12/24Vdc 0.5 Amp Positive Logic Output module, IC694MDL732, provides one group of eight outputs with a common power output terminal. This module has positive logic characteristics; it sources current to the loads from the user common or positive power bus. The output device is connected between the negative power bus and Module output. The output characteristics are compatible with a wide range of load devices, such as: motor starters, solenoids, and indicators.

Power to operate the field devices must be supplied by the user.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The blue bands on the label show that MDL732 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.


## 7.7.1 Specifications: MDL732

| MDL732                                               | Specifications                             |
|------------------------------------------------------|--------------------------------------------|
| Rated Voltage                                        | 12/24 Vdc                                  |
| Output Voltage Range                                 | 12 to 24 Vdc (+20%, -15%)                  |
| Outputs per Module                                   | 8 (one group of eight outputs)             |
| Isolation: Field to Backplane (optical) and to Frame | 250 Vac continuous;                        |
| Ground                                               | 1500 Vac for 1 minute                      |
| Output Current                                       | 0.5 Amps maximum per point                 |
|                                                      | 2 Amps maximum per common                  |
| Output Characteristics                               |                                            |
| Inrush Current                                       | 4.78 Amps for 10 ms                        |
| Output Voltage Drop                                  | 1 volt maximum                             |
| Off-state Leakage                                    | 1mA maximum                                |
| On Response Time                                     | 2ms maximum                                |
| Off Response Time                                    | 2ms maximum                                |
| Power Consumption                                    | 50mA (all outputs on) from 5Vdc bus on the |
|                                                      | backplane                                  |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

### 7.7.2 Field Wiring: MDL732

| Terminal | Connection      |
|----------|-----------------|
| 1        | DC+             |
| 2        | Output 1        |
| 3        | Output 2        |
| 4        | Output 3        |
| 5        | Output 4        |
| 6        | Output 5        |
| 7        | Output 6        |
| 8        | Output 7        |
| 9        | Output 8        |
| 10       | Outputs 1 - 8   |
|          | common (return) |
| 11       | No connection   |
| 12       | No connection   |
| 13       | No connection   |
| 14       | No connection   |
| 15       | No connection   |
| 16       | No connection   |
| 17       | No connection   |
| 18       | No connection   |
| 19       | No connection   |
| 20       | No connection   |



# 7.8 Output Module 125Vdc, 1 Amp, 6-Point Isolated Positive/Negative: IC694MDL734

Figure 194: IC694MDL734



The 125Vdc 1 Amp Positive/Negative Logic Output module, IC694MDL734, provides six isolated output points. Each output point has a separate common terminal. This output module can be wired to have either positive logic characteristics so that it sources current to the loads from the user common or positive power bus; or negative logic characteristics so that it sinks current from the loads to the user common or negative power bus. The output characteristics are compatible with a wide range of load devices, such as: motor starters, solenoids, and indicators.

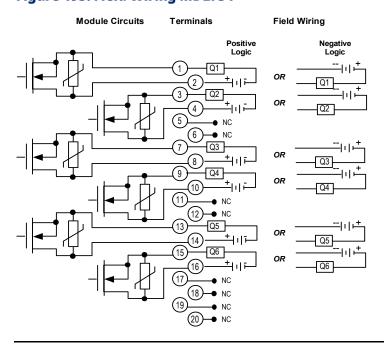
Power to operate the field devices must be supplied by the user. External fusing is recommended. Two Amp loads can be driven by wiring and driving two outputs in parallel.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The red bands on the label show that MDL734 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 7.8.1 Specifications: MDL734


| MDL734                                           | Specifications                              |
|--------------------------------------------------|---------------------------------------------|
| Rated Voltage                                    | 125 Vdc                                     |
| Output Voltage Range                             | +10.8 to +150 Vdc                           |
| Outputs per Module                               | 6 (isolated)                                |
| Isolation:                                       |                                             |
| Field to Backplane (optical) and to Frame Ground | 250 Vac continuous;                         |
|                                                  | 1500 Vac for 1 minute                       |
| Point to Point                                   | 250 Vac continuous; 1500 Vac for 1 minute   |
| Output Current                                   | 1 Amp maximum per point                     |
| Output Characteristics                           |                                             |
| Inrush Current                                   | 7 Amps for 100 ms at 2% duty cycle, using 2 |
|                                                  | outputs wired in parallel                   |
| Output Voltage Drop                              | 1 volt maximum                              |
| Off-state Leakage                                | 1mA maximum                                 |
| On Response Time                                 | 7ms maximum                                 |
| Off Response Time                                | 5ms maximum                                 |
| Power Consumption                                | 90 mA (all outputs on) from 5Vdc bus on     |
|                                                  | backplane                                   |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

### 7.8.2 Field Wiring: MDL734

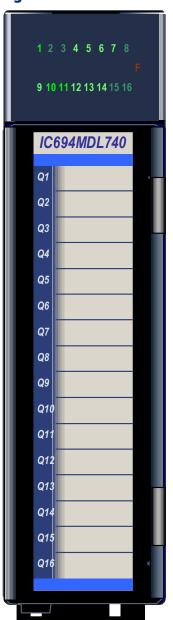

| Terminal | Positive Logic Connection | Negative Logic Connection |
|----------|---------------------------|---------------------------|
| 1        | Output 1                  | Output 1 return (DC+)     |
| 2        | Output 1 return (DC+)     | Output 1                  |
| 3        | Output 2                  | Output 2 return (DC+)     |
| 4        | Output 2 return (DC+)     | Output 2                  |
| 5        | No connection             | No connection             |
| 6        | No connection             | No connection             |
| 7        | Output 3                  | Output 3 return (DC+)     |
| 8        | Output 3 return (DC+)     | Output 3                  |
| 9        | Output 4                  | Output 4 return (DC+)     |
| 10       | Output 4 return (DC+)     | Output 4                  |
| 11       | No connection             | No connection             |
| 12       | No connection             | No connection             |
| 13       | Output 5                  | Output 5 return (DC+)     |
| 14       | Output 5 return (DC+)     | Output 5                  |
| 15       | Output 6                  | Output 6 return (DC+)     |
| 16       | Output 6 return (DC+)     | Output 6                  |
| 17       | No connection             | No connection             |
| 18       | No connection             | No connection             |
| 19       | No connection             | No connection             |
| 20       | No connection             | No connection             |

Figure 195: Field Wiring MDL734



# 7.9 Output Module, 12/24Vdc, 0.5 Amp, Positive Logic, 16-Point: IC694MDL740

Figure 196: IC694MDL740



The *12/24Vdc 0.5 Amp Positive Logic Output* module, IC694MDL740, provides sixteen output points in two groups of eight. Each group has a common power output terminal. Module has positive logic characteristics; it sources current to the loads from the user common or positive power bus. Output devices are connected between the negative power bus and Module terminals. The output characteristics of this module are compatible with a wide range of load devices, such as: motor starters, solenoids, and indicators. Power to operate the field devices must be supplied by the user.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The blue bands on the label show that MDL740 is a low-voltage module.

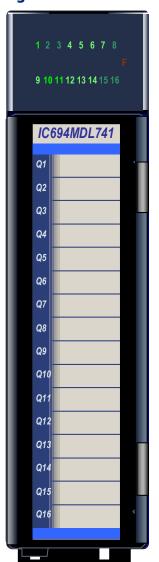
This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 7.9.1 Specifications: MDL740

| MDL740                                    | Specifications                                        |
|-------------------------------------------|-------------------------------------------------------|
| Rated Voltage                             | 12/24 Vdc                                             |
| Output Voltage Range                      | 12 to 24 Vdc (+20%, -15%)                             |
| Outputs per Module                        | 16 (two groups of eight outputs each)                 |
| Isolation:                                |                                                       |
| Field to Backplane (optical) and to Frame | 250 Vac continuous;                                   |
| Ground                                    | 1500 Vac for 1 minute                                 |
| Group to Group                            | 250 Vac continuous;                                   |
|                                           | 1500 Vac for 1 minute                                 |
| Output Current                            | 0.5 Amps maximum per point                            |
|                                           | 2 Amps maximum per common                             |
| Power Consumption                         | 110mA (all outputs on) from 5Vdc bus on the backplane |
| Output Characteristics                    |                                                       |
| Inrush Current                            | 4.78 Amps for 10 ms                                   |
| Output Voltage Drop                       | 1 volt maximum                                        |
| Off-state Leakage                         | 1mA maximum                                           |
| On Response Time                          | 2ms maximum                                           |
| Off Response Time                         | 2ms maximum                                           |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.


## 7.9.2 Field Wiring: MDL740

| Terminal | Connection      |
|----------|-----------------|
| 1        | DC+             |
| 2        | Output 1        |
| 3        | Output 2        |
| 4        | Output 3        |
| 5        | Output 4        |
| 6        | Output 5        |
| 7        | Output 6        |
| 8        | Output 7        |
| 9        | Output 8        |
| 10       | Outputs 1 – 8   |
|          | common (return) |
| 11       | DC+             |
| 12       | Output 9        |
| 13       | Output 10       |
| 14       | Output 11       |
| 15       | Output 12       |
| 16       | Output 13       |
| 17       | Output 14       |
| 18       | Output 15       |
| 19       | Output 16       |
| 20       | Outputs 9 - 16  |
|          | common (return) |

Figure 197: Field Wiring MDL740 Field Wiring **Module Circuits Terminals** Q1 Q3 Q4 Q5 Q6 (8) 1µf Q7 Q8 Other Circuits Q9 Q10 Q11 Q15

# 7.10 Output Module, 12/24Vdc, 0.5 Amp, Negative Logic 16-Point: IC694MDL741

Figure 198: IC694MDL741



The 12/24Vdc 0.5 Amp Negative Logic Output module,

IC694MDL741, provides sixteen output points in two groups. Each group has a common power output terminal. This output module has negative logic characteristics; it sinks current from the loads to the user common or negative power bus. Output devices are connected between the positive power bus and the output terminals. The output characteristics of this module are compatible with a wide range of load devices, such as: motor starters, solenoids, and indicators. Power to operate the field devices must be supplied by the user.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module.

The blue bands on the label show that MDL741 is a low-voltage module.

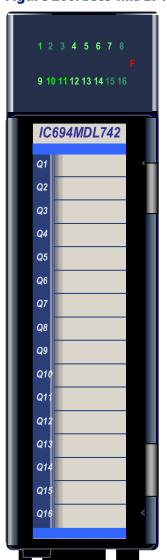
This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

## 7.10.1 Specifications: MDL741

| MDL741                       | Specifications                          |
|------------------------------|-----------------------------------------|
| Rated Voltage                | 12/24 Vdc                               |
| Output Voltage Range         | 12 to 24 Vdc (+20%, -15%)               |
| Outputs per Module           | 16 (two groups of eight outputs each)   |
| Isolation:                   |                                         |
| Field to Backplane (optical) | 250 Vac continuous;                     |
| Frame Ground                 | 1500 Vac for 1 minute                   |
| Group to Group               | 250 Vac continuous;                     |
|                              | 1500 Vac for 1 minute                   |
| Output Current               | 0.5 Amps maximum per point              |
|                              | 2 Amps maximum per common               |
| Power Consumption            | 110mA (all outputs on) from 5Vdc bus on |
|                              | backplane                               |
| Output Characteristics       |                                         |
| Output Voltage Drop          | 0.5 volts maximum                       |
| Off-state Leakage            | 1mA maximum                             |
| On Response Time             | 2ms maximum                             |
| Off Response Time            | 2ms maximum                             |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.


### 7.10.2 Field Wiring: MDL741

| Terminal | Connection     |
|----------|----------------|
| 1        | Outputs 1 – 8  |
|          | common (DC+)   |
| 2        | Output 1       |
| 3        | Output 2       |
| 4        | Output 3       |
| 5        | Output 4       |
| 6        | Output 5       |
| 7        | Output 6       |
| 8        | Output 7       |
| 9        | Output 8       |
| 10       | DC-            |
| 11       | Outputs 9 – 16 |
|          | common (DC+)   |
| 12       | Output 9       |
| 13       | Output 10      |
| 14       | Output 11      |
| 15       | Output 12      |
| 16       | Output 13      |
| 17       | Output 14      |
| 18       | Output 15      |
| 19       | Output 16      |
| 20       | DC-            |

Figure 199: Field Wiring MDL741 **Module Circuits Terminals** Field Wiring (2)Q1 Q2 Q3 Q5 Q6 (8) Q7 1µf Q8 Other Circuits Q9 Q10 Q11 Q12 (16) Q13 Q14 (18) Q15 Q16

#### Output Module, 12/24Vdc 1A Positive Logic, 16-7.11 Point with ESCP per Group: IC694MDL742

indicators.



The 12/24Vdc 1 Amp Positive Logic Electronic Short Circuit Figure 200: IC694MDL742 Protection (ESCP) Output module, IC694MDL742, provides sixteen output points in two groups of eight. Each group has a common power output terminal. This output module has positive logic characteristics: it sources current to the loads from the user common or positive power bus. Output devices are connected between the negative power bus and the output terminals. The

Power to operate the field devices must be supplied by the user.

output characteristics of this module are compatible with a wide

range of load devices, such as: motor starters, solenoids, and

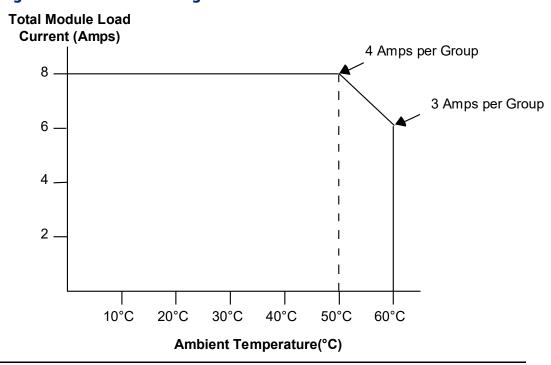
Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The red LED (F) in Module header indicates electronic short circuit protection trips. The blue bands on the label show that MDL742 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, Hot Insertion and Removal.

### 7.11.1 Electronic Short-Circuit Protection (ESCP)

Module MDL742 has two Electronic Short Circuit Protection circuits. The first circuit protects points 1 to 8 and the second protect points 9 to 16. Module electronically monitors the common signal for each group. If a short circuit occurs, Module turns off the output points in that group, and turns on the red LED (F). The point LEDs do not turn off. Electronic Short Circuit Protection does not prevent individual outputs from exceeding their ratings, but it protects Module in case of a short-circuited load. Electronic Short Circuit Protection is reset by cycling the 12/24Vdc user power to Module.


#### 7.11.2 Specifications: MDL742

| MDL742                       | Specifications                                    |
|------------------------------|---------------------------------------------------|
| Rated Voltage                | 12/24 Vdc                                         |
| Output Voltage Range         | 12 to 24 Vdc (+20%, -15%)                         |
| Outputs per Module           | 16 (two groups of eight outputs each)             |
| Isolation:                   |                                                   |
| Field to Backplane (optical) | 250 Vac continuous;                               |
| Frame Ground                 | 1500 Vac for 1 minute                             |
| Group to Group               | 250 Vac continuous; 1500 Vac for 1 minute         |
| Output Current               | 1 Amp maximum per point                           |
|                              | 4 Amps maximum per group at 50°C                  |
|                              | 3 Amps maximum per group at 60°C                  |
|                              | Maximum total load current depends on the ambient |
|                              | temperature as displayed in Figure 201.           |
| Power Consumption            | 130mA (all outputs on) from 5Vdc bus on backplane |
| Output Characteristics       |                                                   |
| Inrush Current               | 5.2 Amps for 10 ms                                |
| Output Voltage Drop          | 1.2 volts maximum                                 |
| Off-state Leakage            | 1mA maximum                                       |
| On Response Time             | 2ms maximum                                       |
| Off Response Time            | 2ms maximum                                       |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

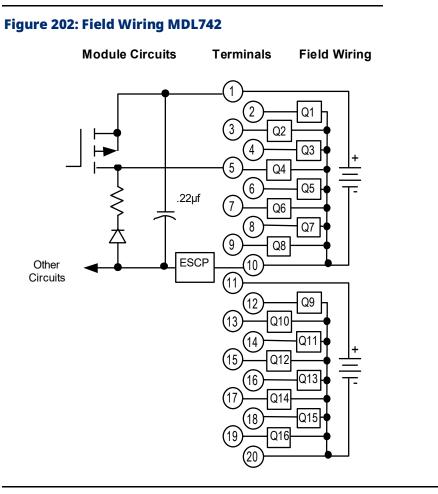

### 7.11.3 Thermal Derating: MDL742

Figure 201: Thermal Derating Curve MDL742



### 7.11.4 Field Wiring: MDL742

| Terminal | Connection     |
|----------|----------------|
| 1        | DC+            |
| 2        | Output 1       |
| 3        | Output 2       |
| 4        | Output 3       |
| 5        | Output 4       |
| 6        | Output 5       |
| 7        | Output 6       |
| 8        | Output 7       |
| 9        | Output 8       |
| 10       | Outputs 1 – 8  |
|          | common         |
|          | (return)       |
| 11       | DC+            |
| 12       | Output 9       |
| 13       | Output 10      |
| 14       | Output 11      |
| 15       | Output 12      |
| 16       | Output 13      |
| 17       | Output 14      |
| 18       | Output 15      |
| 19       | Output 16      |
| 20       | Outputs 9 - 16 |
|          | common         |
|          | (return)       |



## 7.12 Output Module, 5/24Vdc (TTL) Negative Logic, 32-Point: IC694MDL752

#### **Figure 203: IC694MDL752**



The *5/24Vdc (TTL) Negative Logic Outpu*t module, IC694MDL752, provides thirty-two discrete outputs arranged in four isolated groups of eight. Each group has its own common. The outputs are negative logic or sinking-type outputs (the ON state for a point results in an active low output).

Module has two modes of operation. In TTL mode, the outputs can switch loads across +5Vdc ( $\pm5$ %) and are capable of sinking a maximum current of 25mA per point. In 12/24V mode, the outputs can switch loads over the range of  $\pm12$  to  $\pm24$ Vdc ( $\pm20$ %,  $\pm15$ %) and are capable of sinking a maximum current of 0.5A per point.

There are two pins on the I/O connectors for each group common. Each pin has a current-handling capacity of 3 Amps. It is recommended that connections be made to both pins when connecting the common; however, it is required for high-current applications (between 3 and 4 Amps).

Each group can be used to drive different loads. For example, Module can drive TTL loads, 12Vdc loads, and 24Vdc loads on different groups. It is important to consider the effects of electrical noise when mixing TTL and inductive-type loads.

Each point has an internal pull-up resistor. The resistor passively pulls up the output to the user positive side power input (typically +5V for TTL mode) when the output point FET is OFF, providing a high logic level for TTL applications. All 32 outputs are forced OFF when the CPU is stopped.

Power to provide current to the loads must be provided by the user. Module also draws a minimum amount of power from the user supply to provide gate drive to the output devices

Backplane isolation between the field-side and logic side is provided by optocoupler on Module. No special fault or alarm diagnostics are reported. Individual numbered LEDs show the ON/OFF status of each output.

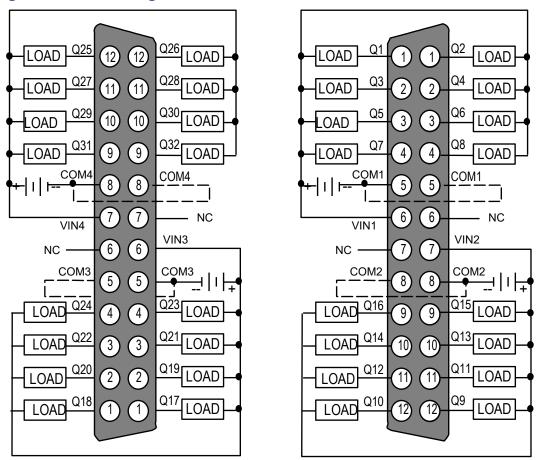
This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

### 7.12.1 Specifications: MDL752

| MDL752                              | Specifications                                            |
|-------------------------------------|-----------------------------------------------------------|
| Rated Voltage                       | 5, and 12 through 24 Vdc, negative logic                  |
|                                     | (active low)                                              |
| Output Voltage Range                | 4.75 to 5.25 Vdc (TTL mode)                               |
|                                     | 10.2 to 28.8 Vdc (12/24V mode)                            |
| Outputs per Module                  | 32 (four groups of eight outputs each)                    |
| Isolation:                          |                                                           |
| Field to Backplane (optical) and to | 250 Vac continuous;                                       |
| Frame Ground                        | 1500 Vac for 1 minute                                     |
| Group to Group                      | 50 Vac continuous; 500 Vac for 1 minute                   |
| Output Current                      | 25mA per point (maximum in TTL mode)                      |
|                                     | 0.5 Amps per point (maximum in 12/24V mode); with 4 Amps  |
|                                     | maximum per group and 3 Amps maximum per group common pin |
| Power Consumption                   | 260mA (maximum) from 5Vdc bus on backplane;               |
|                                     | (13mA + 3 mA/point ON + 4.7 mA/LED)                       |
|                                     | 12 mA (maximum) per group from user supply                |
|                                     | at 5Vdc and all eight outputs in group ON                 |
|                                     | 25 mA (maximum) per group from user supply                |
|                                     | at 12Vdc and all eight outputs in group ON                |
|                                     | 44 mA (maximum) per group from user supply                |
|                                     | at 24Vdc and all eight outputs in group ON                |
| Output Characteristics              |                                                           |
| Inrush Current                      | 4.6 Amps for 10ms                                         |
| On–state (active low)               | 0.4 Vdc (maximum in TTL mode)                             |
| Voltage Drop                        | 0.24 Vdc (maximum in 12/24V mode)                         |
| Off-state Leakage Current           | 0.1mA maximum                                             |
| On Response Time                    | 0.5ms maximum                                             |
| Off Response Time                   | 0.5ms maximum                                             |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.


#### 7.12.2 Field Wiring: MDL752

Connections to the output circuits are made from the load devices to two male 24–pin D-connectors (Fujitsu FCN–365P024–AU) on the front of Module.

The connectors on this module can be connected directly to field devices using a cable having a mating female connector on one end and stripped and tinned wires on the other end. You can purchase a pair of pre-wired cables, catalog numbers IC693CBL327 and IC693CBL328 or build cables. Refer Chapter 17 of this manual for more information.

Connections can also be made a pair of cables with connectors on each end. These cables connect Module with DIN-rail mounted terminal blocks as described in Chapter 17.

Figure 204: Field Wiring Pinouts MDL752



### 7.12.3 Typical Connections: MDL752

Figure 205: Typical Connections Diagram MDL752 xVIN 10K Contactor Coil 24V (User Load) PTx xCOM xVIN COMx 10K RX3i 5V TTL INPUT PTx INx xCOM xVIN 10K User TTL Input 5V PTx xCOM

## 7.13 Output Module, 12/24Vdc, 0.5A Positive Logic, 32-Point: IC694MDL753

Figure 206: IC694MDL753



The *12/24Vdc 0.5A Positive Logic Output* module, IC694MDL753, provides thirty-two discrete outputs in four isolated groups of eight. Each group has its own common. The outputs are positive logic or sourcing type outputs; they switch the loads on the positive side of the power supply, and supply current to the load. The outputs can switch user loads over the range of +12 to +24Vdc (+20%, -15%) and can source a maximum current of 0.5 Amps per point. There are two pins on the I/O connectors for each group common. Each pin has a current handling capacity of 3 Amps. It is recommended that connections be made to both pins when connecting the common; however, it is required for high-current applications (between 3 and 4 Amps).

Each group can be used to drive different loads. For example, three groups might drive 24Vdc loads, while the fourth was reserved for driving 12Vdc loads.

Power to provide current to the loads must be provided by the user. Module also draws a minimum amount of power from the user supply to provide gate drive to the output devices.

Backplane isolation between the field-sideand logic side is provided by optocouplers on Module.

All 32 outputs are forced OFF when the CPU is stopped. No special fault or alarm diagnostics are reported. Individual numbered LEDs show the ON/OFF status of each output.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

# 7.13.1 Specifications: MDL753

| MDL753                              | Specifications                                   |
|-------------------------------------|--------------------------------------------------|
| Rated Voltage                       | 12 through 24 Vdc, positive logic                |
| Output Voltage Range                | 10.2 to 28.8 Vdc                                 |
| Outputs per Module                  | 32 (four groups of eight outputs each)           |
| Isolation:                          |                                                  |
| Field to Backplane (optical) and to | 250 Vac continuous;                              |
| Frame Ground                        | 1500 Vac for 1 minute                            |
| Group to Group                      | 50 Vac continuous; 500 Vac for 1 minute          |
| Output Current                      | 0.5 Amps per point with 4 Amps maximum per group |
|                                     | and 3 Amps maximum per group common pin          |
| Power Consumption                   | 260 mA (maximum) from 5Vdc bus on backplane;     |
|                                     | (13mA + 3mA/point ON + 4.7mA/LED)                |
|                                     | 16.5mA (maximum) per group from user supply      |
|                                     | at 24Vdc and all eight outputs in group ON       |
|                                     | 9.6mA (maximum) per group from user supply       |
|                                     | at 12Vdc and all eight outputs in group ON       |
| Output Characteristics              |                                                  |
| Inrush Current                      | 5.4 Amps for 10 ms                               |
| On–state Voltage Drop               | 0.3Vdc                                           |
| Off-state Leakage Current           | 0.1mA maximum                                    |
| On Response Time                    | 0.5ms maximum                                    |
| Off Response Time                   | 0.5ms maximum                                    |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

### 7.13.2 Field Wiring: MDL753

Connections to the output circuits are made from the load devices to two male 24-pin D-connectors (Fujitsu FCN-365P024-AU) on the front of Module. The connectors on this module can be wired directly to field devices using a cable having a mating female connector on one end and stripped and tinned wires on the other end. You can purchase a pair of pre-wired cables, catalog numbers IC693CBL327 and IC693CBL328 or build cables. Refer to Chapter 17 of this manual for more information.

Connections can also be made a pair of cables with connectors on each end. These cables connect Module with DIN-rail mounted terminal blocks as described in Chapter 17.

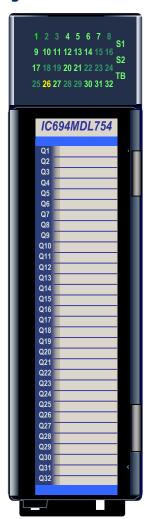

LOAD LOAD LOAD (12) (12)LOAD (1)LOAD LOAD (11) (11) LOAD LOAD 2 2 10 10 LOAD 3 3 LOAD LOAD LOAD Q32 LOAD 9 9 LOAD 4) 4 LOAD LOAD COM4 COM1 VIN4 8 5 5 VIN4 VIN1 7 6) (6)NC NC ╌┤┤╽┾ VIN3 6 <del>Ĭ</del>┤│┞ 7 NC NC ┯┤╽┞╌ СОМ3 COM<sub>2</sub> 8 [5] 5 8 VIN3 VIN2 Q23 LOAD Q24 Q16 LOAD LOAD LOAD 4 9) (9) LOAD LOAD LOAD 10 LOAD (11)LOAD LOAD OAD LOAD (11) Q18 Q10 LOAD LOAD LOAD LOAD 12

Figure 207: Field Wiring Pinouts MDL753

If the total current is greater than 3 Amps for a group, use both  $V_{\text{IN}}$  pins for the group by adding a second wire (shown by dashed lines above).

# 7.14 Output Module, 12/24Vdc, 0.75A Positive Logic, 32-Point with ESCP per Group: IC694MDL754

#### Figure 208: IC694MDL754



The *12/24Vdc*, *0.75A Positive Logic ESCP Output* module, IC694MDL754, provides thirty-two discrete outputs in two isolated groups of 16. Each group has its own common. The outputs are positive logic or sourcing type outputs; they switch the loads on the positive side of the power supply, and supply current to the load. The outputs can switch user loads over the range of +12Vdc to +24Vdc (+20%, -15%) and can source a maximum current of 0.75 Amps per point.

Each point has electronic overcurrent/short circuit protection and generates an individual fault if either condition exists. In addition to output driver faults being sent back to the RX3i controller, Module provides a loss of field-side power fault, ESCP point failure within a group, field terminal block ON/OFF status and a DIP switch configuration mismatch fault.

Each group can be used to drive different loads. For example, one group might drive 24Vdc loads, and the other could drive 12Vdc loads. Power for the loads must be provided by the user.

A DIP switch at the rear of Module is used to select the outputs default mode: Force Off or Hold Last State. Module must be removed from the backplane to set this switch.

This module can be installed in any I/O slot in an RX3i system. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

This module can be used with either a Box-style (IC694TBB032) or Spring-style (IC694TBS032) front Terminal Block (Refer to Chapter 17). The Terminal Block is ordered separately.

The blue bands on the label show that MDL754 is a low-voltage module.

Module cannot be used with a Series 90-30 PLC CPU.

## 7.14.1 Electronic Short-Circuit Protection (ESCP)

Each output point provides "self-recovering" protection against overcurrent, short circuit and over-temperature. The fault is present until the condition that caused the fault is removed or the faulted point is turned off. After the fault condition is removed the output driver automatically sets the output to the state it was in before the fault occurred.

Each output point provides transient voltage protection to clamp high voltages at or below 40 Vdc. Reverse voltage protection is provided for field power inputs.

#### 7.14.2 LEDs: MDL754

#### Figure 209: LED Layout MDL754

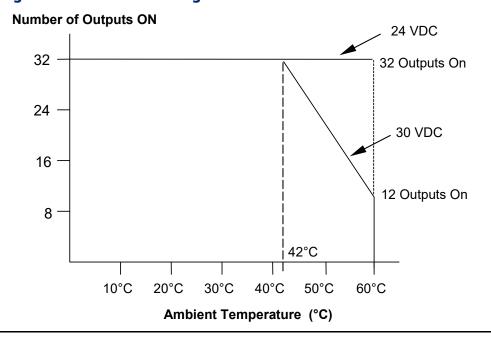


Outputs 1 – 16 Power Present
Outputs 17 – 32 Power Present
Terminal Block Present

Thirty-two green/yellow LEDs on Module indicate the ON/OFF status of points 1 through 32. These LEDs are green when the corresponding outputs are on, and yellow if the outputs are faulted. They are off when the corresponding outputs are off.

Two green/yellow LEDs indicate the presence of field power to each of the isolated output groups. They are green if field power is within limits. They are yellow if a point fault exists within their group. And they are off when field power is absent or outside operating limits.

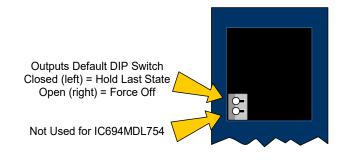
The red/green Terminal Block LED is green when the removable terminal block of this module is locked in place. It is red when the terminal block is not locked. The Terminal Block LED blinks if there is a non-recoverable module fault. Module also sends an *Addition of Terminal Block* or *Loss of Terminal Block* message to the RX3i CPU to report the Terminal Block status.


# 7.14.3 Specifications: MDL754

| MDL754                                    | Specifications                                                  |
|-------------------------------------------|-----------------------------------------------------------------|
| Rated Voltage                             | 12/24 Vdc, nominal                                              |
| Output Voltage Range                      | 10.2Vdc to 30 Vdc                                               |
| Outputs per Module                        | 32 (two isolated groups of 16 outputs each)                     |
| Isolation:                                |                                                                 |
| Field to Backplane (optical) and to Frame | 250 Vac continuous;                                             |
| Ground                                    | 1500 Vac for 1 minute                                           |
| Group to Group                            | 250 Vac continuous; 1500 Vac for 1 minute                       |
| Output Current                            | 0.75 Amps per point                                             |
| Power Consumption                         | 300 mA (maximum) from 5Vdc bus on backplane;                    |
| Thermal Derating                          | No derating at 24Vdc.                                           |
|                                           | At 30 Vdc, outputs are de-rated above 42 degrees C as displayed |
|                                           | in Figure 210.                                                  |
| External Power Supply                     |                                                                 |
| Rated Voltage                             | +12Vdc to +30 Vdc, 12/24Vdc nominal                             |
|                                           | Module does not provide isolation between external power and    |
|                                           | I/O points. Isolation can be achieved through the use of an     |
|                                           | isolated external power supply.                                 |
| External Power Supply Current Required    | Module version –CC and later: 72 mA/group with all outputs      |
| (not including load current)              | commanded Off, 132 mA/group with all outputs commanded          |
|                                           | ON.                                                             |
|                                           | Module version –BC and earlier: 72 mA/group with all outputs    |
|                                           | commanded OFF, 100 mA/group with all outputs commanded          |
|                                           | ON.                                                             |
| Output Characteristics                    |                                                                 |
| Inrush Current                            | 3 A supplied for 10ms without ESCP trip                         |
| Output Voltage Drop                       | 0.3 Vdc maximum                                                 |
| Steady-state overcurrent trip             | 5 A typical per point                                           |
| Output Leakage Current                    | 0.1 mA maximum                                                  |
| On Response Time                          | 0.5 ms maximum                                                  |
| Off Response Time                         | 0.5 ms maximum                                                  |
| Protection                                | Short-circuit protection, over-current protection, over-        |
|                                           | temperature protection, all with auto-recovery.                 |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

## 7.14.4 Thermal Derating: MDL754


Figure 210: Thermal Derating Curve MDL754



## 7.14.5 Output Defaults: MDL754

The DIP switch at the rear of Module selects the default operation for the output circuits of this module. Module must be removed from the backplane to set this switch. Note that there are two DIP switches on Module. Only the upper switch is used for module IC694MDL754.

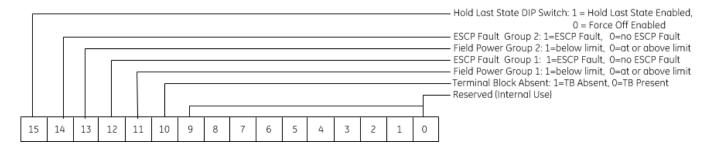
Figure 211: DIP Switch Settings MDL754



With the Outputs Default switch in the right (open) position, the outputs mode is set to Force Off. In this mode, the outputs will go to zero whenever communication with the CPU is lost. When the switch is in the left position, the Outputs Default mode is set to Hold Last State. In this mode, the outputs will retain their last programmed value whenever communication with the CPU is lost, and field power is present.

The Outputs Default selection made with the DIP switch must match the selection made for this feature in the software configuration of this module. If the two do not match, a *Module Outputs Default Mode Configuration Mismatch* fault occurs.

The following table summarizes the operation of Outputs Default mode with and without backplane power and field (external) power.


| Backplane | Field | Outputs         | Operation                                                          |
|-----------|-------|-----------------|--------------------------------------------------------------------|
| Power     | Power | Default         |                                                                    |
| On        | On    | Force Off or    | Normal Operation. If module fault detected, outputs are set to     |
|           |       | Hold Last State | zero.                                                              |
| On        | Off   | Force Off or    | Module detects loss of field power, communicates fault to CPU      |
|           |       | Hold Last State | while setting outputs to Off state. After field power is restored, |
|           |       |                 | the outputs are held in Off state until Module receives new        |
|           |       |                 | output data from the CPU. Point LEDs indicate desired output       |
|           |       |                 | without field power.                                               |
| Off       | On    | Force Off       | Module detects loss of communications and turns off the            |
|           |       |                 | outputs within 400ms. LEDs are off.                                |
|           |       | Hold Last State | Module detects loss of communications and holds outputs on         |
|           |       |                 | their last states until the CPU sends new output data. LEDs are    |
|           |       |                 | off                                                                |

# 7.14.6 Field Wiring: MDL754

| Connection     | Terminal | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | Terminal | Connection      |
|----------------|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------|
| Output 1       | 1        |              | Field Wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 19       | Output 17       |
| Output 2       | 2        | Field Wiring | Terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field Wiring | 20       | Output 18       |
| Output 3       | 3        | Q1 Q2        | -(1) (19)—<br>-(2) (20)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q17 Q18      | 21       | Output 19       |
| Output 4       | 4        | Q2 Q3        | $\begin{array}{cccc}  & 20 \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & & \\  & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\$ | Q19 Q19      | 22       | Output 20       |
| Output 5       | 5        | Q4           | <u>4</u> 22 <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q20          | 23       | Output 21       |
| Output 6       | 6        | Q5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q21          | 24       | Output 22       |
| Output 7       | 7        | Q6           | 6 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q22          | 25       | Output 23       |
| Output 8       | 8        | Q7 Q8        | 7 25—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q23 Q24      | 26       | Output 24       |
| Output 9       | 9        | Q9 Q9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q25 Q25      | 27       | Output 25       |
| Output 10      | 10       | Q10          | <u>10</u> 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q26          | 28       | Output 26       |
| Output 11      | 11       | Q11          | <u>11)</u> 29—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q27          | 29       | Output 27       |
| Output 12      | 12       | Q12          | 12 30—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q28          | 30       | Output 28       |
| Output 13      | 13       | Q13 Q14 Q14  | $\begin{array}{ccc}  & 31 \\ \hline  & 32 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q29 Q30      | 31       | Output 29       |
| Output 14      | 14       | Q15          | $ \begin{array}{ccc}  & 32 \\ \hline  & 33 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q31          | 32       | Output 30       |
| Output 15      | 15       | Q16          | —(16) (34)—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q32          | 33       | Output 31       |
| Output 16      | 16       | ]   +        | — <u>(17)</u> <u>(35)</u> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u></u>      | 34       | Output 32       |
| DC+ for 1 - 16 | 17       | ] <u> </u>   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>      | 35       | DC+ for 17 - 32 |
| DC- for 1 - 16 | 18       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 36       | DC- for 17 - 32 |

#### 7.14.7 Module Status Data: MDL754

Module can optionally report sixteen bits of status data to the CPU. To access this data, the length must be changed from 0 to 16. It has the following content:



Status bit 15 indicates the state of the Output Default DIP switch of this module. Module configuration should be set to match the DIP switch, as discussed earlier in this section.

#### 7.14.8 ESCP Status Data: MDL754

Module can optionally report the ESCP fault status of the outputs in input bits 0 - 31. By default, the length of this data area is 0. To access this data, the length must be changed from 0 to 32. The ESCP fault can be identified using the ESCP status bits:

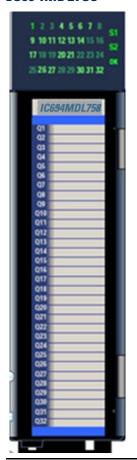
| Output ESCP Status Bits |                |  |
|-------------------------|----------------|--|
| Output Group 1          | Output Group 2 |  |
| 0 - 15                  | 16 - 31        |  |

# 7.15 Output Module, 12/24Vdc, 0.5A Positive Logic, 32-Point with ESCP per Group: IC694MDL758

The 12/24Vdc, 0.5A Positive Logic Output module with ESCP per group, IC694MDL758, provides thirty-two discrete outputs in two isolated groups of 16. Each group has its own common. The outputs are positive logic or sourcing-type outputs; they switch the loads on the positive side of the power supply, and supply current to the load. The outputs can switch user loads over the range of +12 to +24Vdc (+20%, -15%) and can source a maximum current of 0.5 Amps per point.

Each group has electronic short circuit protection and generates a fault if any output in the group is in a short circuit condition. Module provides an ESCP failure status within a group back to the RX3i controller. In addition to this, Module provides a fault on loss of field-side power within a group.

Each group can be used to drive different loads. For example, one group might drive 24Vdc loads, and the other could drive 12Vdc loads. Power for the loads must be provided by the user from an isolated source.


This module can be used with either a Box-style (IC694TBB032) or Spring-style (IC694TBS032) front Terminal Block (Refer to Chapter 17). The Terminal Block is ordered separately.

The blue bands on the label show that MDL758 is a low-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Figure 213: IC694MDL758



## 7.15.1 Electronic Short-Circuit Protection (ESCP)

Each output group provides "self-recovering" protection against short circuit. The fault is present until the condition that caused the fault is removed or the faulted group is turned off. After the fault condition is removed the output driver automatically sets the output to the state it was in before the fault occurred.

Each output point provides transient voltage protection to clamp high voltages at or below 40 Vdc.

### 7.15.2 LEDs: MDL758

Figure 214: LED Layout MDL758



Thirty-two green LEDs to show the status of the corresponding output channels

| LED           | Status | Description   |
|---------------|--------|---------------|
| Output Status | GREEN  | Output is ON  |
| (1-32)        | OFF    | Output is OFF |

Two bi-color LEDs show the fault status of the two output channel groups:

- S1 corresponds to fault condition on channels 1-16;
- S2 corresponds to fault condition on channels 17-32.

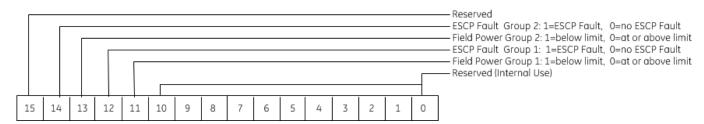
| LED         | Status | Description                    |
|-------------|--------|--------------------------------|
| ESCP Status | GREEN  | Groupx Outputs are Normal      |
| (S1-S2)     | RED    | Groupx Outputs have ESCP fault |

A single green LED shows the status of module power from backplane.

| LED           | Status | Description                |
|---------------|--------|----------------------------|
| Module Status | GREEN  | Module power OK            |
| (OK)          | OFF    | Module power not available |

# 7.15.3 Specifications: MDL758

| MDL758                              | Specifications                                                      |  |
|-------------------------------------|---------------------------------------------------------------------|--|
| Rated Voltage                       | 12Vdc through 24Vdc, positive logic                                 |  |
| Output Voltage Range                | 10.2Vdc to 28.8Vdc                                                  |  |
| Outputs per Module                  | 32 (two groups of sixteen outputs each)                             |  |
| Isolation                           |                                                                     |  |
| Field to Backplane (optical) and to | 250 Vac continuous; 1500 Vac for 1 minute                           |  |
| Frame Ground                        |                                                                     |  |
| Group to Group                      | 50 Vac continuous; 500 Vac for 1 minute                             |  |
| Output Current                      | 0.5 Amps per point with 8 Amps maximum per group without ESCP trip  |  |
| UL Approved Load Ratings            | 0.5 Amps per point pilot duty                                       |  |
|                                     | 0.5 Amps per point resistive                                        |  |
| Power Consumption                   | 250 mA (maximum) from 5Vdc bus on backplane                         |  |
|                                     | 33mA (maximum) per group from user-supplied isolated 24Vdc with all |  |
|                                     | sixteen outputs in group ON                                         |  |
|                                     | 20mA (maximum) per group from user-supplied isolated 12Vdc with all |  |
|                                     | sixteen outputs in group ON                                         |  |
| Output Characteristics              |                                                                     |  |
| Inrush Current                      | 5.4 Amps for 10 ms without ESCP trip                                |  |
| On-state Voltage Drop               | 0.3Vdc                                                              |  |
| Off-state Leakage Current           | 0.1mA maximum                                                       |  |
| On Response Time                    | 0.5ms maximum                                                       |  |
| Off Response Time                   | 0.5ms maximum                                                       |  |
| Installation Environment            | Surrounding Air 60°C maximum;                                       |  |
|                                     | For use in Pollution Degree 2 environments only                     |  |


For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

#### 7.15.4 Module Data: MDL758

Module MDL758 uses sixteen input bits and thirty-two output bits to exchange status and filter information with the RX3i CPU. The memory types and offsets for this data are selected in the hardware configuration for Module.

#### **Input Data: MDL758**

Module uses sixteen input bits to report its status information to the RX3i CPU. It has the following content:



#### **Output Data: MDL758**

Module receives thirty-two bits of output data from the RX3i CPU, one bit per output point. Bit 0 determines the state of Output 1; bit 31 determines the state of Output 32.

# 7.15.5 Field Wiring: MDL758

Field wiring connections to Module are made via the interposing quick-connect (TBQC) terminal assembly (Refer to Chapter 17):

| Connection     | Terminal |
|----------------|----------|
| Output 1       | 1        |
| Output 2       | 2        |
| Output 3       | 3        |
| Output 4       | 4        |
| Output 5       | 5        |
| Output 6       | 6        |
| Output 7       | 7        |
| Output 8       | 8        |
| Output 9       | 9        |
| Output 10      | 10       |
| Output 11      | 11       |
| Output 12      | 12       |
| Output 13      | 13       |
| Output 14      | 14       |
| Output 15      | 15       |
| Output 16      | 16       |
| DC+ for 1 - 16 | 17       |
| DC- for 1 - 16 | 18       |

| Figure 215:  | Field W        | iring/     | MDL758       |
|--------------|----------------|------------|--------------|
| Field Wiring | Term           | inals      | Field Wiring |
| Q1           |                | 19—        | Q17          |
| Q2           |                | 20—        | Q18          |
| Q3           | 3              | 21)—       | Q19          |
| Q4           | 4              | 22)—       | Q20          |
| Q5           |                | 23)—       | Q21          |
| Q6           | <u>6</u>       | 24)—       | Q22          |
| Q7           | 7              | 25)—       | Q23          |
| Q8           | 8              | 26)—       | Q24          |
| Q9           | 9              | (27)—      | Q25          |
| Q10          | <u>(10)</u>    | (28)—      | Q26          |
| Q11          | <u>(11)</u>    | (29)—      | Q27          |
| Q12          | <u>(12)</u>    | (30)—      | Q28          |
| Q13          | <u>(13)</u>    | (31)—      | Q29          |
| Q14          | <u>(14)</u>    | (32)—      | Q30          |
| Q15          | (15)           | (33)—      | Q31          |
| Q16          | <u>(16)</u>    | (34)—      | Q32          |
| +==          | —(17)<br>—(18) | 35—<br>36— | 글+<br>〒-     |

| _ | <i>,</i> , , , , , , , , , , , , , , , , , , |                 |
|---|----------------------------------------------|-----------------|
| ۱ | Terminal                                     | Connection      |
|   | 19                                           | Output 17       |
|   | 20                                           | Output 18       |
|   | 21                                           | Output 19       |
|   | 22                                           | Output 20       |
|   | 23                                           | Output 21       |
|   | 24                                           | Output 22       |
|   | 25                                           | Output 23       |
|   | 26                                           | Output 24       |
|   | 27                                           | Output 25       |
|   | 28                                           | Output 26       |
|   | 29                                           | Output 27       |
|   | 30                                           | Output 28       |
|   | 31                                           | Output 29       |
|   | 32                                           | Output 30       |
| ľ | 33                                           | Output 31       |
|   | 34                                           | Output 32       |
|   | 35                                           | DC+ for 17 - 32 |
| ľ | 36                                           | DC- for 17 - 32 |

# 7.16 Output Module, 24/125Vdc, 2A Positive Logic, 16-Point with ESCP & Diagnostics: IC695MDL765

The 24/125Vdc 2A Smart Digital Output module, IC695MDL765, provides sixteen discrete outputs in two isolated groups of 8 outputs. Each group of 8 outputs is referenced to an isolated common, providing group-to-group isolation. Module uses 24Vdc or 125Vdc.

The outputs are positive logic or sourcing-type outputs; they switch the loads on the positive side of the power supply, and supply current to the load. The outputs can switch user loads over the ranges of +18Vdc to +30 Vdc or 105Vdc to 132Vdc and can source a maximum current of 2 Amps per point.

Power for the loads must be provided by the user.

The field status LEDs (S1 and S2) indicate whether the external +24Vdc or +125Vdc power supply is present and above the minimum level, whether faults are present, and whether the terminal block is locked into place. Module also logs an *Addition of Terminal Block* or *Loss of Terminal Block* message to the I/O fault table to report the terminal block status.

Each point has electronic short circuit protection (ESCP) that shuts down an output and generates an individual fault if capacitive or incandescent surge current exceeds 10 amps, or if it exceeds 2 amps for more than 10 ms. In addition to output driver faults being sent back to the RX3i controller, Module provides a loss of field-side power fault, ESCP point failure within a group and field terminal block ON/OFF status.

Features of the Smart Digital Output module include:


- Output Pulse Test Capability
- Output Hold Last State or Default

Additional Diagnostics include:

- Over temperature
- Failed Switch Detection
- Overload Detection and Shutdown
- No-load Detection

This module can be used with either a Box-style (IC694TBB032) or Spring-style (IC694TBS032) front Terminal Block (Refer to Chapter 17). The Terminal Block is ordered separately.

Figure 216: IC695MDL765



The red bands on the label show that the MDL765 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

## 7.16.1 Electronic Short-Circuit Protection (ESCP)

Each output point provides protection against overcurrent, short circuit and over-temperature. The fault is present until the condition that caused the fault is removed and the faulted point is turned off.

Each output point provides transient voltage protection to clamp high voltages at or below 136Vdc.

## 7.16.2 LED Operation: MDL765

#### Figure 217: LED Layout MDL765



The 16 green/amber channel status LEDs on Module indicate the ON/OFF status of points 1 through 16.

Module OK LED indicates module status. The field status LEDs (S1 and S2) indicate whether the external +24Vdc or +125Vdc power supply is present and is above the minimum level, whether faults are present, and whether the terminal block is locked into place. Module also logs an *Addition of Terminal Block* or *Loss of Terminal Block* message to the I/O fault table to report the Terminal Block status.

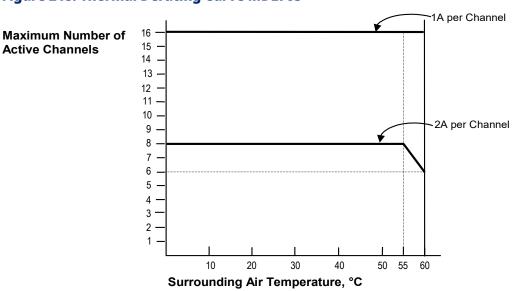
| LED                                                                     | Function           | LED Indications                                                                 |  |  |
|-------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|--|--|
| Name                                                                    |                    |                                                                                 |  |  |
| OK                                                                      | Module status      | Off: Module is not receiving power from the RX3i backplane or Module            |  |  |
|                                                                         |                    | has failed self-test.                                                           |  |  |
|                                                                         |                    | Solid green: Module OK and configured.                                          |  |  |
|                                                                         |                    | Blinking green: Module has not received configuration from the CPU. If          |  |  |
|                                                                         |                    | configuration is not successful, Module will continue to blink in this          |  |  |
|                                                                         |                    | mode.                                                                           |  |  |
|                                                                         |                    | Amber: Module hardware watchdog timeout.                                        |  |  |
|                                                                         |                    | Blinking amber: Module internal error. Record the blink pattern and             |  |  |
|                                                                         |                    | contact technical support.                                                      |  |  |
| 1–16                                                                    | Channel status     | Off: Output is off                                                              |  |  |
|                                                                         |                    | Green: Output is on                                                             |  |  |
|                                                                         |                    | Amber: Output fault                                                             |  |  |
| S1, S2                                                                  | Terminal block and | Off: Terminal block present and field power not present                         |  |  |
| field power status <b>Green:</b> Terminal block and field power present |                    | Green: Terminal block and field power present                                   |  |  |
|                                                                         |                    | <b>Red:</b> Terminal block not present or field power error. Field power errors |  |  |
|                                                                         |                    | include detecting 125Vdc when configured for 24Vdc or detecting only            |  |  |
|                                                                         |                    | 24Vdc when configured for 125Vdc.                                               |  |  |

**Note:** The OK, S1 and S2 LEDs blink green in unison when Module is in firmware update mode.

# 7.16.3 Specifications: MDL765

| MDL765                                                  | Specifications                                             |
|---------------------------------------------------------|------------------------------------------------------------|
| Field Power Voltage (24V nominal I/O), V <sub>In</sub>  | 18 to 30 Vdc                                               |
| Field Power Voltage (125V nominal I/O), V <sub>In</sub> | 105 to 132Vdc                                              |
| Ripple Voltage, Field Power                             | 10%Vpp                                                     |
| Outputs per Module                                      | 16 (two isolated groups of 8 outputs each)                 |
| Isolation                                               |                                                            |
| Field to Backplane                                      |                                                            |
| Continuous                                              | 250 Vac                                                    |
| For 1 minute                                            | 1500 Vac                                                   |
| Group to Group                                          |                                                            |
| Continuous                                              | 250 Vac                                                    |
| For 1 minute                                            | 1500 Vac                                                   |
| Backplane Power Consumption                             |                                                            |
| +3.3Vdc                                                 | 152mA                                                      |
| +5.1Vdc                                                 | 540mA                                                      |
| Thermal De-rating                                       | None required with output currents of 1 amp per            |
|                                                         | channel. For 2 amps per channel, refer to                  |
|                                                         | Figure 218: Thermal Derating Curve MDL765.                 |
| Continuous Output Current per Point                     | Refer to For product standards and general specifications, |
|                                                         | refer to Appendix A: Product Certifications and            |
|                                                         | Installation Guidelines for Conformance.                   |
|                                                         | Output Load Ratings: MDL765.                               |
| Output Characteristics                                  |                                                            |
| Peak Inrush Current                                     | 10A supplied for 10ms without ESCP trip                    |
| Output Leakage Current                                  | 1mA maximum                                                |
| Group Output Current at 35 <sup>o</sup> C ambient       | 8A maximum                                                 |
| Module Output Current at 35 <sup>o</sup> C ambient      | 16A maximum                                                |
| Sourcing Circuit Output On Voltage                      | (V <sub>In</sub> -2) to V <sub>In</sub>                    |
| (Iout = 2A)                                             |                                                            |
| Minimum Load Current with no-load detection enabled     | 50 mA                                                      |
| On Response Time                                        | 1ms maximum                                                |
| Off Response Time                                       | 1ms maximum                                                |
| Maximum Switching Frequency                             | Refer to For product standards and general specifications, |
| <u>.</u> . ,                                            | refer to Appendix A: Product Certifications and            |
|                                                         | Installation Guidelines for Conformance.                   |
|                                                         | Output Load Ratings: MDL765 below.                         |
| Protection                                              | Short-circuit protection, overcurrent protection, and      |
|                                                         | over-temperature protection.                               |
|                                                         | Over-temperature, short-circuit, and overcurrent faults    |
|                                                         | must be recovered by turning the point off and back on.    |
|                                                         | , , , , , , , , , , , , , , , , , , , ,                    |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.


## **Output Load Ratings: MDL765**

| Subject                | Description                                                           |  |  |
|------------------------|-----------------------------------------------------------------------|--|--|
| Resistive              | 2A at 132Vdc                                                          |  |  |
|                        | 2A at 30 Vdc                                                          |  |  |
|                        | No external suppression components required.                          |  |  |
| Inductive (Pilot Duty) | 0.6A at 132Vdc                                                        |  |  |
|                        | For inductive loads greater than 2.2H, maximum switching frequency is |  |  |
|                        | 0.125Hz.                                                              |  |  |
|                        | Overall maximum switching frequency: 1 Hz                             |  |  |
|                        | No external suppression components required.                          |  |  |
|                        | 1.2A at 30 Vdc                                                        |  |  |
|                        | For inductive loads greater than 0.8H, maximum switching frequency is |  |  |
|                        | 0.5Hz.                                                                |  |  |
|                        | Overall maximum switching frequency: 1 Hz                             |  |  |
|                        | No external suppression components required.                          |  |  |
| Incandescent (Lamp)    | 0.75A at 132Vdc                                                       |  |  |
|                        | 0.75A at 30 Vdc                                                       |  |  |
|                        | No external suppression components required.                          |  |  |

#### **Thermal Derating: MDL765**

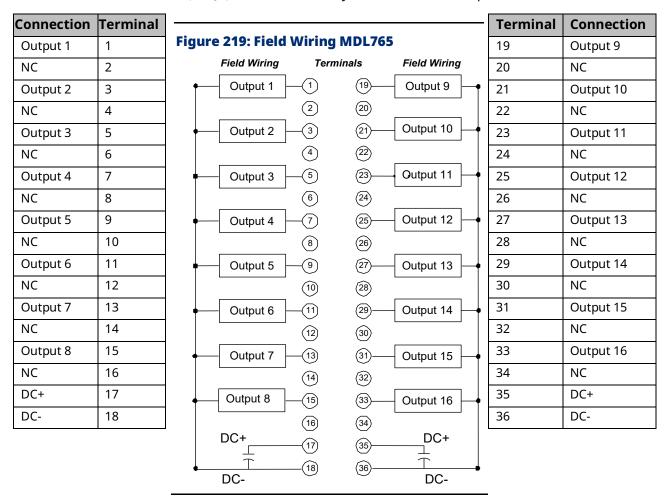
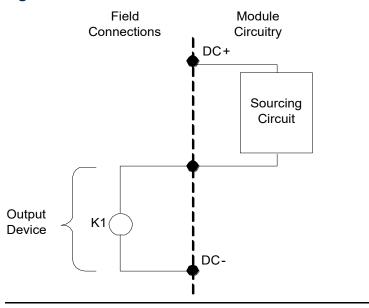

With output currents of 1 amp per channel, no temperature de-rating is required, and all channels can operate within the entire Surrounding Air temperature range. With output currents of 2 amps per channel, the number of active channels must be reduced as temperature increases, according to the following de-rating curve.

Figure 218: Thermal Derating Curve MDL765



## 7.16.4 Field Wiring: MDL765


Field wiring connections to Module are made to the interposing quick-connect (TBQC) terminal assembly, as described in Chapter 17.



## 7.16.5 Circuit Operation: MDL765

The two eight-circuit DC sourcing circuit groups have all output devices connected to the negative side of the power supply (DC-). The sourcing circuit outputs provide power to the output devices. For sourcing circuit outputs, an ON condition is logic 1 and an OFF condition is logic 0.

Figure 220: Circuit Detail MDL765



## 7.16.6 Input and Output Data Formats: MDL765

#### **Output Value Data: MDL765**

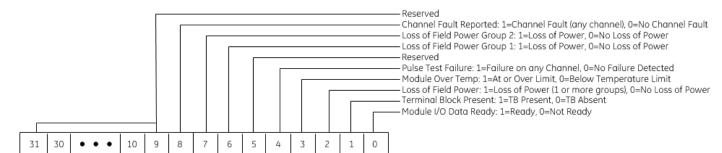
The application uses these bits (one bit per output), beginning at the configured *Outputs Reference Address* to write the commanded output values to Module.

#### **Output Command Value Feedback Data: MDL765**


Module uses these bits (one bit per output), beginning at the configured *Output Command Reference Address* to report the output feedback data values.

#### **Channel Diagnostic and Status Data: MDL765**

Module can be configured to report channel diagnostic and status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for this module. Use of this feature is optional.


The data for each channel occupies two words whether the channel is used or not.

**Note:** At least two sweeps must occur to clear the diagnostic bits: one scan to send the %Q data to Module and one scan to return the %I data to the CPU. Because module processing is asynchronous to the controller sweep, more than two sweeps may be needed to clear the bits, depending on the sweep rate and the point at which the data is made available to Module.



#### **Module Status Data: MDL765**

Module can be configured to return two words of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status* reference area configured for this module.



#### **Pulse Test Command Output Data: MDL765**

Module uses these bits (one bit per output), beginning at the configured *Pulse Command Output Reference Address* to command an on-demand pulse test. To command an on-demand pulse test, the Pulse Test Enable parameter for the channel must be set to *Enabled – Manual*.

### 7.16.7 Diagnostics: MDL765

Module always performs its standard diagnostic checks, plus one optional output diagnostic. Module returns current circuit diagnostics to %I bits for all circuits.

For Over-temperature, Short Circuit, Failed Switch and Overload, the user must de-assert the output %Q bit to clear the error. The corresponding %I bit will be turned off within at least two CPU sweeps.

#### **Over Temperature Diagnostics: MDL765**

Each circuit has a built-in thermal sensor. If the internal temperature exceeds the allowable limit Module logs an OVER-TEMPERATURE fault in the I/O fault table and turns off the circuit to protect its internal electronics. The temperature must decrease below the allowable limit before the output can turn on again. This diagnostic is always performed for all the outputs.

#### **Short Circuit Diagnostics: MDL765**

Output circuits are protected by a short circuit threshold sensor at the switching device. If the instantaneous current on an output exceeds 10 amps, Module turns the output off within microseconds. Module will try to restart the load; if two additional attempts are unsuccessful, the output circuit is forced off, and Module logs a SHORT CIRCUIT fault in the I/O fault table. To restore normal operation to output the cause of the current surge must be removed, then the diagnostic must be cleared from the CPU.

This diagnostic detects shorts across the load only. Also, systems with floating power supplies do not detect shorts of I/O points to ground because there is no return current path. Systems with power supplies grounded on the negative side detect grounded output points as Short Circuit.

Partial (high resistance) shorts may not draw enough current to be detected by the Pulse Test.

#### **Failed Switch Diagnostics: MDL765**

Module automatically monitors all circuits for several types of faults, which may be reported as Failed Switch diagnostics.

Failed Switch is reported if the switch state is not the same as the commanded state of the circuit. Module logs a FAILED SWITCH fault in the I/O fault table identifying the failed circuit. The logic state of the circuit is set to OFF.

When an output fault occurs, the actual condition of the output switch is not known. If the output switch has failed shorted (or closed), current flow is not interrupted when Module forces the output state OFF. Action external to Module must be taken to remedy the problem. The FAILED SWITCH fault can alert personnel or cause program logic to be activated, possibly shutting off power to Module, I/O section, or process.

#### **No Load Diagnostics: MDL765**

Reporting for this diagnostic can be enabled or disabled for individual outputs.

By default, outputs are configured to report No-Load conditions. In this configuration, energizing the output activates a no-load current level. If the load does not continuously draw 50mA from the output circuit, Module logs a NO LOAD fault in the I/O fault table. This diagnostic should be not be used for circuits on which very small loads (small relays or indicating lamps) will draw less than 50 mA. To clear the No-Load error, a load of at least 85mA must be applied to the output.

#### Overload Diagnostic: MDL765

In addition to the protection provided by the built-in Short Circuit detection, Overload Shutdown provides further protection for output loads, field wiring, and switching devices connected to this module. If a load exceeds 2 amps DC continuously for 10ms, Module turns the output off and logs an OVERLOAD fault in the I/O fault table.

#### **Under-Voltage Detection: MDL765**

The field power supply on each group includes support for detecting supply voltages below the minimum voltage for the selected voltage standard. The fault can be disabled by group. Detecting the fault has no impact on the state of the output control.

#### **Output Pulse Test: MDL765**

The Output Pulse Test is an optional diagnostic feature that exercises the output points to confirm they can be switched to a known state.

The pulse test attempts to switch the output from its Normal State to its Default State. For a load with a Normal State of ON, the source output is pulsed OFF. For a load with a Normal State of OFF, the source output is pulsed on. A fault is logged in the I/O fault table if a failure is detected in the output point.

Pulse Testing should remain enabled if Module has loads that hold one state for long periods of time, *unless any load(s) are sensitive to pulses or interruptions of up to 16ms*. It should be disabled if the loads experienced by this module will normally change state as the program executes.

These will report faults during normal operation, and do not need to be pulsed.

Pulse Test Selections: Pulse test frequency

Output Default State / Output Normal State

#### On Demand Pulse Test: MDL765

To use this feature, the Pulse Test Enable parameter for the channel must be set to *Enabled-Manual*. To command a pulse test, set the Pulse Test Command bit for the channel(s) to be pulse tested.

Module performs one or more pulse tests for each channel selected.

Since this will take many sweeps, you should keep the Pulse Test

Command bit set until the Pulse Test Complete bit is set for that channel in the Channel Diagnostic and Status Data.

Module keeps the Pulse Test Complete bit set as long as the Pulse Test Command bit is set. If the pulse test fails, the Pulse Test Failed bit is set at the same time as the Pulse Test Complete bit. One output scan with the Pulse Test Command bit cleared clears the Pulse Test Complete status bit and Pulse Test Failure diagnostic bit.

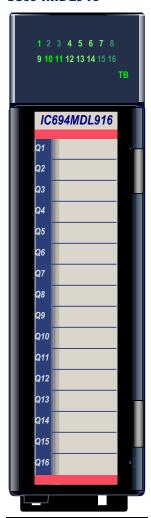
#### Automatic Pulse Test: MDL765

To use this feature, set the Pulse Test Enable parameter for the channel to *Enabled-Auto*. The Output Pulse Test occurs at a frequency selected in the Hardware Configuration, with no intervention from the CPU. The pulse test execution is based on the Time of Day clock set in the CPU, and the frequency is relative to 12:00am. For example, a frequency of 12 hours will result in a pulse test run at 12:00am and 12:00pm.

If the pulse test fails, the Pulse Test Failed bit is set.

# 7.16.8 Configuration: MDL765

## **Module Settings: MDL765**


| Parameter                              | Function                                                      |  |
|----------------------------------------|---------------------------------------------------------------|--|
| Outputs Reference Address              | Specifies the memory location used by Module for 16 bits      |  |
| Outputs Value Reference Length         | of output data.                                               |  |
| Output Command Feedback Reference      | Specifies the starting address where Module returns 16        |  |
| Address                                | bits of feedback output data.                                 |  |
| Output Command Feedback Reference      | Provides 1 bit per channel of feedback output data. Setting   |  |
| Length                                 | this value to 0 disables feedback data reporting.             |  |
| Diagnostic Reference Address           | Specifies the starting address for reporting channel          |  |
|                                        | diagnostics data.                                             |  |
| Diagnostic Reference Length            | Provides thirty-two bits of diagnostic data per channel.      |  |
|                                        | Setting this value to 0 disables channel diagnostics          |  |
|                                        | reporting.                                                    |  |
| Module Status Reference Address        | Specifies the starting address for reporting module status    |  |
|                                        | data.                                                         |  |
| Module Status Reference Length         | Provides thirty-two bits of module status data. Setting this  |  |
|                                        | value to 0 disables channel diagnostics reporting.            |  |
| Pulse Test Command Output Reference    | Specifies the memory location for 16 bits of manual pulse     |  |
| Address/                               | test command data.                                            |  |
| Pulse Test Command Output Reference    |                                                               |  |
| Length                                 |                                                               |  |
| Channel Faults w/o Terminal Block      | Enables or disables generation of channel faults and          |  |
|                                        | alarms after a Terminal Block has been removed.               |  |
| Loss of Terminal Block Detection       | Enables or disables logging of a fault to indicate a Terminal |  |
|                                        | Block has been removed.                                       |  |
| Loss of Field Power Group 1 Detection/ | Enables or disables loss of field power detection for the     |  |
| Loss of Field Power Group 2 Detection  | specified group.                                              |  |
| Voltage Selection                      | Specifies field power voltage level for under-voltage         |  |
|                                        | detection. Can be enabled or disabled by the Loss of Field    |  |
|                                        | Power Group 1/Group 2 Detection parameter.                    |  |
| Inputs Default                         | Specifies whether inputs will go to Force Off or Hold Last    |  |
|                                        | State if Module loses communication with the CPU. An          |  |
|                                        | output goes to its power-up default state when Module is      |  |
|                                        | first powered up.                                             |  |
| I/O Scan Set                           | Assigns Module I/O status data to a scan set defined in the   |  |
|                                        | CPU configuration. Determines how often the RX3i polls        |  |
|                                        | the data.                                                     |  |

## **Channel Settings: MDL765**

| Parameter                   | Function                                                              |  |
|-----------------------------|-----------------------------------------------------------------------|--|
| Outputs Default Mode        | Force Off, Force On, or Hold Last State                               |  |
|                             | Outputs are forced into this state when the CPU is placed into        |  |
|                             | Outputs Disabled. This includes immediately after download of         |  |
|                             | Hardware Configuration.                                               |  |
|                             | Outputs remain in the Outputs Default state indefinitely or until     |  |
|                             | one of the following occurs:                                          |  |
|                             | CPU is placed into Outputs Enabled.                                   |  |
|                             | Communications with the CPU are restored.                             |  |
|                             | Power is removed from Module.                                         |  |
| Pulse Test Enable           | Enables or disables pulse testing of the output. Allows you to        |  |
|                             | select Manual or Automatic pulse testing. For details about this      |  |
|                             | feature, refer to Output Pulse Test: MDL765 above.                    |  |
| Pulse Test Frequency        | If Pulse Test Enable is set to Auto, allows you to select the         |  |
|                             | frequency of pulse testing.                                           |  |
| Pulse Test Normal State     | Available when Pulse Test is enabled.                                 |  |
|                             | Specifies the state in which this output point will spend the         |  |
|                             | majority of its time. Module performs a pulse test only from the      |  |
|                             | normal state to the default state.                                    |  |
| Pulse Test Default State    | Available when Pulse Test Enable is enabled.                          |  |
|                             | Specifies the state the point will go to if a channel failure occurs. |  |
|                             | When the output is placed into the default state Module will not      |  |
|                             | perform a pulse test into the normal state.                           |  |
| Diagnostic Reporting Enable | Enables or disables channel diagnostics. If enabled, channel          |  |
|                             | diagnostic data is written to the Channel Diagnostic and Status       |  |
|                             | Data.                                                                 |  |
| Open Load Reporting Enable  | If enabled, an open load (no-load) condition is reported in the       |  |
|                             | Channel Diagnostic and Status Data.                                   |  |
| Pulse Test Failed Enable    | If enabled, the results of manual or automatic pulse testing are      |  |
|                             | reported in the Channel Diagnostic and Status Data.                   |  |
| Over Load Reporting Enable  | Always enabled: An output overload condition is reported in the       |  |
|                             | Channel Diagnostic and Status Data.                                   |  |
| Fault Reporting Enable      | If enabled, channel faults are reported to the I/O fault table.       |  |
| Open Load Reporting Enable  | If enabled and the corresponding diagnostic reporting is enabled,     |  |
|                             | an open load (no-load) condition is reported in the I/O fault table.  |  |
| Pulse Test Failed Enable    | If enabled and the corresponding diagnostic reporting is enabled,     |  |
|                             | a failed pulse test is reported in the I/O fault table.               |  |
| Over Load Reporting Enable  | Always enabled: An output overload condition is reported in the       |  |
|                             | I/O fault table.                                                      |  |

# 7.17 Output Module, Isolated Relay, N.O., 4 Amp, 16-Point: IC694MDL916

# Figure 221: IC694MDL916



The *4 Amp 16-Point Relay Output* module IC694MDL916 provides sixteen Form A relays for controlling output loads. The maximum output switching capacity of each circuit is 4 Amps. Each output point is isolated from the other points, and each point has a separate common power output terminal. Outputs provide a high degree of noise immunity, minimizing the need to add external snubbers. The relay outputs can control a wide range of output devices, such as: motor starters, solenoids, and indicators.

The user must supply the AC or DC power to operate the field devices.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

The red bands on the door card show that MDL916 is a high-voltage module.

A DIP switch at the rear of Module is used to select the default mode for the outputs: Force Off or Hold Last State. Module must be removed from the backplane to set this switch.

Module cannot be used with a Series 90-30 PLC CPU.

Individually numbered LEDs indicate the ON/OFF state of each output. The red/green TB LED is green when the removable terminal block of this module is locked in place. It is red when the terminal block is not locked.

Module MDL916 can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block (Refer to Chapter 17). Extended terminal blocks provide the extra shroud depth typically needed for shielded wires. Terminal Blocks are ordered separately.

Module reports *Addition of Terminal Block*, *Loss of Terminal Block*, and *Hold Last State Configuration Mismatch* messages to the RX3i CPU.

## 7.17.1 Specifications: MDL916

| MDL916                                                                             | Specifications                                                           |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Outputs per Module                                                                 | 16 isolated Form A relay outputs                                         |  |
| External Power Supply                                                              | 0 – 125Vdc (5/24/125Vdc nominal)                                         |  |
|                                                                                    | 0 – 250 Vac (47 to 63 Hz), 120-240 Vac nominal                           |  |
| Isolation                                                                          |                                                                          |  |
| Field to Backplane and to                                                          | 250 Vac continuous; 1500 Vac for 1 minute.                               |  |
| Frame Ground, Group to                                                             |                                                                          |  |
| Group                                                                              |                                                                          |  |
| Power Consumption                                                                  | 300mA at 5Vdc from backplane maximum (all outputs ON)                    |  |
|                                                                                    | 150mA at 24Vdc from backplane relay power (all outputs ON)               |  |
| Thermal Derating                                                                   | Refer to below.                                                          |  |
| <b>Output Characteristics</b>                                                      |                                                                          |  |
| Output Voltage <sup>26</sup>                                                       | 5 – 125Vdc (5/24/125Vdc nominal)                                         |  |
|                                                                                    | 5 – 250 Vac (47 to 63 Hz), 120-240 Vac nominal                           |  |
| Output Current                                                                     | 10mA per point minimum                                                   |  |
|                                                                                    | 4A for 5-250 Vac maximum (resistive or general-purpose)                  |  |
|                                                                                    | 4A for 5-30 Vdc maximum (resistive)                                      |  |
|                                                                                    | 2A pilot duty per output (5Vdc to 30 Vdc, 5Vac to 240 Vac)               |  |
| Output Voltage Drop                                                                | 0.3Vdc maximum                                                           |  |
| Output Leakage Current                                                             | Not Applicable (open contact)                                            |  |
| Response Times (On/Off) 10ms maximum (At nominal voltage excluding contact bounce) |                                                                          |  |
| Switching Frequency 20 cycles per minute maximum                                   |                                                                          |  |
| Protection None. External snubbers may be applied if necessary                     |                                                                          |  |
| Relay Contact Life                                                                 | Refer to                                                                 |  |
|                                                                                    | Load Current Limitations: MDL916 below                                   |  |
| Diagnostic Information                                                             | Field-side terminal block presence detection reported to CPU (RX3i only) |  |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

<sup>&</sup>lt;sup>26</sup> When this module is used with DC power supply IC695PSD040 or PSD140, special precautions should be taken because dropouts in the source voltage will be seen by this module and may cause relay dropouts.

## **Thermal Derating: MDL916**

The following table shows the number of outputs that can be on at the same time under the maximum load of 4 Amps per point.

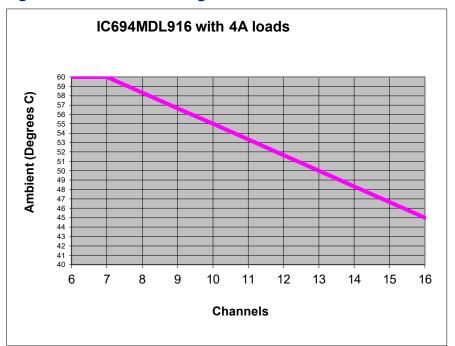



Figure 222: Thermal Derating Curve MDL916

#### **Load Current Limitations: MDL916**

| Operating    | Maximum Current for Load Type |                                | Typical Contact Life   |
|--------------|-------------------------------|--------------------------------|------------------------|
| Voltage      | Resistive                     | Lamp or Solenoid <sup>27</sup> | (Number of Operations) |
| 5 to 240 Vac | 4 Amps                        | 2 Amps                         | 200,000                |
| 5 to 240 Vac | 0.1 Amp                       | 0.05 Amp                       | 1,000,000              |
| 5 to 240 Vac | 1 Amp                         | 0.5 Amp                        | 700,000                |
| 5 to 24Vdc   | -                             | 3 Amps                         | 100,000                |
| 5 to 24Vdc   | 4 Amps                        | 2 Amps                         | 200,000                |
| 5 to 24Vdc   | 1 Amp                         | 0.5 Amp                        | 700,000                |
| 5 to 24Vdc   | 0.1 Amp                       | 0.05 Amp                       | 1,000,000              |

<sup>&</sup>lt;sup>27</sup> Assumes a 7ms L/R time constant (DC inductive load) or Cos  $\phi \ge 0.4$  (AC inductive load).

#### **Suppression Circuits: MDL916**

Relay contact life, when switching inductive loads, will approach resistive load contact life if suppression circuits are used. Examples of typical suppression circuits for AC and DC loads are displayed in the following figure. The 1A, 200V diode shown in the DC load typical suppression example is an industry-standard 1N4935. The resistor and capacitor shown for AC load suppression are standard components, available from most electronics distributors.

Figure 223: Suppression of DC Loads MDL916

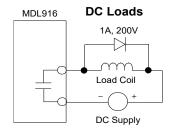
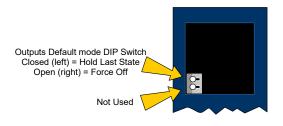



Figure 224: Suppression of AC Loads MDL916

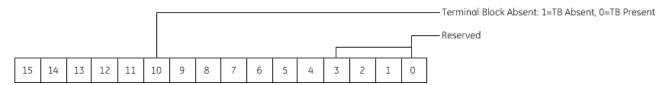



#### **Setting the Output Defaults: MDL916**

The DIP switch at the rear of Module determines how the outputs will operate if the CPU is set to Stop Mode or loses communications with Module. The Outputs Default Mode selection made with the DIP switch must match the selection made for this feature in the software configuration of this module. If the two do not match, a warning message is displayed in the fault table.

Module must be removed from the backplane to set this switch. Note that there are two DIP switches on Module. Only the upper switch is used.

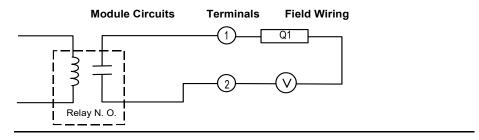
With the Outputs Default Mode switch in the right (open) position, the outputs will turn off whenever communication with the CPU is lost.


Figure 225: DIP Switch Settings MDL916



When the switch is in the left position, the outputs will hold their last programmed value whenever communication with the CPU is lost. Backplane power must be present to Hold Last State. Otherwise, Module will default outputs regardless of the DIP switch setting.

#### **Module Status Data: MDL916**


Module can optionally use 16 input bits to report its status information to the RX3i CPU. To access this data, the length must be changed from 0 to 16. Module status data has the following content:



## 7.17.2 Field Wiring: MDL916

| Connection              | Terminal | Terminal | Connection               |
|-------------------------|----------|----------|--------------------------|
| Output 1, Normally-Open | 1        | 19       | Output 9, Normally-Open  |
| Output 1 Return         | 2        | 20       | Output 9 Return          |
| Output 2, Normally-Open | 3        | 21       | Output 10, Normally-Open |
| Output 2 Return         | 4        | 22       | Output 10 Return         |
| Output 3, Normally-Open | 5        | 23       | Output 11, Normally-Open |
| Output 3 Return         | 6        | 24       | Output 11 Return         |
| Output 4, Normally-Open | 7        | 25       | Output 12, Normally-Open |
| Output 4 Return         | 8        | 26       | Output 12 Return         |
| Output 5, Normally-Open | 9        | 27       | Output 13, Normally-Open |
| Output 5 Return         | 10       | 28       | Output 13 Return         |
| Output 6, Normally-Open | 11       | 29       | Output 14, Normally-Open |
| Output 6 Return         | 12       | 30       | Output 14 Return         |
| No Connection           | 13       | 31       | No Connection            |
| Output 7, Normally-Open | 14       | 32       | Output 15, Normally-Open |
| Output 7 Return         | 15       | 33       | Output 15 Return         |
| No Connection           | 16       | 34       | No Connection            |
| Output 8, Normally-Open | 17       | 35       | Output 16, Normally-Open |
| Output 8 Return         | 18       | 36       | Output 16 Return         |

Figure 226: Typical Relay Output Circuit MDL916



# 7.18 Output Module, Isolated Relay, N.O., 4 Amp, 8-Point: IC694MDL930

**Figure 227: IC694MDL930** 



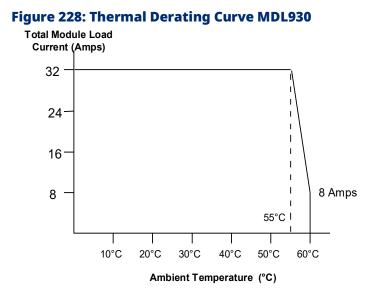
The *4 Amp Isolated Relay Output* module, IC694MDL930, provides eight normally–open relay circuits for controlling output loads. The output switching capacity of each circuit is 4 Amps. Each output point is isolated from the other points, and each point has a separate common power output terminal. The relay outputs can control a wide range of output devices, such as: motor starters, solenoids, and indicators.

The user must supply the AC or DC power to operate the field devices connected to this module.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The red bands on the label show that MDL930 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).


## 7.18.1 Specifications: MDL930

| MDL930                          | Specifications                                                              |  |  |
|---------------------------------|-----------------------------------------------------------------------------|--|--|
| Rated Voltage                   | 24 Vdc, 120/240 Vac (nominal - refer to the following table for exceptions) |  |  |
| Operating Voltage               | 5 to 30 Vdc                                                                 |  |  |
|                                 | 5 to 250 Vac, 50/60 Hz                                                      |  |  |
| Outputs per Module              | 8 isolated outputs                                                          |  |  |
| Isolation:                      |                                                                             |  |  |
| Field to Backplane and to       | 250 Vac continuous;                                                         |  |  |
| Frame Ground                    | 1500 Vac for 1 minute                                                       |  |  |
| Point to Point                  | 250 Vac continuous; 1500 Vac for 1 minute                                   |  |  |
| Maximum Load                    | 4 Amps resistive maximum per output                                         |  |  |
|                                 | 2 Amps pilot duty per output                                                |  |  |
|                                 | 20 Amps maximum per module for UL installations                             |  |  |
|                                 | Maximum Load depends on the ambient temperature as displayed in Figure 228  |  |  |
| Minimum Load 10mA               |                                                                             |  |  |
| Maximum Inrush                  | 5 Amps                                                                      |  |  |
| On Response Time <sup>28</sup>  | 15ms maximum                                                                |  |  |
| Off Response Time <sup>28</sup> | 15ms maximum                                                                |  |  |
| Power Consumption               | 6mA (all outputs on) from 5 Vdc bus on backplane                            |  |  |
|                                 | 70mA (all outputs on) from relay 24Vdc bus on backplane                     |  |  |

For product standards and general specifications, refer to Appendix A:

Product Certifications and Installation Guidelines for Conformance.

### **Thermal Derating: MDL930**



<sup>&</sup>lt;sup>28</sup> When this module is used with DC power supply IC695PSD040 or PSD140, special precautions should be taken because dropouts in the source voltage will be seen by this module and may cause relay dropouts.

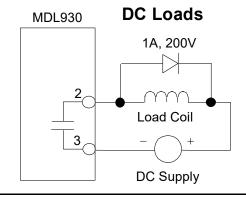
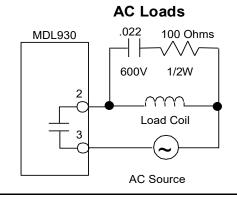
#### **Load Current Limitations: MDL930**

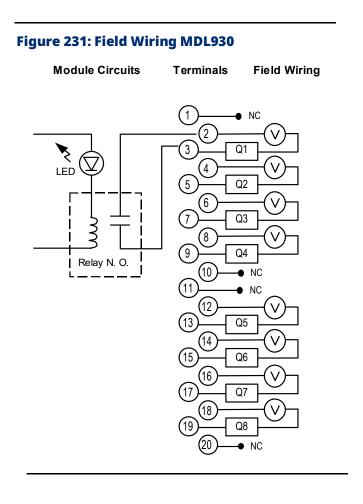
| Operating     | Maximum Current for Load Type |                                | Typical Contact Life   |
|---------------|-------------------------------|--------------------------------|------------------------|
| Voltage       | Resistive                     | Lamp or Solenoid <sup>29</sup> | (Number of Operations) |
| 24 to 120 Vac | 4 Amps                        | 2 Amps                         | 150,000                |
| 24 to 120 Vac | 1 Amp                         | 0.5 Amp                        | 500,000                |
| 24 to 120 Vac | 0.1 Amp                       | 0.05 Amp                       | 1,000,000              |
| 240 Vac       | 4 Amps                        | 2 Amps                         | 50,000                 |
| 240 Vac       | 0.1 Amp                       | 0.05 Amp                       | 500,000                |
| 240 Vac       | 1 Amp                         | 0.5 Amp                        | 200,000                |
| 24Vdc         | -                             | 3 Amps                         | 50,000                 |
| 24Vdc         | 4 Amps                        | 2 Amps                         | 100,000                |
| 24Vdc         | 1 Amp                         | 0.5 Amp                        | 500,000                |
| 24Vdc         | 0.1 Amp                       | 0.05 Amp                       | 1,000,000              |
| 125Vdc        | 0.2 Amp                       | 0.1 Amp                        | 300,000                |

Relay contact life, when switching inductive loads, will approach resistive load contact life if suppression circuits are used. Examples of typical suppression circuits for AC and DC loads are displayed in the following figure. The 1A, 200V diode shown in the DC load typical suppression example is an industry-standard 1N4935. The resistor and capacitor shown for AC load suppression are standard components, available from most electronics distributors.

Load Suppression Examples for Output Module MDL930

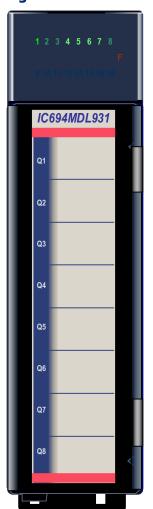
Figure 229: Suppression of DC Loads MDL930



Figure 230: Suppression of AC Loads MDL930



<sup>&</sup>lt;sup>29</sup> Assumes a 7ms time constant


# 7.18.2 Field Wiring: MDL930

| Connection    |
|---------------|
| No connection |
| Output 1-1    |
| Output 1-2    |
| Output 2-1    |
| Output 2-2    |
| Output 3-1    |
| Output 3-2    |
| Output 4-1    |
| Output 4-2    |
| No connection |
| No connection |
| Output 5-1    |
| Output 5-2    |
| Output 6-1    |
| Output 6-2    |
| Output 7-1    |
| Output 7-2    |
| Output 8-1    |
| Output 8-2    |
| No connection |
|               |
|               |
|               |



# 7.19 Output Module, Isolated Relay, N.C. and Form C, 8A, 8-Point: IC694MDL931

Figure 232: IC694MDL931

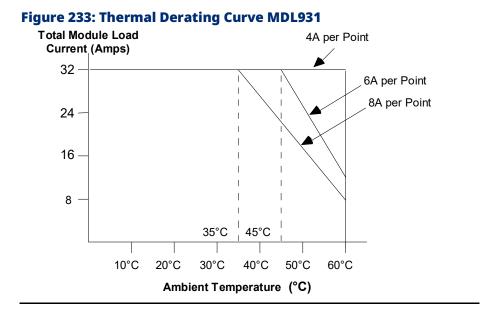


The *8 Amp* Isolated Relay Output module, IC694MDL931, provides four normally-closed and four Form C relay circuits for controlling output loads provided by the user. The output switching capacity of each circuit is 8 Amps. Each output relay is isolated from the other relays, and each relay has a separate common power output terminal. The relay outputs can control a wide range of load devices, such as: motor starters, solenoids, and indicators.

The user must supply the AC or DC power to operate the field devices.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The red bands on the label show that MDL931 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.


Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

# 7.19.1 Specifications: MDL931

| MDL931                          | Specifications                                                                        |
|---------------------------------|---------------------------------------------------------------------------------------|
| Rated Voltage                   | 24 Vdc, 120/240 Vac, 50/60 Hz (nominal - refer to the following table for exceptions) |
| Output Voltage Range            | 5 to 30 Vdc                                                                           |
|                                 | 5 to 250 Vac, 50/60 Hz                                                                |
| Outputs per Module              | 8 isolated outputs                                                                    |
| Isolation:                      |                                                                                       |
| Field to Backplane and to Frame | 250 Vac continuous;                                                                   |
| Ground                          | 1500 Vac for 1 minute                                                                 |
| Point to Point                  | 250 Vac continuous; 1500 Vac for 1 minute                                             |
| Maximum Load                    | 8 Amps resistive maximum per output                                                   |
|                                 | 20 Amps maximum per module for UL installations                                       |
|                                 | Maximum load depends on ambient temperature as shown.                                 |
| Minimum Load                    | 10mA                                                                                  |
| Inrush Current                  | 8 Amps maximum for one cycle                                                          |
| On Response Time <sup>30</sup>  | 15ms maximum                                                                          |
| Off Response Time <sup>30</sup> | 15ms maximum                                                                          |
| Output Leakage Current          | 1mA maximum at 250 Vac, (25°C (77°F))                                                 |
| Power Consumption               | 6mA (all outputs on) from 5Vdc bus on backplane                                       |
|                                 | 110mA (all outputs on) from relay 24V bus on backplane                                |

For product standards and general specifications, refer to Appendix A: Product Certifications and Installation Guidelines for Conformance.

## **Thermal Derating: MDL931**



<sup>&</sup>lt;sup>30</sup> When this module is used with DC power supply IC695PSD040 or PSD140, special precautions should be taken because dropouts in the source voltage will be seen by this module and may cause relay dropouts.

#### **Load Current Limitations: MDL931**

| Operating    | Maximum Curre | nt for Load Type               | Typical Contact Life   |  |
|--------------|---------------|--------------------------------|------------------------|--|
| Voltage      | Resistive     | Lamp or Solenoid <sup>31</sup> | (Number of operations) |  |
|              | 8 Amps        | 3 Amps                         | 200,000                |  |
| 5 to 120 Vac | 6 Amps        | 2.5 Amps                       | 300,000                |  |
| 3 to 120 vac | 4 Amps        | 1.5 Amps                       | 400,000                |  |
|              | 1 Amp         | 0.5 Amp                        | 1,100,000              |  |
|              | 8 Amps        | 3 Amps                         | 100,000                |  |
| 240 Vac      | 6 Amps        | 2.5 Amps                       | 150,000                |  |
| 240 VaC      | 4 Amps        | 1.5 Amps                       | 200,000                |  |
|              | 1 Amp         | 0.5 Amp                        | 800,000                |  |
|              | 8 Amps        | 3 Amps                         | 100,000                |  |
| 24Vdc        | 6 Amps        | 2.5 Amps                       | 150,000                |  |
| 24000        | 4 Amps        | 1.5 Amps                       | 200,000                |  |
|              | 1 Amp         | 0.5 Amp                        | 800,000                |  |
| 48Vdc        | 1.5 Amps      | -                              | 100,000                |  |
| 100 Vdc      | 0.5 Amp       | -                              | 100,000                |  |
| 125Vdc       | 0.38 Amp      | 0.12 Amp                       | 100,000                |  |
| 150 Vdc      | 0.30 Amp      | 0.10 Amp                       | 100,000                |  |

Relay contact life, when switching inductive loads, will approach resistive load contact life if suppression circuits are used. The examples below show typical suppression circuits for AC and DC loads. The 1A, 200V diode shown in the DC load typical suppression circuit is an industry-standard 1N4935. The resistor and capacitor shown for AC load suppression are standard components.

#### Load Suppression Examples for Output Module IC694MDL931

Figure 234: Suppression of DC Loads MDL931

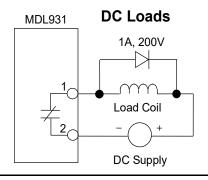
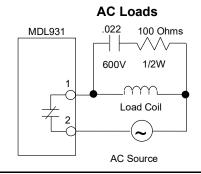
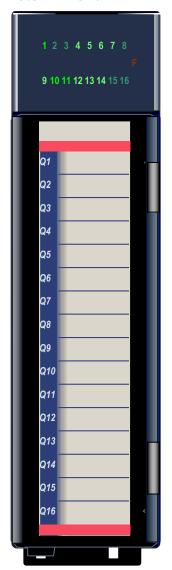




Figure 235: Suppression of AC Loads MDL931



<sup>&</sup>lt;sup>31</sup> For inductive loads


# 7.19.2 Field Wiring: MDL931

| Terminal | Connection                 |
|----------|----------------------------|
| 1        | Output 1                   |
| 2        | Output 1 return            |
| 3        | Output 2                   |
| 4        | Output 2 return            |
| 5        | Output 3                   |
| 6        | Output 3 return            |
| 7        | Output 4                   |
| 8        | Output 4 return            |
| 9        | Output 5                   |
|          | (if normally-closed relay) |
| 10       | Output 5 return            |
| 11       | Output 5                   |
|          | (if normally-open relay)   |
| 12       | Output 6                   |
|          | (if normally-closed relay) |
| 13       | Output 6 return            |
| 14       | Output 6                   |
|          | (if normally-open relay)   |
| 15       | Output 7                   |
|          | (if normally-closed relay) |
| 16       | Output 7 return            |
| 17       | Output 7                   |
|          | (if normally-open relay)   |
| 18       | Output 8                   |
|          | (if normally-closed relay) |
| 19       | Output 8 return            |
| 20       | Output 8                   |
|          | (if normally-open relay)   |

Figure 236: Field Wiring MDL931 **Module Circuits Terminals** Field Wiring Q1 NC Q2 NC LED Q3 NC Q4 NC Relay N. O. Q5 NC Relay N. C. Q5 NO Q6 NC LED Q6 NO (15) Q7 NC (16) Q7 NO Relay N. O. Q8 NC Q8 NO

# 7.20 Output Module, Relay Output, N.O., 2 Amp, 16-Point: IC694MDL940

# Figure 237: IC694MDL940



The **2** Amp Relay Output module, IC694MDL940, provides sixteen normally-open relay circuits for controlling output loads. The output switching capacity of each output is 2 Amps. The output points are in four groups of four points each. Each group has a common power output terminal. The relay outputs can control a wide range of load devices, such as: motor starters, solenoids, and indicators. Power for the internal relay circuits is provided by the +24Vdc bus on the backplane.

The user must supply the AC or DC power to operate field devices.

Individual numbered LEDs show the ON/OFF status of each output point. There are no fuses on this module. The red bands on the label show that MDL940 is a high-voltage module.

This module can be installed in any I/O slot in an RX3i system.

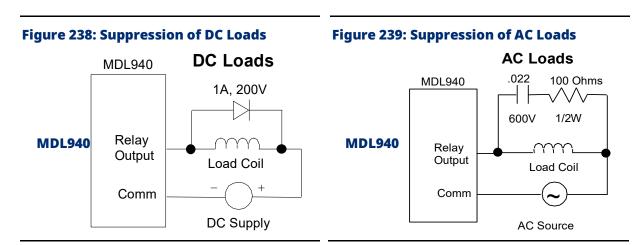
Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see

Hot Insertion and Removal Not Supported *Hot Insertion and Removal Not Supported*).

# 7.20.1 Specifications: MDL940

| MDL940                          | Specifications                                                  |
|---------------------------------|-----------------------------------------------------------------|
| Rated Voltage                   | 24 Vdc, 120/240 Vac (nominal - refer to the following table for |
|                                 | exceptions)                                                     |
| Operating Voltage               | 5 to 30 Vdc                                                     |
|                                 | 5 to 250 Vac, 50/60 Hz                                          |
| Outputs per Module              | 16 (four groups of four outputs each)                           |
| Isolation:                      |                                                                 |
| Field to Backplane and to Frame | 250 Vac continuous;                                             |
| Ground                          | 1500 Vac for 1 minute                                           |
| Point to Point                  | 250 Vac continuous; 1500 Vac for 1 minute                       |
| Maximum Load                    | 2 Amps pilot duty maximum per output                            |
|                                 | 4 Amps maximum per common                                       |
| Minimum Load                    | 10mA                                                            |
| Maximum Inrush                  | 5 Amps                                                          |
| On Response Time <sup>32</sup>  | 15ms maximum                                                    |
| Off Response Time <sup>32</sup> | 15ms maximum                                                    |
| Power Consumption, all outputs  | 7mA from 5Vdc bus on backplane                                  |
| on                              | 135mA from relay 24V bus on backplane                           |

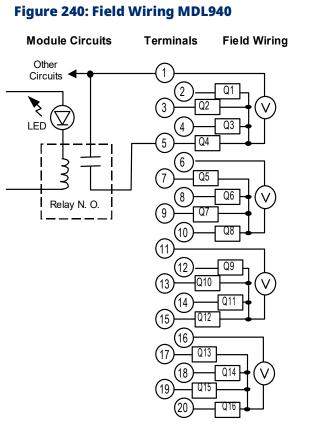
For product standards and general specifications, refer to Appendix A:.


<sup>&</sup>lt;sup>32</sup> When this module is used with DC power supply IC695PSD040 or PSD140, special precautions should be taken because dropouts in the source voltage will be seen by this module and may cause relay dropouts.

#### **Load Current Limitations: MDL940**

| Operating     | Maximum C | urrent for Load Type           | Typical Contact Life   |
|---------------|-----------|--------------------------------|------------------------|
| Voltage       | Resistive | Lamp or Solenoid <sup>33</sup> | (Number of Operations) |
| 24 to 120 Vac | 2 Amps    | 1 Amp                          | 300,000                |
| 24 to 120 Vac | 1 Amp     | 0.5 Amp                        | 500,000                |
| 24 to 120 Vac | 0.1 Amp   | 0.05 Amp                       | 1,000,000              |
| 240 Vac       | 2 Amps    | 1 Amp                          | 150,000                |
| 240 Vac       | 1 Amp     | 0.5 Amp                        | 200,000                |
| 240 Vac       | 0.1 Amp   | 0.05 Amp                       | 500,000                |
| 24Vdc         | -         | 2 Amps                         | 100,000                |
| 24Vdc         | 2 Amps    | 1 Amp                          | 300,000                |
| 24Vdc         | 1 Amp     | 0.5 Amp                        | 500,000                |
| 24Vdc         | 0.1 Amp   | 0.05 Amp                       | 1,000,000              |
| 125Vdc        | 0.2 Amp   | 0.1 Amp                        | 300,000                |

Relay contact life, when switching inductive loads, will approach resistive load contact life if suppression circuits are used. The following figures are examples of typical suppression circuits for AC and DC loads. The 1A, 200V diode shown in the DC load suppression circuit is an industry-standard 1N4935. The resistor and capacitor shown for AC load suppression are standard components.


#### Load Suppression Examples for Output Module MDL940

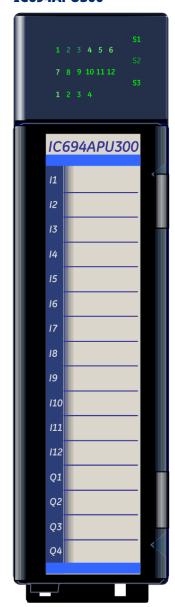


<sup>&</sup>lt;sup>33</sup> Assumes a 7 ms time constant

# 7.20.2 Field Wiring: MDL940

| Terminal | Connection                      |
|----------|---------------------------------|
|          |                                 |
| 1        | Outputs 1 – 4 common (return)   |
| 2        | Output 1                        |
| 3        | Output 2                        |
| 4        | Output 3                        |
| 5        | Output 4                        |
| 6        | Outputs 5 -8 common (return)    |
| 7        | Output 5                        |
| 8        | Output 6                        |
| 9        | Output 7                        |
| 10       | Output 8                        |
| 11       | Outputs 9 - 12 common (return)  |
| 12       | Output 9                        |
| 13       | Output 10                       |
| 14       | Output 11                       |
| 15       | Output 12                       |
| 16       | Outputs 13 – 16 common (return) |
| 17       | Output 13                       |
| 18       | Output 14                       |
| 19       | Output 15                       |
| 20       | Output 16                       |




# Section 8: Discrete Mixed I/O Modules

This chapter describes the following discrete mixed input/output module for RX3i PACSystems:

| Discrete Mixed I/O Module Description                         | Catalog<br>Number | Section |
|---------------------------------------------------------------|-------------------|---------|
| High-Speed Counter Module 80kHz 12-Input 4-Output             | IC694APU300       | 8.1     |
| Serial I/O Processor Module                                   | IC694APU305       | 8.2     |
| High-Speed Counter Module 1.5MHz 8-Input 7-Output             | IC695HSC304       | 8.3     |
| High-Speed Counter Module 1.5MHz 16-Input 14-Output           | IC695HSC308       | 8.3     |
| Mixed I/O 24Vdc Input (8 points) N.O. Relay Output (8 points) | IC694MDR390       | 8.4     |

### 8.1 High-Speed Counter Module: IC694APU300

# Figure 241: **IC694APU300**



Two versions of the APU300 exist: Enhanced version IC694APU300-CA and later (Figure 241) and Classic version IC694APU300-BA and earlier. All classic features are supported by the enhanced version. Refer to *High-Speed Counter Modules for PACSystems RX3i and Series 90-30 User's Manual,* GFK-0293D or later, for complete specifications and to Chapter 6 of that manual for enhanced features.

The High-Speed Counter module, IC694APU300, provides direct processing of rapid pulse signals up to 1MHz (Enhanced), 80kHz (Classic). Module senses inputs, processes the input count information, and instantaneously controls the outputs per each counter's configuration without needing to communicate with a CPU. The High-Speed Counter uses 16 bits of discrete input memory (%I), 15 words of analog input memory (%AI), and 16 bits of discrete output memory (%Q) in the CPU.

The High-Speed Counter can be configured to have:

- 4 identical, independent simple counters
- 2 identical, independent more complex counters
- 1 complex counter
- 2 simple counters with Clock Z input (Enhanced version only) Additional module features include:
  - 12 positive logic (source) inputs with input voltage range selection of either 5 Vdc or 10 to 30 Vdc
  - 4 positive logic (source) outputs
  - Enhanced version supports both Differential and Single-Ended Encoders. Classic version supports Single-Ended only.
  - Counts per timebase register for each counter
  - Internal module diagnostics
  - A removable terminal board for field wiring
  - LEDs to indicate the state of each input, each output and three status LEDs (enhanced version only). Classic version has two LEDs.

Inputs can be used as count signals, direction, disable, edge-sensitive strobe, and preload inputs depending on the counter type selected by the user. Outputs can be used to drive indicating lights, solenoids, relays, and other devices.

The blue bands on the label indicate that the APU300 is a low-voltage module. This module can be installed in any I/O slot in an RX3i system.

Power for Module is drawn from the backplane 5Vdc bus. Power sources for input and output devices must be supplied by the user or by the +24 Vdc Isolated output of the power supply. Module also provides a selectable threshold voltage to allow the inputs to respond to either 5Vdc signal levels or 10 to 30 Vdc signal levels.

IC694APU300 Revision CA & later supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*. Revision -BA and earlier do not.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

## 8.1.1 Counter Types: APU300

A counter type must be selected when Module is configured. In Enhanced mode, whenever differential encoders are used, the number of available counters will be reduced (refer to *High-Speed Counter Modules for PACSystems RX3i and Series 90-30 User's Manual*, GFK-0293, Sections 7-8). The number of counters listed below applies to single-ended applications. The choices are:

- Type A selects four identical, independent simple counters.
- Type B selects two identical, independent more complex counters.
- Type C selects one complex counter.
- Type Z selects two simple counters with Clock Z input (enhanced mode only).

## Type A Configuration: APU300

When used in this basic configuration, Module has four identical programmable up or down counters. Enhanced supports 32-bit or 16-bit counters; Classic supports 16-bit counters only. Each counter:

- Can be programmed to count either up or down.
- Has three inputs: a Preload input, a Count Pulse input, and a Strobe input.
- Has one output, with programmable on and off Output Presets.

#### **Type B Configuration: APU300**

In this configuration, Module has two identical bidirectional 32-bit counters.

- The count inputs can be configured to accept Up/Down,
   Pulse/Direction, or A Quad B signals.
- Each counter has two completely independent sets of Strobe inputs and Strobe registers.
- Each counter has two outputs; each output has programmable on/off Presets.
- Each counter has one Disable input that can be used to suspend counting.

#### **Type C Configuration: APU300**

The Type C configuration is suitable for applications requiring motion control, differential counting, or homing capability.

In this configuration, Module has one 32-bit counter with four outputs.

- Each output has programmable on/off output presets, three strobe registers with strobe inputs, and two Preload values with Preload inputs.
- Two sets of bidirectional counter inputs can be connected to operate in a differential fashion. Each set of inputs can be configured for A Quad B, Up/Down, or Pulse/Direction operation.
- Module has a Home Position register for preloading the Accumulator to the Home Position value.

### Type Z Configuration (Enhanced Mode): APU300

Type Z is a simple counter that uses a pair of clock inputs to perform Up/Down. Pulse/Direction, or A Quad B Counting. A special Clock Z input combines the functions of a Strobe input (copies the current count value to a Strobe register), Disable input (optionally suspends counting), and Clear input (optionally resets the Accumulator to zero). Each Type Z counter has four set-point values that can be used to control its outputs. The Type Z counter has multiple modes of operation which may be selected by the user. Refer to *High-Speed Counter Modules for PACSystems RX3i and Series 90-30 User's Manual*, GFK-0293, Sections 6 & 7 for a full description of the Type Z counter and enhanced mode configuration.

## 8.1.2 Status LEDs: APU300

#### **Enhanced Version: APU300**

#### **Module Status LEDs**

| LED              | Status                        | Description                                                                      |  |
|------------------|-------------------------------|----------------------------------------------------------------------------------|--|
| S1 (MODULE OK)   | Green                         | The High-Speed Counter is powered up and has completed its internal              |  |
|                  |                               | diagnostics.                                                                     |  |
|                  | Red                           | The watchdog timer circuit has detected a module failure.                        |  |
|                  | Off                           | Module is not powered up correctly or internal diagnostics failed.               |  |
| S2 (CONFIG)      | On                            | n A user configuration has been downloaded to Module.                            |  |
|                  | Off                           | A configuration has not been downloaded; the default configuration is in effect. |  |
| S3 (FIELD POWER) | On Output field power present |                                                                                  |  |
|                  | Off                           | Output field power not present                                                   |  |

#### **Input Status LEDs**

A status LED is provided for each of the twelve input points.

| LED   | Status | Description  |
|-------|--------|--------------|
| 1 -12 | On     | Input is on  |
|       | Off    | Input is off |

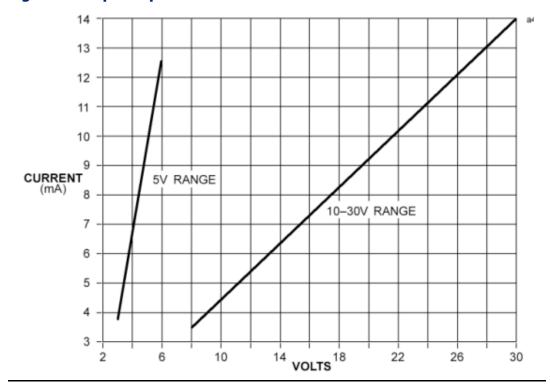
#### **Output Status LEDs**

A status LED is provided for each of the four output points.

| LED | Status | Description                  |
|-----|--------|------------------------------|
| 1-4 | Green  | Output is on                 |
|     | Amber  | Output has overcurrent fault |
|     | Off    | Output is off                |

#### **Classic Version: APU300**

| LED       | Status | Description                                                                      |  |
|-----------|--------|----------------------------------------------------------------------------------|--|
| MODULE OK | Green  | The High-Speed Counter is powered up and has completed its internal              |  |
|           |        | diagnostics.                                                                     |  |
|           | Off    | Module is not powered up correctly or internal diagnostics failed.               |  |
| CONFIG    | On     | A user configuration has been downloaded to Module.                              |  |
|           | Off    | A configuration has not been downloaded; the default configuration is in effect. |  |


# 8.1.3 Specifications: APU300

|                                          | IC694APU300 Clas         | sic                          | IC694APU300 Enhanced                         |                                            |  |  |
|------------------------------------------|--------------------------|------------------------------|----------------------------------------------|--------------------------------------------|--|--|
| General                                  |                          |                              |                                              |                                            |  |  |
| Power Consumption                        | 250 mA (1.25 W) fro      | om backplane 5Vdc bus        | 250 mA (1.25 W                               | /) from backplane 5Vdc bus                 |  |  |
| Output Points                            | Powered by user-s<br>Vdc | upplied 5Vdc, or 10 Vdc - 30 | Powered by user-supplied 4.7Vdc to 40 Vdc    |                                            |  |  |
| Maximum Count Rate                       | 80 kHz                   |                              | 1 MHz (duty cycle 25% to 87%)                |                                            |  |  |
| 150                                      | DO 4 D D O 1/ 1 CO       | NETC OV                      | BOARD OK (S1)                                | BOARD OK (S1), CONFIG OK (S2), Field Power |  |  |
| LEDs                                     | BOARD OK and CO          | NFIG OK                      | OK (S3), Input Status, Output Status         |                                            |  |  |
| Isolation                                |                          |                              |                                              |                                            |  |  |
| Field to Backplane (optical)             | 250 Vac continuou        | IS,                          | 250 Vac contin                               | iuous,                                     |  |  |
| and to frame ground                      | 1500 Vac for one r       | minute                       | 1500 Vac for o                               | ne minute                                  |  |  |
| Croup to Croup                           | 250 Vac continuou        | IS,                          | 250 Vac contin                               | uous,                                      |  |  |
| Group to Group                           | 1500 Vac for one r       | minute                       | 1500 Vac for o                               | ne minute                                  |  |  |
| Inputs                                   |                          |                              |                                              |                                            |  |  |
| Voltage Range                            | 5 Vdc (TSEL jumper       | ed to INCOM)                 | 5 Vdc (TSEL jum                              | npered to INCOM)                           |  |  |
|                                          | 10 to 30 Vdc (TSEL       | open)                        | 10 to 30 Vdc (T                              | SEL open)                                  |  |  |
| Number of Positive Logic                 | 12 (Single Ended)        |                              | 12 (Single Ended) or 6 (Differential)        |                                            |  |  |
| Inputs                                   | 12 (Sirigle Lilded)      | 2 (Single Ended)             |                                              | ed) of o (Differential)                    |  |  |
| Input Thresholds (I1 to I12)             | 5 Vdc Range              | 10–30 Vdc Range              | 5 Vdc Range                                  | 10–30 Vdc Range                            |  |  |
| Von                                      | 3.55 V min.              | 8.35 V min.                  | 3.55 V min.                                  | 8.35 V min.                                |  |  |
| Ion                                      | 3.2 mA min. 3.2 mA min.  |                              | 3.2 mA min.                                  | 3.2 mA min.                                |  |  |
| Voff                                     | 1.5 V max. 2.4 V max.    |                              | 1.5 V max.                                   | 2.4 V max.                                 |  |  |
| Ioff                                     | 0.8 mA max. 0.8 mA max.  |                              | 0.8 mA max.                                  | 0.8 mA max.                                |  |  |
| Survivable Peak Voltage                  | ± 500 V for 1μSec        |                              | ± 500 V for 1μSec                            |                                            |  |  |
| Transient Common Mode<br>Noise Rejection | 1000 V/μSec minim        | num                          | 1000 V/μSec minimum                          |                                            |  |  |
| Input Impedance                          | Refer to Figure 242      | ? for V-I characteristics    | •                                            |                                            |  |  |
| Outputs                                  |                          |                              |                                              |                                            |  |  |
| Valtaga Danga                            | 10 to 30 Vdc at 500      | mA maximum                   | 4.7.4. 40.1/4                                | 1.54                                       |  |  |
| Voltage Range                            | 4.75 to 6 Vdc at 20      | mA maximum                   | 4.7 to 40 Vdc at 1.5A maximum                |                                            |  |  |
| Off State Leakage Current                | 10μA maximum pe          | r point                      | 10μA maximun                                 | n per point                                |  |  |
| Output Valtage Drep                      | 0.E.V. mavimum at        | F00 mA                       | 0.5 V maximum at 500 mA                      |                                            |  |  |
| Output Voltage Drop                      | 0.5 V maximum at         | 500 MA                       | 1.5 V maximum at 1.5 A                       |                                            |  |  |
| Inrush current                           | -                        |                              | 1.6 A without ESCP tripping                  |                                            |  |  |
| CMOS Load Drive Capability               | Yes                      |                              | Yes                                          |                                            |  |  |
| Positive Logic Outputs                   | Four                     |                              | Four                                         |                                            |  |  |
| Output Protection                        | Outputs are short        | circuit protected by a       | Outputs are protected for overcurrent (ESCP) |                                            |  |  |
| Output Protection                        | 3A pico fuse comm        | on to all four outputs       | with self-healing capability.                |                                            |  |  |
| Reverse Polarity Protection              | None                     |                              | Outputs protected from reverse wiring        |                                            |  |  |
| ,,                                       |                          |                              | between OUTPWR and OUTCOM terminals          |                                            |  |  |

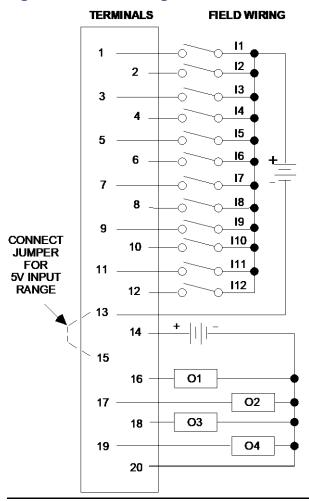
For product standards and general specifications, refer to Appendix A:.

# **Input Impedance: APU300**

Figure 242: Input Impedance APU300



## 8.1.4 Field Wiring: APU300


Refer to High-Speed Counter Modules for PACSystems RX3i and Series 90-30 User's Manual, GFK-0293D (or later) Chapter 2 for detailed wiring information.

Shielded cable must be used for connecting to the High-Speed Counter module. The shield for the cable must have a high frequency ground within 6 inches (15.24 cm) of Module to meet the IEC 1000-4-4 levels specified in Appendix A:. The cable length is limited to 30 meters.

#### **A** CAUTION

Do not connect voltage in the 10 Vdc to 30 Vdc range to Module inputs when the 5Vdc input range (pins 13 to 15 jumpered) is selected. Doing so will damage Module.

Figure 243: Field Wiring APU300



#### **Input Characteristics: APU300**

The High-Speed Counter uses single-ended positive logic (source) type inputs.

- Transducers with CMOS buffer outputs (74HC04 equivalent) can directly drive the High-Speed Counter inputs using the 5Vdc input range.
- Transducers using open collector outputs must include a  $470\Omega$  pull-up resistor to 5Vdc to guarantee compatibility with the High-Speed Counter inputs.
- Transducers using high voltage open collector (sink) type outputs must have a  $1k\Omega$  pull-up resistor to +12Vdc for compatibility with the High-Speed Counter 10 to 30 Vdc input range.

**Note:** Classic versions of the APU300 required that transducers using TTL totem-pole outputs include a  $470\Omega$  pull-up resistor (to 5Vdc) to guarantee compatibility with the High-Speed Counter inputs. The enhanced APU300 versions do not require a  $470\Omega$  pull-up resistor for such transducers.

### **Input Voltage Ranges: APU300**

The default voltage range is 10 Vdc to 30 Vdc. To use this voltage range, leave the threshold selection terminals (pins 13 and 15) unconnected.

To select the 5Vdc threshold, connect a jumper between two terminals on the detachable terminal board connector.

# Terminal Assignments for Each Counter Type (Classic Mode): APU300

The following table shows which terminals to use for the Classic Mode counter type selected during module configuration.

| T        | Signal                      | Dia Definition                    | Use in Counter Type³⁴ |                      |                      |  |  |
|----------|-----------------------------|-----------------------------------|-----------------------|----------------------|----------------------|--|--|
| Terminal | Name                        | Pin Definition                    | Туре А                | Type B <sup>35</sup> | Type C <sup>36</sup> |  |  |
| 1        | I1                          | Positive Logic Input              | A1                    | A1                   | A1                   |  |  |
| 2        | I2                          | Positive Logic Input              | A2                    | B1                   | B1                   |  |  |
| 3        | I3                          | Positive Logic Input              | A3                    | A2                   | A2                   |  |  |
| 4        | I4                          | Positive Logic Input              | A4                    | B2                   | B2                   |  |  |
| 5        | I5                          | Positive Logic Input              | PRELD1                | PRELD1               | PRELD1.1             |  |  |
| 6        | I6                          | Positive Logic Input              | PRELD2                | PRELD2               | PRELD1.2             |  |  |
| 7        | I7                          | Positive Logic Input              | PRELD3                | DISAB1               | DISAB1               |  |  |
| 8        | I8                          | Positive Logic Input              | PRELD4                | DISAB2               | HOME                 |  |  |
| 9        | I9                          | Positive Logic Input              | STRB1                 | STRB1.1              | STRB1.1              |  |  |
| 10       | I10                         | Positive Logic Input              | STRB2                 | STRB1.2              | STRB1.2              |  |  |
| 11       | I11                         | Positive Logic Input              | STRB3                 | STRB2.1              | STRB1.3              |  |  |
| 12       | I12                         | Positive Logic Input              | STRB4                 | STRB2.2              | MARKER               |  |  |
| 13       | INCOM                       | Common for positive logic inputs  | INCOM                 | INCOM                | INCOM                |  |  |
| 14       | OUTPWR <sup>37</sup><br>DC+ | Power for positive logic outputs  | OUTPWR                | OUTPWR               | OUTPWR               |  |  |
| 15       | TSEL                        | Threshold select, 5V or 10 to 30V | TSEL                  | TSEL                 | TSEL                 |  |  |
| 16       | 01                          | Positive Logic Output             | OUT1                  | OUT1.1               | OUT1.1               |  |  |
| 17       | 02                          | Positive Logic Output             | OUT2                  | OUT1.2               | OUT1.2               |  |  |
| 18       | 03                          | Positive Logic Output             | OUT3                  | OUT2.1               | OUT1.3               |  |  |
| 19       | 04                          | Positive Logic Output             | OUT4                  | OUT2.2               | OUT1.4               |  |  |
| 20       | OUTCOM                      | Common for positive logic         | OUTCOM                | OUTCOM               | OUTCOM               |  |  |
| 20       | DC-                         | outputs                           | JUTCOW                | OUTCON               | OUTCOIVI             |  |  |

<sup>&</sup>lt;sup>34</sup> Notation: Inputs and outputs identified by two numbers separated by a decimal point (x.y) indicate the counter number (x) to the left of the decimal point and the counter element (y) number on the right. For example, STRB1.2 indicates Counter 1, Strobe 2 input.

<sup>&</sup>lt;sup>35</sup> Type B, Type Z Counters:

A1, B1 are the A and B inputs for counter 1.

A2, B2 are the A and B inputs for counter 2 (classic notation).

A3, B3 are the A and B inputs for counter 3 (enhanced notation).

<sup>&</sup>lt;sup>36</sup> Type C Counter:

A1, B1 are the A and B count inputs for (+) loop

A2, B2 are the A and B count inputs for (-) loop

<sup>&</sup>lt;sup>37</sup> OUTPWR **does not** source power for user loads. Output power **must be supplied** from an external supply.

# Terminal Assignments for Each Counter Type (Enhanced Mode): APU300

The following table lists terminal block pin assignments based on the counter type combinations and input mode settings. Footnotes appear on the previous page.

| Input           | <b>C1</b>       | <b>C2</b> | С3              | <b>C4</b> | I1  | <b>I</b> 2 | I3  | <b>I</b> 4 | I5 <sup>34</sup> | I6 <sup>34</sup> | I7 <sup>34</sup> | I8 <sup>34</sup> | I9 <sup>34</sup> | I10 <sup>34</sup> | I11 <sup>34</sup> | I12 <sup>34</sup> |
|-----------------|-----------------|-----------|-----------------|-----------|-----|------------|-----|------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|
| Single<br>Ended | Α               | Α         | A               | Α         | A1  | A2         | А3  | A4         | PRELD1           | PRELD2           | PRELD3           | PRELD4           | STRB1            | STRB2             | STRB3             | STRB4             |
| Single<br>Ended | B <sup>35</sup> | -         | B <sup>35</sup> | -         | A1  | B1         | А3  | В3         | PRELD1.1         | DISAB1.1         | PRELD3.1         | DISAB3.1         | STRB1.1          | STRB1.2           | STRB3.1           | STRB3.2           |
| Single<br>Ended | C <sup>36</sup> | -         | -               | -         | A1  | B1         | A2  | B2         | PRELD1.1         | PRELD1.2         | DISAB1           | НОМЕ             | STRB1.1          | STRB1.2           | STRB1.3           | MARKER            |
| Single<br>Ended | Α               | Α         | B <sup>35</sup> | -         | A1  | A2         | А3  | В3         | PRELD1.1         | PRELD2.1         | PRELD3.1         | DISAB3.1         | STRB1.1          | STRB2.1           | STRB3.1           | STRB3.2           |
| Single<br>Ended | А               | Α         | Z <sup>35</sup> | -         | A1  | A2         | А3  | В3         | PRELD1.1         | PRELD2.1         | ‡                | ‡                | STRB1.1          | STRB2.1           | Z3.1              | ‡                 |
| Single<br>Ended | B <sup>35</sup> | -         | Α               | Α         | A1  | B1         | А3  | A4         | PRELD1.1         | DISAB1.1         | PRELD3.1         | PRELD4.1         | STRB1.1          | STRB1.2           | STRB3.1           | STRB4.1           |
| Single<br>Ended | B <sup>35</sup> | -         | Z <sup>35</sup> | -         | A1  | B1         | А3  | В3         | PRELD1.1         | DISAB1.1         | ‡                | ‡                | STRB1.1          | STRB1.2           | Z3.1              | ‡                 |
| Single<br>Ended | Z <sup>35</sup> | -         | Α               | Α         | A1  | B1         | А3  | A4         | ‡                | ‡                | PRELD3.1         | PRELD4.1         | Z1.1             | ‡                 | STRB3.1           | STRB4.1           |
| Single<br>Ended | Z <sup>35</sup> | -         | B <sup>35</sup> | -         | A1  | B1         | А3  | В3         | ‡                | ‡                | PRELD3.1         | DISAB3.1         | Z1.1             | ‡                 | STRB3.1           | STRB3.2           |
| Single<br>Ended | Z <sup>35</sup> | -         | Z <sup>35</sup> | -         | A1  | B1         | А3  | В3         | ‡                | ‡                | ‡                | ‡                | Z1.1             | ‡                 | Z3.1              | ‡                 |
| Differential    | Α               | -         | Α               | -         | A1+ | A1-        | A3+ | A3-        | PRELD1.1+        | PRELD1.1-        | PRELD3.1+        | PRELD3.1-        | STRB1.1+         | STRB1.1-          | STRB3.1+          | STRB3.1-          |
| Differential    | B <sup>35</sup> | -         | -               | -         | A1+ | A1-        | B1+ | B1-        | PRELD1+          | PRELD1-          | DISAB1+          | DISAB1-          | STRB1.1+         | STRB1.1-          | STRB1.2+          | STRB1.2-          |
| Differential    | $Z^{35}$        | -         | -               |           | A1+ | A1-        | B1+ | B1-        | ‡                | ‡                | ‡                | ‡                | Z1+              | Z1-               | ‡                 | ‡                 |

# 8.1.5 ESCP Outputs with 1.5 Amps per Point Minimum

The Enhanced APU300 modules support ESCP (Electronic Short Circuit Protection) for all four outputs. The ESCP fault will be detected if the output channel is shorted to OUTCOM. Module will report ESCP fault condition in the I/O status data – Bit 24 to Bit 27 corresponding to Output1 to Output4 respectively. Also, the output LEDs O1 to O4 will be amber during the short circuit condition.

<sup>&</sup>lt;sup>‡</sup> No connection.

#### 8.2 Serial I/O Processor Module: IC694APU305

#### Figure 244: IC694APU305



The PACSystems RX3i I/O Processor module, IC694APU305, provides direct processing of rapid pulse signals for industrial control applications such as:

- Fast response process control
- Velocity measurement
- Material handling, marking, and packaging Module is able to sense inputs, process the input information, and control the outputs without needing to communicate with a CPU. Features
- Up to 12 positive logic (source) inputs with input voltage range selection of either 5Vdc (TTL) or 10 to 30 Vdc (non-TTL).
- Up to eight positive logic (source) outputs: four outputs with 1 amprating and four configurable outputs with 0.5-amprating
- Outputs protected by replaceable fuse (one fuse for all outputs)
- Counts per Timebase register for input rate measurement
- Total Counts register accumulates total counts received by module
- Four Strobe data registers for input position capture
- Two Timer data registers for indicating input pulse length or input spacing in milliseconds
- Thirty-two range comparators (outputs returned in %I and %AI data)
- Internal module diagnostics

Inputs can be used as count signals or edge-sensitive strobe signals. Outputs can be used to drive indicating lights, solenoids, relays, and other devices.

Power to operate the logic circuitry of Module is obtained from the 5Vdc bus on the backplane. +24Vdc power sources for the input and output devices must be supplied (80mA max).

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

The I/O Processor module provides a configurable threshold voltage to allow the inputs to respond to either a 5Vdc signal level or a 10 to 30 Vdc signal level.

Six green LEDs indicate the operating status of Module, the status of configuration parameters, and the state of hardware outputs 1 through 4.

# 8.2.1 Specifications: APU305

| APU305                                 | Specifications                                                               |
|----------------------------------------|------------------------------------------------------------------------------|
| Power Supply Voltage                   | 5Vdc from backplane                                                          |
| Power Supply Current                   | 360mA + (10mA x number of ON faceplate outputs)                              |
| Field I/O to logic isolation           | Peak (1 second): 1500 V                                                      |
| -                                      | Steady State: 30 Vac/Vdc                                                     |
| Maximum Number of modules per RX3i     | No limit                                                                     |
| system                                 |                                                                              |
| Input Specifications                   |                                                                              |
| Input type                             | Positive Logic, optically isolated. Note: Input Common is internally         |
|                                        | connected to Output Common                                                   |
| Input Circuit Power                    | Supplied by module using DC/DC converter                                     |
| Encoder Power                          | Supplied by user (5V or 10–30 Vdc). (Inputs will operate with Output Circuit |
|                                        | power disconnected)                                                          |
| Input Impedance                        | 4300Ω typical                                                                |
| Input Threshold                        | 8.0v (non-TTL), 1.5V (TTL)                                                   |
| Input Hysteresis                       | 250 mV typical                                                               |
| Maximum Input Voltage                  | +30 Vdc                                                                      |
| Input duty cycle limit                 | If Input 1–12 voltages exceed 24.0 Vdc, de-rate total input duty cycle from  |
|                                        | 100% at 40° C to 50% at 60° C                                                |
| Input filter delays                    | Absolute Encoder: 20 μs                                                      |
|                                        | AQUADB Encoder & Preload: 20 μs / 2 μs selectable                            |
|                                        | AQUADB Home Switch: 10 ms                                                    |
|                                        | AQUADB IN 6–8: 10 ms                                                         |
| Minimum Strobe Input Pulse Width       | 2ms (Minimum time between consecutive strobe inputs)                         |
| Strobe Register Resolution             | 1ms (Maximum time from when strobe input is asserted until the strobe        |
|                                        | register value is updated)                                                   |
| Maximum Count Rate                     | 30 kHz (Absolute Encoder)                                                    |
|                                        | 200 kHz (A Quad B Encoder)                                                   |
| Input Cable                            | Shielded cable recommended, Maximum length: 30m                              |
| Output Specifications                  |                                                                              |
| Output type                            | Positive Logic, optically isolated                                           |
| Maximum Supply Voltage                 | 30.0 Vdc                                                                     |
| Continuous Output Current (10–30 Vdc   | 1.0 A (each output 1–4)                                                      |
| supply)                                | 0.5 A (each output 5–8)                                                      |
| Total Continuous Output Current at 40° | 4.0 A (total of outputs 1–8)                                                 |
| С                                      |                                                                              |
| Output 1–4 derating above 40° C        | De-rate total Output 1–4 current to 2.0A at 60° C                            |
| Output 5–8 derating above 40° C        | De-rate total Output 5–8 current to 0.5A at 60° C                            |
| Output current using 5Vdc supply       | 20 mA typical with 5.0 Vdc supply                                            |
|                                        | 2 mA minimum with 4.9Vdc supply                                              |
| Inductive Load Clamp Voltage           | -8.0 V typical (outputs 1-4)                                                 |
|                                        | –1.0 V typical (outputs 5–8)                                                 |
| Off-state leakage current              | 10 mA (each output)                                                          |
| Output Fuse                            | 5 A (5x20mm replaceable) common to all outputs                               |
| Output Response Time                   | 500 μs typical                                                               |

## 8.2.2 Field Wiring: APU305

# Figure 245: Field Wiring APU305

(1 IN1 2 IN2 3 IN3 IN4 5 IN5 IN6 IN7 IN8 IN9/OUT5 ● IN10/OUT6 IN11/OUT7 IN12/OUT8 INCOM 13 (14 (15) SHIELD OUT1 (16) (17) OUT2 (18) OUT3 (19 OUT4 (20 OUTCOM

The I/O Processor Module has a removable terminal strip for connection to field devices.

#### **A** CAUTION

Do not apply loads greater than 0.5 Amp to the OUT5 through OUT8 outputs (terminals 9 through 12), or 1.0 Amp to OUT1 through OUT4 (terminals 16 through 19). Doing so may damage Module.

#### **Notes**

- Pin 13 (Input Common) and pin 20 (Output Common) are internally connected together in the IOP module.
- All 12 I/O Processor inputs are positive logic (source) type.
- Transducers using TTL open collector outputs must include a 2000Ω (maximum) pull-up resistor (to 5V) to guarantee compatibility with the inputs.
- Transducers using high voltage open collector (sink) type outputs must have a  $1k\Omega$  (maximum) pull-up resistor to +12V for compatibility with the 10 to 30 volt input range.

# **Typical Connections: APU305**

**Figure 246: Typical Connections APU305** Terminals Field Wiring IN1 d0 1 10 Bit IN2 1 1 d1 2 **Gray Code** | | d2 Absolute IN3 Encoder | | d3 IN4 | | d4 IN5 1 1 IN6 **d**5 \_\_ | d6/ IN7 T Τ IN8 d7/ 1 1 IN9/OUT5 d8/ I IN10/OUT6 1 **d9** (10) Ι IN11/OUT7 Internal Load Connection IN12/OUT8 Load 1 1 0V INCOM (13) PWR OUTPWR 1 1 (14) SHIELD (15) OUT1 Load OUT2 External (17 Load **24V** Power OUT3 Load (18 Supply OUT4 Load OUTCOM

Discrete Mixed I/O Modules 318

# 8.2.3 Configuration: APU305

# **Settings Tab: APU305**

| Settings            | Description                                                                              |
|---------------------|------------------------------------------------------------------------------------------|
| Reference Addresses | 32 discrete inputs (%I),                                                                 |
| and Lengths         | 15 words of analog inputs (%AI),                                                         |
|                     | 32 discrete outputs (%Q), and                                                            |
|                     | 6 words of analog outputs (%AQ).                                                         |
| Input Threshold     | Selects the Input voltage level to be used. If 5Vdc inputs are used, select TTL,         |
|                     | otherwise select Non-TTL (for 10–30 Vdc inputs). <i>Default: Non-TTL</i>                 |
| In Timer #1 Mode    | Selects the inputs that control the starting and stopping of Timer 1. The resulting      |
|                     | time recorded for Timer 1 is reported in the eleventh %AI word. IN10 causes              |
|                     | Timer 1 to report the elapsed time (in ms) from the configured edge of input 10 to       |
|                     | the other edge of input 10. IN09-10 causes Timer 1 to report the elapsed time (in        |
|                     | ms) from the configured edge of input 10 to the configured edge of input 9.              |
|                     | Default: IN10                                                                            |
| In Timer #2 Mode    | Selects the inputs that control the starting and stopping of Timer 2. The resulting      |
|                     | time recorded for Timer 2 is reported in the twelfth %AI word. IN12 causes Timer         |
|                     | 2 to report the elapsed time (in ms) from the configured edge of input 12 to the         |
|                     | other edge of input 12. IN11-12 causes Timer 2 to report the elapsed time (in ms)        |
|                     | from the configured edge of input 12 to the configured edge of input 11. <i>Default:</i> |
|                     | IN12                                                                                     |
| Timebase            | The timebase for the Counts per Timebase return data (second %AI word). The              |
| (ms)                | default is 1000ms (1 second) resulting in Counts per Timebase return data that           |
|                     | indicates input counts per second.                                                       |
| Strobe1 Edge        | The strobe 1 (Input 9) trigger edge: positive (rising) or negative (falling).            |
| Strobe2 Edge        | The strobe 2 (Input 10) trigger edge: positive (rising) or negative (falling).           |
| Strobe3 Edge        | The strobe 3 (Input 11) trigger edge: positive (rising) or negative (falling).           |
| Strobe4 Edge        | The strobe 4 (Input 12) trigger edge: positive (rising) or negative (falling).           |
| Strobe1 Enable      | Selects whether strobe 1 (Input 9) is Always enabled (default selection) or is only      |
|                     | enabled when preset output 5 is On (Rcomp-05 selection).                                 |
| Strobe2 Enable      | Selects whether strobe 2 (Input 10) is Always enabled (default selection) or is only     |
|                     | enabled when preset output 6 is On (Rcomp-06 selection).                                 |
| Strobe3 Enable      | Selects whether strobe 3 (Input 11) is Always enabled (default selection) or is only     |
|                     | enabled when preset output 7 is On (Rcomp-07 selection).                                 |
| Strobe4 Enable      | Selects whether strobe 4 (Input 12) is Always enabled (default selection) or is only     |
|                     | enabled when preset output 8 is On (Rcomp-08 selection).                                 |
| Output 5            | Selects whether point 9 is output or an input. Disabled (default) defines the point      |
|                     | as Input #9. Enabled defines it as output #5.                                            |
| Output 6            | Selects whether point 10 is an output or an input. Disabled (default) defines the        |
|                     | point as Input #10. Enabled defines it as output #6.                                     |

| Settings          | Description                                                                           |
|-------------------|---------------------------------------------------------------------------------------|
| Output 7          | Selects whether point 11 is an output or an input. Disabled (default) defines the     |
|                   | point as Input 11. Enabled defines it as output #7.                                   |
| Output 8          | Selects whether point 12 is to be used for an output or an input. Disabled (default)  |
|                   | defines the point as Input #12. Enabled defines it as output #8.                      |
| Outputs Default   | The state outputs will assume if the output mode configured for the CPU is set to     |
|                   | Outputs Disabled or the CPU is no longer available. Continue (default) indicates      |
|                   | that outputs continue to operate under control of the input counts to the I/O         |
|                   | Processor. Force Off causes the outputs to be forced to off Hold Last State causes    |
|                   | the I/O Processor to retain the last state of the outputs.                            |
| Function          | ABS-256 (default): Encoder 8-bit parallel gray code input (for 0–255 counts)          |
|                   | ABS-360: Encoder 9-bit parallel (excess 76 gray code for 0–359 count rollover)        |
|                   | ABS-512: Encoder 9-bit parallel gray code (for 0–511 counts)                          |
|                   | If ABS-360 or 512 is selected, Input 9 is not available for a strobe Input and Output |
|                   | 5 is unavailable.                                                                     |
|                   | ABS-1024: Encoder 10-bit parallel gray code (for 0–1023 counts)                       |
|                   | If ABS-1024 is selected, Inputs 9 and 10 are not available for strobe Inputs and      |
|                   | Outputs 5 and 6 are unavailable.                                                      |
|                   | AQUADB: Encoder AQUADB input selection                                                |
| Encoder Direction | Changes the count direction (up or down) without reversing the Absolute Encoder       |
|                   | direction of rotation. If Normal (default) is selected, increasing the count input    |
|                   | causes the IOP to register up counts and decreasing the count input causes the        |
|                   | IOP to register down counts. The Reverse selection produces the opposite effect.      |
| Position Offset   | Adjusts the count input with an offset value to compensate for a rotational offset    |
|                   | error in the Encoder coupling. Enter any required count value within the count        |
|                   | range. Default: 0                                                                     |

# A Quad B Encoder Parameters: APU305

| Settings     | Description                                                                               |
|--------------|-------------------------------------------------------------------------------------------|
| Input Filter | The Input filter range for the AQUADB Count inputs, the Marker input, and the Preload     |
|              | input. If the maximum count input rate is < 25 kHz, use the 20µs default selection,       |
|              | otherwise use the 2µs selection. <i>Default: 20</i> µs.                                   |
| Max Counts   | The count range for the internal counter registering the AQUADB input counts. It counts   |
|              | from 0 to this maximum value and then rolls over to 0. The range for this parameter is    |
|              | 10 to 64,999 counts. <i>Default: 255.</i>                                                 |
| Preload      | The initializing count value to be set into the input counter when the Preload command is |
| Position     | received by the I/O Processor. The Preload command can be from either the Preload input   |
|              | or the %Q bit command. Range: 0 to maximum counts.                                        |
| Home         | The initializing count value to be set into the input counter when the Marker input is    |
| Position     | received by the I/O Processor when executing the Home cycle. Range: 0 to maximum          |
|              | counts.                                                                                   |

## **ABS or AQUADB Encoder Parameters: APU305**

These parameters are repeated for each output.

| Setting    | Description                                                                                |
|------------|--------------------------------------------------------------------------------------------|
| Mode       | The type of pulse generated by the range comparator output. Preset (the default) causes    |
|            | the output to be On (or Off) continuously from one preset point to the other. Timer causes |
|            | timed pulses to be produced at the preset points defined by Timer 1 and Timer 2.           |
| ON Preset  | The count input value that causes the output to turn On. Can be any value in the count     |
|            | range. Default: Maximum encoder value for Absolute Encoders, 255 for AQUADB mode           |
| OFF Preset | The count input value that causes the output to turn Off. Can be any value in the count    |
|            | range. Default: 0                                                                          |
| Timer# 1   | Effective only when the output mode is Timer. The length of the pulse (in ms) produced by  |
| (ms)       | the output when the input count reaches the On preset value.                               |
|            | 0 specifies no output pulse at the On preset point. Default: 0                             |
| Timer #2   | Effective only when the output mode is Timer. The length of the pulse (in ms) produced by  |
| (ms)       | the output when the input count reaches the Off preset value.                              |
|            | 0 specifies no output pulse at the Off preset point. Default: 0                            |

# 8.2.4 Module Data: APU305

Each CPU sweep, the I/O Processor Module automatically exchanges the following status and command data, with the CPU:

• Status Bits: 32 bits of %I data

Status Words: 15 words of %AI data

Discrete Commands: 32 bits of %Q data

Immediate Command Data: 6 words of %AQ data

#### **%I Status Bits: APU305**

The Starting Address of the Status Bits is selected during configuration. The following table lists bit offsets from the Starting Address.

| Offset | Description                | Offset | Description                                  |
|--------|----------------------------|--------|----------------------------------------------|
| 00     | Range Comparator 1 status  | 16     | Input 9 status                               |
| 01     | Range Comparator 2 status  | 17     | Input 10 status                              |
| 02     | Range Comparator 3 status  | 18     | Input 11 status                              |
| 03     | Range Comparator 4 status  | 19     | Input 12 status                              |
| 04     | Range Comparator 5 status  | 20     | Strobe 1 status (Input 9 latch)              |
| 05     | Range Comparator 6 status  | 21     | Strobe 2 status (Input 10 latch)             |
| 06     | Range Comparator 7 status  | 22     | Strobe 3 status (Input 11 latch)             |
| 07     | Range Comparator 8 status  | 23     | Strobe 4 status (Input 12 latch)             |
| 08     | Range Comparator 9 status  | 24     | Home Found <sup>38</sup>                     |
| 09     | Range Comparator 10 status | 25     | Preload Latch status <sup>38</sup>           |
| 10     | Range Comparator 11 status | 26     | Home Switch Input (IN5) status <sup>38</sup> |
| 11     | Range Comparator 12 status | 27     | IN6 status <sup>38</sup>                     |
| 12     | Range Comparator 13 status | 28     | IN7 status <sup>38</sup>                     |
| 13     | Range Comparator 14 status | 29     | IN8 status <sup>38</sup>                     |
| 14     | Range Comparator 15 status | 30     | Module Ready                                 |
| 15     | Range Comparator 16 status | 31     | Error                                        |

<sup>&</sup>lt;sup>38</sup> Applies to AQUADB function only.

# %I Status Bit Descriptions: APU305

| Status             | Description                                                                                      |
|--------------------|--------------------------------------------------------------------------------------------------|
| Range              | The ON/OFF state for range comparator outputs 1-8. If the Output Mode = Preset, the              |
| Comparator 1-8     | state of the status bit is defined by the ON/OFF presets. If the Output Mode = Timer,            |
| Status             | the status bit will be on after each preset point is passed for the length of time               |
|                    | designated by Timer 1 or Timer 2. These bits always indicate the output state for                |
|                    | range comparators 1-8, even if the corresponding hardware output is disabled (and                |
|                    | Terminal Points 9-12 are used as Inputs).                                                        |
| Range              | The ON/OFF state for range comparator outputs 9-16 based solely on the ON & OFF                  |
| Comparator 9-16    | presets defined for each output.                                                                 |
| Status             |                                                                                                  |
| Input 9-12 Status  | The present on/off input status for Inputs 9-12. State changes in these inputs produce           |
|                    | strobe inputs 1-4 according to the configured strobe edge (input 9 = strobe 1, input             |
|                    | 10 = strobe 2, etc.).                                                                            |
| Strobe 1-4 status  | Indicates that strobe data has been captured by Inputs 9-12, respectively. Once                  |
| (Input 9-12 latch) | acknowledged, the corresponding %Q command (Reset Strobe) should be sent to                      |
|                    | clear the strobe status for future strobe captures. Following strobes will be locked out         |
|                    | until this flag is cleared.                                                                      |
| Home Found         | Indicates that the Home marker, after a Home command sequence, has been                          |
| (AQUADB only)      | recognized and the AQUADB Input Counter has been set to the Home preload value.                  |
| Preload Latch      | Indicates that the AQUADB input counter has been preloaded by a Preload Input.                   |
| Status (AQUADB     | When acknowledged, this status indication should be cleared (by the Reset Preload                |
| only)              | Latch %Q bit). This latch locks out the effect of the Preload Input, it will not be effective    |
|                    | again until this bit is cleared. This latch does <u>not</u> apply to the %Q preload command bit. |
| Home Switch        | The status of the Home switch input. When this switch is closed during the Home                  |
| Input (AQUADB      | cycle, the next encoder marker encountered will preload the counter with the                     |
| only)              | configured Home value and set the Home Found %I indication. If a Home Switch is                  |
|                    | not used, this %I bit can be used as a general-purpose input reporting the status of             |
|                    | faceplate Input 5.                                                                               |
| IN6, IN7, IN8      | The on/off status of Inputs 6, 7, & 8.                                                           |
| (AQUADB only)      |                                                                                                  |
| Module Ready       | Power-up tests have all completed successfully and Module is ready for operation.                |
| Error              | An error condition has been detected by Module. The error code is reported in the                |
|                    | first %AI word. If the error was caused by a bad data command, the data has been                 |
|                    | ignored. Once acknowledged by the program, the %Q command (Clear error) must be                  |
|                    | toggled to clear the error status.                                                               |

#### %AI Data Words: APU305

The following %AI Data words are transferred automatically to the CPU each sweep. The Starting Address of the Status Words is selected during configuration. The following table lists word offsets from the Starting Address.

| Offset   | Description                             |
|----------|-----------------------------------------|
| 000      | Module Status Code                      |
| 001      | Counts per timebase                     |
| 002      | Gray Code Encoder Data <sup>39</sup>    |
| 003      | Binary Data                             |
| 004-005  | Total Counts                            |
| 006      | Strobe Data 1 (Input 9)                 |
| 007      | Strobe Data 2 (Input 10)                |
| 008      | Strobe Data 3 (Input 11)                |
| 009      | Strobe Data 4 (Input 12)                |
| 010      | Start/Stop Timer 1 Data                 |
| 011      | Start/Stop Timer 1 Data                 |
| 012      | Range Comparator 17-32 status (16 bits) |
| 013, 014 | reserved                                |

 $<sup>^{</sup>m 39}$  Not applicable for the AQUADB function selection.

# %AI Data Word Descriptions: APU305

| Subject                  | Description                                                                        |                                                                            |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|
| Module Status            | Indicate                                                                           | s the Error identification code when an error has been detected. The       |  |  |  |  |  |
| Code                     | error ide                                                                          | entified is the first error encountered. The error condition must be       |  |  |  |  |  |
|                          | cleared                                                                            | before other errors will be reported.                                      |  |  |  |  |  |
|                          | Error                                                                              | Description                                                                |  |  |  |  |  |
|                          | Code                                                                               |                                                                            |  |  |  |  |  |
|                          | 0010                                                                               | Encoder Position Offset out of range (ABS Encoder Function only)           |  |  |  |  |  |
|                          | xx11                                                                               | ON Preset xx is out of range                                               |  |  |  |  |  |
|                          | xx12                                                                               | OFF Preset xx is out of range                                              |  |  |  |  |  |
|                          | 0015                                                                               | Home Position out of range (AQUADB Function only)                          |  |  |  |  |  |
|                          | 0016                                                                               | Preload Position out of range (AQUADB Function only)                       |  |  |  |  |  |
|                          | 001E                                                                               | AQUADB Input Quadrature error (AQUADB Function only)                       |  |  |  |  |  |
|                          | 001C                                                                               | Internal Home Command Sequence State Machine Error                         |  |  |  |  |  |
|                          |                                                                                    | (AQUADB function only)                                                     |  |  |  |  |  |
|                          | 001D                                                                               | Absolute Encoder Input Error (ABS Encoder Function Only)                   |  |  |  |  |  |
| Counts per               | Indicate                                                                           | s the number of input counts received in the last time interval defined by |  |  |  |  |  |
| Timebase                 | the Time                                                                           | ebase configuration parameter. With the default Timebase (1000 ms), this   |  |  |  |  |  |
|                          | indicate                                                                           | s counts per second.                                                       |  |  |  |  |  |
| <b>Gray Code Encoder</b> | Indicates the Gray code value presently being received by Module inputs from       |                                                                            |  |  |  |  |  |
| Data                     | the Encoder parallel outputs (ABS Encoder only)                                    |                                                                            |  |  |  |  |  |
| Binary Data              | The binary equivalent of the Gray code value being received by Module inputs       |                                                                            |  |  |  |  |  |
|                          | from the Encoder parallel outputs, or the input counter Binary count value for the |                                                                            |  |  |  |  |  |
|                          | AQUADB selection.                                                                  |                                                                            |  |  |  |  |  |
| Total Counts             |                                                                                    | l input counts received by Module. This total counts register can be       |  |  |  |  |  |
|                          | initialized (preloaded) by a %AQ data command from the CPU. It is initialized to 0 |                                                                            |  |  |  |  |  |
|                          | •                                                                                  | r-up. For AQUADB operation, it is also initialized to 0 at the Home        |  |  |  |  |  |
|                          | ·                                                                                  | marker. In AQUADB mode, the Preload Input does not affect Total            |  |  |  |  |  |
|                          | Counts.                                                                            |                                                                            |  |  |  |  |  |
| Strobe Data 1-4          | -                                                                                  | tured input binary data value recorded when the strobe input occurred.     |  |  |  |  |  |
|                          | •                                                                                  | -12 correspond to Strobe inputs 1-4, respectively.                         |  |  |  |  |  |
|                          |                                                                                    | put edge may be configured to trigger the strobe data capture.             |  |  |  |  |  |
| Start/Stop Timer 1       |                                                                                    | e (in ms) between the input edges of Input 10 (default) or the input edges |  |  |  |  |  |
| Data                     | •                                                                                  | s 9-10 depending upon the configuration. To start the capture of this      |  |  |  |  |  |
| (ms)                     | _                                                                                  | lata, the strobe latch for Input 10 must be cleared, and if the strobe 2   |  |  |  |  |  |
|                          |                                                                                    | configuration is RCOMP-6, the output range comparator 6 must be on         |  |  |  |  |  |
|                          |                                                                                    | e Input 10 strobe occurs. If Input 9 is used to stop the time measurement  |  |  |  |  |  |
|                          |                                                                                    | strobe 1 enable configuration is RCOMP–5, output range comparator 5        |  |  |  |  |  |
|                          | must be                                                                            | on (when strobe input occurs) before the timing will stop.                 |  |  |  |  |  |

| Subject            | Description                                                                       |
|--------------------|-----------------------------------------------------------------------------------|
| Start/Stop Timer 2 | The time (in ms) between the input edges of Input 12 (default) or the input edges |
| Data               | of Inputs 11-12 depending upon the configuration. To start the capture of this    |
| (ms)               | timing data the strobe latch for Input 12 must be cleared, and if the strobe 4    |
|                    | enable configuration is RCOMP–8, output range comparator 8 must be on when        |
|                    | the Input 12 strobe occurs.                                                       |
|                    | If Input 11 is used to stop the time measurement and the strobe 3 enable          |
|                    | configuration is RCOMP–7, output range comparator 7 must be on (when strobe       |
|                    | input occurs) before the timing will stop.                                        |
| Range Comparator   | Indicates the ON/OFF state for range comparator outputs 17-32 based solely on     |
| 17-32 status       | the ON and OFF presets defined for each output.                                   |
| (16 bits)          |                                                                                   |

# **%Q Control Bits: APU305**

The following %Q Control Bits are transferred automatically to the CPU each sweep. The Starting Address of the Control Bits is selected during configuration. The following table lists bit offsets from the Starting Address.

| Offset  | Description                             | Offset  | Description                       |  |
|---------|-----------------------------------------|---------|-----------------------------------|--|
| 00      | Enable Output 1                         | 16 - 19 | reserved                          |  |
| 01      | Enable Output 2                         |         |                                   |  |
| 02      | Enable Output 3                         |         |                                   |  |
| 03      | Enable Output 4                         |         |                                   |  |
| 04      | Enable Output 5 (only if cfg = enabled) | 20      | Reset Strobe 1 (Input 9 latch)    |  |
| 05      | Enable Output 6 (only if cfg = enabled) | 21      | Reset Strobe 2 (Input 10 latch)   |  |
| 06      | Enable Output 7 (only if cfg = enabled) | 22      | Reset Strobe 3 (Input 11 latch)   |  |
| 07      | Enable Output 8 (only if cfg = enabled) | 23      | Reset Strobe 4 (Input 12 latch)   |  |
| 08 - 15 | reserved                                | 24      | Home Command <sup>40</sup>        |  |
|         |                                         | 25      | Reset Preload Latch <sup>40</sup> |  |
|         |                                         | 26      | Preload Command <sup>40</sup>     |  |
|         |                                         | 27 - 30 | reserved                          |  |
|         |                                         | 31      | Clear Error                       |  |

<sup>&</sup>lt;sup>40</sup> Applies to AQUADB function only.

# %Q Control Bit Descriptions: APU305

| Status             | Description                                                                                |  |
|--------------------|--------------------------------------------------------------------------------------------|--|
| Enable Output      | Enables each hardware Output (ON = Enable). If the configuration for Outputs 5-8 is        |  |
| 1-8                | DISABLED, these corresponding output bit commands have no effect.                          |  |
| Reset Strobe 1-4   | Clears the respective strobe latch condition so the next strobe can be captured and        |  |
| (Input 9-12 Latch) | reported via the corresponding %I bits. If this %Q bit is held ON, the %I status bit will  |  |
|                    | stay OFF and every strobe input pulse will cause new strobe data to be captured in the     |  |
|                    | associated %AI strobe register.                                                            |  |
| Home Command       | Initiates the Home command sequence. When the Home Marker Input is recognized,             |  |
| (AQUADB only)      | the input counter will be preloaded with the configured home value, and the Home           |  |
|                    | Found %I indication will be set.                                                           |  |
| Reset Preload      | Clears the Preload Latch status after it has been set by the Preload switch input. If this |  |
| Latch              | command is left on, it will allow all Preload switch inputs to be effective.               |  |
| (AQUADB only)      |                                                                                            |  |
| Preload            | Preloads the input counter with the configured preload value. The Preload Latch            |  |
| Command            | status %I indication will not be set by this command since it only applies to the          |  |
| (AQUADB only)      | Preload faceplate input.                                                                   |  |
| Clear Error        | Toggling this command ON clears Module status error condition reported by the %I           |  |
|                    | Error bit and the %AI module status word and thus allows another error condition to        |  |
|                    | be reported.                                                                               |  |

#### **%AQ Immediate Commands: APU305**

Six %AQ words are sent automatically from the CPU to the I/O Processor Module during each sweep. These words can be used to transfer immediate command data to Module for temporarily altering configuration parameters or to initialize counter data. Configuration parameter changes made in this manner do not affect Module configuration data (stored in the CPU) which will again become effective if Module is power cycled.

Each immediate command requires three sequential %AQ words. Two immediate commands are always sent during each PLC sweep. The first word of each command set contains the identifying command number and the other two words contain the data. The actual address of each command word depends on the starting address configured for the %AQ references. Even though the commands are sent each sweep, Module will act on a command *only* if the command has changed since the last sweep. Whenever any of the three-word data changes, Module accepts the data as a new command and responds accordingly.

When these commands are sent, all three %AQ words should be loaded on the same PLC sweep. If they cannot be loaded on the same sweep (for example, when entering data from the programmer), the steps below must be followed to ensure that no wrong or incomplete data is momentarily sent.

- 1. Set Word 1 to Null Command (0000).
- 2. Set correct data in Words 2 and 3.
- 3. Set command in Word 1.

The following immediate commands may be sent by %AQ data to the I/O Processor:

| Command                                      | I          | Command # (hex)  |             |
|----------------------------------------------|------------|------------------|-------------|
| Command                                      | Word 3     | Word 2           | Word 1      |
| Null                                         | (not used) | (not used)       | 0000        |
| Load Home Position (AQUADB) <sup>41</sup>    | (not used) | Home Position    | 0101        |
| Load Preload Position (AQUADB) <sup>41</sup> | (not used) | Preload Position | 0102        |
| Load Timebase                                | (not used) | Timebase (ms)    | 0106        |
| Load Encoder Position Offset <sup>42</sup>   | (not used) | Offset           | 0107        |
| Load Total Counts                            | (not used) | Counts           | 0109        |
| Load ON/OFF Preset Pairs 1-32                | OFF preset | ON preset        | 0140 - 015F |
| Load Output Timer 1.1-8.1                    | (not used) | Time (ms)        | 01C0 - 01C7 |
| Load Output Timer 1.2-8.2                    | (not used) | Time (ms)        | 01D0 - 01D7 |

<sup>&</sup>lt;sup>41</sup> AQUADB function only.

<sup>&</sup>lt;sup>42</sup> ABS Encoder function only.

# %AQ Immediate Command Descriptions: APU305

| Command           | Description                                                                               |  |
|-------------------|-------------------------------------------------------------------------------------------|--|
| Null              | The default %AQ Immediate command. Since the %AQ words are transferred each               |  |
|                   | PLC sweep, you should always enter the Null command to avoid inadvertent                  |  |
|                   | execution of another immediate command.                                                   |  |
| Load Home         | The Home reference position value that will be preloaded into the Input counter at        |  |
| Position          | the marker location after a Home command.                                                 |  |
| (AQUADB)          |                                                                                           |  |
| Load Preload      | The position value that will be preloaded into the Input Counter when a Preload           |  |
| Position          | Switch Input is recognized, or the %Q Preload command is set.                             |  |
| (AQUADB)          |                                                                                           |  |
| Load Timebase     | The timebase to be used for determining the Counts per Timebase value returned in         |  |
|                   | the second %AI word assigned to Module.                                                   |  |
| Load Encoder      | ncoder The Encoder offset value. The Input Count Value is shifted relative to the Encoder |  |
| Position Offset   | Input by this amount as follows:                                                          |  |
| (ABS Encoder      | Input Count Value = Encoder Input - Offset                                                |  |
| Function only)    |                                                                                           |  |
| Load Total Counts | The Total Count value reported in the fifth and sixth %AI words assigned to Module        |  |
| Load ON/Off       | The ON and OFF preset value for the specified range comparator output.                    |  |
| Preset Pairs 1-32 |                                                                                           |  |
| Load Output       | The Output Timer 1 value for the specified range comparator output 1-8.                   |  |
| Timer 1.1-8.1     |                                                                                           |  |
| Load Output       | The Output Timer 2 value for the specified range comparator output 1-8.                   |  |
| Timer 1.2-8.2     |                                                                                           |  |

# 8.3 High-Speed Counter Modules: IC695HSC304, IC695HSC308

For detailed information about both RX3i High-Speed Counter modules, please refer to the *RX3i High-Speed Counters Manual*, GFK-2441.

Figure 247: IC695HSC308



PACSystems RX3i High-Speed Counter modules provide direct processing of rapid pulse signals up to 1.5 MHz for industrial control applications such as:

- Turbine flowmeter
- Meter proving
- Velocity measurement
- Material handling
- Motion control
- Process control

These modules can sense inputs, process input count information, and control outputs without CPU intervention. High-Speed Counter module IC695HSC304 provides: 8 high-speed inputs, 7 high-speed outputs, and 1 to 4 counters.

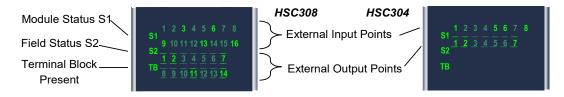
High-Speed Counter module IC695HSC308 provides: 16 high-speed inputs, 14 high-speed outputs, and 1 to 8 counters

Standard counter types A, B, C, D, E, Z, and a user-defined type can be combined on a module.

Module features include:

- Terminal Block insertion or removal detection
- Meets CE, UL/CUL 508 and 1604, and ATEX requirements
- Flash memory for future upgrades
- Module fault reporting
- Configurable I/O Interrupts
- Select module parameters easily changed without reconfiguration.

These modules must be located in an RX3i Universal Backplane.


Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*. When Module is removed from the backplane or is power-cycled, it stops counting and accumulated counts are lost.

High-Speed Counter modules can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132)) Terminal Block (Refer to Chapter 17). Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Terminal Blocks are ordered separately.

#### 8.3.1 LEDs: HSC304 & HSC308

Individual green LEDs indicate the ON/OFF status of the external input and output points of this module. These LEDs are green when the corresponding points are on. They are off when the corresponding points are off. LED positions are illustrated below.

Figure 248: LED Layout HSC304 & HSC308



Module Status (S1) LED indicates the status of Module. Solid green indicates that Module has been configured. Blinking green indicates no configuration. Blinking amber/yellow indicates a fatal module failure.

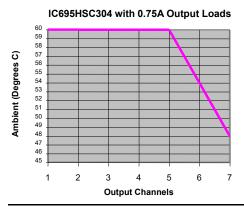
The Field Status (S2) LED is off if field power is not present. For module IC695HSC308, this LED is off unless power is present on BOTH  $V_A$  and  $V_B$ . Solid green indicates that field power is present and that no output circuit faults have been detected on circuits for which fault detection has been enabled in the configuration. If S2 is amber/yellow, field power is present, but circuit faults exist for one or more outputs.

The red/green Terminal Block LED is green when the removable terminal block of this module is locked in place. It is red when the terminal block is not locked. Module also sends an *Addition of Terminal Block* or *Loss of Terminal Block* message to the RX3i CPU to report the Terminal Block status.

During a firmware update, the S1, S2, and TB LEDs blink in a green/off pattern.

## 8.3.2 Specifications: HSC304 & HSC308

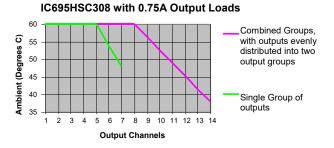
| Feature                        | Specification                                                                                                                                      |                                                                                                      |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Number of Counter              | IC695HSC304: 4 counters ( 8 inputs and 7 outputs)                                                                                                  |                                                                                                      |  |
| Channels                       | IC695HSC308: 8 counters (16 inputs and 14 outputs)                                                                                                 |                                                                                                      |  |
| High-Speed Counter Types       | Configurable as Types A, B, C, D, E, Z, and User-Defined.                                                                                          |                                                                                                      |  |
| Maximum Count Rates            |                                                                                                                                                    | able input filtering, all counter types except 750kHz fined when using four counter outputs. (40 MHz |  |
|                                | internal oversampling). For A-Quad B count mode, 1.5MHz is the maximum overall count rate.                                                         |                                                                                                      |  |
| Counting Range                 | -2147483648 to 21474                                                                                                                               | 183647                                                                                               |  |
| Oscillator Accuracy Over       | ±100ppm                                                                                                                                            |                                                                                                      |  |
| Operating Temperature<br>Range |                                                                                                                                                    |                                                                                                      |  |
| Oscillator Drift Over Time     | ±5ppm maximum per                                                                                                                                  | year                                                                                                 |  |
| Backplane Power                | IC695HSC304: 64 mA maximum at 5Vdc                                                                                                                 |                                                                                                      |  |
| Requirements                   |                                                                                                                                                    | 457 mA maximum at 3.3Vdc                                                                             |  |
|                                | IC695HSC308:                                                                                                                                       | 94 mA maximum at 5Vdc                                                                                |  |
|                                |                                                                                                                                                    | 561 mA maximum at 3.3Vdc                                                                             |  |
| LEDs                           | Module Status (S1), Field Status (S2), Terminal Block (TB), plus LEDs to                                                                           |                                                                                                      |  |
|                                | indicate state of each input and output point.                                                                                                     |                                                                                                      |  |
| Input Voltages                 | 5Vdc nominal: 4.7Vdc to 5.5Vdc                                                                                                                     |                                                                                                      |  |
|                                | 12 to 24Vdc nominal: 10 Vdc to 26.4Vdc                                                                                                             |                                                                                                      |  |
| Peak input voltage             | 35Vdc                                                                                                                                              |                                                                                                      |  |
| Input Impedance                | >5kΩ                                                                                                                                               |                                                                                                      |  |
| Output Voltage Range           | 4.7 to 40 Vdc, V <sub>A</sub> /V <sub>B</sub> input range                                                                                          |                                                                                                      |  |
| Output Current Rating          | 1.5A maximum per channel, 10.5A maximum per module                                                                                                 |                                                                                                      |  |
| Thermal De-rating              | Number of output points on at the same time depends on ambient                                                                                     |                                                                                                      |  |
|                                | temperature and current per point. For module IC695HSC308, thermal                                                                                 |                                                                                                      |  |
|                                | de-rating also depends on distribution of output points on Module. Refer to the charts that follow (Figure 249 & Figure 250)                       |                                                                                                      |  |
| Output Control                 | Module outputs can b                                                                                                                               | e mapped to any number of counter setpoint                                                           |  |
|                                | outputs. Each counter controls up to 4 setpoints with "turn on" and "turn                                                                          |                                                                                                      |  |
|                                | off" values. If multiple setpoint outputs are assigned to the same external                                                                        |                                                                                                      |  |
|                                | module output, the signals are logically ORed. External outputs can optionally be configured for control through output scan bits from PLC memory. |                                                                                                      |  |
| Surge Current per Point        | 4.5A < 450μS (Self-protected for overcurrent faults)                                                                                               |                                                                                                      |  |


| Feature                     | Specification                                                      |  |
|-----------------------------|--------------------------------------------------------------------|--|
| Minimum Load Current        | 0mA (up to 150mA to satisfy open load detection)                   |  |
| Maximum On State Voltage    | 0.35Vdc at 1.5A                                                    |  |
| Drop/Output                 |                                                                    |  |
| Maximum Off-State Leakage   | 200μΑ                                                              |  |
| Current/Output              |                                                                    |  |
| Output Delay time           | Off to On: 125µS at 1.5A                                           |  |
|                             | On to Off: 85µS at 1.5A                                            |  |
| Current Limit               | 4.5A < 450μS, 1.5A continuous                                      |  |
| Reverse Polarity Protection | Outputs protected from reverse wiring                              |  |
| Isolation                   | Field to Backplane: 250 Vac continuous; 1500 Vac for 1 minute      |  |
|                             | Field to Frame Ground, Inputs to Outputs, Output Group A to Output |  |
|                             | Group B: 50 Vac continuous; 500 Vac for 1 minute                   |  |

#### Thermal Derating: HSC304 & HSC308 Outputs

The charts below show thermal deratings for modules IC695HSC304 and IC695HSC308 with maximum loads of 0.75A on each output.

For example, if five outputs are used on module IC695HSC304, at 60°C the total current of all outputs would be 3.75 Amps. If smaller loads are used on the outputs, then more output channels can be used at a given temperature.

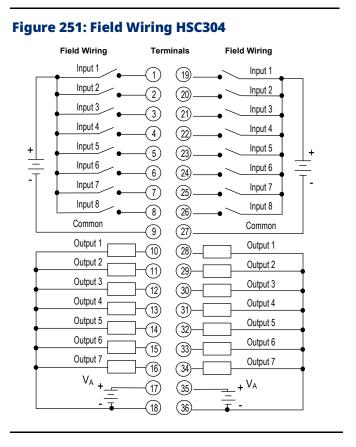

**Figure 249: Thermal Derating HSC304 Outputs** 



For module IC695HSC308, more output channels can be used at the same time at a given ambient temperature when outputs are evenly distributed into two groups. If outputs are either set up as one output group or unevenly distributed between two output groups, fewer output channels can be used for a given ambient temperature.

For example, if eight outputs are used on module IC695HSC308, and they are equally distributed between two output groups, the total current of all outputs at 60°C can be up to 6 Amps. At a given ambient temperature, if smaller loads are used on the outputs, more output channels can be used.

**Figure 250: Thermal Derating HSC308 Outputs** 



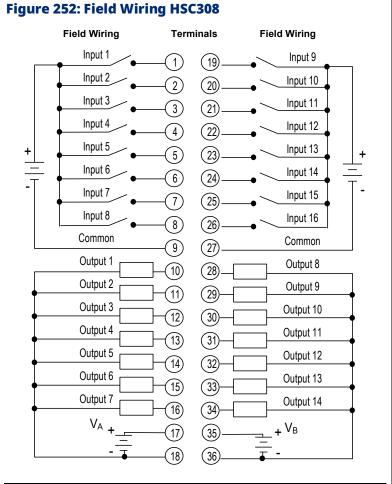

#### 8.3.3 Field Wiring: HSC304 & HSC308

Field wiring connections are made to the removable terminal assembly. For installations that must meet radiated emissions requirements as in EN 55022, high-speed connections must be made with double-shielded cable. The outside braided shield should be terminated at the entrance to the enclosure and not continue within the enclosure. Both ends of the shielded cable should be grounded. If low-frequency (power line) ground loops are an issue with the application, directly ground one end of the shielded cable and capacitively tie the other end of the shielded cable to ground with approximately 0.01µF capacitance.

#### Field Wiring: HSC304

| Connection      | Terminal |
|-----------------|----------|
|                 |          |
| Input 1         | 1        |
| Input 2         | 2        |
| Input 3         | 3        |
| Input 4         | 4        |
| Input 5         | 5        |
| Input 6         | 6        |
| Input 7         | 7        |
| Input 8         | 8        |
| Common          | 9        |
| Output 1        | 10       |
| Output 2        | 11       |
| Output 3        | 12       |
| Output 4        | 13       |
| Output 5        | 14       |
| Output 6        | 15       |
| Output 7        | 16       |
| DC+ for Voltage | 17       |
| Source A        |          |
| DC- for Voltage | 18       |
| Source A        |          |




| Terminal | Connection      |
|----------|-----------------|
| 19       | Input 1         |
| 20       | Input 2         |
| 21       | Input 3         |
| 22       | Input 4         |
| 23       | Input 5         |
| 24       | Input 6         |
| 25       | Input 7         |
| 26       | Input 8         |
| 27       | Common          |
| 28       | Output 1        |
| 29       | Output 2        |
| 30       | Output 3        |
| 31       | Output 4        |
| 32       | Output 5        |
| 33       | Output 6        |
| 34       | Output 7        |
| 35       | DC+ for Voltage |
|          | Source A        |
| 36       | DC- for Voltage |
|          | Source A        |
| <u> </u> | l               |

All outputs on module IC695HSC304 form a single output group. Each row of terminals (i.e.: 1-18, 19-36) is internally connected. The dual connection points are for wiring convenience; Module cannot be wired for differential inputs. For load distributions, Refer to *Thermal Derating: HSC304 & HSC308 Outputs* above.

#### Field Wiring: HSC308

All sixteen High-Speed Counter inputs on this module are positive logic (source) type.

| -          |          |
|------------|----------|
| Connection | Terminal |
| Input 1    | 1        |
| Input 2    | 2        |
| Input 3    | 3        |
| Input 4    | 4        |
| Input 5    | 5        |
| Input 6    | 6        |
| Input 7    | 7        |
| Input 8    | 8        |
| Common     | 9        |
| Output 1   | 10       |
| Output 2   | 11       |
| Output 3   | 12       |
| Output 4   | 13       |
| Output 5   | 14       |
| Output 6   | 15       |
| Output 7   | 16       |
| DC+ for    | 17       |
| Voltage    |          |
| Source A   |          |
| DC- for    | 18       |
| Voltage    |          |
| Source A   |          |



| Terminal | Connection |
|----------|------------|
| 19       | Input 9    |
| 20       | Input 10   |
| 21       | Input 11   |
| 22       | Input 12   |
| 23       | Input 13   |
| 24       | Input 14   |
| 25       | Input 15   |
| 26       | Input 16   |
| 27       | Common     |
| 28       | Output 8   |
| 29       | Output 9   |
| 30       | Output 10  |
| 31       | Output 11  |
| 32       | Output 12  |
| 33       | Output 13  |
| 34       | Output 14  |
| 35       | DC+ for    |
|          | Voltage    |
|          | Source B   |
| 36       | DC- for    |
|          | Voltage    |
|          | Source B   |

Inputs 1 to 16 form one isolated input group.

Outputs 1 to 7 and 8 to 14 form two isolated output groups, each with its own voltage connections.

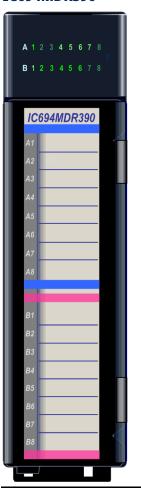
Outputs should be evenly distributed between the two output groups, as discussed under *Thermal Derating: HSC304 & HSC308 Outputs* above.

#### 8.4 Mixed I/O Module: IC694MDR390

The 24 Vdc 8-Input/8-N.O. Relay Output module provides eight isolated input points with one common power input terminal, and eight isolated normally open relay circuits in the same module.

The input circuits can have either positive or negative characteristics in that they sink or source current to/from the input devices to/from the user common. Input characteristics are compatible with a wide range of user-supplied devices, such as pushbuttons, limit switches, and electronic proximity switches. Current through an input results in a logic 1 in the input status table (%I).

The relay output circuits are arranged in two groups of four circuits each. Each group has a common power output terminal. The normally-open relay circuits are used for controlling output loads provided by the user. The output switching capacity of each output is 2 Amps. The relay outputs can control a wide range of user-supplied load devices, such as motor starters, solenoids, and indicators.


The top half of the outside left edge of the insert is color-coded blue to indicate low-voltage circuits and the bottom half of the outside left edge is color-coded red to indicate high-voltage circuits.

This module can be installed in any I/O slot in an RX3i PLC System.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

Power for the internal relay circuits is provided by the +24Vdc bus on the backplane. The user must supply the AC or DC power to operate field devices. There are no fuses on this module.

Figure 253: IC694MDR390



#### 8.4.1 LEDs: MDR390

LED indicators that provide the ON/OFF status of each point are visible through the lens at the top of Module. The LEDs are arranged in two horizontal rows with eight green LEDs in each row. The top row (labeled A1 through A8) indicates the states of the input points (1 through 8). The bottom row (labeled B1 through B8) indicates the states of the relay output points (1 through 8).

## 8.4.2 Specifications: MDR390

| Inputs                     |                                                        |
|----------------------------|--------------------------------------------------------|
| Rated Voltage              | 24 Vdc                                                 |
| Input Voltage range        | -30 to +32 Vdc                                         |
| Inputs per Module          | 8 (one group of eight inputs)                          |
| Isolation                  | 1500 Vrms between field and logic side                 |
|                            | 500 Vrms between inputs                                |
| Input Current              | 7.5 mA (typical) at rated voltage                      |
| Input Characteristics      |                                                        |
| On-State Voltage           | 15 to 32 Vdc                                           |
| Off-State Voltage          | 0 to +5 Vdc                                            |
| On-State Current           | 4 mA (minimum)                                         |
| Off-State Current          | 1.5 mA (maximum)                                       |
| On Response Time           | 7 ms typical                                           |
| Off Response Time          | 7 ms typical                                           |
| Outputs                    |                                                        |
| Rated Voltage              | 24Vdc, 120/240 Vac                                     |
| Operating Voltage          | 5 to 30 Vdc                                            |
|                            | 5 to 250 Vac, 50/60 Hz                                 |
| Outputs per Module         | 8 (two groups of four outputs each)                    |
| Isolation                  | 1500 Vrms between field and logic side                 |
|                            | 500 Vrms between groups                                |
| Maximum Load               | 2 Amps maximum per output                              |
|                            | 4 Amps maximum per common                              |
| Minimum Load               | 10 mA                                                  |
| Maximum Inrush             | 5 Amps                                                 |
| On Response Time           | 15 ms maximum                                          |
| Off Response Time          | 15 ms maximum                                          |
| Internal Power Consumption | 80 mA (all I/O on) from +5Vdc backplane bus            |
|                            | 70 mA (all outputs on) from relay +24Vdc backplane bus |

Maximum load current is dependent on operating voltage as displayed in the following table.

#### **Load Current Limitations: MDR390**

| Operating Voltage        | Maximum Current for Load Type |      | Typical Operations     |
|--------------------------|-------------------------------|------|------------------------|
|                          | Resistive Lamp or Solenoid 43 |      | (number of operations) |
| 240 Vac, 120 Vac, 24 Vdc | 2A                            | 0.6A | 200,000                |
| 240 Vac, 120 Vac, 24 Vdc | 1A                            | 0.3A | 400,000                |
| 240 Vac, 120 Vac, 24 Vdc | 0.5A                          | 0.1A | 800,000                |

Relay contact life, when switching inductive loads, will approach resistive load contact life if suppression circuits are used. The following figures are examples of typical suppression circuits for AC and DC loads. The 1A, 100V diode shown in the DC load typical suppression circuit is an industry standard 1N4934. The resistor and capacitor shown for AC load suppression are standard components, available from most electronics distributors.

Figure 254: Suppression of DC Loads MDR390

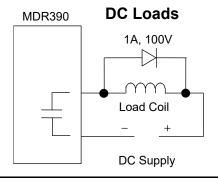
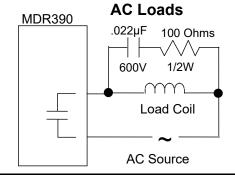
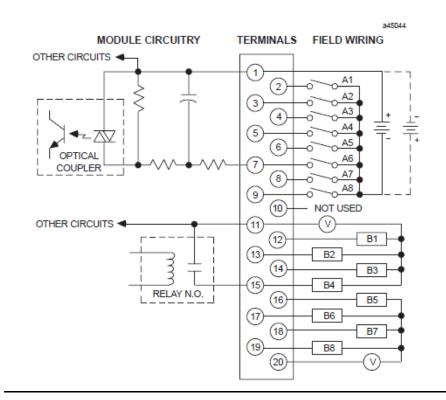




Figure 255: Suppression of AC Loads MDR390




<sup>&</sup>lt;sup>43</sup> For inductive loads.

## 8.4.3 Field Wiring: MDR390

The following figure provides wiring information for connecting usersupplied input and load devices, and power source(s) to the 24 Volt Input/Relay Output module:

Figure 256: Field Wiring Diagram MDR390




## Section 9: Analog Input Modules

This chapter describes Analog Input modules for PACSystems RX3i controllers.

| Analog Input Module Description                                      | Catalog<br>Number | Section |
|----------------------------------------------------------------------|-------------------|---------|
| Analog Input Module 6-Channel Isolated Current/Voltage               | IC695ALG106       | 9.1     |
| Analog Input Module 12-Channel Isolated Current/Voltage              | IC695ALG112       | 9.1     |
| Analog Input Module 4-Channel Voltage                                | IC694ALG220       | 9.1.6   |
| Analog Input Module 4-Channel Current                                | IC694ALG221       | 9.2     |
| Analog Input Module 16-/8-Channel Voltage                            | IC694ALG222       | 9.3     |
| Analog Input Module 16-Channel Current                               | IC694ALG223       | 9.4     |
| Advanced Diagnostics Analog Input module: 8/16-Channel Voltage       | IC694ALG232       | 9.5     |
| Advanced Diagnostics Analog Input module: 16-Channel Current         | IC694ALG233       | 9.6     |
| Analog Input Module 8-Channel Non-Isolated / 4-Channel Differential  | IC695ALG608       | 9.7     |
| Analog Input Module 16-Channel Non-Isolated / 8-Channel Differential | IC695ALG616       | 9.7     |

# 9.1 Analog Input Modules Isolated Current/Voltage: IC695ALG106 and IC695ALG112

## Figure 257: IC695ALG112



**Isolated Analog Current/Voltage Input** module IC695ALG106 provides 6 isolated input channels.

**Isolated Analog Current/Voltage Input** module IC695ALG112 (Figure 257) provides 12 input channels.

Analog input channels can be configured for these ranges:

- Current: 0 to 20mA, 4 to 20mA, ±20mA
- Voltage: ±10 Vdc, 0 to 10 Vdc, ±5Vdc, 0 to 5Vdc, 1 Vdc to 5Vdc

These modules must be installed in an RX3i Universal Backplane.

Modules require the use of one front-mounted terminal block (ordered separately). Terminal blocks are available in the following different styles:

- Box-style (IC694TBB032),
- Extended Box-style (IC694TBB132),
- Spring-style (IC694TBS032), and
- Extended Spring-style (IC694TBS132).

Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Refer to

*Terminal Block* Detection below for more information about terminal blocks.

**Note**: Terminal blocks for this module must be ordered separately.

#### 9.1.1 Features

- Completely software-configurable, no module jumpers to set
- On-board error-checking
- Open-circuit detection for all voltage and 4–20mA inputs<sup>45</sup>
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program
- Flash memory for future upgrades
- Positive and negative Rate of Change Alarms
- Configurable interrupts for channel alarms and faults
- Terminal Block insertion or removal detection
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Hot Insertion and Removal.

#### 9.1.2 Specifications: ALG106 & ALG112

| ALG106/ALG112                   | Specifications                                                                  |                              |                                      |  |
|---------------------------------|---------------------------------------------------------------------------------|------------------------------|--------------------------------------|--|
| Input Ranges                    | Current: 0 to 20mA, 4                                                           | to 20mA, ±20mA               |                                      |  |
|                                 | Voltage: ±10 Vdc, 0 to                                                          | 10 Vdc, ±5V, 0 to 5V, 1 to   | 5V                                   |  |
| Power Requirements              | ALG106-EA or earlier: 230 mA maximum at 5.0V +5% / -2.5%,                       |                              | at 5.0V +5% / -2.5%,                 |  |
| (from the backplane)            | 320 mA maximum at 3.3V +5% / -3%                                                |                              | at 3.3V +5% / -3%                    |  |
|                                 | ALG112-EA or earlier:                                                           | 490 mA maximum a             | 490 mA maximum at 5.0V +5% / - 2.5%, |  |
|                                 |                                                                                 | 310 mA maximum a             | at 3.3V +5% / - 3%                   |  |
|                                 | ALG106-FB or later: 230 mA maximum at 5.0V +5% / -2.5%,                         |                              |                                      |  |
|                                 |                                                                                 | 300 mA maximum a             | at 3.3V +5% / -3%                    |  |
|                                 | ALG112-FB or later:                                                             | 490 mA maximum a             | at 5.0V +5% / - 2.5%,                |  |
|                                 |                                                                                 | 310 mA maximum a             | at 3.3V +5% / - 3%                   |  |
| Power Dissipation within        | IC695ALG106: 2.97                                                               | 7 watts maximum with 20      | mA inputs on all 6 channels          |  |
| Module                          | IC695ALG112: 4.89                                                               | 9 watts maximum with 20      | mA inputs on all 12 channels         |  |
| Thermal Derating                | No derating                                                                     |                              |                                      |  |
| Resolution                      | 16-bit ADC converted                                                            | to Floating-point or Integ   | ger                                  |  |
| Input Data Format               | Configurable as floati                                                          | ng-point IEEE 32-bit or 16   | 5-bit integer in a 32-bit field      |  |
| Filter Options                  | 8Hz, 12Hz, 16Hz, 40Hz                                                           | z, 250Hz, 1000Hz             |                                      |  |
| Input Impedance                 | >500 kΩ voltage inputs                                                          |                              |                                      |  |
| Current Input Resistance        | 250 Ω ±1%                                                                       |                              |                                      |  |
| Open Circuit Detection time     | 1 second maximum                                                                |                              |                                      |  |
| Over-voltage                    | ±35Vdc continuous, m                                                            | naximum                      |                                      |  |
| Overcurrent                     | ±35mA continuous, m                                                             | aximum                       |                                      |  |
| Normal Mode Noise Rejection     |                                                                                 | At 50Hz                      | At 60Hz                              |  |
| in dB                           | 8 Hz filter                                                                     | 90                           | 75                                   |  |
|                                 | 12 Hz filter                                                                    | 75                           | 80                                   |  |
|                                 | 16 Hz filter                                                                    | 35                           | 75                                   |  |
| Common Mode Noise Rejection     | 100dB minimum at 50                                                             | 0/60 Hz with 8 Hz filter     |                                      |  |
| -                               | 100dB minimum at 50                                                             | 0/60 Hz with 12 Hz filter    |                                      |  |
| Channel-Channel DC Crosstalk    | -70 dB minimum                                                                  |                              |                                      |  |
| Isolation Voltage               |                                                                                 |                              |                                      |  |
| terminal block to               | I-coupler, transforme                                                           | r isolated                   |                                      |  |
| backplane/chassis               | 250 Vac continuous/1                                                            | 500 Vac for 1 minute         |                                      |  |
| and channel to channel          |                                                                                 |                              |                                      |  |
| Analog Step Change Response     | The analog input will settle to 0.1% of its final value within 1.7ms for a step |                              |                                      |  |
|                                 | change on the input p                                                           | oins of Module. (Any digit   | al filtering is additional to this   |  |
|                                 | time.)                                                                          |                              | -                                    |  |
| Digital Filtering Settling Time | The settling time depends on the configured filter time.                        |                              |                                      |  |
| (ms)                            | 8 Hz Filter: 127                                                                | ms                           |                                      |  |
|                                 | 12 Hz Filter: 67                                                                | ms                           |                                      |  |
|                                 | 16 Hz Filter: 56                                                                | ms                           |                                      |  |
|                                 | 40 Hz Filter: 21                                                                | ms                           |                                      |  |
|                                 | 250 Hz Filter: 3.1                                                              | ms                           |                                      |  |
|                                 | 1000 Hz Filter: 0 m                                                             | s (No digital filtering, onl | y the analog front-end filter)       |  |

| ALG106/ALG112                     | Specifications                                                                       |  |
|-----------------------------------|--------------------------------------------------------------------------------------|--|
| Analog Module Scan Time           | Module provides a new sample every 1ms, regardless of the digital filtering          |  |
| (ms)                              | selected. Refer to the <i>Digital Filtering Settling Time</i> for the amount of time |  |
|                                   | required to have settled data.                                                       |  |
| Calibrated Accuracy <sup>44</sup> | 0.1% of range at 25°C                                                                |  |
|                                   | 0.2% of range over entire temperature span                                           |  |
| Calibration Viability             | Factory calibration is valid for 12 months for all ranges and operating              |  |
| Calibration Viability             | conditions.                                                                          |  |

#### **Indicator Light Emitting Diodes (LEDs): ALG106 & ALG112**

**MODULE OK** — indicates Module's ability to perform normal operations.

| LED  |                               | Description                                     |
|------|-------------------------------|-------------------------------------------------|
|      | Green, ON                     | Module OK and configured                        |
| or 🗸 | Green or Amber, slow flashing | Module OK but not configured.                   |
|      | Green, quick flashing         | Error                                           |
|      | OFF                           | Not OK: no backplane power present or module is |
|      | 011                           | defective                                       |

**FIELD STATUS** — indicates the status of Module's field connections.

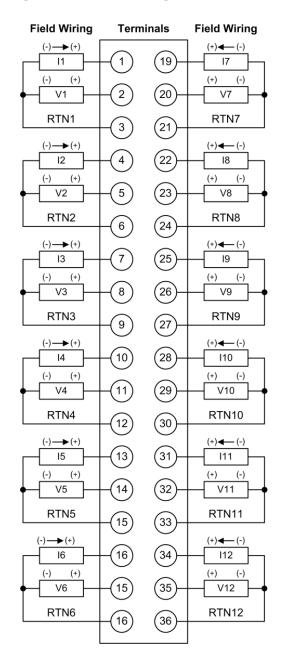
| LED |           | Description                                             |
|-----|-----------|---------------------------------------------------------|
|     | Green, ON | No faults on any enabled channel, and Terminal Block is |
|     |           | present                                                 |
|     | Amber, ON | Fault on at least one channel                           |
| 0   | OFF       | Terminal block not present or not fully seated          |


**TB** — indicates the status of Module's connection to its terminal block.

| LED |           | Description                                    |
|-----|-----------|------------------------------------------------|
|     | Green, ON | Terminal block present                         |
|     | Red, ON   | Terminal block not present or not fully seated |
| 0   | OFF       | No backplane power to module                   |

<sup>&</sup>lt;sup>44</sup> In the presence of severe RF interference (IC 801-3, 10V/m), accuracy may be degraded by 2.0% of range,

## 9.1.3 Field Wiring: ALG106


## Figure 258: Field Wiring ALG106



| Terminal | Connection      | Connection    | Terminal |
|----------|-----------------|---------------|----------|
| 1        | CH 1 Current In | No Connection | 19       |
| 2        | CH 1 Voltage In | No Connection | 20       |
| 3        | CH 1 RTN        | No Connection | 21       |
| 4        | CH 2 Current In | No Connection | 22       |
| 5        | CH 2 Voltage In | No Connection | 23       |
| 6        | CH 2 RTN        | No Connection | 24       |
| 7        | CH 3 Current In | No Connection | 25       |
| 8        | CH 3 Voltage In | No Connection | 26       |
| 9        | CH 3 RTN        | No Connection | 27       |
| 10       | CH 4 Current In | No Connection | 28       |
| 11       | CH 4 Voltage In | No Connection | 29       |
| 12       | CH 4 RTN        | No Connection | 30       |
| 13       | CH 5 Current In | No Connection | 31       |
| 14       | CH 5 Voltage In | No Connection | 32       |
| 15       | CH 5 RTN        | No Connection | 33       |
| 16       | CH 6 Current In | No Connection | 34       |
| 17       | CH 6 Voltage In | No Connection | 35       |
| 18       | CH 6 RTN        | No Connection | 36       |

### 9.1.4 Field Wiring: ALG112

Figure 259: Field Wiring: ALG112



| Terminal | Connection      | Connection       | Terminal |
|----------|-----------------|------------------|----------|
| 1        | CH 1 Current In | CH 7 Current In  | 19       |
| 2        | CH 1 Voltage In | CH 7 Voltage In  | 20       |
| 3        | CH 1 RTN        | CH 7 RTN         | 21       |
| 4        | CH 2 Current In | CH 8 Current In  | 22       |
| 5        | CH 2 Voltage In | CH 8 Voltage In  | 23       |
| 6        | CH 2 RTN        | CH 8 RTN         | 24       |
| 7        | CH 3 Current In | CH 9 Current In  | 25       |
| 8        | CH 3 Voltage In | CH 9 Voltage In  | 26       |
| 9        | CH 3 RTN        | CH 9 RTN         | 27       |
| 10       | CH 4 Current In | CH 10 Current In | 28       |
| 11       | CH 4 Voltage In | CH 10 Voltage In | 29       |
| 12       | CH 4 RTN        | CH 10 RTN        | 30       |
| 13       | CH 5 Current In | CH 11 Current In | 31       |
| 14       | CH 5 Voltage In | CH 11 Voltage In | 32       |
| 15       | CH 5 RTN        | CH 11 RTN        | 33       |
| 16       | CH 6 Current In | CH 12 Current In | 34       |
| 17       | CH 6 Voltage In | CH 12 Voltage In | 35       |
| 18       | CH 6 RTN        | CH 12 RTN        | 36       |

There are no shield terminals on these modules. For shielding, tie cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided in the ground bar for this purpose.

#### **Operating Note**

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the same controller logic scan. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

## 9.1.5 Configuration: ALG106 & ALG112

#### **Module Parameters: ALG106 & ALG112**

| Parameter            | Default          | Description                                                   |
|----------------------|------------------|---------------------------------------------------------------|
| Channel Value        | %AIxxxxx         | Starting address for the input data of Module. This defaults  |
| Reference Address    |                  | to the next available %AI block.                              |
| Channel Value        | ALG106: 12       | The number of words used for the input data of Module.        |
| Reference Length     | ALG112: 24       |                                                               |
| Diagnostic Reference | %Ixxxxx          | Starting address for the channel diagnostics status data.     |
| Address              |                  | This defaults to the next available %I block.                 |
| Diagnostic Reference | ALG106: 0 or 192 | The number of bit reference bits (0 or 192) for the Channel   |
| Length               |                  | Diagnostics data. Default is 0, which means mapping of        |
|                      | ALG112: 0 or 384 | Channel Diagnostics is disabled.                              |
|                      |                  | Change this to 192 / 384 to enable Channel Diagnostics        |
|                      |                  | mapping.                                                      |
| Module Status        | %Ixxxxx          | Starting address for the status data of Module. This defaults |
| Reference Address    |                  | to the next available %I block.                               |
| Module Status        | 0                | The number of bits (0 or 32) for Module Status data. Default  |
| Reference Length     |                  | is 0, which means mapping of Module Status data is            |
|                      |                  | disabled. Change this to 32 to enable Module Status data      |
|                      |                  | mapping.                                                      |
| I/O Scan Set         | 1                | Assigns Module I/O status data to a scan set defined in the   |
|                      |                  | CPU configuration. Determines how often the RX3i polls the    |
|                      |                  | data                                                          |
| Inputs Default       | Force Off        | In the event of module failure or removal, this parameter     |
|                      |                  | specifies the state of the Channel Value References.          |
|                      |                  | Force Off = Channel Values clear to 0.                        |
|                      |                  | Hold Last State = Channel Values hold their last state.       |
| Channel Faults w/o   | Disabled         | Enabled / Disabled: Controls whether channel faults and       |
| Terminal Block       |                  | configured alarm responses will be generated after a          |
|                      |                  | Terminal Block removal. The default setting of Disabled       |
|                      |                  | means channel faults and alarms are suppressed when the       |
|                      |                  | Terminal Block is removed. This parameter does not affect     |
|                      |                  | module faults including the Terminal Block loss/add fault     |
|                      |                  | generation.                                                   |
| AD Filter Frequency  | 40Hz             | Can be set to 8, 12, 16, 40, 250, or 1000Hz.                  |

#### **Channel Parameters: ALG106 & ALG112**

| Parameter            | Default              | Description                                               |
|----------------------|----------------------|-----------------------------------------------------------|
| Range Type           | Disabled             | Current/Voltage, Disabled                                 |
| Range                | ±10 Vdc              | ±10 Vdc, 0 to +10 Vdc, 0 to +5Vdc, ±5Vdc, 1Vdc to +5Vdc,  |
|                      |                      | ±20mA, 4 to 20 mA, 0 to 20 mA                             |
| Channel Value Format | 32-bit Floating      | 16-bit integer or 32-bit floating point                   |
|                      | Point                |                                                           |
| High Scale Value     | The defaults for the | Note: Scaling is disabled if both High Scale Eng. Units   |
| (Eng Units)          | four Scaling         | equals High Scale A/D Units and Low Scale Eng. Units      |
|                      | parameters depend    | equals Low Scale A/D Units.                               |
|                      | on the configured    | Default is High A/D Limit of selected range type.         |
| Low Scale Value      | Range Type and       | Default is Low A/D Limit of selected range type. Must be  |
| (Eng Units)          | Range. Each Range    | lower than the high scaling value.                        |
| High Scale Value     | and Range Type       | Default is High A/D Limit of selected range type. Must be |
| (A/D Units)          | have a different set | greater than the low scaling value.                       |
| Low Scale Value      | of defaults.         | Default is Low A/D Limit of selected range type.          |
| (A/D Units)          |                      |                                                           |

#### **Input Scaling: ALG106 & ALG112**

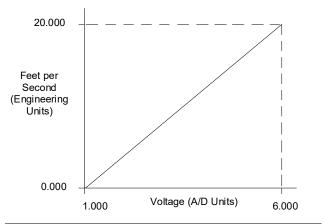
By default, Module converts a voltage or current input over the entire span of its configured Range into a floating-point value for the CPU. For example, if the Range of a channel is 4 to 20mA, Module reports channel input values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the PLC that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.

#### Example 1

For a voltage input, 6.0 volts equals a speed of 20 feet per second, and 1.0 volt equals 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000


Low Scale Value (Eng Units) = 0.000

High Scale Value (A/D Units) = 6.000

Low Scale Value (A/D Units) = 1.000

For this example, 1.0 Vdc to 6.0 Vdc is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 10.0 Vdc were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or take other precautions for scaled inputs that are outside the acceptable range or invalid.

Figure 260: Scaling Example ALG106 or ALG112



#### Example 2

An existing application uses traditional analog to digital (A/D) count integer values. With scaling and the 16-bit integer input option, a channel can be configured to report integer count values. In this example, the application should interpret +10 Vdc as 32000 counts and -10 Vdc as -32000 counts. The following channel configuration will scale a ±10 Vdc input channel to ±32000 counts.

Figure 261: Scaling Example ALG106 or ALG112


Channel Value Format = 16-bit Integer

High Scale Value (Eng Units) = 32000.0

Low Scale Value (Eng Units) = -32000.0

High Scale Value (A/D Units) = 10.000

Low Scale Value (A/D Units) = -10.000



#### **Channel Parameters (Continued)**

| Parameter                     | Default | Description                                                   |
|-------------------------------|---------|---------------------------------------------------------------|
| Positive Rate of Change Limit | 0.000   | Rate of change in Engineering Units per Second that will      |
| (Eng Units)                   |         | trigger a Positive Rate of Change alarm. Default is disabled. |
|                               |         | Used with "Rate of Change Sampling Rate" parameter.           |
| Negative Rate of Change Limit | 0.000   | Rate of change in Engineering Units per Second that will      |
| (Eng Units)                   |         | trigger a Negative Rate of Change alarm. Default is disabled. |
|                               |         | Used with "Rate of Change Sampling Rate" parameter.           |
| Rate of Change Sampling Rate  | 0.000   | Time from 0 to 300 seconds to wait between comparisons.       |
|                               |         | Default of 0.0 is to check after every input sample.          |

#### Rate of Change Alarms: ALG106 & ALG112

When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous rate of change sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Unit change between samples is positive, Module compares the results in comparing the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the "Diagnostic Reporting Enable", "Fault Reporting Enable", and "Interrupts Enabled" parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. If the Rate of Change Sampling Rate is 0 or any time period less than the channel update rate, Module compares the Rate of Change for every input sample of the channel.

#### Channel Parameters (Continued)

| Default          | Description                                                                                                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The defaults for | Alarms and Deadbands                                                                                                                                              |
| the High-High,   | All of the alarm parameters are specified in Engineering Units.                                                                                                   |
| High, Low, and   | To use alarming, the A/D Alarm Mode must also be configured                                                                                                       |
| Low-Low          | as enabled.                                                                                                                                                       |
| parameters       | High-High Alarm and Low-Low Alarm: When the configured                                                                                                            |
| depend on the    | value is reached or passed, a Low-Low Alarm or High-High Alarm                                                                                                    |
| configured Range | is triggered. The configured values must be lower than/higher                                                                                                     |
| Type and Range.  | than the corresponding low/high alarm limits.                                                                                                                     |
| Each Range and   | High Alarm and Low Alarm: When the configured value is                                                                                                            |
| Range Type has a | reached or below (above), a Low (High) Alarm is triggered.                                                                                                        |
| different set of | High and Low Alarm Deadbands: A range in Engineering Units                                                                                                        |
| default values.  | above the alarm condition (low deadband) or below the alarm                                                                                                       |
|                  | condition (high deadband) where the alarm status bit can                                                                                                          |
|                  | remain set even after the alarm condition goes away. For the                                                                                                      |
|                  | alarm status to clear, the channel input must fall outside the                                                                                                    |
|                  | deadband range.                                                                                                                                                   |
|                  | Alarm Deadbands should not cause the alarm clear to be outside                                                                                                    |
|                  | the Engineering Unit User Limits range. For example, if the                                                                                                       |
|                  | engineering unit range for a channel is -1000.0 to +1000.0 and a                                                                                                  |
|                  | High Alarm is set at +100.0, the High Alarm Deadband value                                                                                                        |
|                  | range is 0.0 to less than 1100.0. A deadband of 1100.0 or more                                                                                                    |
|                  | would put the High Alarm clear condition below –1000.0 units                                                                                                      |
|                  | making the alarm impossible to clear within the limits.                                                                                                           |
|                  | The defaults for the High-High, High, Low, and Low-Low parameters depend on the configured Range Type and Range. Each Range and Range Type has a different set of |

#### Using Alarming: ALG106 & ALG112

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address corresponding to that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

### Channel Parameters (Continued)

| Parameter                            | Default  | Description                                                    |
|--------------------------------------|----------|----------------------------------------------------------------|
| User Offset                          | 0.000    | Engineering Units offset to change the base of the             |
|                                      |          | input channel. This value is added to the scaled value         |
|                                      |          | on the channel prior to alarm checking.                        |
| Software Filter Integration Time     | 0.000    | If Software Filtering is enabled, the Integration Time         |
| (ms)                                 |          | parameter specifies the amount of time in milliseconds         |
|                                      |          | for the software filter to reach 63.2% of the input value.     |
|                                      |          | A value of 0 indicates software filter is disabled. A value    |
|                                      |          | of 100 indicates data will achieve 63.2% of its value in       |
|                                      |          | 100ms. Default is disabled                                     |
| Diagnostic Reporting Enable          | Disabled | Diagnostic Reporting Enable options are used to enable         |
| If Diagnostic Reporting is enabled,  |          | reference memory reporting of alarms into the                  |
| the additional parameters listed     |          | Diagnostic Reference area.                                     |
| below can be used to enable specific |          | Fault Reporting Enable options enable fault logging of         |
| types of alarms.                     |          | alarms into the I/O Fault Table.                               |
| Fault Reporting Enable               | Disabled | Interrupts Enable options enable I/O Interrupt trigger         |
| If Fault Reporting is enabled, the   |          | when alarm conditions occur.                                   |
| additional parameters listed         |          | These parameters enable or disable the individual              |
| below can be used to enable          |          | diagnostics features of a channel.                             |
| specific types of Faults.            |          | When any of these parameters is enabled, Module uses           |
| Interrupts Enable                    | Disabled | associated parameters to perform the enabled feature.          |
| If Interrupts are enabled, the       |          |                                                                |
| additional parameters listed         |          | For example, if Over Range is enabled in the <i>Diagnostic</i> |
| below can be used to enable          |          | Reporting Enable menu, Module will set the Over Range          |
| specific types of Interrupts.        |          | bit in the Diagnostic Reference for the channel.               |
| Low Alarm Enable                     | Disabled |                                                                |
| High Alarm Enable                    | Disabled | If any of these parameters is disabled, Module does not        |
| Under Range Enable                   | Disabled | react to the associated alarm conditions.                      |
| Over Range Enable                    | Disabled |                                                                |
| Open Wire Enable                     | Disabled | For example, if Low Alarm Enable is set to Disabled in         |
| Low-Low Alarm Enable                 | Disabled | the Fault Reporting Enable menu, the Low Alarm fault is        |
| High-High Alarm Enable               | Disabled | not logged in the I/O Fault Table when Low Alarm is            |
| Negative Rate of Change              | Disabled | detected on the channel.                                       |
| Detection Enable                     |          |                                                                |
| Positive Rate of Change Detection    | Disabled | 1                                                              |
| Enable                               |          |                                                                |

#### Using Interrupts: ALG106 & ALG112

To configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of Module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address corresponding to that channel.

#### **Example:**

In this example, the Channel Values Reference Address block is mapped to %AI0001-%AI0020. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AI00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AI0003" as the Trigger.

#### 9.1.6 Note on Using Interrupts

This module has separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

#### Module Data: ALG106 & ALG112

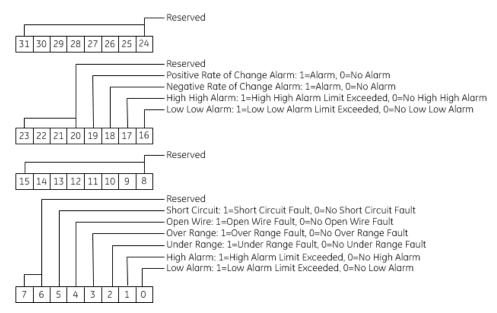
Module reports its input channel data in its configured input words, beginning at its assigned Channel Value Reference Address. Each channel occupies two words (whether the channel is used or not):

| Channel Value        | Contains this Input |
|----------------------|---------------------|
| Reference Address    |                     |
| +0, 1                | Channel 1           |
| +2, 3                | Channel 2           |
| +4, 5                | Channel 3           |
| +6, 7                | Channel 4           |
| +8, 9                | Channel 5           |
| +10, 11              | Channel 6           |
| For Module IC695ALG1 | 12 Only:            |
| +12, 13              | Channel 7           |
| +14, 15              | Channel 8           |
| +16, 17              | Channel 9           |
| +18, 19              | Channel 10          |
| +20, 21              | Channel 11          |
| +22, 23              | Channel 12          |

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

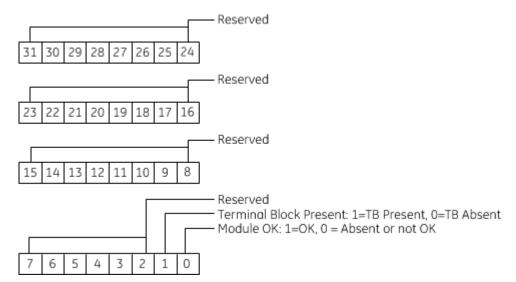
In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

#### Channel Diagnostic Data: ALG106 & ALG112<sup>45</sup>


In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured of Module. Use of this feature is optional.

The diagnostics data for each channel occupies 2 words (whether the channel is used or not):

| Diagnostic          | Contains Diagnostics |
|---------------------|----------------------|
| Reference Address   | Data for:            |
| +0, 1               | Channel 1            |
| +2, 3               | Channel 2            |
| +4, 5               | Channel 3            |
| +6, 7               | Channel 4            |
| +8, 9               | Channel 5            |
| +10, 11             | Channel 6            |
| For Module IC695ALG | 112 Only:            |
| +12, 13             | Channel 7            |
| +14, 15             | Channel 8            |
| +16, 17             | Channel 9            |
| +18, 19             | Channel 10           |
| +20, 21             | Channel 11           |
| +22, 23             | Channel 12           |


<sup>&</sup>lt;sup>45</sup> Whenever the PME option "Sending out Channel Faults while Terminal Block is not installed" is enabled, firmware versions earlier than v2.00 permitted an open wire fault to be generated whenever a terminal block was removed, but additionally did so erroneously for ranges that do not support such a fault: 0-20mA & ±20mA. FW v2.00 and later do not generate open-wire faults for the 0-20mA & ±20mA ranges. Note: the open wire fault is supported on the 4-20mA range only.

When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel. For each channel, the format of this data is:



#### Module Status Data: ALG106 & ALG112

Module can also optionally be configured to return 32 bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data* reference area configured for Module.



#### **Terminal Block Detection**

Module automatically checks for the presence of a Terminal Block.

The TB LED indicates the state of the terminal block of Module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 1 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

## 9.2 Analog Input Module 4-Channel Differential Voltage: IC694ALG220

Figure 262: IC694ALG220



The **4-Channel Analog Voltage Input** module, IC694ALG220, provides four analog input channels. This module accepts inputs in the range of -10 to +10 volts. Individual channels can be used with 4 to 20 mA inputs by jumpering the input terminals.

Conversion speed for each of the four channels is one millisecond. This provides an update rate of four milliseconds for any channel.

This module can be installed in any I/O slot of an RX3i PLC system.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see

Hot Insertion and Removal Not Supported).

#### 9.2.1 Isolated +24Vdc Power

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24Vdc is required to provide power for Module. The external source must be connected via the TB1 connector on the left side of the backplane.

If this module is located in an Expansion or Remote backplane, the backplane power supply provides the Isolated +24Vdc output for Module.

9.2.2 LEDs: ALG220

Module **OK** LED is ON when Module power supply is operating.

## 9.2.3 Specifications: ALG220

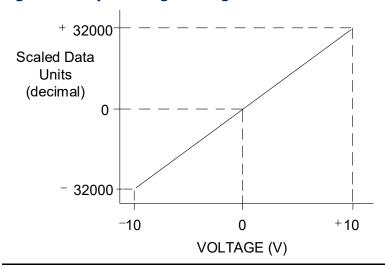
| ALG220                                      | Specifications                                     |
|---------------------------------------------|----------------------------------------------------|
| Voltage Range⁴6                             | -10 to +10 Vdc                                     |
| Calibration                                 | Factory calibrated                                 |
| Update Rate                                 | 4 ms (all four channels)                           |
| Resolution                                  | 5 mV/20 μA, (1 LSB = 5 mV)                         |
| Absolute Accuracy <sup>47</sup>             | ±10 mV/40 μA (typical) over operating temperature  |
|                                             | ±30 mV/160 μA (maximum) over operating temperature |
| Linearity                                   | <1 Least Significant Bit                           |
| Isolation, Field to Backplane (optical) and | 250 Vac continuous; 1500 Vac for 1 minute          |
| to frame ground                             |                                                    |
| Cross–Channel Rejection                     | > 80dB                                             |
| Input Impedance                             | $>$ 9 M $\Omega$ (voltage mode)                    |
|                                             | 250 $\Omega$ (current mode)                        |
| Input Filter Response                       | 17 Hz                                              |
| Internal Power Consumption                  | 27 mA from +5Vdc bus on the backplane              |
|                                             | 98 mA from the isolated +24Vdc backplane bus       |

For product standards and general specifications, refer to Appendix A:.

#### 9.2.4 Data Format: ALG220

Module data is stored in the PLC CPU in 16-bit 2's complement format as displayed in the following figure.

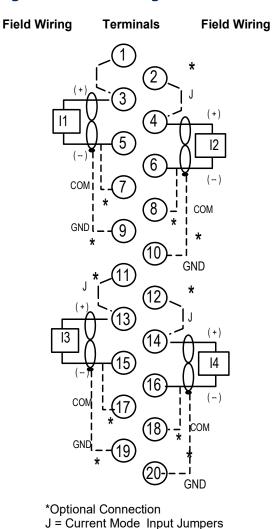



 $<sup>^{46}</sup>$  Both inputs must be within  $\pm 11$  volts of COM, including any noise present on the inputs.

 $<sup>^{47}</sup>$  In the presence of severe RF interference (IEC 801–3, 10V/m), accuracy may be degraded to  $\pm 100$  mV/400  $\mu A$ .

#### **Scaling and Resolution: ALG220**

Module scales input data so that -10 Vdc corresponds to -32000 and +10 Vdc corresponds to +32000. Resolution per bit is 5 mV or 20 mA per bit.


Figure 263: Input Voltage Scaling: ALG220



A 4 to 20 mA input corresponds to a 1 to 5 Volt input to Module; therefore, the resolution of the 4 to 20 mA input signal is approximately 10 bits binary (1 part in 1024). The resolution can be increased to approximately 11 bits (1 part in 2048) by using a precision  $250\Omega$  resistor instead of the jumper. The resistor causes the voltage input module to see a 4 to 20 mA input as 2 to 10 volts.

#### 9.2.5 Field Wiring: ALG220

Figure 264: Field Wiring ALG220



| Terminal | Connection                              |
|----------|-----------------------------------------|
| 1-3      | Current mode input jumper for Channel 1 |
| 2-4      | Current mode input jumper for Channel 2 |
| 3        | Channel 1 +                             |
| 4        | Channel 2+                              |
| 5        | Channel 1-                              |
| 6        | Channel 2 -                             |
| 7        | Common                                  |
| 8        | Common                                  |
| 9        | Shield Termination Point for Channel 1  |
| 10       | Shield Termination Point for Channel 2  |
| 11 - 13  | Current mode input jumper for Channel 3 |
| 12 - 14  | Current mode input jumper for Channel 4 |
| 13       | Channel 3 +                             |
| 14       | Channel 4+                              |
| 15       | Channel 3-                              |
| 16       | Channel 4 -                             |
| 17       | Common                                  |
| 18       | Common                                  |
| 19       | Shield Termination Point for Channel 3  |
| 20       | Shield Termination Point for Channel 4  |

To minimize the capacitive loading and noise, all field connections to Module should be wired using a good grade of twisted, shielded instrumentation cable. The shields can be connected to either COM or GND. The COM connection provides access to the common of the analog circuitry in Module. The GND connection provides access to the backplane (frame ground). The (-) side of the voltage source can also be tied to the COM terminal if the source is floating to limit common-mode voltages.

The optional jumpers shown can be used to configure a channel for use with 4 to 20 mA inputs. The resolution of 4 to 20 mA inputs can be increased from 10 bits to approximately 11 bits by installing a  $250\Omega$  resistor instead of the jumper Connect the + and - terminals together for all unused inputs to minimize any fluctuations in the analog input table for the unused points.

## 9.3 Analog Input Module 4-Channel Differential Current: IC694ALG221

**Figure 265: IC694ALG221** 



The **4-Channel Analog Current Input** module, IC694ALG221, provides four analog input channels. This module has two possible input ranges:

4 to 20 mA 0 to 20 mA

Two range jumpers are provided with Module; one for channels one and two, and the other for channels three and four.

Conversion speed for each of the four channels is one–half millisecond. This provides an update rate of two milliseconds for any channel. Resolution of the converted signal is 12-bit binary (1 part in 4096) over either range.

Input protection for Module is sufficient for operation with reduced performance with up to 200 V common–mode. Module provides electrical isolation of externally generated noise between field wiring and the backplane through the use of optical isolation.

This module can be installed in any I/O slot of an RX3i system.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported* 

Hot Insertion and Removal Not Supported).

9.3.1 LEDs: ALG221

Module **OK** LED is ON when Module power supply is operating.

## 9.3.2 Specifications: ALG221

| ALG221                                  | Specifications                            |
|-----------------------------------------|-------------------------------------------|
| Input Current Ranges                    | 4 to 20 mA and 0 to 20 mA                 |
| Calibration                             | Factory calibrated to 4 µA per count      |
| Update Rate                             | 2 milliseconds (all four channels)        |
| Resolution at 4–20 mA                   | 4 μA (1 LSB = 4 μA)                       |
| Resolution at 0–20 mA                   | 5 μA (1 LSB = 5 μA)                       |
| Absolute Accuracy <sup>48</sup>         | 0.1% full scale + 0.1% reading            |
| Common Mode Voltage                     | 200 volts                                 |
| Linearity                               | < 1 Least Significant Bit                 |
| Isolation, Field to Backplane (optical) | 250 Vac continuous; 1500 Vac for 1 minute |
| and to frame ground                     |                                           |
| Common Mode Rejection                   | > 70dB at DC; >70dB at 60Hz               |
| Cross-Channel Rejection                 | > 80dB from DC to 1kHz                    |
| Input Impedance                         | 250Ω                                      |
| Input Filter Response                   | 325 Hz                                    |
| Internal Power Consumption              | 100 mA from the isolated +24Vdc supply    |
|                                         | 25 mA from +5Vdc bus on the backplane     |

For product standards and general specifications, refer to Appendix A:.

#### 9.3.3 Data Format: ALG221

Module data is stored in the PLC CPU in 16-bit 2's complement format as displayed in the following figure.



 $<sup>^{48}</sup>$  In the presence of severe RF interference (IEC 801–3, 10V/m), accuracy may be degraded to  $\pm 0.5\%~$  FS.

#### **Current Inputs, A/D Data and Scaled Units: ALG221**

The default range for each input is 4 to 20 mA, scaled so that 4 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000 with each 1000 counts representing 0.5 mA.

When a jumper is added to the I/O terminal board, the input range for a PAIR of inputs is changed to 0 to 20mA. In 0 to 20 mA range, 0 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000 with each 800 counts representing 0.5 mA.

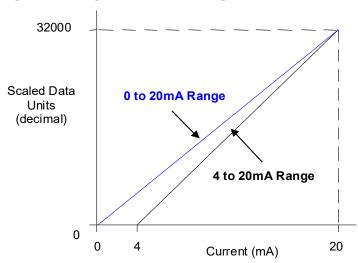



Figure 266: Input Current Scaling ALG221

If the current source is reversed into the input or is less than the low end of the current range, Module provides an input data word corresponding to the low end of the current range (0000H in PLC memory). If an input is greater than 20 mA, Module provides an input data value at full scale (7FF8H in PLC memory).

#### 9.3.4 Field Wiring: ALG221

Figure 267: Field Wiring ALG221

| Terminal | Connection                       |  |
|----------|----------------------------------|--|
| 1        | 0-20mA Jumper for Channels 1 & 2 |  |
| 2        | 0-20mA Jumper for Channels 1 & 2 |  |
| 3        | Channel 1 +                      |  |
| 4        | Channel 2+                       |  |
| 5        | Channel 1-                       |  |
| 6        | Channel 2 -                      |  |
| 7        | Common                           |  |
| 8        | Common                           |  |
| 9        | Shield Termination Point for     |  |
| 9        | Channel 1                        |  |
| 10       | Shield Termination Point for     |  |
| 10       | Channel 2                        |  |
| 11       | 0-20mA Jumper for Channels 3 & 4 |  |
| 12       | 0-20mA Jumper for Channels 3 & 4 |  |
| 13       | Channel 3 +                      |  |
| 14       | Channel 4+                       |  |
| 15       | Channel 3-                       |  |
| 16       | Channel 4 -                      |  |
| 17       | Common                           |  |
| 18       | Common                           |  |
| 19       | Shield Termination Point for     |  |
|          | Channel 3                        |  |
| 20       | Shield Termination Point for     |  |
| 20       | Channel 4                        |  |

\*Optional Connections

To minimize the capacitive loading and noise, all field connections to Module should be wired using a good grade of twisted, shielded instrumentation cable. The shields can be connected to either COM or GND. The COM connection provides access to the common of the analog circuitry in Module. The GND connection provides access to the Backplane (frame ground).

To limit common–mode voltages, each current source common line may also be tied to its associated COM terminal if the source is floating. These optional connections are shown above.

# 9.4 Analog Input Module 16-/8-Channel Voltage: IC694ALG222

Figure 268: IC694ALG222



The **16-Channel Analog Voltage Input** Module, IC694ALG222, provides sixteen single-ended or eight differential input channels. Each channel can be configured using the configuration software for either of two input ranges:

- 0 to 10 V (unipolar), default
- -10 to +10 V (bipolar)

High and Low alarm limits can be configured for both ranges. This module can be installed in any I/O slot of an RX3i system. Revision –BA and later supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 9.4.1 Isolated +24Vdc Power

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24Vdc is required to provide power for Module. The external source must be connected via the TB1 connector on the left side of the backplane.

If this module is located in an Expansion or Remote backplane, the backplane power supply provides the Isolated +24Vdc for Module.

# 9.4.2 LEDs: ALG222

Module **OK** LED provides module status information on power-up:

- ON: status is OK, module configured
- OFF: no backplane power or software not running (watchdog timer timed out)
- Continuous rapid flashing: configuration data not received from CPU
- Slow flashes, then OFF: failed power-up diagnostics or encountered code execution error

Module **P/S** LED indicates that the internally-generated +5Vdc supply is above a minimum designated level for Module.

# 9.4.3 Specifications: ALG222

| ALG222                                  | Specifications                                                  |
|-----------------------------------------|-----------------------------------------------------------------|
| Number of Channels                      | 1 to 16 selectable, single-ended                                |
|                                         | 1 to 8 selectable, differential                                 |
| Input Voltage Ranges                    | 0 Vdc to +10 Vdc (unipolar) or                                  |
|                                         | -10 Vdc to +10 Vdc (bipolar); selectable each channel           |
| Calibration                             | Factory calibrated to:                                          |
|                                         | 2.5 mV per count on 0 V to +10 V (unipolar) range               |
|                                         | 5 mV per count on -10 to +10 V (bipolar) range                  |
| Update Rate                             | Single-Ended Input Update Rate: 5 ms                            |
|                                         | Differential Input Update Rate: 2 ms                            |
| Resolution at 0V to +10 Vdc             | 2.5 mV (1 LSB = 2.5 mV)                                         |
| Resolution at -10 Vdc to +10 Vdc        | 5 mV (1 LSB = 5 mV)                                             |
| Absolute Accuracy <sup>49,50</sup>      | ±0.25% of full scale at 25°C (77°F)                             |
|                                         | ±0.5% of full scale over specified operating temperature range  |
| Linearity                               | < 1 LSB                                                         |
| Isolation, Field to Backplane (optical) | 250 Vac continuous; 1500 Vac for 1 minute                       |
| and to frame ground                     |                                                                 |
| Common Mode Voltage                     | ±11 V (bipolar range)                                           |
| (Differential)⁵¹                        |                                                                 |
| Cross-Channel Rejection                 | > 70dB from DC to 1 kHz                                         |
| Input Impedance                         | >500k $\Omega$ (single-ended mode)                              |
|                                         | >1 M $\Omega$ (differential mode)                               |
| Input Filter Response                   | 23 Hz (single-ended mode)                                       |
|                                         | 57 Hz (differential mode)                                       |
| Internal Power Consumption              | 112 mA (maximum) from the backplane +5Vdc bus                   |
|                                         | IC694ALG222-BA and later: 110 mA (maximum) from the isolated    |
|                                         | +24Vdc supply                                                   |
|                                         | IC694ALG222-AA: 41 mA (maximum) from the isolated +24Vdc supply |

For product standards and general specifications, refer to Appendix A:.

<sup>&</sup>lt;sup>49</sup> In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to  $\pm 5\%$  of full scale.

 $<sup>^{50}</sup>$  In the presence of severe Conducted RF interference (IEC 61000-4-6, 10Vrms), accuracy may be degraded to  $\pm 1\%$  of full scale.

 $<sup>^{51}</sup>$  The sum of the differential input, common-mode voltage, and noise must not exceed  $\pm 11$  volts when referenced to COM.

# 9.4.4 Configuration: ALG222

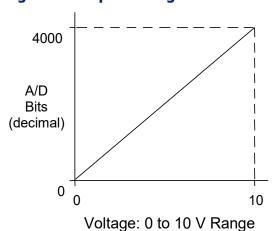
Configurable parameters for module IC694ALG222 are described below.

# **Module Settings: ALG222**

| Parameter         | Choices                    | Description                                              |
|-------------------|----------------------------|----------------------------------------------------------|
| Active Channels   | 1 to 16 for Single-ended   | The number of channels to be scanned. Channels are       |
|                   | mode, or 1 to 8 for        | scanned in sequential, contiguous order.                 |
|                   | Differential mode          |                                                          |
| Mode              | Single-ended (default), or | In Single-ended mode, there are 16 inputs referenced     |
|                   | Differential               | to a single common. In Differential mode, each of the 8  |
|                   |                            | inputs has its own signal and common.                    |
| Channel Value     | Valid memory type: %AI     | The starting address for input data from Module.         |
| Reference Address |                            |                                                          |
| Channel Value     | Read-only.                 | Each channel provides 16 bits (1 word) of analog input   |
| Reference Length  |                            | data to the Controller CPU.                              |
| Module Status     | Valid memory type: %I      | The starting address for status information from         |
| Reference Address |                            | Module.                                                  |
| Module Status     | 0, 8, 16, 24, 32, 40       | The number of status bits (0 to 40) reported to the      |
| Reference Length  |                            | Controller. When set to 0, status reporting is disabled. |
|                   |                            | To enable status reporting, set this parameter to a      |
|                   |                            | value other than 0.                                      |
|                   |                            | Data formats are shown on the following page.            |
| I/O Scan Set      | 1 through 32               | Assigns Module I/O status data to a scan set defined in  |
|                   |                            | the CPU configuration. Determines how often the RX3i     |
|                   |                            | polls the data                                           |

# **Input Channel Parameters: ALG222**

| Parameter              | Choices                  | Description                                             |
|------------------------|--------------------------|---------------------------------------------------------|
| Voltage                | 0 to 10 Vdc (default) or | In the 0 to 10 Vdc default range, input voltage values  |
|                        | -10 Vdc to 10 Vdc        | from 0 to 10 Vdc Module reports 0 to 32,000 integer     |
|                        |                          | values to the CPU.                                      |
|                        |                          | In the -10 to 10 Vdc range, input voltage values from - |
|                        |                          | 10 to 10 Vdc, Module reports-32,000 to 32,000 integer   |
|                        |                          | values to the CPU.                                      |
| Alarm Low (Engineering | 0 to 10 Vdc Range        | Each channel can be assigned a low alarm limit alarm.   |
| Units)                 | = 0 to 32760             | Values entered without a sign are assumed to be         |
|                        | -10 Vdc to 10 Vdc Range  | positive. Be sure the alarm low values are appropriate  |
|                        | = -32767 to 32752        | for the selected range.                                 |
| Alarm High             | 0 to 10 Vdc Range        | Each channel can be assigned a high alarm limit.        |
| (Engineering Units)    | = 0 to 32760             | Values entered without a sign are assumed to be         |
|                        | -10 Vdc to 10 Vdc Range  | positive. Be sure the alarm high values are appropriate |
|                        | = -32767 to 32752        | for the selected range.                                 |


# **Input Scaling: ALG222**

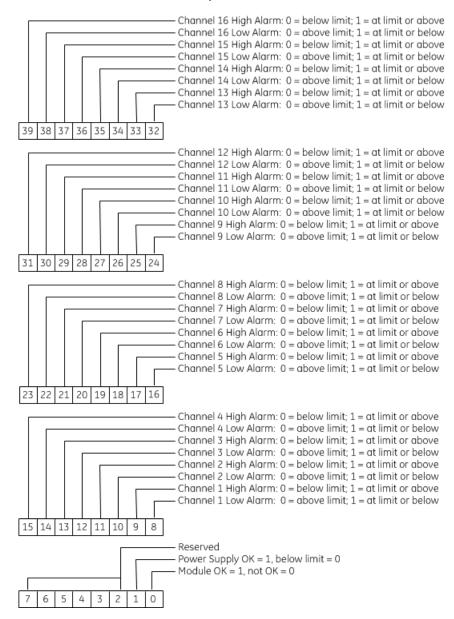
The default input mode and range is single-ended, unipolar. In 0 to 10 Vdc mode, input data is scaled so that 0 volts corresponds to a count of 0 and 10 volts corresponds to a count of +32000.

The bipolar range and mode can be selected by changing the configuration parameters of Module. In bipolar mode, -10 V corresponds to a count of -32000, 0 V corresponds to a count of 0, and +10 V corresponds to a count of +32000.

Factory calibration adjusts the analog value per bit (resolution) to a multiple of full scale (2.5 mV per bit for unipolar; 5 mV per bit for bipolar). The data is then scaled with the 4000 counts over the analog range. The data is scaled as displayed in the following figure.

Figure 269: Input Scaling ALG222




# 9.4.5 Data Format: ALG222

The 12-bit resolution module analog input data is stored in the PLC CPU in 16-bit 2's complement format in the unipolar range as displayed in the following figure.

| MS | В  |    |   |   |   |   |   |   |   |   |   |   |   |   | LSB |
|----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|-----|
| Х  | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Х | Х | Х   |

#### **Status Data: ALG222**

Analog Module IC694ALG222 can be configured to return 8, 16, 24, 32, or 40 status bits to the PLC CPU. This status data provides the following information about module operation:

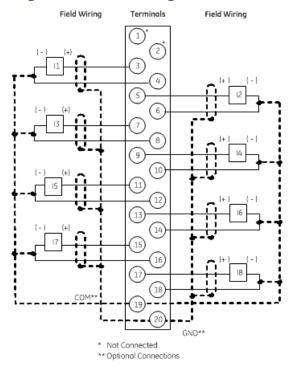


# 9.4.6 Field Wiring: ALG222

| Terminal | Single-ended Mode | Differential Mode |
|----------|-------------------|-------------------|
| 1, 2     | not used          |                   |
| 3        | Channel 1         | Channel 1 +       |
| 4        | Channel 2         | Channel 1 -       |
| 5        | Channel 3         | Channel 2 +       |
| 6        | Channel 4         | Channel 2 -       |
| 7        | Channel 5         | Channel 3 +       |
| 8        | Channel 6         | Channel 3 -       |
| 9        | Channel 7         | Channel 4 +       |
| 10       | Channel 8         | Channel 4 -       |
| 11       | Channel 9         | Channel 5 +       |
| 12       | Channel 10        | Channel 5 -       |
| 13       | Channel 11        | Channel 6 +       |
| 14       | Channel 12        | Channel 6 -       |
| 15       | Channel 13        | Channel 7 +       |
| 16       | Channel 14        | Channel 7 -       |
| 17       | Channel 15        | Channel 8 +       |
| 18       | Channel 16        | Channel 8 -       |
| 19       | Common            | Common            |
| 20       | Ground            | Ground            |

Connections for 16-channel single-ended mode are displayed in Figure 270 and for the 8-channel differential mode in Figure 271. Single-ended mode is the default operating mode for Module. Differential mode must be set up by configuration.

#### **16 Single-ended Channels**


# Figure 270: Field Wiring Single-Ended ALG222

# Field Wiring Terminals Field Wiring 1 \* 2 \* 1-1 (+1 | 3 | 4 | 12 | 12 | 13 | 5 | 6 | 14 | 12 | 15 | 7 | 8 | 16 | 14 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1-1 | 1

- \* Not Connected
- \*\* Optional Shield Connection

#### **8 Differential Channels**

#### **Figure 271: Field Wiring Differential ALG222**



# 9.5 Analog Input Module 16-Channel Current: IC694ALG223

# Figure 272: IC694ALG223



The **16-Channel Analog Current Input** module, IC694ALG223, provides sixteen single-ended inputs. Each input can be configured using the configuration software for any of three input ranges:

- 4 to 20 mA
- 0 to 20 mA
- 4 to 20 mA Enhanced

High and Low alarm limits are available on all ranges. In the 4 to 20 mA Enhanced range, a low alarm limit can be set up to detect input current from 4 mA to 0 mA, providing open-wire fault detection in 4 to 20 mA applications. Module also reports module status and external power supply status to the CPU using its assigned program reference addresses.

This module can be installed in any I/O slot in an RX3i system.

Revision –BA and later supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

# 9.5.1 Module Power

This module consumes 120 mA from the 5Vdc bus on the PLC backplane. It also requires 65 mA from a user-supplied +24Vdc supply, which must also supply current for each current loop employed.

9.5.2 LEDs: ALG223

Module **OK** LED provides module status information on power-up as follows:

- ON: status is OK, module configured;
- OFF: no backplane power or software not running (watchdog timer timed out);
- Continuous rapid flashing: configuration data not received from CPU;
- *Slow flashes, then OFF*: failed power-up diagnostics or encountered code execution error.

The **User Supply** LED indicates that the external 24Vdc supply is within specifications.

# 9.5.3 Specifications: ALG223

| ALG223                            | Specifications                                                           |
|-----------------------------------|--------------------------------------------------------------------------|
| Number of Channels                | 1 to 16 selectable; single-ended                                         |
| Input Current Ranges              | 0 to 20 mA, 4 to 20 mA and 4 to 20 mA Enhanced                           |
|                                   | (selectable per channel)                                                 |
| Calibration                       | Factory calibrated to:                                                   |
|                                   | 4 μA per count on 4 to 20 mA range                                       |
|                                   | 5 μA per count on 0 to 20 mA and 4 to 20 mA Enhanced range               |
| Update Rate                       | Update Rate: 6 ms                                                        |
| Resolution at 4–20 mA             | 4 μA (4 μA/bit)                                                          |
| Resolution at 0–20 mA             | 5 μA (5 μA/bit)                                                          |
| Resolution at 4–20 mA Enhanced    | 5 μA (5 μA/bit)                                                          |
| Absolute Accuracy <sup>52</sup>   | ±0.25% of full scale at 25°C (77°F): ± 0.5% of full scale over specified |
|                                   | operating temperature range                                              |
| Linearity                         | < 1 LSB from 4 to 20 mA (4 to 20 mA range)                               |
|                                   | < 1 LSB from 100 μA to 20 mA (0 to 20 mA and 4 to 20 mA Enhanced         |
|                                   | ranges)                                                                  |
| Isolation, Field to Backplane     | 250 Vac continuous; 1500 Vac for 1 minute                                |
| (optical) and to frame ground     |                                                                          |
| Common Mode Voltage <sup>53</sup> | 0 volts (single-ended channels)                                          |
| Cross-Channel Rejection           | > 70dB from DC to 1kHz                                                   |
| Input Impedance                   | 250Ω                                                                     |
| Input Low Pass Filter Response    | 19 Hz                                                                    |
| External Supply Voltage Range     | 20 to 30 Vdc                                                             |
| External Supply Voltage Ripple    | 10%                                                                      |
| Internal Power Consumption        | 120 mA from the +5Vdc bus on the backplane                               |
|                                   | 65 mA from 24Vdc external user power supply (in addition to current      |
|                                   | loop currents)                                                           |

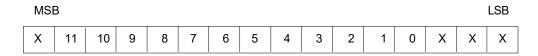
For product standards and general specifications, refer to Appendix A:.

 $<sup>^{52}</sup>$  In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to  $\pm 5\%$  of full scale.

 $<sup>^{53}</sup>$  In the presence of severe Conducted RF interference (IEC 61000-4-6, 10Vrms), accuracy may be degraded to  $\pm 1\%$  of full scale.

# 9.5.4 Configuration: ALG223

# **Module Settings: ALG223**


| Parameter         | Choices                | Description                                                 |
|-------------------|------------------------|-------------------------------------------------------------|
| Active Channels   | 1 to 16                | The number of channels to be scanned. Channels are          |
|                   |                        | scanned in sequential, contiguous order.                    |
| Channel Value     | Valid memory type: %AI | The starting address for input data from Module.            |
| Reference Address |                        |                                                             |
| Channel Value     | Read-only.             | Each channel provides 16 bits (1 word) of analog input      |
| Reference Length  |                        | data to the Controller CPU.                                 |
| Module Status     | Valid memory type: %I  | The starting address for status information from Module.    |
| Reference Address |                        |                                                             |
| Module Status     | 0, 8, 16, 24, 32, 40   | The number of status bits (0 to 40) reported to the         |
| Reference Length  |                        | Controller CPU. When set to 0, status reporting is          |
|                   |                        | disabled. To enable status reporting, set this parameter to |
|                   |                        | a value other than 0.                                       |
|                   |                        | Data formats are shown on the following page.               |
| I/O Scan Set      | 1 through 32           | Assigns Module I/O status data to a scan set defined in     |
|                   |                        | the CPU configuration. Determines how often the RX3i        |
|                   |                        | polls the data                                              |

# **Input Channel Parameters: ALG223**

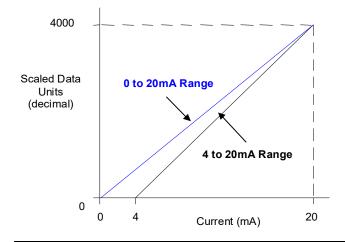
| Parameter           | Choices                               | Description                                                                                                      |
|---------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Range               | 4-20 mA (default),                    | In the 4-20 mA range, input currents from 4 to 20 mA are                                                         |
|                     | 0-20 mA, or                           | reported to the CPU as values from 0 to 32000 units. In                                                          |
|                     | 4-20 mA enhanced                      | the 0 to 20 mA range, input currents from 0 to 20 mA are                                                         |
|                     |                                       | reported to the CPU as values from 0 to 32000 units. In                                                          |
|                     |                                       | the 4 to 20 mA enhanced range, currents from 4 to 20 mA                                                          |
|                     |                                       | are reported to the CPU as values from 0 to 32000 units.                                                         |
|                     |                                       | Currents below 4 mA are reported as negative values with                                                         |
|                     |                                       | 0 represented as –8000 units.                                                                                    |
| Alarm Low           | 4-20 mA = 0 to 32759                  | Each channel can be assigned a low alarm limit alarm.                                                            |
| (Engineering Units) | 0-20 mA = 0 to 32759                  | Values entered without a sign are assumed to be positive.                                                        |
|                     | 4-20 mA enhanced<br>= -8000 to +32759 | Be sure the alarm low values are appropriate for the selected range.                                             |
| Alarm High          | 4-20 mA = 1 to 32760                  | Each channel can also be assigned a high alarm limit.                                                            |
| (Engineering Units) | 0-20 mA = 1 to 32760                  | Values entered without a sign are assumed to be positive.  Be sure the alarm high values are appropriate for the |
|                     | 4-20 mA enhanced<br>= -7999 to +32760 | selected range.                                                                                                  |

#### 9.5.5 Data Format: ALG223

The 12-bit resolution module analog input data is stored in the PLC CPU in 16-bit 2's complement format as displayed in the following figure.

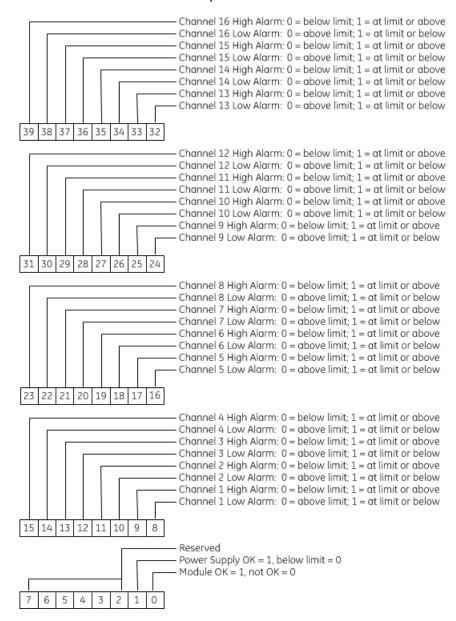


#### **Input Scaling: ALG223**


In the 4 to 20 mA range, input data is scaled so that 4 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000.

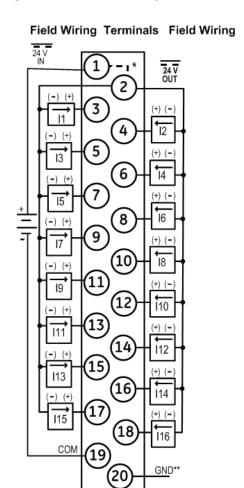
In the 0 to 20 mA range, 0 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000. Full 12–bit resolution is available over the 4 to 20 mA and 0 to 20 mA ranges.

4 to 20 mA Enhanced range can also be configured. In that range, 0 mA corresponds to a count of -8000, 4 mA corresponds to a count of 0 (zero) and 20 mA corresponds to a count of +32000. A low alarm limit can be set up to detect input current from 4 mA to 0 mA, providing open-wire fault detection in 4 to 20 mA applications.


Analog values are scaled over the range of the converter. Factory calibration adjusts the analog value per bit (resolution) to a multiple of full scale (4  $\mu$ A/bit). This calibration leaves a normal 12–bit converter with 4000 counts (normally  $2^{12}$  = 4096 counts). The data is then scaled with the 4000 counts over the analog range. The data is scaled as displayed in the following figure.






#### **Status Data: ALG223**

Analog Module IC694ALG223 can be configured to return 8, 16, 24, 32, or 40 status bits to the PLC CPU. This status data provides the following information about module operation:



# 9.5.6 Field Wiring: ALG223

#### Figure 274: Field Wiring ALG223



| * | Internally | Connected |
|---|------------|-----------|
|---|------------|-----------|

<sup>\*\*</sup> Optional Shield Connection

| Terminal | Connection                                              |  |
|----------|---------------------------------------------------------|--|
| 1        | User-supplied 24V Input; provides loop power via 24VOUT |  |
| 1        | terminal (pin 2)                                        |  |
| 2        | +24V loop power tie point                               |  |
| 3        | Current Input, Channel 1                                |  |
| 4        | Current Input, Channel 2                                |  |
| 5        | Current Input, Channel 3                                |  |
| 6        | Current Input, Channel 4                                |  |
| 7        | Current Input, Channel 5                                |  |
| 8        | Current Input, Channel 6                                |  |
| 9        | Current Input, Channel 7                                |  |
| 10       | Current Input, Channel 8                                |  |
| 11       | Current Input, Channel 9                                |  |
| 12       | Current Input, Channel 10                               |  |
| 13       | Current Input, Channel 11                               |  |
| 14       | Current Input, Channel 12                               |  |
| 15       | Current Input, Channel 13                               |  |
| 16       | Current Input, Channel 14                               |  |
| 17       | Current Input, Channel 15                               |  |
| 18       | Current Input, Channel 16                               |  |
| 19       | Common connection to input current sense resistors;     |  |
| וא       | user-supplied 24V input return or 24VIN return          |  |
| 20       | Frame ground connections for cable shields              |  |

#### Figure 275: Connection Example 1 ALG222

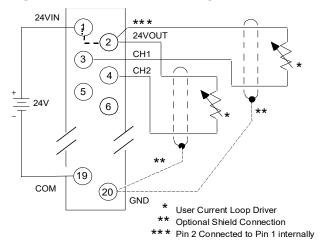
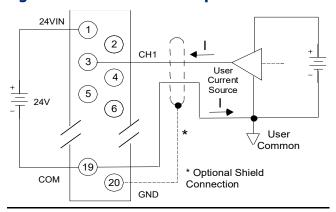




Figure 276: Connection Example 2 ALG222



To limit common-mode voltages, the current source can be tied to the COM terminal provided the source is floating.

# 9.6 Analog Input module Advanced Diagnostics 16-Channel Voltage: IC694ALG232

**Figure 277: IC694ALG232** 



The PACSystems RX3i 8/ 16-Channel Analog Voltage Input module, IC694ALG232, provides sixteen single-ended or eight differential input channels. Each channel can be configured for either of two input ranges:

- 0 to 10 V (unipolar), default
- -10 to +10 V (bipolar)

High and Low alarm limits can be configured for both ranges. This module can be installed in any I/O slot that has a serial connector in an RX3i system.

#### 9.6.1 Features

- Isolated +24Vdc Power
- Completely software-configurable, no module jumpers to set
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program
- Positive and negative Rate of Change Alarms
- Display of module serial number, revision and date code in programming software.
- Module supports insertion into and removal from an RX3i
   Universal Backplane which is under power. Refer to Section 2.6.4,
   Hot Insertion and Removal.
- Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Webbased tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 9.6.2 Isolated +24Vdc Power

If Module is located in an RX3i Universal Backplane, an external source of isolated +24Vdc is required to provide power for Module. The external source must be connected via the TB1 connector on the left side of the backplane.

If this module is located in an Expansion or Remote backplane, the backplane power supply provides the Isolated +24Vdc for Module.

#### 9.6.3 LEDs: ALG232

Module **OK** LED provides module status information as follows:

- **ON**: status is **OK**, module configured
- **OFF**: no backplane power or software not running (watchdog timer timed out)
- Continuous rapid blinking: configuration data not received from CPU
- **Slow blinking**, **then OFF**: failed power-up diagnostics or encountered code execution error

Module **P/S LED** indicates that the internally-generated +5Vdc supply is above a minimum designated level for Module.

# 9.6.4 Specifications: ALG232

| Specifications                                                 |  |
|----------------------------------------------------------------|--|
| 1 to 16 selectable, single-ended input mode                    |  |
| 1 to 8 selectable, differential input mode                     |  |
| 0 Vdc to +10 Vdc (unipolar) or                                 |  |
| -10 Vdc to +10 Vdc (bipolar); selectable each channel          |  |
| Factory calibrated to:                                         |  |
| 0.3125 mV per count on 0 Vdc to +10 Vdc (unipolar) range       |  |
| 0.3125 mV per count on -10 to +10 Vdc (bipolar) range          |  |
| Single Ended Input 5 ms                                        |  |
| Differential Input 3 ms                                        |  |
| 1 LSB = 0.3125 mV                                              |  |
| 1 LSB = 0.3125 mV                                              |  |
| ±0.25% of full scale at 25°C (77°F)                            |  |
| ±0.5% of full scale over specified operating temperature range |  |
| < 4 LSB                                                        |  |
| al) 250 Vac continuous; 1500 Vac for 1 minute                  |  |
|                                                                |  |
| ±11 Vdc (bipolar range)                                        |  |
|                                                                |  |
| > 70dB from DC to 1 kHz                                        |  |
| >500kΩ (single-ended mode)                                     |  |
| >1 M $\Omega$ (differential mode)                              |  |
| 23 Hz (single-ended mode)                                      |  |
| 38 Hz (differential mode)                                      |  |
| 112 mA (maximum) from the backplane +5Vdc bus                  |  |
| 110 mA (maximum) from the backplane isolated +24Vdc supply     |  |
|                                                                |  |

For product standards and general specifications, refer to Appendix A:.

 $<sup>^{54}</sup>$  In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to  $\pm 5\%$  of full scale.

 $<sup>^{55}</sup>$  In the presence of severe Conducted RF interference (IEC 61000-4-6, 10Vrms), accuracy may be degraded to  $\pm 1\%$  of full scale.

 $<sup>^{56}</sup>$  The sum of the differential input, common mode voltage, and noise must not exceed  $\pm 11$  volts when referenced to COM.

# 9.6.5 Configuration: ALG232

# **Module Parameters: ALG232**

| Parameter            | Choices                          | Description                                                     |
|----------------------|----------------------------------|-----------------------------------------------------------------|
| Active Channels      | 1 to 16 for Single-ended Input   | The number of channels to be scanned. Channels are scanned      |
|                      | Mode, or 1 to 8 for Differential | in sequential, contiguous order.                                |
|                      | Input Mode                       |                                                                 |
| Channel Value        | Valid memory types: %AI          | The starting address in memory for input data from Module.      |
| Reference Address    | (default), %AQ, %R, %W,          | * Note: To support Symbolic Memories, the "Variable Mode"       |
|                      | Symbolic Memory*                 | property should be enabled in PME.                              |
| Channel Value        | Read-only                        | Depends on the number of active channels. Each channel          |
| Reference Length     |                                  | provides two words of analog input data to the Controller CPU.  |
| Diagnostic           | Valid memory types: %I           | Starting address for the channel diagnostics data. Used only    |
| Reference Address    | (default), %Q, %G, %M, %T,       | when Module Level Diagnostic Reporting is enabled.              |
|                      | Symbolic Memory*                 | * Note: To support Symbolic Memories, the "Variable Mode"       |
|                      |                                  | property should be enabled in PME                               |
| Diagnostic           | Read-only                        | The amount of memory required for the channel diagnostics       |
| Reference Length     |                                  | data. When Module Level Diagnostic Reporting is enabled, 32     |
|                      |                                  | bits (2 words) of diagnostic data are allocated for each active |
|                      |                                  | channel.                                                        |
| Module Status        | Valid memory types: %I           | The starting address in memory for status information from      |
| Reference Address    | (default), %Q, %G, %M, %T,       | Module.                                                         |
|                      | Symbolic Memory*                 | * Note: To support Symbolic Memories, the "Variable Mode"       |
|                      |                                  | property should be enabled in PME                               |
| Module Status        | 0, 32                            | The number of module status bits reported to the CPU. Data      |
| Reference Length     |                                  | format is displayed in the following figure.                    |
|                      |                                  | When set to 0, status reporting is disabled. To enable status   |
|                      |                                  | reporting, set this parameter to a value other than 0.          |
| I/O Scan Set         | 1 through 32                     | Assigns Module I/O status data to a scan set defined in the     |
|                      |                                  | CPU configuration. Determines how often the RX3i polls the      |
|                      |                                  | data                                                            |
| Inputs Default       | Force Off (default) or           | In the event of module failure or removal, this parameter       |
|                      | Hold Last State                  | specifies the state of all Channel Value References for Module. |
|                      |                                  | Force Off = Channel Values clear to 0.                          |
|                      |                                  | Hold Last State = Channels hold their last state.               |
| Analog Input Mode    | Single-Ended Input Mode          | In Single-Ended Input Mode, 16 inputs are referenced to a       |
|                      | (default), or                    | single common.                                                  |
|                      | Differential Input Mode          | In Differential Input Mode, each of the 8 inputs has its own    |
|                      |                                  | signal and common.                                              |
|                      |                                  | Selection must match the input wiring to Module.                |
| Module Level         | Disabled (default) or            | If enabled, 32 bits of data are allocated for each active       |
| Diagnostic Reporting | Enabled                          | channel. Diagnostic Reporting and Fault Reporting can be        |
|                      |                                  | enabled separately for each channel.                            |

# **Channel Configuration Parameters: ALG232**

| Parameter          | Choices                     | Description                                                 |  |  |  |  |  |
|--------------------|-----------------------------|-------------------------------------------------------------|--|--|--|--|--|
| Range              | 0 to 10 V (default) or      | In the 0 to 10 V default range, input voltage values from   |  |  |  |  |  |
|                    | -10 to 10 V                 | 0 to 10 V report 0 to 32,000 integer values to the CPU. In  |  |  |  |  |  |
|                    |                             | the -10 to 10 V range, input voltage values from -10 to     |  |  |  |  |  |
|                    |                             | 10 V report -32000 to 32,000 integer values to the CPU.     |  |  |  |  |  |
| Channel Value      | 32-bit Floating-point       | 32-bit Floating-point: A real value, range 3.40282e+38      |  |  |  |  |  |
| Format             | (default)                   | through 3.40282e+38                                         |  |  |  |  |  |
|                    | or 16-bit Integer           | 16-bit Integer: The low word of the 32-bit channel data     |  |  |  |  |  |
|                    |                             | contains the 16-bit integer channel value. The high word    |  |  |  |  |  |
|                    |                             | contains the sign of the 16-bit integer. If the 16-bit      |  |  |  |  |  |
|                    |                             | integer result is negative, the upper word in the 32-bit    |  |  |  |  |  |
|                    |                             | channel data is set to 0xFFFF. If the 16-bit integer result |  |  |  |  |  |
|                    |                             | is positive, the upper word is set to 0x0000.               |  |  |  |  |  |
|                    |                             | When the Channel Value Format parameter is set to 16-       |  |  |  |  |  |
|                    |                             | bit Integer, 1000 Eng Units are equal to 1.0 A/D Unit.      |  |  |  |  |  |
| High Scale Value   | The defaults and ranges for | Scaling is disabled if:                                     |  |  |  |  |  |
| (Eng Units)        | the four scaling parameters | High Scale Eng. Units = High Scale A/D Units                |  |  |  |  |  |
| Low Scale Value    | depend on the configured    | and                                                         |  |  |  |  |  |
| (Eng Units)        | Range Type and Channel      | Low Scale Eng. Units = Low Scale A/D Units.                 |  |  |  |  |  |
| High Scale Value   | Value Format.               | Default is High A/D Limit of selected range type.           |  |  |  |  |  |
| (A/D Units)        |                             | When Channel Value Format is set to 32-bit Floating-        |  |  |  |  |  |
| Low Scale Value    |                             | point, range is -3.40282e+38 through 3.40282e+38.           |  |  |  |  |  |
| (A/D Units)        |                             | When set to 16-bit Integer, range -32,768 through           |  |  |  |  |  |
|                    |                             | +32,767.                                                    |  |  |  |  |  |
| Positive Rate of   | Range: 0.0 (default)        | Rate of change in Engineering Units per Second that will    |  |  |  |  |  |
| Change Limit       | through 3.40282e+38         | trigger a Positive Rate of Change alarm. If set to 0, limit |  |  |  |  |  |
| (Eng Units/Second) |                             | is disabled. Used with "Rate of Change Sampling Rate"       |  |  |  |  |  |
|                    |                             | parameter.                                                  |  |  |  |  |  |
| Negative Rate of   | Range: 0.0 (default)        | Rate of change in Engineering Units per Second that will    |  |  |  |  |  |
| Change Limit       | through 3.40282e+38         | trigger a Negative Rate of Change alarm. If set to 0, limit |  |  |  |  |  |
| (Eng Units/Second) |                             | is disabled. Used with "Rate of Change Sampling Rate"       |  |  |  |  |  |
|                    |                             | parameter.                                                  |  |  |  |  |  |
| Rate of Change     | 0 (default) through 300     | Time from 0 through 300 seconds to wait between             |  |  |  |  |  |
| Sampling Rate      |                             | comparisons. If set to the default value of 0.0, Module     |  |  |  |  |  |
| (ms)               |                             | checks after every input sample.                            |  |  |  |  |  |
| High-High Alarm    | The defaults and ranges for | Alarms and Deadbands                                        |  |  |  |  |  |
| (Eng Units)        | these parameters depend     | All of the alarm parameters are specified in Engineering    |  |  |  |  |  |
| High Alarm         | on the configured Range     | Units. To use alarming, Diagnostic Reporting or Fault       |  |  |  |  |  |
| (Eng Units)        | and Channel Value Format.   | Reporting must be enabled.                                  |  |  |  |  |  |
| Low Alarm          |                             | High-High Alarm and Low-Low Alarm: When the                 |  |  |  |  |  |
| (Eng Units)        |                             | configured value is reached or passed, a Low-Low Alarm      |  |  |  |  |  |

| Parameter            | Choices                       | Description                                                 |
|----------------------|-------------------------------|-------------------------------------------------------------|
| Low-Low Alarm        |                               | or High-High Alarm is triggered. The configured values      |
| (Eng Units)          |                               | must be lower than/higher than the corresponding            |
| High-High Alarm      |                               | low/high alarm limits.                                      |
| Deadband (Eng Units) |                               | High Alarm and Low Alarm: When the configured value         |
| High Alarm           |                               | is reached or below (above), a Low (High) Alarm is          |
| Deadband             |                               | triggered.                                                  |
| (Eng Units)          |                               | High and Low Alarm Deadbands: A range in Engineering        |
| Low Alarm Deadband   |                               | Units above the alarm condition (low deadband) or           |
| (Eng Units)          |                               | below the alarm condition (high deadband) where the         |
| Low-Low Alarm        |                               | alarm status bit can remain set even after the alarm        |
| Deadband             |                               | condition goes away. For the alarm status to clear, the     |
| (Eng Units)          |                               | channel input must fall outside the deadband range.         |
| , ,                  |                               | Alarm Deadbands should not cause the alarm clear            |
|                      |                               | condition to be outside the Engineering Unit User Limits    |
|                      |                               | range. For example, if the engineering unit range for a     |
|                      |                               | channel is -1000.0 to +1000.0 and a High Alarm is set at    |
|                      |                               | +100.0, the High Alarm Deadband value range is 0.0 to       |
|                      |                               | less than 1100.0. A deadband of 1100.0 or more would        |
|                      |                               | put the High Alarm clear condition below –1000.0 units      |
|                      |                               | making the alarm impossible to clear within the limits.     |
| User Offset          | 16-Bit Integer                | Engineering Units offset to change the base of the input    |
|                      | range: -32768 through         | channel. This value is added to the scaled value on the     |
|                      | 32768                         | channel prior to alarm checking.                            |
|                      | 32-Bit Floating-point,        | -                                                           |
|                      | range: -3.40282e+38           |                                                             |
|                      | through 3.40282e+38. 0.0      |                                                             |
|                      | (default)                     |                                                             |
|                      | 0.0 (default)                 |                                                             |
| Software Filtering   | Disabled (default) or         | Controls whether software filtering will be performed on    |
|                      | Enabled                       | the inputs.                                                 |
| Integration Time     | 0 (default) through           | Specifies the amount of time in milliseconds for the        |
| (ms)                 | 4,294,967,295 ms              | software filter to reach 63.2% of the input value.          |
|                      |                               | A value of 0 indicates software filter is disabled. A value |
|                      |                               | of 100 indicates data will achieve 63.2% of its value in    |
|                      |                               | 100ms.                                                      |
| Diagnostic Reporting | Disabled (default) or         | If Diagnostic Reporting is enabled, Module reports          |
| Enable               | Enabled                       | channel alarms in the Diagnostic Reference memory.          |
|                      | (Available only if Module     | Channel alarms can be individually enabled.                 |
| Fault Reporting      | Level Diagnostic Reporting is | If Fault Reporting is enabled, Module logs a fault log in   |
| Enable               | enabled on the Settings tab.) | the I/O Fault table for each occurrence of a channel        |
|                      |                               | alarm. Fault reporting for channel alarms can be            |
|                      |                               | individually enabled.                                       |

## **Input Scaling: ALG232**

The default input mode and range is single-ended, unipolar. In 0 to 10V mode, input data is scaled so that 0 volts corresponds to a count of 0 and 10 volts corresponds to a count of +32000.

The bipolar range and mode can be selected by changing Module's configuration parameters. In bipolar mode, -10 V corresponds to a count of -32000, 0 V corresponds to a count of 0, and +10 V corresponds to a count of +32000.

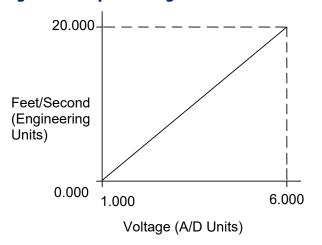
Factory calibration adjusts the analog value per bit (resolution) to a multiple of full scale (0.3125 mV/bit). The data is then scaled with the 32000 counts over the analog range. The data is scaled as shown below.

Figure 278: Input Scaling ALG232



By default, Module converts a voltage input over the entire span of its configured Range into a floating-point value for the CPU. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the Controller that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.


#### **Example:**

For a voltage input, 6.0 volts equals a speed of 20 feet per second, and 1.0 volt equals 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000 Low Scale Value (Eng Units) = 0.000 High Scale Value (A/D Units) = 6.000 Low Scale Value (A/D Units) = 1.000

For this example, 1.0V to 6.0V is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 10.0V were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or other precautions for scaled inputs that are outside the acceptable range or otherwise invalid.

Figure 279: Input Scaling ALG232



# **Rate of Change Alarms: ALG232**

ALG232 can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Unit change between samples is positive, Module compares the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the Diagnostic Reporting Enable and Fault Reporting Enable parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. The minimum value which can be used with this parameter is 60 ms, i.e., Module can compare the rate of change after every 60 ms.

When the CPU transitions to RUN mode or Module field power is cycled, the ALG232 waits 100ms before starting Rate of Change detection. This is to ignore any glitches in the input signal.

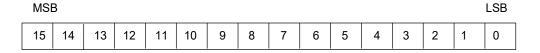
#### **Using Alarming**

The Diagnostic Reporting Enable and Fault Reporting Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarms can be enabled for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.

#### **Module Status Data: ALG232**




# 9.6.6 Channel Input Data: ALG232

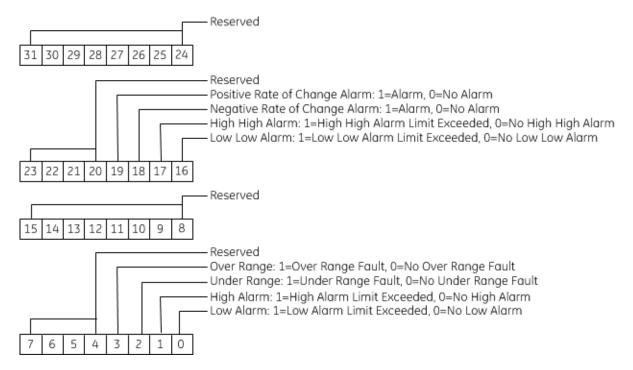
Module reports its channel input data in its configured input words, beginning at its assigned Channel Value Reference Address. Each channel occupies 2 words (whether the channel is used or not):

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

The 16-bit resolution module analog input data is stored in the CPU in 16-bit 2's complement format as displayed in the following figure.




# **Channel Diagnostic Data: ALG232**

In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for Module. Use of this feature is optional.

The diagnostics data for each channel occupies two words (whether the channel is used or not):

When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data is:

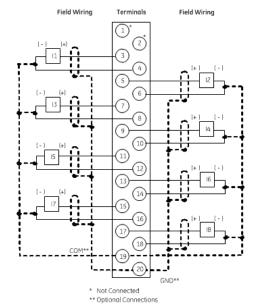


# 9.6.7 Field Wiring: ALG232

| Terminal | Single-ended | Differential |
|----------|--------------|--------------|
|          | Mode         | Mode         |
| 1, 2     | not used     |              |
| 3        | Channel 1    | Channel 1 +  |
| 4        | Channel 2    | Channel 1 -  |
| 5        | Channel 3    | Channel 2 +  |
| 6        | Channel 4    | Channel 2 -  |
| 7        | Channel 5    | Channel 3 +  |
| 8        | Channel 6    | Channel 3 -  |
| 9        | Channel 7    | Channel 4 +  |
| 10       | Channel 8    | Channel 4 -  |
| 11       | Channel 9    | Channel 5 +  |
| 12       | Channel 10   | Channel 5 -  |
| 13       | Channel 11   | Channel 6 +  |
| 14       | Channel 12   | Channel 6 -  |
| 15       | Channel 13   | Channel 7 +  |
| 16       | Channel 14   | Channel 7 -  |
| 17       | Channel 15   | Channel 8 +  |
| 18       | Channel 16   | Channel 8 -  |
| 19       | Common       | Common       |
| 20       | Ground       | Ground       |

Connections for 16-channel single-ended mode are displayed in Figure 280 and for 8-channel differential mode in Figure 281. Single-ended mode is the default operating mode for Module. Differential mode must be selected by configuration.

#### **16 Single-ended Channels**


#### Figure 280: Field Wiring Single-Ended ALG232

# 

# \* Not Connected \*\* Optional Shield Connection

# **8 Differential Channels**

#### **Figure 281: Field Wiring Differential ALG232**



# 9.7 Analog Input module Advanced Diagnostics 16-Channel Current: IC694ALG233

**Figure 282: IC694ALG233** 



The PACSystems RX3i 16-Channel Analog Current Input module, IC694ALG233, provides sixteen single-ended input channels. Each input can be configured using the configuration software for any of three input ranges:

- 4 to 20 mA
- 0 to 20 mA
- 4 to 20 mA Enhanced

High and Low alarm limits are available on all ranges. In the 4 to 20 mA Enhanced range, a low alarm limit can be set up to detect input current from 4 mA to 0 mA, providing open-wire fault detection in 4 to 20 mA Enhanced applications.

Module also reports module status and external power supply status to the CPU using its assigned program reference addresses.

This module can be installed in any I/O slot that has a serial connector in an RX3i system.

#### 9.7.1 Module Power

This module consumes 120 mA from the 5Vdc bus on the RX3i backplane. It also requires 65 mA from a user-supplied +24Vdc supply, which must also supply current for each current loop employed.

# 9.7.2 Features

- Completely software-configurable, no module jumpers to set
- Open-circuit detection for all inputs in 4 to 20 mA Enhanced Range
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program
- Positive and negative Rate of Change Alarms
- Display of module serial number, revision and date code in programming software.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, Hot Insertion and Removal.
- Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 9.7.3 LEDs: ALG233

Module **OK** LED provides module status information as follows:

- ON: status is OK, module configured;
- OFF: no backplane power or software not running (watchdog timer timed out);
- Continuous rapid blinking: configuration data not received from CPU;
- **Slow blinking, then OFF**: failed power-up diagnostics or encountered code execution error.

The **USER SUPPLY** LED indicates that the external 24Vdc supply is within specifications.

# 9.7.4 Specifications: ALG233

| Specification                                                                      |  |  |  |  |
|------------------------------------------------------------------------------------|--|--|--|--|
| 1 to 16 selectable; single-ended                                                   |  |  |  |  |
| 0 to 20 mA, 4 to 20 mA and 4 to 20 mA Enhanced (selectable per channel)            |  |  |  |  |
| Factory calibrated to:                                                             |  |  |  |  |
| 0.5 μA per count on 4 to 20 mA range                                               |  |  |  |  |
| 0.625 μA per count on 0 to 20 mA and 4 to 20 mA Enhanced range                     |  |  |  |  |
| 5 ms                                                                               |  |  |  |  |
| 0.625 μA/bit                                                                       |  |  |  |  |
| 0.5 μA/bit                                                                         |  |  |  |  |
| 0.5 μA/bit                                                                         |  |  |  |  |
|                                                                                    |  |  |  |  |
| ±0.25% of full scale at 25°C (77°F)                                                |  |  |  |  |
| ± 0.5% of full scale over specified operating temperature range                    |  |  |  |  |
| < 4 LSB from 4 to 20 mA (4 to 20 mA range)                                         |  |  |  |  |
| < 4 LSB from 100 μA to 20 mA (0 to 20 mA and 4 to 20 mA Enhanced                   |  |  |  |  |
| ranges)                                                                            |  |  |  |  |
| 250 Vac continuous; 1500 Vac for 1 minute                                          |  |  |  |  |
|                                                                                    |  |  |  |  |
| 0 volts (single-ended channels)                                                    |  |  |  |  |
| > 70dB from DC to 1kHz                                                             |  |  |  |  |
| 250Ω                                                                               |  |  |  |  |
| 23 Hz                                                                              |  |  |  |  |
| 20 to 30 Vdc                                                                       |  |  |  |  |
| 10%                                                                                |  |  |  |  |
| 120 mA from the +5Vdc bus on the backplane                                         |  |  |  |  |
| 65 mA from 24Vdc external user power supply (in addition to current loop currents) |  |  |  |  |
|                                                                                    |  |  |  |  |

 $<sup>^{57}</sup>$  In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to  $\pm 5\%$  of full scale.

 $<sup>^{58}</sup>$  In the presence of severe Conducted RF interference (IEC 61000-4-6, 10Vrms), accuracy may be degraded to  $\pm 1\%$  of full scale.

# 9.7.5 Configuration: ALG233

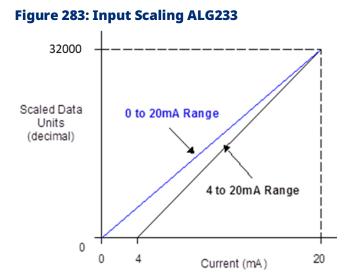
# **Module Settings: ALG233**

| Parameter            | Choices                           | Description                                                |  |  |  |  |
|----------------------|-----------------------------------|------------------------------------------------------------|--|--|--|--|
| Active Channels      | 1 to 16                           | The number of channels to be scanned. Channels are         |  |  |  |  |
|                      |                                   | scanned in sequential, contiguous order.                   |  |  |  |  |
| Channel Value        | Valid memory types:               | The starting address in memory for input data from         |  |  |  |  |
| Reference Address    | %AI (default), %AQ, %R,           | Module.                                                    |  |  |  |  |
|                      | %W, Symbolic                      |                                                            |  |  |  |  |
|                      | Memory <sup>59</sup>              |                                                            |  |  |  |  |
| Channel Value        | Read-only                         | Depends on the number of active channels. Each channel     |  |  |  |  |
| Reference Length     |                                   | provides two words of analog input data to the             |  |  |  |  |
|                      |                                   | Controller CPU.                                            |  |  |  |  |
| Diagnostic Reference | Valid memory types: %I            | Starting address for the channel diagnostics data. Used    |  |  |  |  |
| Address              | (default), %Q, %G, %M,            | only when Module Level Diagnostic Reporting is enabled.    |  |  |  |  |
|                      | %T, Symbolic Memory <sup>59</sup> |                                                            |  |  |  |  |
| Diagnostic Reference | Read-only                         | The amount of memory required for the channel              |  |  |  |  |
| Length               |                                   | diagnostics data. When Module Level Diagnostic             |  |  |  |  |
|                      |                                   | Reporting is enabled, 32 bits of diagnostic data are       |  |  |  |  |
|                      |                                   | allocated for each active channel.                         |  |  |  |  |
| Module Status        | Valid memory types: %I            | The starting address in memory for status information      |  |  |  |  |
| Reference Address    | (default), %Q, %G, %M,            | from Module.                                               |  |  |  |  |
|                      | %T, Symbolic Memory <sup>59</sup> |                                                            |  |  |  |  |
| Module Status        | 0, 32                             | The number of module status bits reported to the CPU.      |  |  |  |  |
| Reference Length     |                                   | Data format is displayed in the following figure.          |  |  |  |  |
|                      |                                   | When set to 0, status reporting is disabled. To enable     |  |  |  |  |
|                      |                                   | status reporting, set this parameter to a value other than |  |  |  |  |
|                      |                                   | 0.                                                         |  |  |  |  |
| I/O Scan Set         | 1 through 32                      | Assigns Module I/O status data to a scan set defined in    |  |  |  |  |
|                      |                                   | the CPU configuration. Determines how often the RX3i       |  |  |  |  |
|                      |                                   | polls the data                                             |  |  |  |  |
| Inputs Default       | Force Off (default) or            | In the event of module failure or removal, this parameter  |  |  |  |  |
|                      | Hold Last State                   | specifies the state of all Channel Value References for    |  |  |  |  |
|                      |                                   | Module.                                                    |  |  |  |  |
|                      |                                   | Force Off = Channel Values clear to 0.                     |  |  |  |  |
|                      |                                   | Hold Last State = Channels hold their last state.          |  |  |  |  |
| Module Level         | Disabled (default) or             | If enabled, 32 bits of data are allocated for each active  |  |  |  |  |
| Diagnostic Reporting | Enabled                           | channel. Diagnostic Reporting and Fault Reporting can      |  |  |  |  |
|                      |                                   | be enabled separately for each channel.                    |  |  |  |  |

<sup>&</sup>lt;sup>59</sup> Note: To support this feature, Variable Mode property should be enabled in Machine Edition.

# **Channel Configuration Parameters: ALG233**

| Parameter                     | Choices               | Description                                                             |
|-------------------------------|-----------------------|-------------------------------------------------------------------------|
| Range                         | 4-20 mA (default),    | In the 4-20 mA range, input currents from 4 to 20 mA are                |
|                               | 0-20 mA, or           | reported to the CPU as values from 0 to 32000 units.                    |
|                               | 4-20 mA + (enhanced)  | In the 0 to 20 mA range, input currents from 0 to 20 mA are             |
|                               |                       | reported to the CPU as values from 0 to 3200 units.                     |
|                               |                       | In the 4 to 20 mA enhanced range, currents from 4 to 20 mA are          |
|                               |                       | reported to the CPU as values from 0 to 32000 units.                    |
|                               |                       | Currents below 4 mA are reported as negative values with 0              |
|                               |                       | represented as –8000 units.                                             |
| Channel Value Format          | 32-bit Floating-point | 32-bit Floating-point: A real value, range 3.40282e+38 through          |
|                               | (default)             | 3.40282e+38                                                             |
|                               | or 16-bit Integer     | 16-bit Integer: The low word of the 32-bit channel data contains        |
|                               |                       | the 16-bit integer channel value. The high word contains the            |
|                               |                       | sign of the 16-bit integer. If the 16-bit integer result is negative,   |
|                               |                       | the upper word in the 32-bit channel data is set to 0xFFFF. If the      |
|                               |                       | 16-bit integer result is positive, the upper word is set to 0x0000.     |
|                               |                       | When the Channel Value Format parameter is set to 16-bit                |
|                               |                       | Integer, 1000 Eng Units are equal to 1.0 A/D Unit.                      |
| High Scale Value              | The defaults and      | Scaling is disabled if:                                                 |
| (Eng Units)                   | ranges for the four   | High Scale Eng. Units = High Scale A/D Units                            |
| Low Scale Value               | scaling parameters    | and                                                                     |
| (Eng Units)                   | depend on the         | Low Scale Eng. Units = Low Scale A/D Units.                             |
| High Scale Value              | configured Range      | Default is High A/D Limit of selected range type.                       |
| (A/D Units)                   | Type and Channel      | When <i>Channel Value Format</i> is set to 32-bit Floating-point, range |
| Low Scale Value               | Value Format.         | is -3.40282e+38 through 3.40282e+38.                                    |
| (A/D Units)                   |                       | For 16-bit Integer, range is -32,768 through +32,767.                   |
| Positive Rate of Change Limit | Range: 0.0 (default)  | Rate of change in Engineering Units per Second that will trigger        |
| (Eng Units/Second)            | through 3.40282e+38   | a Positive Rate of Change alarm. If set to 0, limit is disabled.        |
|                               |                       | Used with "Rate of Change Sampling Rate" parameter.                     |
| Negative Rate of Change       | Range: 0.0 (default)  | Rate of change in Engineering Units per Second that will trigger        |
| Limit                         | through 3.40282e+38   | a Negative Rate of Change alarm. If set to 0, limit is disabled.        |
| (Eng Units/Second)            |                       | Used with "Rate of Change Sampling Rate" parameter.                     |
| Rate of Change Sampling       | 0.0 (default) through | Time from 0 through 300 seconds to wait between comparisons.            |
| Rate                          | 300.0                 | If set to the default value of 0.0, Module checks after every input     |
| (Seconds)                     |                       | sample.                                                                 |
| High-High Alarm               | The defaults and      | Alarms and Deadbands                                                    |
| (Eng Units)                   | ranges for these      | All of the alarm parameters are specified in Engineering Units.         |
| High Alarm                    | parameters depend     | To use alarming, Diagnostic Reporting or Fault Reporting must           |
| (Eng Units)                   | on the configured     | be enabled.                                                             |
| Low Alarm                     | Range and Channel     | High-High Alarm and Low-Low Alarm: When the configured                  |
| (Eng Units)                   | Value Format.         | value is reached or passed, a Low-Low Alarm or High-High                |
| Low-Low Alarm                 | 1                     | Alarm is triggered. The configured values must be lower                 |
| (Eng Units)                   |                       | than/higher than the corresponding low/high alarm limits.               |


| Parameter                | Choices                | Description                                                        |
|--------------------------|------------------------|--------------------------------------------------------------------|
| High-High Alarm Deadband |                        | High Alarm and Low Alarm: When the configured value is             |
| (Eng Units)              |                        | reached or below (above), a Low (High) Alarm is triggered.         |
| High Alarm Deadband      |                        | High and Low Alarm Deadbands: A range in Engineering Units         |
| (Eng Units)              |                        | above the alarm condition (low deadband) or below the alarm        |
| Low Alarm Deadband       |                        | condition (high deadband) where the alarm status bit can           |
| (Eng Units)              |                        | remain set even after the alarm condition goes away. For the       |
| Low-Low Alarm Deadband   |                        | alarm status to clear, the channel input must fall outside the     |
| (Eng Units)              |                        | deadband range.                                                    |
|                          |                        | Alarm Deadbands should not cause the alarm clear condition         |
|                          |                        | to be outside the Engineering Unit User Limits range. For          |
|                          |                        | example, if the engineering unit range for a channel is -1000.0    |
|                          |                        | to +1000.0 and a High Alarm is set at +100.0, the High Alarm       |
|                          |                        | Deadband value range is 0.0 to less than 1100.0. A deadband        |
|                          |                        | of 1100.0 or more would put the High Alarm clear condition         |
|                          |                        | below –1000.0 units making the alarm impossible to clear           |
|                          |                        | within the limits.                                                 |
| User Offset              | 16-bit Integer         | Engineering Units offset to change the base of the input           |
|                          | range: -32768          | channel. This value is added to the scaled value on the channel    |
|                          | through 32768          | prior to alarm checking.                                           |
|                          | 32-bit Floating-point, |                                                                    |
|                          | range: -3.40282e+38    |                                                                    |
|                          | through                |                                                                    |
|                          | 3.40282e+38. 0.0       |                                                                    |
|                          | (default)              |                                                                    |
| Software Filtering       | Disabled (default) or  | Controls whether software filtering will be performed on the       |
|                          | Enabled                | inputs.                                                            |
| Integration Time         | 0 (default) through    | Specifies the amount of time in milliseconds for the software      |
| (ms)                     | 4,294,967,295 ms       | filter to reach 63.2% of the input value.                          |
|                          |                        | A value of 0 indicates software filter is disabled. A value of 100 |
|                          |                        | indicates data will achieve 63.2% of its value in 100ms.           |
| Diagnostic Reporting     | Disabled (default) or  | If Diagnostic Reporting is enabled, Module reports channel         |
| Enable                   | Enabled                | alarms in the Diagnostic Reference memory. Channel alarms          |
|                          | (Available only if     | can be individually enabled.                                       |
| Fault Reporting Enable   | Module Level           | If Fault Reporting is enabled, Module logs a fault log in the I/O  |
|                          | Diagnostic Reporting   | Fault table for each occurrence of a channel alarm. Fault          |
|                          | is enabled on the      | reporting for channel alarms can be individually enabled.          |
|                          | Settings tab.)         |                                                                    |

## **Input Scaling: ALG233**

In the 4 to 20 mA range, input data is scaled so that 4 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000.

In the 0 to 20 mA range, 0 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000. Full 12-bit resolution is available over the 4 to 20 mA and 0 to 20 mA ranges.

4 to 20 mA Enhanced range can also be configured. In that range, 0 mA corresponds to a count of -8000, 4 mA corresponds to a count of 0 (zero) and 20 mA corresponds to a count of +32000. A low alarm limit can be set up to detect input current from 4 mA to 0 mA, providing open-wire fault detection in 4 to 20 mA applications.

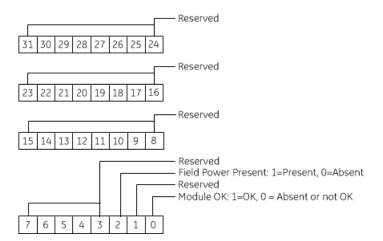


Analog values are scaled over the range of the converter. Factory calibration adjusts the analog value per bit (resolution) to a multiple of full scale (0.625  $\mu\text{A}/$  bit in 0-20mA range;0.5  $\mu\text{A}/$ bit in other ranges). This calibration leaves a normal 16-bit converter with 32000 counts. The data is scaled with the 32000 counts over the analog range. The data is scaled as shown above.

# **Rate of Change Alarms**

The ALG233 can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.


If the Engineering Unit change between samples is positive, Module compares the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the Diagnostic Reporting Enable and Fault Reporting Enable parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. The minimum value which can be used with this parameter is 60 ms i.e., Module can compare the rate of change after every 60 ms.

When the CPU transitions to RUN mode or Module field power is cycled, the ALG233 waits 100ms before starting Rate of Change detection. This is to ignore any glitches in the input signal.

#### **Module Status Data: ALG233**



# **Channel Input Data: ALG233**

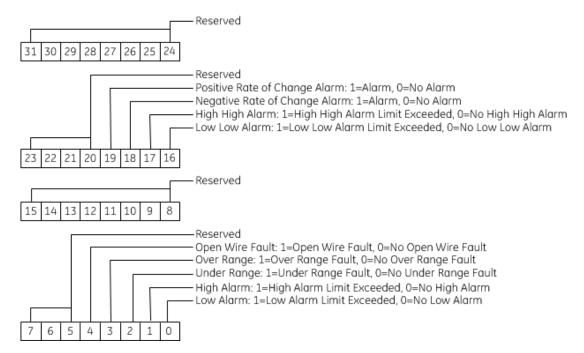
Module reports its channel input data in its configured input words, beginning at its assigned Channel Value Reference Address. Each channel occupies 2 words, whether or not the channel is used:

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

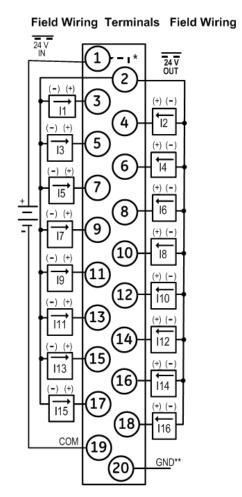
The 16-bit resolution module analog input data is stored in the CPU in 16-bit 2's complement format as displayed in the following figure.

| MSI | 3  |    |    |    |    |   |   |   |   |   |   |   |   |   | LSB |  |
|-----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|-----|--|
| 15  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0   |  |


#### **Channel Diagnostic Data: ALG233**

In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for Module. Use of this feature is optional.

The diagnostics data for each channel occupies two words (whether the channel is used or not):


When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data is:



# 9.7.6 Field Wiring: ALG233

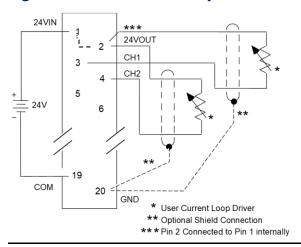
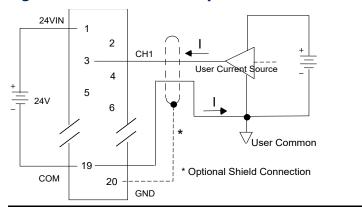
#### Figure 284: Field Wiring ALG223

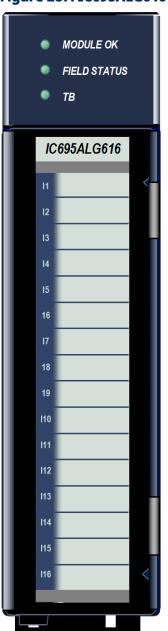


- \* Internally Connected
- \*\* Optional Shield Connection

|          | 1                                                |
|----------|--------------------------------------------------|
| Terminal | Connection                                       |
| 1        | User-supplied 24V Input; provides loop power via |
|          | 24VOUT terminal (pin 2)                          |
| 2        | +24V loop power tie point                        |
| 3        | Current Input, Channel 1                         |
| 4        | Current Input, Channel 2                         |
| 5        | Current Input, Channel 3                         |
| 6        | Current Input, Channel 4                         |
| 7        | Current Input, Channel 5                         |
| 8        | Current Input, Channel 6                         |
| 9        | Current Input, Channel 7                         |
| 10       | Current Input, Channel 8                         |
| 11       | Current Input, Channel 9                         |
| 12       | Current Input, Channel 10                        |
| 13       | Current Input, Channel 11                        |
| 14       | Current Input, Channel 12                        |
| 15       | Current Input, Channel 13                        |
| 16       | Current Input, Channel 14                        |
| 17       | Current Input, Channel 15                        |
| 18       | Current Input, Channel 16                        |
|          | Common connection to input current sense         |
| 19       | resistors; user-supplied 24V input return or     |
|          | 24VIN return                                     |
|          |                                                  |
| 20       | Frame ground connections for cable shields       |
| -        |                                                  |

Figure 285: Connection Example 1 ALG233



Figure 286: Connection Example 2 ALG233\*



\*To limit common-mode voltages, the current source can be tied to the COM terminal if the source is floating

# 9.8 Analog Input Module 8-/4-Channel Current/Voltage: IC695ALG608 Analog Input Module 16-/8-Channel Current/Voltage: IC695ALG616

**Figure 287: IC695ALG616** 



Non-Isolated Differential Analog Input Current/Voltage module IC695ALG608 provides eight single-ended or four differential input channels. Non-Isolated Differential Analog Input Current/Voltage module IC695ALG616, (Figure 287) provides 16 single-ended or 8 differential input channels. Analog input channels can be configured for these ranges:

- Current: 0 to 20mA, 4 to 20mA, ±20mA
- Voltage: ±10 Vdc, 0 to 10 Vdc, ±5Vdc, 0 to 5Vdc, 1Vdc to 5Vdc.

This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Refer to Chapter 17 for more information about Terminal Blocks. Terminal Blocks are ordered separately.

These modules must be located in an RX3i Universal Backplane.

#### 9.8.1 Features

- Completely software-configurable, no module jumpers to set
- Full auto-calibration
- On-board error-checking
- Open-circuit detection for all voltage and 4-20mA inputs
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program
- Flash memory for future upgrades
- Positive and negative Rate of Change Alarms
- Auto-calibration at startup
- Configurable interrupts for channel alarms and faults
- Terminal Block insertion or removal detection
- Module supports insertion into and removal from an RX3i
   Universal Backplane which is under power. Refer to Hot Insertion and Removal.

## 9.8.2 LEDs: ALG608 & ALG616

Module **OK** LED indicates module status. The **Field Status** LED indicates the presence of a fault on at least one channel or a terminal block error. The TB (Terminal Block) LED indicates the presence or absence of the terminal block. LEDs are powered by the backplane power bus.

| LED          | Indicates                                                                  |
|--------------|----------------------------------------------------------------------------|
| Module OK    | ON Green: Module OK and configured.                                        |
|              | Slow Flashing Green or Amber: Module OK but not configured.                |
|              | Quick Flashing Green: Error.                                               |
|              | OFF: Module is defective or no backplane power present                     |
| Field Status | ON Green: No faults on any enabled channel, and Terminal Block is present. |
|              | ON Yellow: Fault on at least one channel.                                  |
|              | OFF: Terminal block not present or not fully seated.                       |
| ТВ           | ON Red: Terminal block not present or not fully seated.                    |
|              | ON Green: Terminal block is present.                                       |
|              | OFF: No backplane power to module.                                         |

# 9.8.3 Specifications: ALG608 & ALG616

| ALG608/ALG616                | Specifications                                                                 |                         |                         |                |
|------------------------------|--------------------------------------------------------------------------------|-------------------------|-------------------------|----------------|
| Input Ranges                 | Current: 0 to 20mA, 4 to 20mA, ±20mA                                           |                         |                         |                |
|                              | Voltage: ±10 Vdc, 0 to 10 Vdc, ±5Vdc, 0 to 5Vdc, 1Vdc to 5Vdc                  |                         |                         |                |
| Backplane Power              | Module                                                                         | Rev                     | 5.0V +5% / -2.5%        | 3.3V +5% / -3% |
| Requirements                 | ALG608                                                                         | -EA & earlier           | 330mA max               | 600mA max      |
|                              |                                                                                | -FB & later             | 200mA max               | 200mA max      |
|                              | ALG616                                                                         | -EA & earlier           | 450mA max               | 600mA max      |
|                              |                                                                                | -FB & later             | 350mA max               | 200mA max      |
| CPU Version                  | PACSystems                                                                     | s RX3i CPU firmware     | e version 3.0 and later | <b>-</b>       |
| Programmer Version           | Machine Ed                                                                     | ition version 5.0 SP    | 3 and later             |                |
| Power Dissipation within     | Module                                                                         | Rev                     | Power Dissipation       |                |
| Module                       | ALG608                                                                         | -EA & earlier           | 4.83W max               |                |
|                              |                                                                                | -FB & later             | 2.58W max               |                |
|                              | ALG616                                                                         | -EA & earlier           | 6.48W max               |                |
|                              |                                                                                | -FB & later             | 4.25W max               |                |
| Thermal De-rating            | None                                                                           |                         |                         |                |
| Resolution                   | Refer to the table <i>Resolution and Range Types</i> in this section.          |                         |                         |                |
| Input Data Format            | Configurable as floating-point IEEE 32-bit or 16-bit integer in a 32-bit field |                         |                         |                |
| Filter Options               | 8Hz, 12Hz, 16Hz, 40Hz, 200Hz, 500Hz                                            |                         |                         |                |
| Module Scan Time             | Module scan can consist of up to four acquisition cycles. Each cycle includes  |                         |                         |                |
| (in ms)                      | a specific set of channels, as described in the section "Channel Scanning".    |                         |                         |                |
|                              | Total Scan Time depends on the number of acquisition cycles in the scan,       |                         |                         |                |
|                              | and the configured filter option.                                              |                         |                         |                |
| Configured Filter            | Number of A                                                                    | Acquisition Cycles in t | he Scan                 |                |
|                              | 1                                                                              | 2                       | 3                       | 4              |
| 8 Hz filter                  | 121                                                                            | 241                     | 362                     | 482            |
| 12 Hz filter                 | 81                                                                             | 161                     | 242                     | 322            |
| 16 Hz filter                 | 61                                                                             | 121                     | 182                     | 242            |
| 40 Hz filter                 | 21                                                                             | 41                      | 62                      | 82             |
| 200 Hz filter                | 5                                                                              | 9                       | 14                      | 18             |
| 500 Hz filter, filtering and | 2                                                                              | E                       | 7                       | 0              |
| rate detection disabled      | 3 5 7 9                                                                        |                         |                         |                |
| 500 Hz filter, all options   | 3                                                                              | 6                       | 9                       | 12             |
| enabled                      | 3                                                                              | O .                     | <u> </u>                | 12             |
| Input Impedance              | >100 kΩ vol                                                                    | tage inputs             |                         |                |
| Current Input Resistance     | 249 Ω ±1%                                                                      |                         |                         |                |
| Open Circuit Detection time  | 1 second maximum                                                               |                         |                         |                |
| Over-voltage                 | ±60 Vdc continuous, maximum                                                    |                         |                         |                |
| 3                            |                                                                                |                         |                         |                |

| ALG608/ALG616                            | Specifications                                                          |                        |         |
|------------------------------------------|-------------------------------------------------------------------------|------------------------|---------|
| Normal Mode Noise                        |                                                                         | At 50Hz                | At 60Hz |
| Rejection in dB                          | 8 Hz filter                                                             | 103                    | 97      |
|                                          | 12 Hz filter                                                            | 94                     | 89      |
|                                          | 16 Hz filter                                                            | 39                     | 65      |
|                                          | 40 Hz filter                                                            | 4                      | 7       |
|                                          | 200 Hz filter                                                           | 0.1                    | 0.2     |
|                                          | 500 Hz                                                                  | 0.0                    | 0.0     |
| Common Mode Noise                        | 120dB minimum at 50/6                                                   | 0 Hz with 8 Hz filter  |         |
| Rejection                                | 110dB minimum at 50/6                                                   | 0 Hz with 12 Hz filter |         |
| Channel-Channel DC                       | -80 dB minimum (single ended mode)                                      |                        |         |
| Crosstalk                                | -80 dB minimum (differential mode, grounded common)                     |                        |         |
|                                          | -60 dB minimum (differential mode, floating common)                     |                        |         |
| Calibrated Accuracy <sup>60</sup> at     | ±5Vdc, ±10 Vdc, ±20 mA: 0.05% of range.                                 |                        |         |
| 13°C – 33°C with 8 Hz, 12 Hz             | 0 to 10 Vdc, 0 to 5Vdc, 1Vdc to 5Vdc, 0 to 20 mA: 0.1% of range.        |                        |         |
| and 16 Hz filter                         | 4 to 20 mA: 0.125% of ra                                                | nge                    |         |
| Calibrated Accuracy <sup>60</sup> at 0°C | 0 to 10 Vdc, 0 to 5Vdc, 1Vdc to 5Vdc: 0.2% of range.                    |                        |         |
| – 60°C with 8 Hz, 12 Hz and              | 0 to 20 mA: 0.25% of range.                                             |                        |         |
| 16 Hz filter                             | 4 to 20 mA: 0.3125% of range.                                           |                        |         |
|                                          | ±5Vdc, ±10 Vdc: 0.1% ±20 mA: 0.125% of range.                           |                        |         |
| Calibration Viability                    | Factory calibration is valid for 12 months for all ranges and operating |                        |         |
| Cambration viability                     | conditions.                                                             |                        |         |
| Isolation Voltage                        | Opto-isolated, transformer isolated                                     |                        |         |
| terminal block to                        | 250 Vac continuous/1500 Vac for 1 minute                                |                        |         |
| backplane/chassis                        |                                                                         |                        |         |

For product standards and general specifications, refer to Appendix A:.

 $<sup>^{60}</sup>$  In the presence of severe RF interference (IC 801-3, 10V/m), accuracy may be degraded by  $\pm 1.5\%$  of range.

# 9.8.4 Configuration: ALG608 & ALG616

#### **Module Parameters: ALG608 & ALG616**

| Parameter               | Default        | Description                                                                  |
|-------------------------|----------------|------------------------------------------------------------------------------|
| Channel Value Reference | %AIxxxxx       | Starting address for the input data of Module.                               |
| Address                 |                | This defaults to the next available %AI block.                               |
| Channel Value Reference | ALG608: 16     | The number of words used for the input data of Module.                       |
| Length                  | ALG616: 32     | This parameter cannot be changed.                                            |
| Diagnostic Reference    | %Ixxxxx        | Starting address for the channel diagnostics status data.                    |
| Address                 |                |                                                                              |
| Diagnostic Reference    | 0              | The number of bit reference bits required for the Channel Diagnostics        |
| Length                  |                | data.                                                                        |
|                         |                | When set to 0, Channel Diagnostics is disabled. To enable Channel            |
|                         |                | Diagnostics mapping, change this to a non-zero value.                        |
| Module Status Reference | %Ixxxxx        | Starting address for the status data of Module.                              |
| Address                 |                |                                                                              |
| Module Status Reference | 0              | The number of bits (0 to 32) required for Module Status data.                |
| Length                  |                | When set to 0, mapping of Module Status data is disabled. To enable          |
|                         |                | Module Status data mapping, change this to a non-zero value.                 |
| I/O Scan Set            | 1              | Assigns Module I/O status data to a scan set defined in the CPU              |
|                         |                | configuration. Determines how often the RX3i polls the data                  |
| Inputs Default          | Force Off      | In the event of module failure or removal, this parameter specifies the      |
|                         |                | state of all Channel Value References for Module.                            |
|                         |                | Force Off = Channel Values clear to 0.                                       |
|                         |                | Hold Last State = Channels hold their last state.                            |
| Inputs Default w/o      | Enabled        | Enabled / Disabled: Controls whether inputs will be set to their defaults if |
| Terminal Block          |                | the Terminal Block is removed.                                               |
| Channel Faults w/o      | Disabled       | Enabled / Disabled: Controls whether channel faults and configured           |
| Terminal Block          |                | alarm responses are generated after Terminal Block removal. If Disabled,     |
|                         |                | channel faults and alarms are suppressed when the Terminal Block is          |
|                         |                | removed. This setting does not affect module faults including the            |
|                         |                | Terminal Block loss/add fault generation.                                    |
| Analog Input Mode       | Single-ended   | Single-ended / Differential: This selection must match the input wiring to   |
|                         | Input Mode     | Module.                                                                      |
| A/D Filter Frequency    | 40Hz           | Low pass A/D hardware filter setting for all inputs: 8, 12, 16, 40, 200, or  |
|                         |                | 500Hz. Frequencies below the filter setting are not filtered by hardware.    |
| Range Type              | Disabled       | Current/Voltage, Disabled                                                    |
| Range                   | -10 Vdc to +10 | Current/Voltage: -10 Vdc to +10 Vdc, 0 to +10 Vdc, 0 to +5Vdc, 1Vdc to       |
| (Not for Range Type     | Vdc            | +5Vdc, -5Vdc to +5Vdc, -20mA to +20mA, 4 to 20 mA, 0 to 20 mA                |
| Disabled)               |                |                                                                              |

#### **Channel Parameters: ALG608 & ALG616**

| Parameter            | Default          | Description                                                         |
|----------------------|------------------|---------------------------------------------------------------------|
| Channel Value Format | 32-bit Floating- | 16-bit integer or 32-bit floating-point                             |
|                      | point            |                                                                     |
| High Scale Value     | The defaults     | Note: Scaling is disabled if both High Scale Eng. Units equals High |
| (Eng Units)          | for the four     | Scale A/D Units and Low Scale Eng. Units equals Low Scale A/D       |
|                      | Scaling          | Units.                                                              |
|                      | parameters       | Default is High A/D Limit of selected range type.                   |
| Low Scale Value      | depend on the    | Default is Low A/D Limit of selected range type. Must be lower than |
| (Eng Units)          | configured       | the high scaling value.                                             |
| High Scale Value     | Range Type       | Default is High A/D Limit of selected range type. Must be greater   |
| (A/D Units)          | and Range.       | than the low scaling value.                                         |
| Low Scale Value      | Each Range       | Default is Low A/D Limit of selected range type.                    |
| (A/D Units)          | and Range        |                                                                     |
|                      | Type has a       |                                                                     |
|                      | different set of |                                                                     |
|                      | defaults.        |                                                                     |

#### **Input Scaling: ALG608 & ALG616**

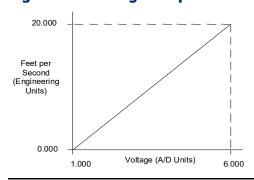
By default, Module converts a voltage or current input over the entire span of its configured Range into a floating-point value for the CPU. For example, if the Range of a channel is 4 to 20mA, Module reports channel input values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the PLC that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.

#### Example 1

For a voltage input, 6.0 volts represents a speed of 20 feet per second, and 1.0 volt represents 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000


Low Scale Value (Eng Units) = 0.000

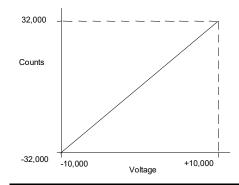
High Scale Value (A/D Units) = 6.000

Low Scale Value (A/D Units) = 1.000

For this example, 1.0 Vdc to 6.0 Vdc is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 10.0 Vdc were input to the channel,

Figure 288: Scaling Example ALG608 or ALG616




Module would return a scaled channel value of 36.000. The application should use alarms or take other precautions for scaled inputs that are outside the acceptable range or invalid.

#### Example 2

An existing application uses traditional analog to digital (A/D) count integer values. With scaling and the optional 16-bit integer input option, a channel can be configured to report integer count values. In this example, the application should interpret +10 Vdc as 32000 counts and -10 Vdc as -32000 counts. The following channel configuration will scale a  $\pm 10$  Vdc input channel to  $\pm 32000$  counts.

Channel Value Format = 16-bit Integer
High Scale Value (Eng Units) = 32000.0
Low Scale Value (Eng Units) = -32000.0
High Scale Value (A/D Units) = 10.000
Low Scale Value (A/D Units) = -10.000

Figure 289: Scaling Example ALG608 or ALG616



#### **Channel Parameters (Continued)**

| Parameter                     | Default | Description                                                   |  |
|-------------------------------|---------|---------------------------------------------------------------|--|
| Positive Rate of Change Limit | 0.0     | Rate of change in Engineering Units per Second that will      |  |
| (Eng Units)                   |         | trigger a Positive Rate of Change alarm. Default is disabled. |  |
|                               |         | Used with <i>Rate of Change Sampling Rate</i> parameter.      |  |
| Negative Rate of Change Limit | 0.0     | Rate of change in Engineering Units per Second that will      |  |
| (Eng Units)                   |         | trigger a Negative Rate of Change alarm. Default is disabled. |  |
|                               |         | Used with <i>Rate of Change Sampling Rate</i> parameter.      |  |
| Rate of Change Sampling Rate  | 0.0     | Time from 0 to 300 seconds to wait between comparisons.       |  |
|                               |         | The default of 0.0 is to check after every input sample.      |  |

#### Rate of Change Alarms: ALG608 & ALG616

Modules IC695ALG608 and IC695ALG616 can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous rate of change sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to the current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Unit change between samples is positive, Module compares the results in comparing the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the "Diagnostic Reporting Enable", "Fault Reporting Enable", and "Interrupts Enabled" parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. If the Rate of Change Sampling Rate is 0 or any time period less than the channel update rate, Module compares the Rate of Change for every input sample of the channel.

# **Channel Parameters (Continued)**

| Parameter               | Default          | Description                                                                                                            |
|-------------------------|------------------|------------------------------------------------------------------------------------------------------------------------|
| High-High Alarm         | The defaults for | Alarms and Deadbands                                                                                                   |
| (Eng Units)             | the High-High,   | All of the alarm parameters are specified in Engineering                                                               |
|                         | High, Low, and   | Units. To use alarming, the A/D Alarm Mode must also be                                                                |
| High Alarm              | Low-Low          | configured as enabled.                                                                                                 |
| (Eng Units)             | parameters       | High-High Alarm and Low-Low Alarm: When the configured                                                                 |
|                         | depend on the    | value is reached or passed, a Low-Low Alarm or High-High                                                               |
| Low Alarm               | configured Range | Alarm is triggered. The configured values must be lower                                                                |
| (Eng Units)             | Type and Range.  | than/higher than the corresponding low/high alarm limits.                                                              |
|                         | Each Range and   | High Alarm and Low Alarm: When the configured value is                                                                 |
| Low-Low Alarm           | Range Type has a | reached or below (above), a Low (High) Alarm is triggered.                                                             |
| (Eng Units)             | different set of | High and Low Alarm Deadbands: A range in Engineering                                                                   |
| ,                       | default values.  | Units above the alarm condition (low deadband) or below                                                                |
| High-High Alarm         |                  | the alarm condition (high deadband) where the alarm status                                                             |
| Deadband                |                  | bit can remain set even after the alarm condition goes away.                                                           |
| (Eng Units)             |                  | For the alarm status to clear, the channel input must fall                                                             |
| High Alarm Deadband     |                  | outside the deadband range.                                                                                            |
| (Eng Units)             |                  | Alarm Deadbands should not cause the alarm clear                                                                       |
| (Ling Offics)           |                  | condition to be outside the Engineering Unit User Limits                                                               |
| Low Alarm Deadband      |                  | range. For example, if the engineering unit range for a                                                                |
| (Eng Units)             |                  | channel is -1000.0 to +1000.0 and a High Alarm is set at                                                               |
| (Eng Onits)             |                  | +100.0, the High Alarm Deadband value range is 0.0 to less                                                             |
| Low-Low Alarm           |                  | than 1100.0. A deadband of 1100.0 or more would put the                                                                |
| Deadband                |                  | High Alarm clear condition below –1000.0 units making the                                                              |
|                         |                  | alarm impossible to clear within the limits.                                                                           |
| (Eng Units) User Offset | 0.0              | Engineering Units offset to change the base of the input                                                               |
| User Offset             | 0.0              | channel. This value is added to the scaled value on the                                                                |
|                         |                  | channel prior to alarm checking.                                                                                       |
| Coftware Filtering      | Disabled         | ·                                                                                                                      |
| Software Filtering      | Disabled         | Disabled / Enabled. Controls whether software filtering will                                                           |
| Integration Time        | 0                | be performed on the inputs.  Specifies the amount of time in milliseconds for the                                      |
| Integration Time        | 0                | ·                                                                                                                      |
| (ms)                    |                  | software filter to reach 63.2% of the input value.  A value of 0 indicates the software filter is disabled.            |
|                         |                  | A value of 0 indicates the software filter is disabled.  A value of 100 indicates data will achieve 63.2% of its value |
|                         |                  | in 100ms.                                                                                                              |
|                         |                  | 1                                                                                                                      |
|                         |                  | Default is 0.                                                                                                          |

#### **Using Alarming: ALG608 & ALG616**

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger the execution of an Interrupt Block in the application program, as explained below.

#### **Using Interrupts: ALG608 & ALG616**

To properly configure an I/O Interrupt, the Interrupt enables bit or bits must be set in the configuration profile of Module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address of the corresponding channel.

#### **Example:**

In this example, the Channel Values Reference Address block is mapped to %AI0001-%AI0020. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AI00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AI0003" as the Trigger.

#### Fault Reporting and Interrupts: ALG608 & ALG616

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that

its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

#### 9.8.5 Module Data: ALG608 & ALG616

Module reports its input channel data in its configured input words, beginning at its assigned Channel Value Reference Address. Each channel occupies two words (whether the channel is used or not):

| Channel Value     | Contains this Input |
|-------------------|---------------------|
| Reference Address |                     |
| +0, 1             | Channel 1           |
| +2, 3             | Channel 2           |
| +4, 5             | Channel 3           |
| +6, 7             | Channel 4           |
| +8, 9             | Channel 5           |
| +10, 11           | Channel 6           |
| +12, 13           | Channel 7           |
| +14, 15           | Channel 8           |

#### For Module IC695ALG616 Only:

| +16, 17 | Channel 9  |
|---------|------------|
| +18, 19 | Channel 10 |
| +20, 21 | Channel 11 |
| +22, 23 | Channel 12 |
| +24, 25 | Channel 13 |
| +26, 27 | Channel 14 |
| +28, 29 | Channel 15 |
| +30, 31 | Channel 16 |

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

#### **Resolution and Range Types: ALG608 & ALG616**

The actual resolution for each input depends on the Range Type and A/D Filter Frequency configured for that channel. At higher Filter Frequencies, input resolution decreases. The approximate resolution in bits for each Filter Frequency and Range Type are displayed in the following table.

| Resolution (in bits) |              |         |            |
|----------------------|--------------|---------|------------|
|                      | Range Ty     | /pe     |            |
| Filter               | 0 to 10 Vdc. |         | 0 to 5Vdc, |
| Frequency            | ±10 Vdc      | ±5Vdc.  | 1 to 5Vdc, |
|                      | 210 7 40     | ±20 Vdc | 0 to 20mA, |
|                      |              | 120 Vac | 4 to 20mA  |
| 8 Hz                 | 18           | 17      | 16         |
| 12 Hz                | 17           | 16      | 15         |
| 16 Hz                | 17           | 16      | 15         |
| 40 Hz                | 16           | 15      | 14         |
| 200 Hz               | 15           | 14      | 13         |
| 500 Hz               | 14           | 13      | 12         |

## **Channel Scanning: ALG608 & ALG616**

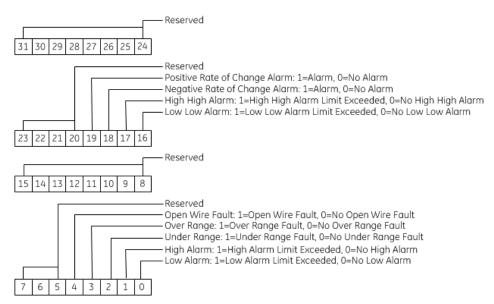
These modules use 4 A/D converters to achieve the fastest possible channel scan times. Module has up to four acquisition cycles for each module scan. The acquisition cycles and channels acquired during each cycle are:

| Acquisition | Channels Acquired |              |  |
|-------------|-------------------|--------------|--|
| Cycle       | IC695ALG608       | IC695ALG616  |  |
| 1           | 1, 5              | 1, 5, 9, 13  |  |
| 2           | 2, 6              | 2, 6, 10, 14 |  |
| 3           | 3, 7              | 3, 7, 11, 15 |  |
| 4           | 4, 8              | 4, 8, 12, 16 |  |

To bypass an acquisition cycle, all channels that would be acquired during that cycle must be disabled.

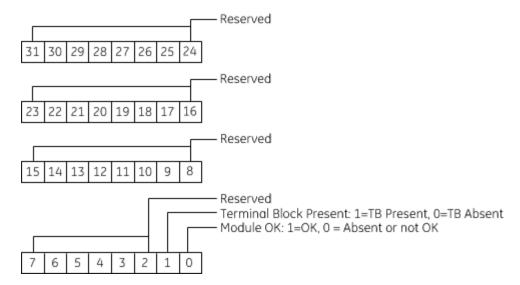
For fastest scan times, always wire by acquisition cycle. For example, if only eight channels were used on the 16-channel module, IC695ALG616, channels 1, 2, 5, 6, 9, 10, 13, and 14 should be used for optimum performance.

## **Channel Diagnostic Data: ALG608 and ALG616**


In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for Module. The use of this feature is optional.

The diagnostics data for each channel occupies two words (whether the channel is used or not):

| Diagnostic          | <b>Contains Diagnostics</b> |  |
|---------------------|-----------------------------|--|
| Reference Address   | Data for:                   |  |
| +0, 1               | Channel 1                   |  |
| +2, 3               | Channel 2                   |  |
| +4, 5               | Channel 3                   |  |
| +6, 7               | Channel 4                   |  |
| +8, 9               | Channel 5                   |  |
| +10, 11             | Channel 6                   |  |
| +12, 13             | Channel 7                   |  |
| +14, 15             | Channel 8                   |  |
| For Module IC695ALG | 616 Only:                   |  |
| +16, 17             | Channel 9                   |  |
| +18, 19             | Channel 10                  |  |
| +20, 21             | Channel 11                  |  |
| +22, 23             | Channel 12                  |  |
| +24, 25             | Channel 13                  |  |
| +26, 27             | Channel 14                  |  |
| +28, 29             | Channel 15                  |  |
| +30, 31             | Channel 16                  |  |


When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

#### For each channel, the format of this data is:



#### **Module Status Data: ALG608 & ALG616**

Module can also optionally be configured to return two bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data* reference area configured for Module.



#### **Terminal Block Detection**

Module automatically checks for the presence of a Terminal Block.

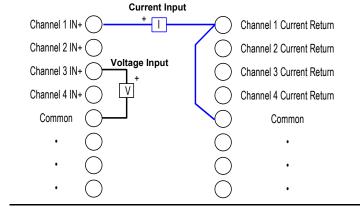
The TB LED indicates the state of the terminal block of Module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 1 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

# 9.8.6 Field Wiring: ALG608 & ALG616, Single-Ended Mode

The following table lists wiring connections for Non-Isolated Analog Input Modules in Single-ended mode. The single-ended mode is the configured default operating mode.


| Terminal | IC695ALG608   | IC695ALG616    | IC695ALG608                      | IC695ALG616                           | Terminal |
|----------|---------------|----------------|----------------------------------|---------------------------------------|----------|
| 1        | Channel 1 IN+ |                | Channel 1 Current Return (IRTN1) |                                       | 19       |
| 2        | Channel 2 IN+ |                | Channel 2 Current Return (IRTN2) |                                       | 20       |
| 3        | Channel 3 IN+ |                | Channel 3 Current Return (IRTN3) |                                       | 21       |
| 4        | Channel 4 IN+ |                | Channel 4 Current Return (IRTN4) |                                       | 22       |
| 5        | Common        |                | Common                           |                                       | 23       |
| 6        | Channel 5 IN+ |                | Channel 5 Current Return (IRTN5) |                                       | 24       |
| 7        | Channel 6 IN+ |                | Channel 6 Current Return (IRTN6) |                                       | 25       |
| 8        | Channel 7 IN+ |                | Channel 7 Current Return (IRTN7) |                                       | 26       |
| 9        | Channel 8 IN+ |                | Channel 8 Current Return (IRTN8) |                                       | 27       |
| 10       | No Connection | Channel 9 IN+  | No Connection                    | Channel 9 Current<br>Return (IRTN9)   | 28       |
| 11       | No Connection | Channel 10 IN+ | No Connection                    | Channel 10 Current<br>Return (IRTN10) | 29       |
| 12       | No Connection | Channel 11 IN+ | No Connection                    | Channel 11 Current<br>Return (IRTN11) | 30       |

| Terminal | IC695ALG608   | IC695ALG616    | IC695ALG608   | IC695ALG616        | Terminal |
|----------|---------------|----------------|---------------|--------------------|----------|
| 13       | No Connection | Channel 12 IN+ | No Connection | Channel 12 Current | 31       |
|          |               |                |               | Return (IRTN12)    |          |
| 14       | Common        |                | Common        |                    | 32       |
| 15       | No Connection | Channel 13 IN+ | No Connection | Channel 13 Current | 33       |
|          |               |                |               | Return (IRTN13)    |          |
| 16       | No Connection | Channel 14 IN+ | No Connection | Channel 14 Current | 34       |
|          |               |                |               | Return (IRTN14)    |          |
| 17       | No Connection | Channel 15 IN+ | No Connection | Channel 15 Current | 35       |
|          |               |                |               | Return (IRTN15)    |          |
| 18       | No Connection | Channel 16 IN+ | No Connection | Channel 16 Current | 36       |
|          |               |                |               | Return (IRTN16)    |          |

There are no shield terminals on these modules. For shielding, tie the cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided for this purpose.

All the common terminals are connected together internally, so any common terminal can be used for the negative lead of the external power supply.

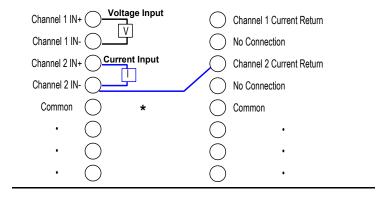
# Figure 290: Field Wiring, Single-Ended ALG608 or ALG616



For single-ended mode, a voltage input should be connected between its Channel IN+ terminal and a Common (CM) return terminal.

A current input should be connected between its Channel IN+ terminal and its Channel Current Return Terminal. In addition, a jumper wire should be connected between the Channel Current Return terminal and a Common (COM) return.

## 9.8.7 Field Wiring: ALG608 & ALG616, Differential Mode


The following table lists wiring connections for Non-Isolated Analog Input Modules configured for Differential mode.

| Terminal | IC695ALG608    | IC695ALG616   | IC695ALG608                      | IC695ALG616                      | Terminal |
|----------|----------------|---------------|----------------------------------|----------------------------------|----------|
| 1        | Channel 1 IN+  |               | Channel 1 Current Return (IRTN1) |                                  | 19       |
| 2        | Channel 1 IN - |               | No Connection                    | No Connection                    |          |
| 3        | Channel 2 IN+  |               | Channel 2 Current                | Channel 2 Current Return (IRTN3) |          |
| 4        | Channel 2 IN - |               | No Connection                    | No Connection                    |          |
| 5        | Common         |               | Common                           | Common                           |          |
| 6        | Channel 3 IN+  |               | Channel 3 Current                | Return (IRTN5)                   | 24       |
| 7        | Channel 3 IN-  |               | No Connection                    |                                  | 25       |
| 8        | Channel 4 IN+  |               | Channel 4 Current                | Return (IRTN7)                   | 26       |
| 9        | Channel 4 IN-  |               | No Connection                    | No Connection                    |          |
| 10       | No Connection  | Channel 5 IN+ | No Connection                    | Channel 5 Current                | 28       |
|          |                |               |                                  | Return (IRTN9)                   |          |
| 11       | No Connection  | Channel 5 IN- | No Connection                    |                                  | 29       |
| 12       | No Connection  | Channel 6 IN+ | No Connection                    | Channel 6 Current                | 30       |
|          |                |               |                                  | Return (IRTN11)                  |          |
| 13       | No Connection  | Channel 6 IN- | No Connection                    |                                  | 31       |
| 14       | Common         |               | Common                           |                                  | 32       |
| 15       | No Connection  | Channel 7 IN+ | No Connection                    | Channel 7 Current                | 33       |
|          |                |               |                                  | Return (IRTN13)                  |          |
| 16       | No Connection  | Channel 7 IN- | No Connection                    | <u> </u>                         | 34       |
| 17       | No Connection  | Channel 8 IN+ | No Connection                    | Channel 8 Current                | 35       |
|          |                |               |                                  | Return (IRTN15)                  |          |
| 18       | No Connection  | Channel 8 IN- | No Connection                    | <u> </u>                         | 36       |

There are no shield terminals on these modules. For shielding, tie the cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided for this purpose.

All the common terminals are connected together internally, so any common terminal can be used for the negative lead of the external power supply.

# Figure 291: Field Wiring, Differential Mode ALG608 or ALG616



<sup>\*</sup> Keep this jumper as short as possible to minimize error due to the added resistance of the wire. This resistance should be  $25m\Omega$  or less.

For differential inputs, two adjacent terminals are connected as one channel. The lower-numbered terminal acts as the high side.

Voltage input is connected between the two adjacent Channel IN terminals, as shown in Figure 291.

A current input is connected between the Channel IN+ and Current Return terminals for that channel. In addition, a jumper wire must be connected between the Channel IN - terminal and the corresponding Channel Current Return terminal.

Tie common to signal ground for improved channel-to-channel Crosstalk immunity.

Two-door cards are provided with Module: one shows connections for single-ended mode and the other shows connections for differential mode. Insert the card that matches the wiring that will be used.

# Section 10: Analog Output Modules

This chapter describes Analog Output modules for PACSystems RX3i controllers.

| Analog Output Module Description                 | Catalog Number | Section |
|--------------------------------------------------|----------------|---------|
| Analog Output 2-Channel Voltage                  | IC694ALG390    | 10.1    |
| Analog Output 2-Channel Current                  | IC694ALG391    | 10.2    |
| Analog Output 8-Channel Current/Voltage          | IC694ALG392    | 10.3    |
| Analog Output 4-Channel Current/Voltage          | IC695ALG704    | 10.4    |
| Analog Output 8-Channel Current/Voltage          | IC695ALG708    | 10.5    |
| Analog Output 8-Channel Current/Voltage Isolated | IC695ALG808    | 10.5    |

# 10.1 Analog Output Module Voltage 2-Channel: IC694ALG390

#### Figure 292: IC694ALG390



The **2-Channel Analog Voltage Output** module, IC694ALG390, has two output channels, each capable of converting 13 bits of binary (digital) data to an analog output signal for field devices. The Analog Voltage Output module provides outputs in the range of -10 volts to +10 volts. Both channels are updated on every scan.

The outputs on this module can be set up to either *Default to 0 volts* or *Hold-Last-State* if the CPU goes to the Stop mode or Reset.

Selection of the output default state is made by a jumper on Module. If the jumper is not installed, the outputs *Hold the Last State*.

This module can be installed in any I/O slot in an RX3i system.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

#### 10.1.1 Isolated +24Vdc Power

If Module is located in an RX3i Universal Backplane, an external source of Isolated +24Vdc is required to provide power for Module. The external source can be connected via the TB1 connector on the left side of the backplane or directly on the terminal block of this module.

If this module is located in an Expansion or Remote backplane, its primary power source can be either the Isolated +24Vdc from the backplane power supply or an external Isolated +24Vdc power supply connected to the terminal block of this module. If the external source is set between 27.5-30 Vdc, it takes over the load from the Isolated 24Vdc system supply. Note that an external source should be used if it is desired to maintain hold last state operation during a loss of backplane power.

#### 10.1.2 LED

Module **OK** LED is ON when Module power supply is operating.


## 10.1.3 Specifications: ALG390

| ALG390                                   | Specifications                                                 |
|------------------------------------------|----------------------------------------------------------------|
| Voltage Range                            | -10 to +10 volts                                               |
| Calibration                              | Factory calibrated to 2.5 mV per count                         |
| Supply Voltage (nominal)                 | +24Vdc, from isolated +24Vdc on the backplane or user-supplied |
|                                          | voltage source, and +5Vdc from the backplane                   |
| External Supply Voltage Range            | 18Vdc to 30 Vdc                                                |
| External Supply Voltage Ripple           | 10%                                                            |
| Update Rate                              | Approximately 5ms (both channels)                              |
|                                          | The update rate is application dependent.                      |
| Resolution                               | 2.5 mV (1 LSB = 2.5 mV)                                        |
| Absolute Accuracy <sup>61</sup>          | ±5 mV at 25°C (77°F)                                           |
| Offset                                   | 1 mV maximum, 0°C to 60°C (32°F to 140°F)                      |
| Output Loading (maximum)                 | 5 mA (2kΩ minimum resistance)                                  |
| Output Load Capacitance                  | 2000 pF, maximum                                               |
| Isolation, Field to Backplane (optical), | 250 Vac continuous; 1500 Vdc for 1 minute                      |
| and frame ground                         |                                                                |
| Internal Power Consumption               | 32 mA from +5Vdc supply                                        |
|                                          | 120 mA from +24Vdc supply (isolated backplane or user supply)  |

For product standards and general specifications, refer to Appendix A:.

#### 10.1.4 Module Data: ALG390

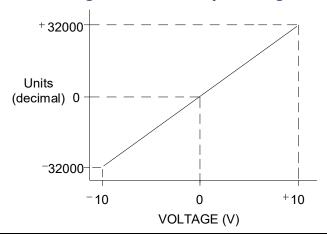
Module data is stored by the PLC CPU in 16-bit 2's complement format:



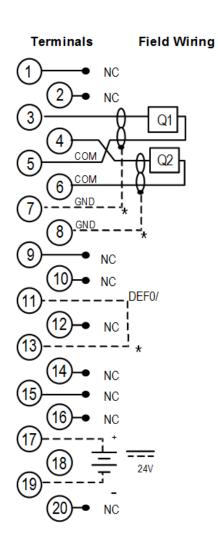

The resolution of the converted signal is a 12-bit binary plus sign, which is effectively 13 bits (1 part in 8192). Module scales the digital data to create an output voltage for the output:

 $<sup>^{61}</sup>$  In the presence of severe RF interference (IEC 801–3, 10V/m), accuracy may be degraded to  $\pm 50$  mV.

## **D/A Bits versus Output Voltage**


Figure 293: D/A Bits versus Output Voltage




## **Scaling: ALG390**

The scaling of the output is displayed in the following figure.

Figure 294: Scaling Units versus Output Voltage



#### 10.1.5 Field Wiring: ALG390



\*Optional Connections

| Terminal | Connection                            |
|----------|---------------------------------------|
| 1        | No connection                         |
| 2        | No connection                         |
| 3        | Output 1                              |
| 4        | Output 2                              |
| 5        | Output 1 Common                       |
| 6        | Output 2 Common                       |
| 7        | Shield termination point for output 1 |
| 8        | Shield termination point for output 2 |
| 9        | No connection                         |
| 10       | No connection                         |
| 11 - 13  | Output default selection jumper       |
| 12       | No connection                         |
| 14       | No connection                         |
| 15       | No connection                         |
| 16       | No connection                         |
| 17       | External +24Vdc Power Supply +        |
| 18       | No connection                         |
| 19       | External +24Vdc Power Supply -        |
| 20       | No connection                         |

To minimize capacitive loading and noise, all field connections should be wired using a good grade of twisted, shielded instrumentation cable. The shields should be connected to GND on the user terminal connector block. The GND connection provides access to the backplane (frame ground) resulting in superior rejection of noise caused by any shield drain currents.

DEF0 is the optional Output Default Jumper. It determines the operation of both outputs when the CPU is in Stop or Reset mode. The jumper should be installed if outputs should default to 0. The jumper should not be installed if outputs should hold their last state (the last valid commanded value received from the CPU).

An optional external +24Vdc supply can be installed as shown.

# 10.2 Analog Output Module Current 2-Channel: IC694ALG391

#### Figure 295: IC694ALG391



The **2-Channel Analog Current Output** module, IC694ALG391, has two output channels, each capable of converting 12 bits of binary (digital) data to an analog output signal for field devices. Each output can be set using a jumper on Module to produce output signals in one of two ranges:

- 0 to 20 mA
- 4 to 20 mA.

Each output may also be set up as a less accurate voltage source. The selection of current or voltage output is made with a jumper or resistor on Module terminals. Both channels are updated on every scan.

The outputs on this module can be set up to either *Default to 0/4 mA* or *Hold–Last–State* if the CPU goes to the Stop mode or Reset. Selection of the output default state is made by a jumper on the terminal board of this module. Refer to Output Defaults in this section for more information.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

#### 10.2.1 Isolated +24Vdc Power

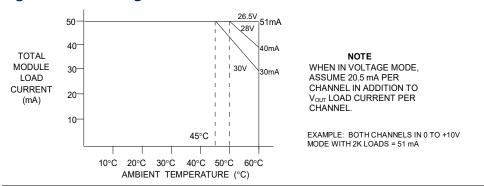
If Module is located in an RX3i Universal Backplane, an external source of Isolated +24Vdc is required to provide power for Module. The external source can be connected via the TB1 connector on the left side of the backplane or directly on the terminal block of this module.

If this module is located in an Expansion or Remote backplane, its primary power source can be either the Isolated +24Vdc from the backplane power supply or an external Isolated +24Vdc power supply connected to the terminal block of this module. If the external source is set between 27.5-30 Vdc, it takes over the load from the Isolated 24Vdc system supply. Note that an external source should be used if it is desired to maintain hold last state operation during a loss of backplane power.

#### 10.2.2 LED

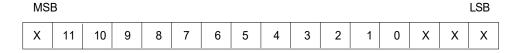
Module **OK** LED is ON when Module power supply is operating.

# 10.2.3 Specifications: ALG391


| ALG391                                          | Specifications                                                |
|-------------------------------------------------|---------------------------------------------------------------|
| Output Current Range                            | 4 to 20 mA and 0 to 20 mA                                     |
| Output Voltage Range                            | 1 to 5 volts and 0 to 5 volts                                 |
| Calibration                                     | Factory calibrated to 4 μA per count                          |
| External Supply Voltage Range                   | 20 Vdc to 30 Vdc. Depends on the current load and the ambient |
|                                                 | temperature as displayed in Figure 296.                       |
| External Supply Voltage Ripple                  | 10%                                                           |
| Update Rate                                     | 5 ms (approximate, both channels)                             |
|                                                 | Application dependent.                                        |
| Resolution:                                     |                                                               |
| 4 to 20mA                                       | $4 \mu A (1 LSB = 4 \mu A)$                                   |
| 0 to 20mA                                       | 5 μA (1 LSB = 5 μA)                                           |
| 1 to 5V                                         | 1 mV (1 LSB = 1 mV)                                           |
| 0 to 5V                                         | 1.25 mV (1 LSB = 1.25 mV)                                     |
| Absolute Accuracy:62                            |                                                               |
| 4 to 20mA                                       | ±8 μA at 25°C (77°F)                                          |
| 0 to 20mA                                       | ±10 μA at 25°C (77°F)                                         |
| 1 to 5V                                         | ±50 mV at 25°C (77°F)                                         |
| 0 to 5V                                         | ±50 mV at 25°C (77°F)                                         |
| Maximum Compliance Voltage                      | 25Vdc                                                         |
| User Load (current mode)                        | 0 to 850 Ω                                                    |
| Output Load Capacitance (current mode)          | 2000 pF                                                       |
| Output Load Inductance (current mode)           | 1 H                                                           |
| Maximum Output Loading (voltage mode)           | 5 mA (2kΩ minimum resistance)                                 |
|                                                 | (2000 pF maximum capacitance)                                 |
| Isolation, Field to Backplane (optical), and to | 250 Vac continuous; 1500 Vdc for 1 minute                     |
| frame ground                                    |                                                               |
| Internal Power Consumption                      | 30 mA from +5Vdc supply                                       |
|                                                 | 215 mA from Isolated +24Vdc supply                            |

For product standards and general specifications, refer to Appendix A:.

 $<sup>^{62}</sup>$  In the presence of severe RF interference (IEC 801–3, 10 V/m), accuracy may be degraded to  $\pm 80\mu$ A (4 to 20 mA range),  $\pm 100\mu$ A (0 to 20 mA range).

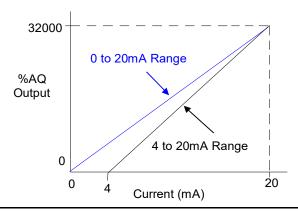

## 10.2.4 Load Current Derating

**Figure 296: Derating Curve ALG391** 



#### 10.2.5 Module Data: ALG391

Module data is stored by the PLC CPU in 16-bit 2's complement format as displayed in the following figure.




The 13 most significant bits from the %AQ register are converted to sign-magnitude by the PLC and sent to Module.

#### **D/A Bits versus Output Current**

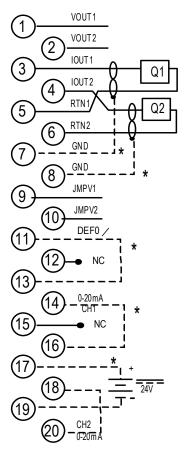
Module scales the output data received from the CPU according to the range selected for the channel.

Figure 297: Relationship between Output Value (%AQ) and Output Current: ALG391



In the 4 to 20 mA range, Module scales output data with each 1000 counts representing 0.5 mA. In this range, a count of 0 corresponds to 4 mA and a count of 32000 corresponds to 20 mA.

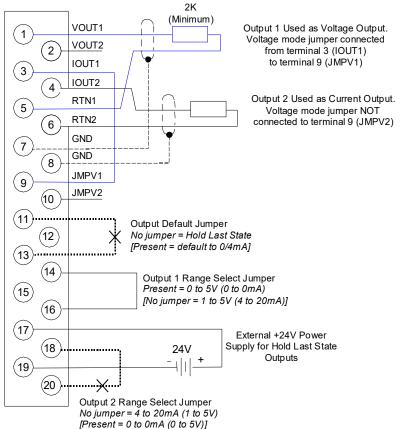
In the 0 to 20 mA range, Module scales output data so that each 800 counts represent 0.5 mA. In this range, a count of 0 corresponds to 0 mA and a count of 32000 corresponds to 20 mA with each 800 counts representing 0.5 mA.


If Module receives negative data from the CPU, it outputs the low end of the range (either 0 mA or 4 mA). If a value greater than 32767 is received, it is not accepted.

## 10.2.6 Field Wiring: ALG391

To minimize the capacitive loading and noise, all field connections to Module should be wired using a good grade of twisted, shielded instrumentation cable. The shields should be connected to GND on the user terminal connector block. The GND connection provides access to the backplane (frame ground) resulting in superior rejection of noise caused by any shield drain currents. If no jumper is installed, Module performs as a current source. If the jumper is present, Module performs as a voltage source.

# Figure 298: Field Wiring ALG391


Terminals Field Wiring



\*Optional Connections

In this example, Output 1 is used as a voltage output (JMPV1 connected to IOUT1) in the 0 to 5 V range (RANGE 1 jumper installed) Output 2 is used as a current output (JMPV2 not connected) in the 4 to 20 mA mode (RANGE2 jumper not installed). Both outputs will Hold Last State (no Output Default jumper installed, external +24Vdc power supply connected).

#### Figure 299: Wiring Example ALG391



#### **Current or Voltage Outputs**

The range of each channel and its operation in current or voltage mode are set with jumpers on Module terminals. For voltage operation, a  $250\Omega$  resistor can be used instead of a voltage jumper to increase the voltage range. The following table lists the output ranges that can be set up for each output, and the jumper or resistor settings for each range.

| Range           | Range Jumper | Voltage Jumper or  |
|-----------------|--------------|--------------------|
| of the Output   | Installed    | Resistor Installed |
| 4 mA to 20 mA   | No           | No                 |
| 0 mA to 20 mA   | Yes          | No                 |
| 0 Vdc to 5 Vdc  | Yes          | jumper             |
| 0 Vdc to 10 Vdc | Yes          | 250Ω resistor      |
| 1 Vdc to 5 Vdc  | No           | jumper             |
| 2 Vdc to 10 Vdc | No           | 250Ω resistor      |

#### **Output Defaults**

Both module outputs can be set to either Default to 0 or 4 mA or Hold Last State if the CPU goes to STOP mode or is Reset. The Output Default operation of this module is set using another jumper on the terminal block.

If the Output Default (DEF0/4) jumper is installed on module terminals 11 and 13, both outputs default to the low end of their ranges.

If the Output Default jumper is not installed, both outputs hold the last valid output value received from the PLC CPU. This option requires an external +24Vdc power supply to maintain output power when the system power goes down.

# 10.3 Analog Output Module Current/Voltage 8-Channel: IC694ALG392

# Figure 300: IC694ALG392



The **8-Channel Analog Current/Voltage Output** module; IC694ALG392, provides up to eight single-ended output channels with current loop outputs and/or voltage outputs. Each output channel can be set up using the configuration software for any of these ranges:

- 0 to +10 volts (unipolar)
- 10 to +10 volts (bipolar)
- 0 to 20 milliamps
- 4 to 20 milliamps

Each channel is capable of converting 15 to 16 bits (depending on the range selected) of binary data to an analog output. All eight channels are updated every 12 ms.

In current modes, Module reports an Open Wire fault to the CPU for each channel. Module can go to a known last state when system power is interrupted. As long as external power is applied to Module, each output will maintain its last value or reset to zero, as configured.

This module can be installed in any I/O slot of an RX3i system.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 10.3.1 Isolated +24Vdc Power

Module must receive its 24Vdc power from an external source.

If Module is located in an RX3i Universal Backplane, the external source can be connected via the TB1 connector on the left side of the backplane or directly to Module terminal block.

If this module is located in an Expansion or Remote backplane, the external source must be connected to the terminal block of this module.

#### 10.3.2 LEDs: ALG392

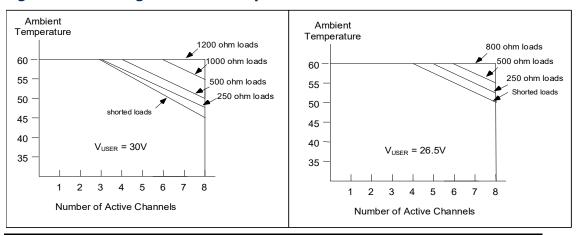
Module **OK** LED indicates module status. The **User Supply** LED indicates whether the external +24Vdc power supply is present and is above the minimum level. Both LEDs are powered from the +5Vdc backplane power bus.

| LED         | Indicates                                                  |
|-------------|------------------------------------------------------------|
| Module OK   | ON: Module OK and configured                               |
|             | Flashing: Module OK but not configured                     |
|             | OFF: Module is defective or no +5V backplane power present |
| User Supply | ON: External power supply present                          |
|             | OFF: No user power                                         |

# 10.3.3 Specifications: ALG392

| ALG392                                         | Specifications                                                           |  |  |
|------------------------------------------------|--------------------------------------------------------------------------|--|--|
| Number of Output Channels                      | 1 to 8 selectable, single-ended                                          |  |  |
| Output Current Range                           | 4 to 20 mA and 0 to 20 mA                                                |  |  |
| Output Voltage Range                           | 0 to 10 V and –10 V to +10 V                                             |  |  |
| Calibration                                    | Factory calibrated to .625 μA for 0 to 20 mA; 0.5 μA for 4 to 20 mA; and |  |  |
|                                                | .3125 mV for voltage (per count)                                         |  |  |
| User Supply Voltage (nominal)                  | +24Vdc, from user-supplied voltage source                                |  |  |
| External Supply Voltage Range                  | 20 Vdc to 30 Vdc                                                         |  |  |
| Power Supply Rejection Ratio (PSRR)            |                                                                          |  |  |
| Current                                        | 5 μΑ/V (typical), 10 μΑ/V (maximum)                                      |  |  |
| Voltage                                        | 25 mV/V (typical), 50 mV/V (maximum)                                     |  |  |
| External Power Supply Voltage Ripple           | 10% (maximum)                                                            |  |  |
| Internal Supply Voltage                        | +5Vdc from PLC backplane                                                 |  |  |
| Update Rate                                    | 8 ms (approximate, all eight channels)                                   |  |  |
|                                                | Determined by I/O scan time, application dependent.                      |  |  |
| Resolution:                                    | <b>4 to 20mA</b> : 0.5 μA (1 LSB = 0.5 μA)                               |  |  |
|                                                | <b>0 to 20mA:</b> 0.625 μA (1 LSB = 0.625 μA)                            |  |  |
|                                                | <b>0 to 10 Vdc:</b> 0.3125 mV (1 LSB = 0.3125 mV)                        |  |  |
|                                                | <b>-10 to +10 Vdc:</b> 0.3125 mV (1 LSB = 0.3125 mV)                     |  |  |
| Absolute Accuracy: <sup>63</sup>               |                                                                          |  |  |
| Current Mode                                   | ±0.1% of full scale at 25°C (77°F), typical                              |  |  |
|                                                | ±0.25% of full scale at 25°C (77°F), maximum                             |  |  |
|                                                | ±0.5% of full scale over operating temperature range (maximum)           |  |  |
| Voltage Mode                                   | ±0.25% of full scale at 25°C (77°F), typical                             |  |  |
|                                                | ±0.5% of full scale at 25°C (77°F), maximum                              |  |  |
|                                                | ±1.0% of full scale over operating temperature range (maximum)           |  |  |
| Maximum Compliance Voltage                     | V <sub>USER</sub> –3 V (minimum) to V <sub>USER</sub> (maximum)          |  |  |
| User Load (current mode)                       | 0 to 850 $\Omega$ (minimum at V <sub>USER</sub> = 20 V, maximum          |  |  |
|                                                | 1350 Ω at Vuser = 30 V)                                                  |  |  |
|                                                | (Load less than 800 $\Omega$ is temperature dependent.)                  |  |  |
| Output Load Capacitance (current mode)         | 2000 pF (maximum)                                                        |  |  |
| Output Load Inductance (current mode)          | 1 H                                                                      |  |  |
| Output Loading (voltage mode)                  | 5 mA (2kΩ minimum resistance)                                            |  |  |
| Output load Capacitance                        | (1 μF maximum capacitance)                                               |  |  |
| Isolation, Field to Backplane (optical) and to | 250 Vac continuous; 1500 Vdc for 1 minute                                |  |  |
| frame ground                                   |                                                                          |  |  |
| Power Consumption                              | 110 mA from +5Vdc PLC backplane supply                                   |  |  |
|                                                | 315 mA from +24Vdc user supply                                           |  |  |

For product standards and general specifications, refer to Appendix A:. In order to meet the IEC 1000-4-3 levels for RF Susceptibility specified in Appendix A. When this module is present, the system must be mounted in a metal enclosure.


 $<sup>^{63}</sup>$  In the presence of severe RF interference (IEC 801–3, 10V/m), accuracy may be degraded to  $\pm 1\%$  full scale (FS) for current outputs and  $\pm 3\%$  FS for voltage outputs.

#### **Derating Graphs: ALG392**

For maximum performance and module life, Module should be operated at maximum load resistance to offload heat. Module thermal derating depends on the voltage level and the use of current and voltage outputs. The first two charts (in Figure 301 below) show the maximum ambient temperature for current-only modules at 30 Vdc and at 26.5Vdc, respectively.

#### **Current Outputs Only**





#### Mixed Current and Voltage Outputs

In the derating graphs displayed in Figure 302, voltage channels have  $2k\Omega$  loads and current channels have shorted loads. To determine the maximum operating temperature for mixed current and voltage outputs, select the line in the chart below that corresponds to the number of voltage channels being used. For example, a module uses two voltage channels and three current channels. The total channels in use is five, so, from Figure 302, the maximum operating temperature is approximately 52.5°C:

Ambient 6 Channels V 60 Temperature (°C) 55 4 Channels V 50 2 Channels V 45 40  $V_{USER} = 30V$ 35 5 2 3 6 8 4

**Active Channels Current and Voltage Mixed** 

Figure 302: Derating for Mixed Current & Voltage Outputs: ALG392

# 10.3.4 Current and Voltage Ranges and Resolution: ALG392

In the 4 to 20 mA range Module scans output data from the PLC so that 4 mA corresponds to a count of 0, and 20 mA corresponds to a count of 32000. In the 0 to 20 mA range, user data is scaled so that 0 mA corresponds to a count of 0 and 20 mA corresponds to 32000. In 0 to 20 mA mode, a value up to 32767 provides a maximum output of approximately 20.5 mA. In current mode, Module also reports an open loop fault to the PLC.

For voltage operation in the default unipolar mode (0 to +10 volts), data is scaled so that 0 volts corresponds to a count of 0 and +10 volts corresponds to a count of 32000. In this mode, a value up to 32767 creates an over-range output of approximately 10.24 volts.

In the -10 to +10 volt range, data is scaled so that -10 volts corresponds to a count of -32000 and +10 volts corresponds to a count of +32000. In this range, output values from -32767 to +32767 result in an over-range of approximately -10.24 volts to +10.24 volts.

Scaling for both current and voltage ranges is displayed in the following figure.

Figure 303: Scaling for Current Modes: ALG392

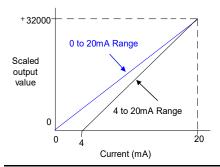
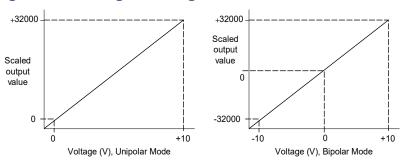



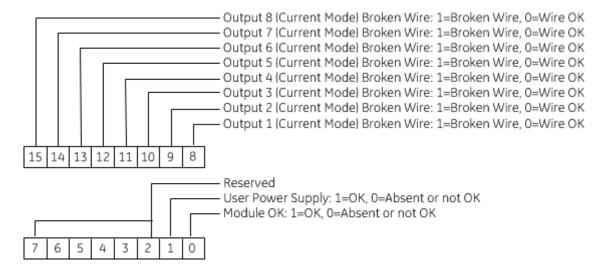

Figure 304: Scaling for Voltage Modes: ALG392



The resolution per bit depends on the configured range of that channel:

4 to 20 mA: 0.5 μA 0 to 20 mA: 0.625 μA 0 to 10 Vdc: 0.3125 mV -10 Vdc to +10 Vdc: 0.3125 mV

#### 10.3.5 Module Data: ALG392


Module ALG392 uses up to eight output reference words. Each channel provides 16 bits of analog output data as an integer value. Output resolution is 15 bits except for the bipolar voltage mode, which has 16-bit resolution. The 16<sup>th</sup> bit is the sign bit.

| Range             | Resolution | Range Limits             |
|-------------------|------------|--------------------------|
| 0 to 20 mA        | 15 bits    | 0 to 32767               |
| 4 to 20 mA        | 15 bits    | 0 to 32767 <sup>64</sup> |
| 0 to 10 Vdc       | 15 bits    | 0 to 32767               |
| -10 Vdc to 10 Vdc | 16 bits    | - 32768 to 32767         |

#### **Status Data: ALG392**

This module uses either 8 or 16 discrete input bits, as configured. The lower 8 bits are used for module status information as displayed in the following figure.

In current mode, individual channels can also report Broken Wire diagnostics. Those diagnostics are reported in the upper eight bits, as shown:



<sup>&</sup>lt;sup>64</sup> In 4-20 mA mode, if the PLC CPU sends a channel a value that is greater than 32000, Module uses the value 32000 instead.

# 10.3.6 Field Wiring: ALG392

| Terminal | Signal<br>Name | Signal Definition                         |
|----------|----------------|-------------------------------------------|
| 1        | 24VIN          | User-supplied +24Vdc Input                |
| 2        | V CH 1         | Channel 1 Voltage Output                  |
| 3        | I CH 1         | Channel 1 Current Output                  |
| 4        | V CH 2         | Channel 2 Voltage Output                  |
| 5        | I CH 2         | Channel 2 Current Output                  |
| 6        | V CH 3         | Channel 3 Voltage Output                  |
| 7        | I CH 3         | Channel 3 Current Output                  |
| 8        | V CH 4         | Channel 4 Voltage Output                  |
| 9        | I CH 4         | Channel 4 Current Output                  |
| 10       | V CH 5         | Channel 5 Voltage Output                  |
| 11       | I CH 5         | Channel 5 Current Output                  |
| 12       | V CH 6         | Channel 6 Voltage Output                  |
| 13       | I CH 6         | Channel 6 Current Output                  |
| 14       | V CH 7         | Channel 7 Voltage Output                  |
| 15       | I CH 7         | Channel 7 Current Output                  |
| 16       | V CH 8         | Channel 8 Voltage Output                  |
| 17       | I CH 8         | Channel 8 Current Output                  |
| 18       | V COM          | Voltage Common                            |
| 19       | I COM          | Current Common/User<br>+24Vdc Return      |
| 20       | GND            | Frame ground connection for cable shields |

Figure 305: Field Wiring ALG392 Field Wiring for Current Outputs Terminals Field Wiring for **Voltage Outputs** 24 VDC IN 3  $\overline{5}$ 9 (11)(12)(13) IQ6 (15) (17) VCOM **FGND** Optional Cable Shield Ground

Figure 305 shows connections for current and voltage outputs. Each channel can be configured to operate as a voltage output or a current output - not both simultaneously.

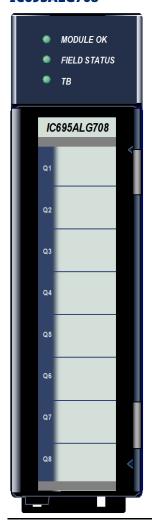
## 10.3.7 Configuration: ALG392

| Parameter             | Description                            | Values             | Default Values    |
|-----------------------|----------------------------------------|--------------------|-------------------|
| Active Channels       | Number of channels scanned             | 1 through 8        | 1                 |
| Reference Address for | Starting address for %AQ reference     | standard range     | %AQ0001, or next  |
| Module Output Data    | type                                   |                    | highest available |
|                       |                                        |                    | address           |
| Reference Address for | Starting address for %I reference type | standard range     | %I00001, or next  |
| Channel Status Data   |                                        |                    | highest available |
|                       |                                        |                    | address           |
| Length                | Number of %I status locations          | 8 or 16            | 8                 |
| STOP Mode             | Output state when module toggled       | Hold Last State or | Hold Last State   |
|                       | from RUN to STOP mode                  | Default to Zero    |                   |
| Output Channel Range  | Type of Output Range                   | 0, +10 Vdc         |                   |
|                       |                                        | ±10 Vdc            | 0, 10 Vdc         |
|                       |                                        | 4, 20 mA           |                   |
|                       |                                        | 0, 20 mA           |                   |

Active Channels indicates the number of channels that will be scanned by the PLC CPU.

The choice made for STOP Mode determines whether the outputs on this module will hold their last states or default to zero when the goes from RUN to STOP mode.

The %AQ Reference Address parameter selects the start of the area in the %AQ memory where the output data to Module will begin.


The %I Reference Address selects the start of the area in %I memory for the status data of this module. If the length is set to 8, then only module status will be reported. If the length is set to 16, channel status will also be reported for channels that are operating as current outputs.

Each channel can be set up to operate on one of four output ranges:

- 0 to 10 Vdc (default)
- -10 Vdc to +10 Vdc range
- 4 to 20 mA, and 0 to 20 mA
- 0 to 20 mA

# 10.4 Analog Output Module 4-Channel Current/Voltage: IC695ALG704 Analog Output Module 8-Channel Current/Voltage: IC695ALG708

# Figure 306: IC695ALG708



The *Analog Current/Voltage Output* module, IC695ALG704, provides four non-isolated configurable voltage or current output channels. The *Analog Current/Voltage Output* module, IC695ALG708 (Figure 306), provides eight non-isolated configurable voltage or current output channels.

Analog channels can be configured for these output ranges:

- Current: 0 to 20mA, 4 to 20mA
- Voltage: ± 10 Vdc, 0 to 10 Vdc

These modules can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Refer to Chapter 17 for more information about Terminal Blocks. Terminal Blocks are ordered separately. These modules must be located in an RX3i Universal Backplane. They require an RX3i CPU with firmware version 3.0 or later. Machine Edition Version 5.0 SP3 Logic Developer-PLC or later must be used for configuration.

#### 10.4.1 Isolated +24Vdc Power

Module must receive its 24Vdc power from an external source. The external source must be connected directly to the terminal block of this module. It cannot be connected via the TB1 connector on the RX3i Universal Backplane.

#### 10.4.2 Features: ALG704 & ALG708

- Completely software-configurable, no module jumpers to set
- Individually enable or disable channels
- Clamping and Alarm Limits
- Latching of Alarms
- Configurable output bias
- Rapid channel acquisition times based on filter frequency
- Full auto-calibration
- On-board error-checking
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Configurable Hold Last State or Output Defaults
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 10.4.3 LEDs: ALG704 and ALG708

Module **OK** LED indicates module status. The **Field Status** LED indicates whether the external +24Vdc power supply is present and is above the minimum level and whether or not faults are present. All LEDs are powered from the backplane power bus.

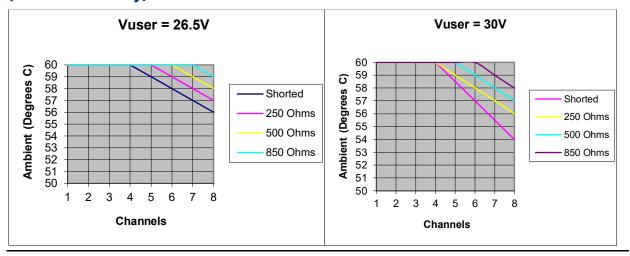
| LED          | Indicates                                                                                                |
|--------------|----------------------------------------------------------------------------------------------------------|
| Module OK    | ON Green: Module OK and configured.                                                                      |
|              | Quick Flashing Green: Module performing power-up sequence.                                               |
|              | Slow Flashing Green or Amber: Module OK but not configured.                                              |
|              | OFF: Module is defective or no backplane power present                                                   |
| Field Status | ON Green No faults on any enabled channel, Terminal Block is present, and field power is present.        |
|              | ON Amber and TB Green: Terminal Block is installed, fault on at least one channel, or field power is not |
|              | present.                                                                                                 |
|              | ON Amber and TB Red: Terminal Block not fully removed, field power still detected.                       |
|              | OFF and TB Red: Terminal block not present and no field power is detected.                               |
| ТВ           | ON Red: Terminal block not present or not fully seated. Refer to above.                                  |
|              | ON Green: Terminal block is present. Refer to above.                                                     |
|              | OFF: No backplane power to module.                                                                       |

# 10.4.4 Specifications: ALG704 and ALG708

| ALG704/ALG708                           | Specifications                                                                 |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------|--|--|
| Output Ranges                           | Current: 0 to 20mA, 4 to 20mA                                                  |  |  |
|                                         | Voltage: ± 10 Vdc, 0 to 10 Vdc                                                 |  |  |
| Backplane Power                         | ALG704/708-CB or earlier: 375 mA maximum at 3.3V                               |  |  |
| Requirements                            | ALG704/708-DC or later: 250 mA maximum at 3.3V                                 |  |  |
| Power Dissipation within                | IC695ALG704: 4.8 Watts maximum                                                 |  |  |
| Module (V <sub>user</sub> =24V)         | IC695ALG708: 7.25Watts maximum                                                 |  |  |
| Thermal De-rating                       | IC695ALG704: None                                                              |  |  |
|                                         | IC695ALG708: Voltage mode: none                                                |  |  |
|                                         | Current mode: Refer to Figure 307.                                             |  |  |
| External Power Supply V <sub>user</sub> | Voltage Range: +19.2V to +30 Vdc                                               |  |  |
|                                         | Current required for ALG704: 150mA maximum                                     |  |  |
|                                         | Current required for ALG708: 250mA maximum                                     |  |  |
| Resolution                              | ±10 Vdc: 15.9 bits, 0 to 10 Vdc: 14.9 bits,                                    |  |  |
|                                         | 0 to 20mA: 15.9 bits, 4 to 20mA: 15.6 bits                                     |  |  |
| Output Data Format                      | Configurable as floating-point IEEE 32-bit or 16-bit integer in a 32-bit field |  |  |
| Update Rate                             | 8 ms (approximate, all eight channels)                                         |  |  |
|                                         | (Determined by I/O scan time, application dependent.)                          |  |  |
| Output Over-voltage                     | Current outputs only: -30V for 60 seconds, +30V for one hour                   |  |  |
| Protection                              |                                                                                |  |  |
| Calibrated Accuracy <sup>65</sup>       | Accurate to within 0.15% of full scale at 25°C                                 |  |  |
|                                         | Accurate to within 0.30% of full scale at 60°C                                 |  |  |
| Output Load Reactance                   | Current: 10µH maximum, Voltage: 1µF maximum                                    |  |  |
| Maximum Output Load                     | Current: 850Ω maximum at V <sub>user</sub> = 20V                               |  |  |
|                                         | Voltage: 2kΩ minimum                                                           |  |  |
| Output Gain Drift                       | Voltage output: 20ppm per degree C typical                                     |  |  |
|                                         | Current output: 35ppm per degree C typical                                     |  |  |
| Output Settling Time                    | Voltage or current output: 2ms, 0 to 95%.                                      |  |  |
| Isolation, Field to                     | 2550 Vdc for one second                                                        |  |  |
| Backplane                               |                                                                                |  |  |
| Maximum Compliance                      | V <sub>user</sub> – 3V (minimum) to V <sub>user</sub> (maximum)                |  |  |
| Voltage                                 |                                                                                |  |  |

For product standards and general specifications, refer to Appendix A...

 $<sup>^{65}</sup>$  In the presence of severe RF interference (IC 801-3, 10V/m), accuracy may be degraded to  $\pm 1\%$  FS.


#### **Thermal Derating, Current Mode: ALG708**

Module IC695ALG704 has no thermal derating.

Module IC695ALG708 has no thermal derating in voltage mode.

Thermal derating for module IC695ALG708 in current mode is displayed in Figure 307.

Figure 307: Thermal Derating Curves for ALG708 at selected Voltage Levels (Current Mode only)



# 10.4.5 Configuration: ALG704 and ALG708

#### **Module Parameters**

| Parameter            | Default    | Description                                                     |
|----------------------|------------|-----------------------------------------------------------------|
| Outputs Reference    | %AQxxxxx   | Starting address for the output data of this module. This       |
| Address              |            | defaults to the next available %AQ block.                       |
| Outputs Reference    | ALG704: 8  | The number of words used for the output data of this module.    |
| Length               | ALG708: 16 | This parameter cannot be changed.                               |
| Output Command       | %AIxxxxx   | Stating address for the command feedback data of this           |
| Feedback Reference   |            | module. This defaults to the next available %AI address after a |
| Address              |            | non-zero length is configured.                                  |
| Output Command       | 0          | The number of words used for the command feedback data of       |
| Feedback Length      |            | this module. Length defaults to 0. It can be set to 8 or 16,    |
|                      |            | depending on Module type being configured.                      |
| Diagnostic Reference | %Ixxxxx    | Starting address for the channel diagnostics status data. This  |
| Address              |            | defaults to the next available %I block.                        |
| Diagnostic Reference | 0          | Read Only. The number of bit reference bits required for the    |
| Length               |            | Channel Diagnostics data. Default is 0, which means mapping     |
|                      |            | of Channel Diagnostics is disabled. Change this to a non-zero   |
|                      |            | value to enable Channel Diagnostics mapping. Maximum            |
|                      |            | length is 128 bits for module IC695ALG704 or 256 bits for       |
|                      |            | module IC695ALG708.                                             |
| Module Status        | %Ixxxxx    | Starting address for the status data of this module. This       |
| Reference Address    |            | defaults to the next available %I block.                        |
| Module Status        | 0          | Read Only. The number of bits (0 or 32) required for Module     |
| Reference Length     |            | Status data. Default is 0, which means mapping of Module        |
|                      |            | Status data is disabled. Change this to a non-zero value to     |
|                      |            | enable Module Status data mapping.                              |

#### **Analog Output Commanded Feedback**

Module returns a copy of the analog output data received from CPU in its corresponding channel analog input shared memory. Output Feedback can be monitored to check the values being sent to the channels. The data is in the same scaled format as the output data for each channel. During normal operation, this feedback data should match the actual output data after one or more PLC scans of module inputs. During faults, ramping, over-range, and clamping conditions, the analog output data may differ from the commanded output.

#### Over-Temperature

If Over-Temperature is enabled, Module generates an Over-Temperature alarm if the internal temperature of this module is too great for the number of outputs that are on at the same time. In addition to the configurable options for Over-Temperature fault reporting and interrupts, an over temperature condition is also indicated by the Over-Temperature bit in the Status Reference data of this module. Detection of the Over-Temperature status bit is always enabled.

#### **Module Parameters (Continued)**

| Parameter          | Default          | Description                                                     |
|--------------------|------------------|-----------------------------------------------------------------|
| I/O Scan Set       | 1                | Assigns Module I/O status data to a scan set defined in the CPU |
|                    |                  | configuration. Determines how often the RX3i polls the data     |
| Channel Faults w/o | Disabled         | Enabled / Disabled: Controls whether channel faults and         |
| Terminal Block     |                  | configured alarm responses will be generated after a Terminal   |
|                    |                  | Block removal. The default setting of Disabled means channel    |
|                    |                  | faults and alarms are suppressed when the Terminal Block is     |
|                    |                  | removed. This parameter does not affect module faults           |
|                    |                  | including the Terminal Block loss/add fault generation.         |
| Module Fault       | Enabled          | Enabled / Disabled. Controls whether Module will report faults  |
| Reporting Enabled  |                  | resulting from either loss of field power or over-temperature   |
|                    |                  | conditions.                                                     |
| Field Power        | Enabled          | Enabled / Disabled. With Module Fault Reporting enabled, this   |
| Removed Enabled    |                  | parameter controls reporting of Field Power Removed module      |
|                    |                  | faults.                                                         |
| Over Temp Enabled  | Enabled          | Enabled / Disabled. With Module Fault Reporting enabled, this   |
|                    |                  | parameter controls reporting of Over-temperature module         |
|                    |                  | faults.                                                         |
| Module Interrupt   | Disabled         | Enabled / Disabled.                                             |
| Reporting Enabled  |                  |                                                                 |
| Field Power        | Disabled         | Enabled / Disabled. With Module Interrupt Reporting enabled,    |
| Removed Enabled    |                  | this parameter controls interrupts for Field Power Removed      |
|                    |                  | module faults.                                                  |
| Over Temp Enabled  | Disabled         | Enabled / Disabled. With Module Interrupt Reporting enabled,    |
|                    |                  | this parameter controls interrupts for Over-temperature         |
|                    |                  | module faults.                                                  |
| Range Type         | Disabled Current | Sets up the type of output to be used for each channel. Choices |
|                    |                  | are: Disabled Voltage, Disabled Current, Current/Voltage.       |
| Range (Only for    | -10 Vdc to +10   | For Current/Voltage: -10 Vdc to +10 Vdc, 0 Vdc to +10 Vdc,      |
| Range Type         | Vdc              | 4mA to 20 mA, 0mA to 20 mA.                                     |
| Current/Voltage)   |                  |                                                                 |

| Parameter       | Default          | Description                                                      |
|-----------------|------------------|------------------------------------------------------------------|
| Channel Value   | 32-bit Floating- | 16-bit integer or 32-bit floating-point                          |
| Format          | point            |                                                                  |
| Outputs Default | Force to Default | Controls the state the output will be set to in Outputs Disabled |
|                 | Value            | mode (stop), if a fault occurs, if power is lost, or if the      |
|                 |                  | configuration is cleared.                                        |
|                 |                  | Choices are Hold Last State, or default to a specific configured |
|                 |                  | default value.                                                   |

#### Range Type

Each channel on Module that will be used should be configured for Current/Voltage. Its voltage or current range and other parameters can then be configured as needed. If the channel output will not be used and is not wired, select either "Disabled" option. If a channel is disabled, it is not necessary to configure any of its other parameters.

If the channel is wired to a current output, but is not being used, select "Disabled Current". This will set the output current of that channel to 0mA (the output voltage of that channel will be non-zero).

If the channel is wired to a voltage output, but is not being used, select "Disabled Voltage". This will set the output voltage of that channel to 0V (the output current of that channel will be non-zero).

#### **Output Defaults**

If Hold Last State is enabled, an output will hold its last commanded value when the CPU indicates Outputs Not Enabled, or if one of the fault conditions listed below occurs. If Hold Last State is disabled, the output is commanded to go to the Default Value. The Default Value must be set within the selected output range. If both Default Value and Ramp Rate are enabled, the channel will ramp to the default value. Fault conditions are:

- CPU outputs are not enabled
- Backplane power is not ok. In that case, there is no ramping, even if ramping has been enabled.
- Loss of communications from CPU.
- Loss of I/O communications.
- Loss of field power.

#### **Outputs Default Notes**

- Hot Removal of Module in an I/O Enabled mode will cause all outputs to Hold Last State (even channels configured for Force to Default Value). If that operation is not desirable, the outputs can be forced to default by first turning off field power and removing the Terminal Block of this module before hot-removing Module.
- Resetting Module using SVC\_REQ 24 causes all channels to Hold Last State even if Default Value is configured. The application program must handle output defaulting before execution of the Service Request.
- Default Ramp Rate configuration is ignored if backplane power from the power supply is lost. Channels configured for Default Value go to the default value immediately.
- The first time a configuration is stored following a return of backplane power, the Default Ramp rate is not used. Any channel configured for Default Value goes to its default value immediately. If analog power was not lost and the same configuration is restored on the next power-up, the channel state is unchanged from the time the power was lost. The Default Ramp Rate is used for any subsequent reconfiguration.

# **Output Default Conditions and Actions**

| Condition           | Hold Last | Default   | Outputs     | Channel Output Setting          |
|---------------------|-----------|-----------|-------------|---------------------------------|
|                     | State or  | Ramp Rate | Enabled and | (Except where indicated,        |
|                     | Default   | Enabled   | Ramp Rate   | field power is assumed to       |
|                     | Value     |           | Enabled     | be present).                    |
| Outputs Enabled     | N/A       | N/A       | No          | Output goes to its commanded    |
| and No Faults       |           |           |             | value from reference memory;    |
|                     |           |           |             | defaults don't apply.           |
|                     | N/A       | N/A       | Yes         | Output is ramped to the         |
|                     |           |           |             | commanded output from           |
|                     |           |           |             | reference memory at the         |
|                     |           |           |             | Outputs Enabled ramp rate.      |
|                     |           |           |             | Defaults don't apply.           |
| Outputs Disabled,   | Default   | No        | N/A         | Output is set to the Default    |
| Fault Mode, or      | Value     |           |             | Value                           |
| Reconfiguration     | Default   | Yes       | N/A         | Output is ramped to the Default |
|                     | Value     |           |             | Value at the Default ramp rate, |
|                     |           |           |             | starting at the last commanded  |
|                     |           |           |             | value before entering mode.     |
|                     | Hold Last | N/A       | N/A         | Output is held at the last      |
|                     | State     |           |             | commanded value                 |
| Loss of Backplane   | Default   | N/A       | N/A         | Output is set to the Default    |
| Power or First      | Value     |           |             | Value.                          |
| Configuration Store |           |           |             |                                 |
| after Power-up      | Hold Last | N/A       | N/A         | Output is held at last          |
|                     | State     |           |             | commanded value.                |
| Hot Removal, Reset  | N/A       | N/A       | N/A         | Output is held at last          |
| with SVCREQ 24 or   |           |           |             | commanded value.                |
| Cleared             |           |           |             |                                 |
| Configuration       |           |           |             |                                 |
| Loss of Field Power | N/A       | N/A       | N/A         | All outputs go to 0V and 0mA.   |
|                     |           |           |             |                                 |

#### **Channel Parameters**

| Parameter        | Default                 | Description                                             |
|------------------|-------------------------|---------------------------------------------------------|
| High Scale Value | The defaults for the    | Note: Scaling is disabled if both High Scale Eng. Units |
| (Eng Units)      | four Scaling            | equals High Scale A/D Units and Low Scale Eng. Units    |
|                  | parameters depend on    | equals Low Scale A/D Units.                             |
|                  | the configured Range    | Default = High A/D Limit of selected range type.        |
| Low Scale Value  | Type and Range. Each    | Default is Low A/D Limit of selected range type.        |
| (Eng Units)      | Range and Range Type    | Must be lower than the high scaling value.              |
| High Scale Value | have a different set of | Default is High A/D Limit of selected range type.       |
| (A/D Units)      | defaults.               | Must be greater than the low scaling value.             |
| Low Scale Value  |                         | Default is Low A/D Limit of selected range type.        |
| (A/D Units)      |                         |                                                         |

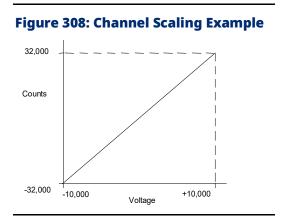
#### Output Scaling: ALG704 and ALG708

By default, Module converts a floating-point value from the CPU into a voltage or current output over the entire span of its configured Range. For example, if the Range of a channel is 4 to 20mA, Module accepts channel output values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D units value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the output.

#### Example

In this example, the application should interpret 32000 counts as  $\pm 10$  Vdc and  $\pm 32000$  counts as  $\pm 10$  Vdc. The following channel configuration will scale a  $\pm 10$  Vdc output channel to  $\pm 32000$  counts.


Channel Value Format = 16-bit Integer

High Scale Value (Eng Units) = 32000.0

Low Scale Value (Eng Units) = -32000.0

High Scale Value (A/D Units) = 10.000

Low Scale Value (A/D Units) = -10.000



#### **Channel Parameters (Continued)**

| Parameter            | Default       | Description                                                   |
|----------------------|---------------|---------------------------------------------------------------|
| High Alarm           | The defaults  | All of the alarm parameters are specified in Engineering      |
| (Eng Units)          | depend on the | Units. When the configured value is reached or below          |
| Low Alarm            | configured    | (above), a Low (High) Alarm is triggered.                     |
| (Eng Units)          | Range.        |                                                               |
| Outputs Enabled Ramp | 0.0           | The rate in Engineering Units at which the output will change |
| Rate                 |               | during normal operation.                                      |
| (Eng Units)          |               |                                                               |
| Default Ramp Rate    | 0.0           | The rate in Engineering Units at which the output will change |
| (Eng Units)          |               | if a fault condition occurs or if outputs are not enabled.    |
| Output Clamping      | Disabled      | Enabled / Disabled. Refer to description below.               |
| Enabled              |               |                                                               |
| Upper Clamp Limit    | The defaults  | The Upper Clamp Limit must be greater than the Lower          |
| (Eng Units)          | depend on the | Clamp Limit. This parameter can be used to restrict the       |
| Lower Clamp Limit    | configured    | output to a range that is narrower than its configured Range  |
| (Eng Units)          | Range.        | Type. For example, a channel configured for –10 Vdc to +10    |
|                      |               | Vdc could be restricted to -8V to +7.5V.                      |
| Default Value        | 0.0           | If Hold Last State is disabled, the output is commanded to go |
| (Eng Units)          |               | to the Default Vale when the CPU is not in Outputs Enabled    |
|                      |               | mode or under certain fault conditions.                       |
| User Offset          | 0.0           | A configurable value that can be used to change the base of   |
| (Eng Units)          |               | the channel. This value is added to the scaled value of the   |
|                      |               | channel before alarm-checking.                                |

#### Lower, Upper Clamp and Alarms: ALG704 and ALG708

Alarms can be used to indicate when Module has been commanded to meet or exceed the configured high or low limits for each channel. These are set at six configurable alarm trigger points:

- High Alarm and Low Alarm
- Upper Clamp and Lower Clamp
- Over-range and Under-range Alarm

Each alarm is individually configurable per channel to generate diagnostics bit status, fault alarms, or interrupt alarms.

If a channel is commanded higher than the Upper Clamp value, the output is set to the Upper Clamp value and an Upper Clamp condition is indicated. If a channel is commanded lower than the Lower Clamp value, the output is set to the Lower Clamp value and a Lower Clamp condition is indicated.

The High and Low Alarm checks are performed on the engineering units output value after possibly being adjusted by ramping, clamping, and fault conditions.

#### **Channel Parameters (Continued)**

| Parameter                            | Default  | Description                                        |
|--------------------------------------|----------|----------------------------------------------------|
| Diagnostic Reporting Enable          | Disabled | Diagnostic Reporting Enable options are used to    |
| If Diagnostic Reporting is enabled,  |          | enable reference memory reporting of alarms        |
| the additional parameters listed     |          | into the Diagnostic Reference area.                |
| below can be used to enable specific |          | Fault Reporting Enable options enable fault        |
| types of alarms.                     |          | logging of alarms into the I/O Fault Table.        |
| Fault Reporting Enable               | Disabled | These parameters enable or disable the             |
| If Fault Reporting is enabled, the   |          | individual diagnostics features of a channel.      |
| additional parameters listed below   |          | When any of these parameters is enabled,           |
| can be used to enable specific types |          | Module uses associated parameters to perform       |
| of Faults.                           |          | the enabled feature.                               |
| Interrupts Enable                    | Disabled |                                                    |
| Low Alarm Enable                     | Disabled | For example, if Over Range is enabled in the       |
| High Alarm Enable                    | Disabled | Diagnostic Reporting Enable menu, Module will      |
| Under Range Enable                   | Disabled | set the Over Range bit in the Diagnostic           |
| Over Range Enable                    | Disabled | Reference for the channel.                         |
| Lower Clamp Alarm Enable             | Disabled |                                                    |
| Upper Clamp Alarm Enable             | Disabled | If any of these parameters is disabled, Module     |
|                                      |          | does not react to the associated alarm conditions. |
|                                      |          | Conditions.                                        |
|                                      |          | For example, if Low Alarm Enable is set to         |
|                                      |          | Disabled in the Fault Reporting Enable menu, the   |
|                                      |          | Low Alarm fault is not logged in the I/O Fault     |
|                                      |          | Table when Low Alarm is detected on the            |
|                                      |          | channel.                                           |
|                                      |          | CHAIHE.                                            |

#### Alarming and Fault Reporting

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

#### **Using Interrupts**

To properly configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of this module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address corresponding to that channel.

#### **Example:**

In this example, the Output Reference Address block is mapped to %AQ0001-%AQ0008. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address of Channel 2 corresponds to %AQ00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AQ0003" as the Trigger.

#### Fault Reporting and Interrupts

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

#### 10.4.6 Module Data: ALG704 and ALG708

Module receives its channel data from its configured output words, beginning at its assigned Channel Value Reference Address. Each channel occupies two words (whether the channel is used or not):

| Channel Value                | Contains this Input |  |
|------------------------------|---------------------|--|
| Reference Address            |                     |  |
| +0, 1                        | Channel 1           |  |
| +2, 3                        | Channel 2           |  |
| +4, 5                        | Channel 3           |  |
| +6, 7                        | Channel 4           |  |
| For Module IC695ALG708 Only: |                     |  |
| +8, 9                        | Channel 5           |  |
| +10, 11                      | Channel 6           |  |
| +12, 13                      | Channel 7           |  |
| +14, 15                      | Channel 8           |  |

Depending on its configured Channel Value Format, each enabled channel output reference location is read as a 32-bit floating-point or 16-bit integer value.

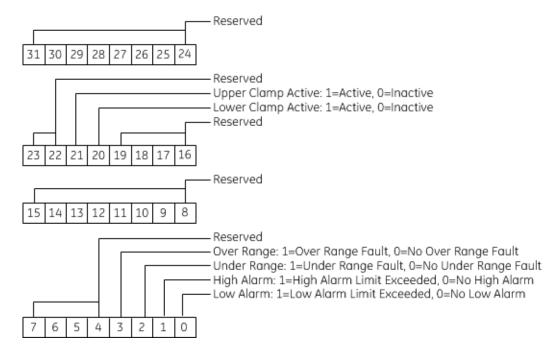
In the 16-bit integer mode, low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bits is ignored. The full range of the 16-bit integer is a signed decimal value from +32767 to -32768.

Because the channel reference location is 32 bits, it is possible for the application program to write 32-bit signed decimal values to the output reference. However, the program logic must restrict the magnitude of the value to the range +32767 to -32768. Exceeding this range will result in misinterpretation of the sign bit, and incorrect output channel operation.

#### **Channel Diagnostic Data: ALG704 and ALG708**

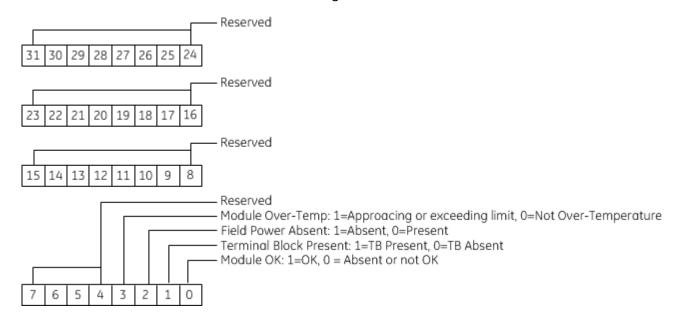
In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for this module. Use of this feature is optional.

The diagnostics data each channel occupies 2 words (whether the channel is used or not):


| Diagnostic        | Contains Diagnostics |
|-------------------|----------------------|
| Reference Address | Data for:            |
| +0, 1             | Channel 1            |
| +2, 3             | Channel 2            |
| +4, 5             | Channel 3            |
| +6, 7             | Channel 4            |

#### For Module IC695ALG708 Only:

| +8, 9   | Channel 5 |
|---------|-----------|
| +10, 11 | Channel 6 |
| +12, 13 | Channel 7 |
| +14, 15 | Channel 8 |


When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data is:



#### Module Status Data: ALG704 and ALG708

Module can also optionally be configured to return 4 bits of module status data to the CPU. The CPU stores this data in the 32-bit Module Status Data reference area configured for this module.



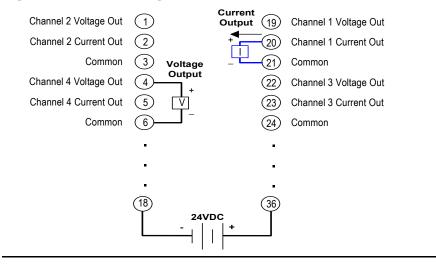
#### **Terminal Block Detection**

Module automatically checks for the presence of a Terminal Block.

The TB LED indicates the state of the terminal block of this module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 2 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.


# 10.4.7 Field Wiring: ALG704 and ALG708

The following table lists wiring connections for the Non-Isolated Analog Output Modules. There are no shield terminals. For shielding, tie cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provide in the ground bar for this purpose.

| Terminal | IC695ALG704           | IC695ALG708           | IC695ALG704      | IC695ALG708                       | Terminal |
|----------|-----------------------|-----------------------|------------------|-----------------------------------|----------|
| 1        | Channel 2 Voltage Out |                       | Channel 1 Voltag | Channel 1 Voltage Out             |          |
| 2        | Channel 2 Current     | Out                   | Channel 1 Currer | nt Out                            | 20       |
| 3        | Common (COM)          |                       | Common (COM)     | Common (COM)                      |          |
| 4        | Channel 4 Voltage     | Out                   | Channel 3 Voltag | e Out                             | 22       |
| 5        | Channel 4 Current     | Out                   | Channel 3 Currer | nt Out                            | 23       |
| 6        | Common (COM)          |                       | Common (COM)     |                                   | 24       |
| 7        | No Connection         | Channel 6 Voltage Out | No Connection    | Channel 5 Voltage Out             | 25       |
| 8        | No Connection         | Channel 6 Current Out | No Connection    | Channel 5 Current Out             | 26       |
| 9        | Common (COM)          |                       | Common (COM)     | Common (COM)                      |          |
| 10       | No Connection         | Channel 8 Voltage Out | No Connection    | Channel 7 Voltage Out             | 28       |
| 11       | No Connection         | Channel 8 Current Out | No Connection    | Channel 7 Current Out             | 29       |
| 12       | Common (COM)          |                       | Common (COM)     | Common (COM)                      |          |
| 13       | Common (COM)          | Common (COM)          |                  | Common (COM)                      |          |
| 14       | Common (COM)          |                       | Common (COM)     | Common (COM)                      |          |
| 15       | Common (COM)          |                       | Common (COM)     | Common (COM)                      |          |
| 16       | Common (COM)          |                       | Common (COM)     |                                   | 34       |
| 17       | Common (COM)          |                       | Common (COM)     | Common (COM)                      |          |
| 18       | Common (COM)          | Common (COM)          |                  | External + Power Supply (+24V In) |          |

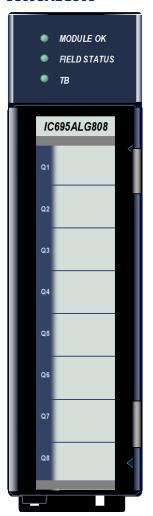

Each channel can be individually-configured to operate as a voltage output or a current output, not both simultaneously. All the common terminals are connected together internally, so any common terminal can be used for the negative lead of the external power supply.

Figure 309: Field Wiring ALG704 & ALG708



# 10.5 Analog Current/Voltage Output Isolated module, IC695ALG808

# Figure 310: IC695ALG808



The *Analog Current/Voltage Output Isolated* module, IC695ALG808, provides eight configurable voltage or current output channels. Analog channels can be configured for the following output ranges:

Current: 0 to 20mA, 4 to 20mA
 Voltage: ±10 Vdc, 0 to 10 Vdc

Module must be located in an RX3i Universal Backplane. These modules can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Terminal Blocks are ordered separately.

#### 10.5.1 Isolated +24Vdc Power

Module must receive 24Vdc field power from an external source. The external source must be connected directly to the terminal block of this module. It cannot be connected via the TB1 connector on the RX3i Universal Backplane.

#### 10.5.2 Features

- Completely software-configurable, no module jumpers to set
- Individually enable or disable channels
- Clamping and Alarm Limits
- Latching of Alarms
- Configurable output bias
- Rapid channel acquisition times based on filter frequency
- On-board error-checking
- Open-circuit detection for current outputs
- Short-circuit detection for voltage outputs
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Configurable Hold Last State or Output Defaults

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*stat.

#### 10.5.3 LEDs: IC695ALG808

Module **OK** LED indicates module status. The **Field Status** LED indicates whether the external +24Vdc power supply is present and is above the minimum level and whether or not faults are present. All LEDs are powered from the backplane power bus.

| LED          | Indicates                                                                                |
|--------------|------------------------------------------------------------------------------------------|
| Module OK    | ON Green: Module OK and configured.                                                      |
|              | Quick Flashing Green: Module performing power-up sequence.                               |
|              | Slow Flashing Green or Amber: Module OK but not configured.                              |
|              | OFF: Module is defective or no backplane power present                                   |
| Field Status | ON Green No faults on any enabled channel, Terminal Block is present, and field power is |
|              | present.                                                                                 |
|              | ON Amber and TB Green: Terminal Block is installed, fault on at least one channel, or    |
|              | field power is not present.                                                              |
|              | ON Amber and TB Red: Terminal Block not fully removed, field power detected.             |
|              | OFF and TB Red: Terminal block not present and no field power is detected.               |
| ТВ           | ON Red: Terminal block not present or not fully seated. Refer to above.                  |
|              | ON Green: Terminal block is present. Refer to above.                                     |
|              | OFF: No backplane power to module.                                                       |

# 10.5.4 Specifications: IC695ALG808

| IC695ALG808                       | Specifications                                                           |
|-----------------------------------|--------------------------------------------------------------------------|
| Output Ranges                     | Current: 0 to 20mA, 4 to 20mA                                            |
|                                   | Voltage: ±10 Vdc, 0 to 10 Vdc                                            |
| Backplane Power Requirements      | For ALG808-FA and earlier:                                               |
|                                   | 450mA maximum at 3.3V; 25mA maximum at 5.0V                              |
|                                   | For ALG808-GB and later:                                                 |
|                                   | 250mA maximum at 3.3V; 17mA maximum at 5.0V                              |
| Power Dissipation within          | 7.25 Watts maximum (Vuser=24V)                                           |
| Module                            |                                                                          |
| Thermal De-rating                 | None required                                                            |
| External +Power Supply            | Voltage Range: 19.2V to 30V (24V nominal)                                |
|                                   | Current: 660mA maximum                                                   |
| Resolution                        | ±10 Vdc: 15 bits, 0 to 10 Vdc: 14 bits, 0 to 20mA: 15 bits,              |
|                                   | 4 to 20mA: 15 bits                                                       |
| Output Data Format                | Configurable as floating-point IEEE 32-bit or 16-bit integer in a 32-bit |
|                                   | field                                                                    |
| Analog Update Rate                | 8 ms (approximate, all eight channels)                                   |
| (Determined by I/O scan time,     |                                                                          |
| application dependent)            |                                                                          |
| Output Over-voltage Protection    | Current outputs only: -30V for 60 seconds, +30V for one hour             |
| Calibrated Accuracy <sup>65</sup> | Accurate to within 0.10% of full scale at 25°C                           |
|                                   | (From 0 to 0.05mA, accuracy is ±35μA)                                    |
|                                   | Accurate to within 0.25% of full scale at 0-60°C                         |
|                                   | (From 0 to 0.05mA, accuracy is ±70μA)                                    |
| Output Load Reactance             | Current: 10µH maximum, Voltage: 1µF maximum                              |
| Maximum Output Load               | Current: 1350Ω maximum                                                   |
|                                   | Voltage: 2kΩ minimum                                                     |
| Output Gain Drift                 | Voltage output: 20ppm per degree C typical                               |
|                                   | Current output: 35ppm per degree C typical                               |
| Output Settling Time              | Voltage or current output: 2ms, 0 to 95%                                 |
| Isolation, Field to Backplane     | 2550 Vdc for one second                                                  |
| Isolation, Channel to Channel     | 250 Vac continuous                                                       |
|                                   | 1500 Vac for one minute per channel                                      |

# 10.5.5 Configuration: IC695ALG808

#### **Module Parameters**

| Parameter            | Default  | Description                                                     |
|----------------------|----------|-----------------------------------------------------------------|
| Outputs Reference    | %AQxxxxx | Starting address for the output data of this module. This       |
| Address              |          | defaults to the next available %AQ block.                       |
| Outputs Reference    | 16       | The number of words used for the output data of this module.    |
| Length               |          | This parameter cannot be changed.                               |
| Output Command       | %AIxxxxx | Stating address for the command feedback data of this           |
| Feedback Reference   |          | module. This defaults to the next available %AI address after a |
| Address              |          | non-zero length is configured.                                  |
| Output Command       | 0        | The number of words used for the command feedback data of       |
| Feedback Length      |          | this module. Length defaults to 0. It can be set to 16.         |
| Diagnostic Reference | %Ixxxxx  | Starting address for the channel diagnostics status data. This  |
| Address              |          | defaults to the next available %I block.                        |
| Diagnostic Reference | 0        | Read Only. The number of bit reference bits required for the    |
| Length               |          | Channel Diagnostics data. Default is 0, which means mapping     |
|                      |          | of Channel Diagnostics is disabled. Change this to a non-zero   |
|                      |          | value to enable Channel Diagnostics mapping. Maximum            |
|                      |          | length is 256 bits for module IC695ALG808.                      |
| Module Status        | %Ixxxxx  | Starting address for the status data of this module. This       |
| Reference Address    |          | defaults to the next available %I block.                        |
| Module Status        | 0        | Read Only. The number of bits (0 or 32) required for Module     |
| Reference Length     |          | Status data. Default is 0, which means mapping of Module        |
|                      |          | Status data is disabled. Change this to a non-zero value to     |
|                      |          | enable Module Status data mapping.                              |

#### **Analog Output Commanded Feedback**

Module returns a copy of the analog output data received from the CPU in its corresponding channel analog input shared memory. Output Feedback can be monitored to check the values being sent to the channels. The data is in the same scaled format as the output data for each channel. During normal operation, this feedback data should match the actual output data after one or more PLC scans of module inputs. During faults, ramping, over-range, and clamping conditions, the analog output data may differ from the commanded output.

#### Over-Temperature

If Over-Temperature is enabled, Module generates an Over-Temperature alarm if the internal temperature of this module is too great for the number of outputs that are on at the same time. In addition to the configurable options for Over-Temperature fault reporting and interrupts, an over temperature condition is also indicated by the Over-Temperature bit in the Status Reference data of this module. Detection of the Over-Temperature status bit is always enabled.

## **Module Parameters (Continued)**

| Parameter            | Default               | Description                                                                      |
|----------------------|-----------------------|----------------------------------------------------------------------------------|
| I/O Scan Set         | 1                     | Assigns Module I/O status data to a scan set defined in the CPU                  |
|                      |                       | configuration. Determines how often the RX3i polls the data                      |
| Channel Faults w/o   | Disabled              | Enabled / Disabled: Controls whether channel faults and configured               |
| Terminal Block       |                       | alarm responses will be generated after a Terminal Block removal. The            |
|                      |                       | default setting of Disabled means channel faults and alarms are                  |
|                      |                       | suppressed when the Terminal Block is removed. This parameter does               |
|                      |                       | not affect module faults including the Terminal Block loss/add fault             |
|                      |                       | generation.                                                                      |
| Module Fault         | Enabled               | Enabled / Disabled. Controls whether Module will report faults resulting         |
| Reporting Enabled    |                       | from either loss of field power or over-temperature conditions.                  |
| Field Power Removed  | Enabled               | Enabled / Disabled. With Module Fault Reporting enabled, this                    |
| Enabled              |                       | parameter controls reporting of Field Power Removed module faults.               |
| Over Temp Enabled    | Enabled               | Enabled / Disabled. With Module Fault Reporting enabled, this                    |
|                      |                       | parameter controls reporting of Over-temperature module faults.                  |
| Module Interrupt     | Disabled              | Enabled / Disabled.                                                              |
| Reporting Enabled    |                       |                                                                                  |
| Field Power Removed  | Disabled              | Enabled / Disabled. With Module Interrupt Reporting enabled, this                |
| Enabled              |                       | parameter controls interrupts for Field Power Removed module faults.             |
| Over Temp Enabled    | Disabled              | Enabled / Disabled. With Module Interrupt Reporting enabled, this                |
|                      |                       | parameter controls interrupts for Over-temperature module faults.                |
| Range Type           | Disabled Current      | Sets up the type of output to be used for each channel. Choices are:             |
|                      |                       | Disabled Voltage, Disabled Current, Current/Voltage.                             |
| Range (Only for      | -10 Vdc to +10 Vdc    | For Current/Voltage: -10 Vdc to +10 Vdc, 0 Vdc to +10 Vdc,                       |
| Range Type           |                       | 4mA to 20 mA, 0mA to 20 mA.                                                      |
| Current/Voltage)     |                       |                                                                                  |
| Channel Value Format | 32-bit Floating-point | 16-bit integer or 32-bit floating-point                                          |
| Outputs Default      | Force to Default      | Controls the state the output will be set to in Outputs Disabled mode            |
|                      | Value                 | (stop), if a fault occurs, if power is lost, or if the configuration is cleared. |
|                      |                       | Choices are Hold Last State, or default to a specific configured default         |
|                      |                       | value.                                                                           |

#### Range Type

Each channel on Module that will be used should be configured for Current/Voltage. Its voltage or current range and other parameters can then be configured as needed. If the channel output will not be used and is not wired, select either "Disabled" option. If a channel is disabled, it is not necessary to configure any of its other parameters.

If the channel is wired to a current output, but is not being used, select "Disabled Current". This will set the output current of that channel to OmA (the output voltage of that channel will be non-zero).

If the channel is wired to a voltage output, but is not being used, select "Disabled Voltage". This will set the output voltage of that channel to 0V (the output current of that channel will be non-zero).

#### **Output Defaults**

If Hold Last State is enabled, an output will hold its last commanded value when the CPU indicates Outputs Not Enabled, or if one of the fault conditions listed below occurs. If Hold Last State is disabled, the output is commanded to go to the Default Value. The Default Value must be set within the selected output range. If both Default Value and Ramp Rate are enabled, the channel will ramp to the default value. Fault conditions are:

- CPU outputs are not enabled.
- Backplane power is not ok. In that case, there is no ramping, even if ramping has been enabled.
- Loss of communications from CPU.
- Loss of I/O communications.
- Loss of field power.

#### **Outputs Default Notes**

- Hot Removal of Module in an I/O Enabled mode will cause all outputs to Hold Last State (even channels configured for Force to Default Value). If that operation is not desirable, the outputs can be forced to default by first turning off field power and removing the Terminal Block of this module before hot-removing Module.
- Resetting Module using SVC\_REQ 24 causes all channels to Hold Last State even if Default Value is configured. The application program must handle output defaulting before execution of the Service Request.
- Default Ramp Rate configuration is ignored if backplane power from the power supply is lost. Channels configured for Default Value go to the default value immediately.

The first time a configuration is stored following a return of backplane power, the Default Ramp rate is not used. Any channel configured for Default Value goes to its default value immediately. If analog power was not lost and the same configuration is restored on the next power-up, the channel state is unchanged from the time the power was lost. The Default Ramp Rate is used for any subsequent reconfiguration.

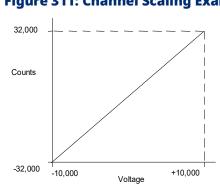
# **Output Default Conditions and Actions**

| Condition           | Hold Last | Default   | Outputs     | Channel Output Setting          |
|---------------------|-----------|-----------|-------------|---------------------------------|
|                     | State or  | Ramp Rate | Enabled and | (Except where indicated,        |
|                     | Default   | Enabled   | Ramp Rate   | field power is assumed to       |
|                     | Value     |           | Enabled     | be present).                    |
| Outputs Enabled     | N/A       | N/A       | No          | Output goes to its commanded    |
| and No Faults       |           |           |             | value from reference memory;    |
|                     |           |           |             | defaults don't apply.           |
|                     | N/A       | N/A       | Yes         | Output is ramped to the         |
|                     |           |           |             | commanded output from           |
|                     |           |           |             | reference memory at the         |
|                     |           |           |             | Outputs Enabled ramp rate.      |
|                     |           |           |             | Defaults don't apply.           |
| Outputs Disabled,   | Default   | No        | N/A         | Output is set to the Default    |
| Fault Mode, or      | Value     |           |             | Value                           |
| Reconfiguration     | Default   | Yes       | N/A         | Output is ramped to the Default |
|                     | Value     |           |             | Value at the Default ramp rate, |
|                     |           |           |             | starting at the last commanded  |
|                     |           |           |             | value before entering mode.     |
|                     | Hold Last | N/A       | N/A         | Output is held at the last      |
|                     | State     |           |             | commanded value                 |
| Loss of Backplane   | Default   | N/A       | N/A         | Output is set to the Default    |
| Power or First      | Value     |           |             | Value.                          |
| Configuration Store |           |           |             |                                 |
| after Power-up      | Hold Last | N/A       | N/A         | Output is held at last          |
|                     | State     |           |             | commanded value.                |
| Hot Removal, Reset  | N/A       | N/A       | N/A         | Output is held at last          |
| with SVCREQ 24 or   |           |           |             | commanded value.                |
| Cleared             |           |           |             |                                 |
| Configuration       |           |           |             |                                 |
| Loss of Field Power | N/A       | N/A       | N/A         | All outputs go to 0V and 0mA.   |

#### **Channel Parameters**

| Parameter        | Default                 | Description                                             |
|------------------|-------------------------|---------------------------------------------------------|
| High Scale Value | The defaults for the    | Note: Scaling is disabled if both High Scale Eng. Units |
| (Eng Units)      | four Scaling            | equals High Scale A/D Units and Low Scale Eng. Units    |
|                  | parameters depend on    | equals Low Scale A/D Units.                             |
|                  | the configured Range    | Default = High A/D Limit of selected range type.        |
| Low Scale Value  | Type and Range. Each    | Default is Low A/D Limit of selected range type.        |
| (Eng Units)      | Range and Range Type    | Must be lower than the high scaling value.              |
| High Scale Value | have a different set of | Default is High A/D Limit of selected range type.       |
| (A/D Units)      | defaults.               | Must be greater than the low scaling value.             |
| Low Scale Value  |                         | Default is Low A/D Limit of selected range type.        |
| (A/D Units)      |                         |                                                         |

#### **Output Scaling**


By default, Module converts a floating-point value from the CPU into a voltage or current output over the entire span of its configured Range. For example, if the Range of a channel is 4 to 20mA, Module accepts channel output values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D Units value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the output.

#### Example

In this example, the application should interpret 32000 counts as +10 Vdc and -32000 counts as -10 Vdc. The following channel configuration will scale a ±10 Vdc output channel to ±32000 counts.

Channel Value Format = 16-bit Integer High Scale Value (Eng Units) = 32000.0 Low Scale Value (Eng Units) = -32000.0 High Scale Value (A/D Units) = 10.000 Low Scale Value (A/D Units) = -10.000



#### **Figure 311: Channel Scaling Example**

## **Channel Parameters (Continued)**

| Parameter            | Default       | Description                                                   |
|----------------------|---------------|---------------------------------------------------------------|
| High Alarm           | The defaults  | All of the alarm parameters are specified in Engineering      |
| (Eng Units)          | depend on the | Units. When the configured value is reached or below          |
| Low Alarm            | configured    | (above), a Low (High) Alarm is triggered.                     |
| (Eng Units)          | Range.        |                                                               |
| Outputs Enabled Ramp | 0.0           | The rate in Engineering Units at which the output will change |
| Rate                 |               | during normal operation.                                      |
| (Eng Units)          |               |                                                               |
| Default Ramp Rate    | 0.0           | The rate in Engineering Units at which the output will change |
| (Eng Units)          |               | if a fault condition occurs or if outputs are not enabled.    |
| Output Clamping      | Disabled      | Enabled / Disabled. Refer to description below.               |
| Enabled              |               |                                                               |
| Upper Clamp Limit    | The defaults  | The Upper Clamp Limit must be greater than the Lower          |
| (Eng Units)          | depend on the | Clamp Limit. This parameter can be used to restrict the       |
| Lower Clamp Limit    | configured    | output to a range that is narrower than its configured Range  |
| (Eng Units)          | Range.        | Type. For example, a channel configured for –10 Vdc to +10    |
|                      |               | Vdc could be restricted to -8V to +7.5V.                      |
| Default Value        | 0.0           | If Hold Last State is disabled, the output is commanded to go |
| (Eng Units)          |               | to the Default Vale when the CPU is not in Outputs Enabled    |
|                      |               | mode or under certain fault conditions.                       |
| User Offset          | 0.0           | A configurable value that can be used to change the base of   |
| (Eng Units)          |               | the channel. This value is added to the scaled value of the   |
|                      |               | channel before alarm-checking.                                |

#### **Lower, Upper Clamp and Alarms**

Alarms can be used to indicate when Module has been commanded to meet or exceed the configured high or low limits for each channel. These are set at six configurable alarm trigger points:

- High Alarm and Low Alarm
- Upper Clamp and Lower Clamp
- Over-range and Under-range Alarm

Each alarm is individually configurable per channel to generate diagnostics bit status, fault alarms, or interrupt alarms.

If a channel is commanded higher than the Upper Clamp value, the output is set to the Upper Clamp value and an Upper Clamp condition is indicated. If a channel is commanded lower than the Lower Clamp value, the output is set to the Lower Clamp value and a Lower Clamp condition is indicated.

The High and Low Alarm checks are performed on the engineering units output value after possibly being adjusted by ramping, clamping, and fault conditions.

#### **Channel Parameters (Continued)**

| Parameter                                 | Default  | Description                                                    |
|-------------------------------------------|----------|----------------------------------------------------------------|
| Diagnostic Reporting Enable               | Disabled | Diagnostic Reporting Enable options are used to enable         |
| If Diagnostic Reporting is enabled, the   |          | reference memory reporting of alarms into the Diagnostic       |
| additional parameters listed below can be |          | Reference area.                                                |
| used to enable specific types of alarms.  |          | Fault Reporting Enable options enable fault logging of         |
| Fault Reporting Enable                    | Disabled | alarms into the I/O Fault Table.                               |
| If Fault Reporting is enabled, the        |          | These parameters enable or disable the individual              |
| additional parameters listed below can    |          | diagnostics features of a channel.                             |
| be used to enable specific types of       |          | When any of these parameters is enabled, Module uses           |
| Faults.                                   |          | associated parameters to perform the enabled feature.          |
| Interrupts Enable                         | Disabled | For example, if Over Range is enabled in the <i>Diagnostic</i> |
| Low Alarm Enable                          | Disabled | Reporting Enable menu, Module will set the Over Range bit in   |
| High Alarm Enable                         | Disabled | the Diagnostic Reference for the channel.                      |
| Under Range Enable                        | Disabled |                                                                |
| Over Range Enable                         | Disabled | If any of these parameters is disabled, Module does not        |
| Open Wire Enable (current mode only)      | Disabled | react to the associated alarm conditions.                      |
| Lower Clamp Alarm Enable                  | Disabled | For example, if Low Alarm Enable is set to Disabled in the     |
| Upper Clamp Alarm Enable                  | Disabled | Fault Reporting Enable menu, the Low Alarm fault is not        |
| Short Circuit Enable (voltage mode        | Disabled | logged in the I/O Fault Table when Low Alarm is detected on    |
| only)                                     |          | the channel.                                                   |

#### Alarming and Fault Reporting

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

#### **Using Interrupts**

To properly configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of this module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address corresponding to that channel.

#### **Example:**

In this example, the Output Reference Address block is mapped to %AQ0001-%AQ0008. An I/O Interrupt block should be triggered if a High Alarm condition occurs on Channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address of Channel 2 corresponds to %AQ00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AQ0003" as the Trigger.

#### Fault Reporting and Interrupts

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

#### 10.5.6 Module Data: IC695ALG808

Module receives its channel data from its configured output words, beginning at its assigned Channel Value Reference Address. Each channel occupies two words (whether the channel is used or not):

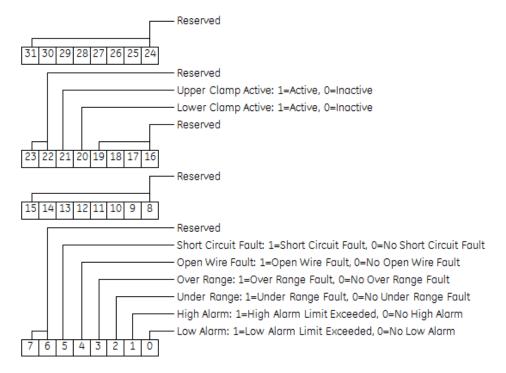
| Channel Value<br>Reference Address | Contains this Input |
|------------------------------------|---------------------|
| +0, 1                              | Channel 1           |
| +2, 3                              | Channel 2           |
| +4, 5                              | Channel 3           |
| +6, 7                              | Channel 4           |
| +8, 9                              | Channel 5           |
| +10, 11                            | Channel 6           |
| +12, 13                            | Channel 7           |
| +14, 15                            | Channel 8           |

Depending on its configured Channel Value Format, each enabled channel output reference location is read as a 32-bit floating-point or 16-bit integer value.

In the 16-bit integer mode, low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bits is ignored. The full range of the 16-bit integer is a signed decimal value from +32767 to -32768.

Because the channel reference location is 32 bits, it is possible for the application program to write 32-bit signed decimal values to the output reference. However, the program logic must restrict the magnitude of the value to the range +32767 to -32768. Exceeding this range will result in misinterpretation of the sign bit, and incorrect output channel operation.

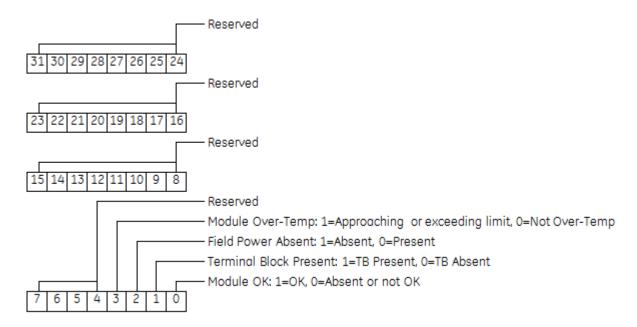
#### **Channel Diagnostic Data**


In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for this module. Use of this feature is optional.

The diagnostics data for each channel occupies 2 words (whether the channel is used or not):

| Diagnostic        | Contains Diagnostics |
|-------------------|----------------------|
| Reference Address | Data for:            |
| +0, 1             | Channel 1            |
| +2, 3             | Channel 2            |
| +4, 5             | Channel 3            |
| +6, 7             | Channel 4            |
| +8, 9             | Channel 5            |
| +10, 11           | Channel 6            |
| +12, 13           | Channel 7            |
| +14, 15           | Channel 8            |

When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.


For each channel, the format of this data is:



Analog Output Modules 475

#### **Module Status Data: ALG808**

Module can also optionally be configured to return 4 bits of module status data to the CPU. The CPU stores this data in the 32-bit Module Status Data reference area configured for this module.



#### Terminal Block Detection

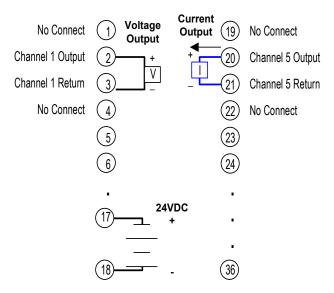
Module automatically checks for the presence of a Terminal Block.

The TB LED indicates the state of the terminal block of this module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 2 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

Analog Output Modules 476


## 10.5.7 Field Wiring: IC695ALG808

The following table lists wiring connections for the Isolated Analog Output Modules. There are no shield terminals.

| Terminal | Assignment                         | Assignment                       | Terminal |
|----------|------------------------------------|----------------------------------|----------|
| 1        | No Connect                         | No Connect                       | 19       |
| 2        | Channel 1 Current/Voltage Output   | Channel 5 Current/Voltage Output | 20       |
| 3        | Channel 1 Ground/Return            | Channel 5 Ground/Return          | 21       |
| 4        | No Connect                         | No Connect                       | 22       |
| 5        | No Connect                         | No Connect                       | 23       |
| 6        | Channel 2 Current/Voltage Output   | Channel 6 Current/Voltage Output | 24       |
| 7        | Channel 2 Ground/Return            | Channel 6 Ground/Return          | 25       |
| 8        | No Connect                         | No Connect                       | 26       |
| 9        | No Connect                         | No Connect                       | 27       |
| 10       | Channel 3 Current/Voltage Output   | Channel 7 Current/Voltage Output | 28       |
| 11       | Channel 3 Ground/Return            | Channel 7 Ground/Return          | 29       |
| 12       | No Connect                         | No Connect                       | 30       |
| 13       | No Connect                         | No Connect                       | 31       |
| 14       | Channel 4 Current/Voltage Output   | Channel 8 Current/Voltage Output | 32       |
| 15       | Channel 4 Ground/Return            | Channel 8 Ground/Return          | 33       |
| 16       | No Connect                         | No Connect                       | 34       |
| 17       | External + Power Supply (+24V In)  | No Connect                       | 35       |
| 18       | External - Power Supply (+24V Rtn) | No Connect                       | 36       |

Each channel can be individually configured to operate as a voltage output or a current output - not both simultaneously.

Figure 312: Field Wiring: ALG808



Analog Output Modules 477

# Section 11: Analog Modules with HART Communications

This chapter describes Non-Isolated Analog modules that provide HART® communications and are compatible with PACSystems RX3i controllers.

- Overview of HART Communications for PACSystems RX3i (Section 11.1)
- Module Descriptions, specifications, configuration parameters, and wiring information for:
  - Analog Input Module 16-/8-Channel Current/Voltage with HART: IC695ALG626 (Section 11.1.4)
  - Analog Input Module 8-/4-Channel Current/Voltage with HART: IC695ALG628 (Section 11.1.4)
  - Analog Output Module 8-Channel Current/Voltage with HART: IC695ALG728 (Section 11.3)
- HART Reference Data (Section 11.4)
- COMMREQs for HART Modules (Section 11.5)
- HART Function Blocks for the Application Program (Section 11.6)
- Converting HART Data to / from RX3i Format (Section 11.7)

# 11.1 Overview of HART Communications for PACSystems RX3i

HART (Highway Addressable Remote Transducer) protocol is an open standard owned by the members of the HART Communication Foundation. HART combines simultaneous 4-20mA current loop operation with digital communications using the same signal. It imposes a frequency-shifted AC signal on the normal 4 to 20mA current loop signal. Both analog and digital communications signals utilize the same set of wires without signal disruptions. For more information about

HART® is a registered trademark of the HART Communication Foundation of Austin, Texas USA. Any use of the term HART hereafter in this document, or any document referenced by this document, implies the registered trademark.

HART, refer to the HART Application Guide, published by the HART Communication Foundation (<a href="www.hartcomm.org">www.hartcomm.org</a>).

For PACSystems RX3i, point-to-point HART communications are provided by the three analog modules described in this chapter. Each channel on modules IC695ALG626, ALG628, and ALG728 can utilize HART 5.0 protocol to communicate with HART field devices. The HART devices must be revision 5.0 or later; earlier HART versions use a different messaging format that is not supported by the RX3i analog HART modules.

To utilize HART communications, a channel must be configured for HART operation as described in this chapter, and for 4-20mA current range. During module operation, the 4-20mA channel signal communicates one process variable. Additional process variables, configuration data, and device data are transferred digitally using the HART protocol. The 4-20mA signal is not affected by the HART signal.

Effective with Release 8.50 of the RX3i CPU firmware, the product line also supports HART Pass Through functionality, which is described in the *PACSystems HART Pass Through User Manual*, GFK-2929.

#### 11.1.1 RX3i HART Module Operation

HART is a master-slave communications protocol. An RX3i analog module with HART communications acts as the Primary Master for a single HART field device. It tolerates the presence of a Secondary Master, usually an optional handheld device. The RX3i Analog HART module does not support multi-drop communications (i.e. multiple field devices on a channel), nor does it support Burst Mode transmissions.

The RX3i HART module automatically issues HART commands to any HART device that is present and enabled in configuration. The response data from these commands is maintained within the internal memory of the RX3i HART module and is made available to the RX3i Controller via input scanning of HART Data, or via the Get Device Information COMMREQ (command 1).

An RX3i HART module can be configured to make HART device data available to the RX3i controller via input scanning by using the *HART Data Scan Control*. With this option, the automatic HART command response data from each device is formatted and written to RX3i reference memory at the HART Data Reference Address. This occurs during the normal RX3i input scan. This option may be disabled.

Two modes of automatic data presentation are configurable: "All Data" and "Dynamic Data".

- Dynamic Only periodically executes HART command #3 and provides the
  resulting PV, SV, TV, and FV variables to the RX3i input reference
  memory. If HART Slot Variables are enabled, HART command #33 slot
  variable values are also updated automatically. Dynamic Only data also
  includes the most current Communication and Device Status.
- All Data option provides the same information as the Dynamic Only option, plus additional data from HART commands 0, 12, 13, 15, 16, 48, and 50.

During start-up, or after a device configuration changes (as indicated by the "configuration changed" bit on the HART device being set), the RX3i HART module executes HART commands 0, 3, 12, 13, 15, 16, 33, 48, and 50 (*All Data* mode). In addition, if HART Slot Variables are enabled (*Dynamic Data* mode), Module periodically re-issues commands #3 and #33. The repetition period at which the *Dynamic Data* commands are issued depends on the configuration for HART Pass-Through Service Options and on the number of HART devices enabled in a modem group. HART command #59 is issued each time a HART device initializes: it sets the number of preambles to 5.

In many applications, the *Dynamic Only* option should provide all of the needed HART variables. The variable data updates automatically in the input scan data of the HART module (no COMMREQ trigger is needed). If the *Dynamic Only* data is not sufficient, additional HART data may be accessed automatically using the *All Data* option. Enabling either the *Dynamic Only* or *All Data* option affects the PLC I/O sweep time because of increased input scan data from Module.

If neither scan option provides all the necessary inputs, or if additional control of HART devices is needed, COMMREQs are available that provide additional functionality or replace the automatic input scanning. Three COMMREQs are available.

- The Get Device Information COMMREQ (Command 1) returns the same data for a HART device as the *All Data* scan option; however, this COMMREQ must be reissued in logic to get updates of the variable data.
- The HART Pass-Through COMMREQ is capable of executing any HART command including manufacturer-specific commands; however, care must be used to correctly format HART command request and response data, which must be byte-packed and "big-endian" formatted. Instructions are given in this chapter.
- The Remote Get Device Information COMMREQ returns the same data for a HART device as the *All Data* scan option; however, this COMMREQ must be reissued in logic to get updates of the variable data.

## 11.1.2 Using DO I/O with HART Modules

The HART modules fully support the DOIO function block provided only analog channel values and analog diagnostics are to be scanned. However, DOIO will not function under certain conditions when HART devices are enabled, and the HART Data Scan Control is set to either *All Data* or *Dynamic Only*.

Due to RX3i CPU limitations, only modules with input scan sizes of 256 bytes or less can use the DOIO function block. HART modules will function normally with DOIO except when the input scan size exceeds 256 bytes (this input size limitation may be increased or eliminated in future releases). When this input scan size is exceeded, any attempt to use DOIO for HART module inputs or outputs will fail, and the DOIO function will not pass power flow. The exact number of devices that can be enabled while DOIO continues to operate normally depends on the RX3i HART module employed.

- For ALG628 and ALG728, the number of HART devices that can be enabled with *All Data* selected is one, and the number of devices with *Dynamic Only* selected is five or fewer.
- For ALG626, the number devices enabled with *Dynamic Only* selected is three. Furthermore, DOIO will not function at all for ALG626 whenever any HART devices are enabled with *All Data* selected.

# 11.1.3 Using a Hand-held Calibrator with RX3i Analog HART Modules

It is often necessary to perform maintenance on field devices using a hand-held HART calibrator. The RX3i HART module behaves as a HART master and the field device is considered the slave.

When using a hand-held communicator in conjunction with the HART I/O, the calibrator is considered a secondary master.

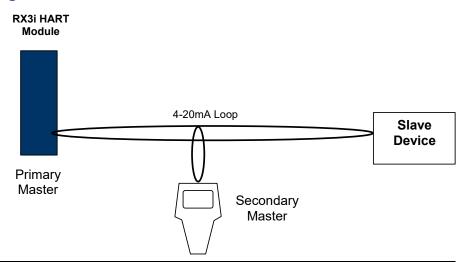



Figure 313: Use of Hand-Held HART Calibrator

The master must initiate the communication with the field device. The device simply replies with an appropriate response.

Any given channel may have a master, a secondary master (hand-held calibrator), and a slave connected simultaneously.

#### 11.1.4 HART Pass-Through Functionality

HART Pass Through is the term given to the bidirectional tunneling of HART commands and responses through a PLC system. The HART communications in question are between those HART devices connected to HART-capable analog I/O modules and a monitoring station. Both the I/O and the monitoring station must be connected to the same PLC. For further information, refer to the PACSystems HART Pass Through User Manual, GFK-2929.

Compatible PACSystems PLC CPUs support two independent and distinct HART Pass Through technologies:

- PACSystems Field Device Tool (FDT) HART Device Type Managers (DTMs) and
- the PACSystems HART Multiplexer.

Both technologies support HART devices connected to analog IO modules with HART support. The analog I/O modules may be located in one of the following:

- 1. an RX3i CPU rack,
- 2. an RX3i PROFINET Scanner rack (i.e. an I/O rack under the control of a PNS001 or PNS101 module), or
- 3. an RX3i PROFINET CEP remote drop, which is always controlled by a CEP001 module.

Support for the PROFINET racks requires that the supervising RX3i PROFINET IO Controller (PNC001) be located in the RX3i CPU rack. Operation with Hot Standby CPU Redundancy and PROFINET I/O is supported using a redundant IP connection.

The following RX3i analog modules support HART:

IC695ALG626

IC695ALG62866

IC695ALG728

<sup>66</sup> If used, IC695ALG628 must be installed in the RX3i CPU Rack. At time of publication, it is not supported by PROFINET scanners IC695PNS001 or IC695CEP001. Refer to IPIs for IC695PNS001 or IC695CEP001 for future updates.

If used for HART Pass Through, the supporting RX3i PROFINET Controller (PNC001) and PROFINET Scanner (PNS001 or CEP001) must also contain HART-compatible firmware:

IC695PNC001 Firmware Release 2.20

IC695PNS001 Firmware Release 2.30 or PNS10167

IC695CEP001 Firmware Release 2.30.

The primary difference between the PACSystems FDT HART DTMs and the PACSystems HART Multiplexer is that they are designed to work with different types of HART asset management applications.

- The PACSystems FDT HART DTMs are installed whenever the HART devices will be configured and monitored using an FDT Frame Application such as Device Manager Essentials or another FDTcompatible asset management application.
- The PACSystems HART Multiplexer is installed whenever the HART devices will be configured and monitored using AMS™ from Emerson Process Management™.

Both technologies require Ethernet communications between the host PC and the PLC. Note that the architecture of the PLC system is the same in either solution.

<sup>&</sup>lt;sup>67</sup> When used with HART, the PNS101 is used in place of PNS001, and would not typically be employed for Sequence of Events application.

# 11.2 Analog Input Module 16-/8-Channel Current/Voltage with HART: IC695ALG626 Analog Input Module 8-/4-Channel Current/Voltage with HART: IC695ALG628

**Figure 314: IC695ALG626** 



Non-Isolated Differential Analog Current/Voltage Input module, IC695ALG628, provides 8 single-ended or 4 differential input channels. Non-Isolated Differential Analog Current/Voltage Input module, IC695ALG626, provides 16 single-ended or 8 differential input channels.

Both modules feature HART version 5.0 communications capability on each channel. Module IC695ALG626 has four internal HART modems. Module IC695ALG628 has two internal HART modems. In single-ended mode, four single-ended channels are multiplexed into each HART modem. In differential mode, two differential channels are multiplexed into each HART modem.

Analog input channels can be configured for these ranges:

- Current: 0 to 20mA, 4 to 20mA, ±20mA
- Voltage: ±10 Vdc, 0 to 10 Vdc, ±5Vdc, 0 to 5Vdc, 1 Vdc to 5Vdc.

Channels that will use HART communications must be configured for the 4-20mA range.

#### 11.2.1 Features

- Completely software-configurable, no module jumpers to set
- Full auto-calibration
- On-board error-checking
- Open-circuit detection for all voltage and 4-20mA inputs
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program
- Flash memory for future upgrades
- Positive and negative Rate of Change Alarms
- Auto-calibration at startup
- Configurable interrupts for channel alarms and faults
- Terminal Block insertion or removal detection
- Version 5.0 HART communications
- These modules must be located in an RX3i Universal Backplane.

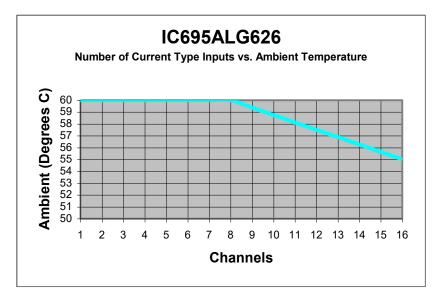
Modules support insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*. Modules can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Terminal Blocks are ordered separately.

# 11.2.2 Specifications: ALG626 and ALG628

| ALG626/ALG628                  | Specificat                                                             | ions                                                                                                                                                                       |             |              |               |              |                |         |
|--------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|---------------|--------------|----------------|---------|
| Input Ranges                   | Current: 0 t                                                           | o 20mA,                                                                                                                                                                    | 4 to 20m    | A, ±20mA     |               |              |                |         |
|                                | Voltage: ±1                                                            | Voltage: ±10 Vdc, 0 to 10 Vdc, ±5Vdc, 0 to 5Vdc, 1Vdc to 5Vdc                                                                                                              |             |              |               |              |                |         |
| Backplane Power                | Module                                                                 | FB &                                                                                                                                                                       | later       | EA &         | Specifi       | ication      |                |         |
| Requirements                   |                                                                        |                                                                                                                                                                            |             | earlier      |               |              |                |         |
|                                | ALG626                                                                 | 400                                                                                                                                                                        |             | 600          | mA ma         | ximum at     | 5.0V +5% / -   | 2.5%    |
|                                |                                                                        | 200                                                                                                                                                                        |             | 625          | mA ma         | ximum at     | 3.3V +5% / -   | 3%      |
|                                | ALG628                                                                 | 260                                                                                                                                                                        |             | 450          | mA ma         | ximum at     | 5.0V +5% / -   | 2.5%    |
|                                |                                                                        | 200                                                                                                                                                                        |             | 625          | mA ma         | ximum at     | 3.3V +5% / -   | 3%      |
| Power Dissipation              | Module                                                                 | FB &                                                                                                                                                                       | later       | EA &         | Specifi       | ication      |                |         |
| within Module                  |                                                                        |                                                                                                                                                                            |             | earlier      |               |              |                |         |
|                                | ALG626                                                                 | 4.50                                                                                                                                                                       |             | 7.35         | Watts         | maximum      |                |         |
|                                | ALG628                                                                 | 2.83                                                                                                                                                                       |             | 5.55         | Watts         | maximum      |                |         |
| Thermal De-rating              | Module IC6                                                             | 95ALG62                                                                                                                                                                    | 8 has no    | thermal d    | erating.      |              |                |         |
|                                | Module IC6                                                             | 95ALG62                                                                                                                                                                    | 6 has no    | thermal d    | erating in vo | oltage mod   | le.            |         |
|                                |                                                                        |                                                                                                                                                                            |             |              | urrent mode   | •            |                | 5.      |
| Resolution                     | Refer to Res                                                           | solution a                                                                                                                                                                 | nd Range    | Type table   | e below.      |              |                |         |
| Input Data Format              | Configurab                                                             | le as floa                                                                                                                                                                 | ting-poin   | t IEEE 32-k  | oit or 16-bit | integer in a | a 32-bit field | l.      |
| Filter Options                 | 8Hz, 12Hz,                                                             | 16Hz, 40H                                                                                                                                                                  |             | z, 500Hz     |               |              |                |         |
| Analog Module Scan             | Module sca                                                             | n can cor                                                                                                                                                                  | nsist of u  | p to four a  | cquisition c  | ycles. Each  | cycle includ   | les a   |
| Time                           |                                                                        | Module scan can consist of up to four acquisition cycles. Each cycle includes a specific set of channels, as described in the <i>Channel Scanning</i> section below. Total |             |              |               |              |                |         |
| (ms)                           | Scan Time depends on the number of acquisition cycles in the scan, the |                                                                                                                                                                            |             |              |               |              |                |         |
|                                | configured filter option, and whether the channels are analog or HART. |                                                                                                                                                                            |             |              |               |              |                |         |
| Configured Filter              | Number of A                                                            | Acquisition                                                                                                                                                                | n Cycles ii | n the Scan   |               |              |                |         |
|                                | 1 2 3 4                                                                |                                                                                                                                                                            |             |              |               |              |                |         |
|                                | Analog                                                                 | HART                                                                                                                                                                       | Analo       | HART         | Analog        | HART         | Analog         | HART    |
| 0.11-614                       | 424                                                                    | 420                                                                                                                                                                        | g<br>244    | 25.4         | 262           | 200          | 402            | 506     |
| 8 Hz filter                    | 121                                                                    | 128                                                                                                                                                                        | 241         | 254          | 362           | 380          | 482            | 506     |
| 12 Hz filter                   | 81                                                                     | 88                                                                                                                                                                         | 161         | 174          | 242           | 260          | 322            | 346     |
| 16 Hz filter                   | 61                                                                     | 68                                                                                                                                                                         | 121         | 134          | 182           | 200          | 242            | 266     |
| 40 Hz filter                   | 21                                                                     | 28                                                                                                                                                                         | 41          | 54           | 62            | 80           | 82             | 106     |
| 200 Hz filter                  | 5                                                                      | 12                                                                                                                                                                         | 9           | 22           | 14            | 32           | 18             | 42      |
| 500 Hz filter                  | 3                                                                      | N/A                                                                                                                                                                        | 5           | N/A          | 7             | N/A          | 9              | N/A     |
| 500 Hz filter                  |                                                                        |                                                                                                                                                                            |             |              |               |              |                |         |
| with rate detection<br>enabled | N/A                                                                    | N/A                                                                                                                                                                        | 6           | N/A          | 9             | N/A          | 12             | N/A     |
| HART Data Scan Time            | The HART d                                                             | lata scan                                                                                                                                                                  | can cons    | ist of up to | o four acqui  | sition cycle | s (similar bu  | ıt      |
| (in seconds)                   |                                                                        |                                                                                                                                                                            |             | •            | Each cycle i  | -            |                |         |
|                                | channels:                                                              |                                                                                                                                                                            | _           |              |               |              |                |         |
|                                | for ALG626                                                             | for ALG626 single ended: channels 1-4, 5-8, 9-12, 13-16 are separate channel group:                                                                                        |             |              |               |              |                |         |
|                                | for ALG626                                                             | different                                                                                                                                                                  | ial: cha    | nnels 1-2,   | 3-4, 5-6, 7-8 | are separ    | ate channel    | groups. |

| ALG626/ALG628                                   | Specifications                                                            |                                                                                 |                      |            |                    |  |
|-------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|------------|--------------------|--|
|                                                 | -                                                                         | for ALG628 single ended: channels 1-4, 5-8 are separate channel groups.         |                      |            |                    |  |
|                                                 | for ALG628 differential: channels 1-2, 3-4 are separate channel groups.   |                                                                                 |                      | <b>3</b> , |                    |  |
|                                                 | Note: If you have only four Hart Devices on an ALG626 module, to minimize |                                                                                 |                      |            |                    |  |
|                                                 | _                                                                         | update times it is best to connect them to channels 1, 5, 9, and 13 so you only |                      |            |                    |  |
|                                                 | · ·                                                                       | t-enabled channel per char                                                      |                      |            | , ,                |  |
|                                                 |                                                                           | an time depends on the nu                                                       | • .                  | n cyc      | les in the scan,   |  |
|                                                 |                                                                           | ries, enabling/disabling of                                                     | •                    | -          |                    |  |
|                                                 |                                                                           | slot variables are enabled                                                      |                      |            | _                  |  |
|                                                 |                                                                           | Group Enabled for HART:                                                         | 1                    |            | nel updates every: |  |
|                                                 | 1                                                                         |                                                                                 | 0.7 second (typic    | al)        |                    |  |
|                                                 | 2                                                                         |                                                                                 | 1.9 seconds (typi    | cal)       |                    |  |
|                                                 | 3                                                                         |                                                                                 | 3.0 seconds (typi    | cal)       |                    |  |
|                                                 | 4                                                                         |                                                                                 | 4.0 seconds (typi    | cal)       |                    |  |
| Input Impedance                                 |                                                                           | >100kΩ voltage inputs                                                           | •                    |            |                    |  |
| Current Input Resistan                          | ce                                                                        | 249Ω ±1%                                                                        |                      |            |                    |  |
| Open Circuit Detection                          | time                                                                      | 1 second maximum                                                                |                      |            |                    |  |
| Over-voltage                                    |                                                                           | ±60 Vdc continuous, maximum                                                     |                      |            |                    |  |
| Overcurrent                                     |                                                                           | ±28mA continuous, maximum                                                       |                      |            |                    |  |
| Normal Mode Noise Re                            | ejection in dB                                                            |                                                                                 | At 50Hz              | At 6       | 50Hz               |  |
|                                                 |                                                                           | 8 Hz filter                                                                     | 85                   | 85         |                    |  |
|                                                 |                                                                           | 12 Hz filter                                                                    | 85                   | 85         |                    |  |
|                                                 |                                                                           | 16 Hz filter                                                                    | 35                   | 62         |                    |  |
|                                                 |                                                                           |                                                                                 | 3                    | 6          |                    |  |
|                                                 |                                                                           | 200 Hz filter                                                                   | 0                    | 0          |                    |  |
|                                                 |                                                                           | 500 Hz                                                                          | 0                    | 0          |                    |  |
| Common Mode Noise I                             | Rejection                                                                 | 120dB minimum at 50/60 Hz with 8 Hz filter                                      |                      |            |                    |  |
|                                                 |                                                                           | 110dB minimum at 50/60 Hz with 12 Hz filter                                     |                      |            |                    |  |
| Channel-Channel DC C                            | rosstalk                                                                  | -80 dB minimum (single ended mode)                                              |                      |            |                    |  |
|                                                 |                                                                           | -80 dB minimum (differe                                                         | ntial mode, ground   | ed co      | ommon)             |  |
|                                                 |                                                                           | -60 dB minimum (differe                                                         | ntial mode, floating | com        | nmon)              |  |
| Calibrated Accuracy <sup>68</sup> a             | t 13°C – 33°C                                                             | ±5Vdc, ±10 Vdc, ±20mA 0.05% of ran                                              |                      |            | 0.05% of range     |  |
| with 8 Hz, 12 Hz and 16 Hz filter               |                                                                           | 0 to 10 Vdc, 0 to 5Vdc, 1Vdc to 5Vdc, 0 to 20mA                                 |                      |            | 0.1% of range      |  |
|                                                 |                                                                           | 4 to 20mA                                                                       |                      |            | 0.125% of range    |  |
| Calibrated Accuracy <sup>68</sup> at 0°C – 60°C |                                                                           | 0 to 10 Vdc, 0 to 5Vdc, 1Vdc to 5Vdc                                            |                      |            | 0.2% of range      |  |
| with 8 Hz, 12 Hz and 16 Hz filter               |                                                                           | 0 to 20mA                                                                       |                      |            | 0.25% of range.    |  |
|                                                 |                                                                           | 4 to 20mA                                                                       |                      |            | 0.3125% of         |  |
|                                                 |                                                                           |                                                                                 |                      |            | range              |  |
|                                                 |                                                                           | ±5Vdc, ±10 Vdc                                                                  |                      |            | 0.1% of range      |  |
|                                                 |                                                                           | ±20 mA                                                                          |                      |            | 0.125% of range    |  |

 $<sup>^{68}</sup>$  In the presence of severe RF interference (IC 801-3, 10V/m), accuracy may be degraded to  $\pm 1\%$  FS. Analog Modules with HART Communications


| ALG626/ALG628                       | Specifications |                                                               |  |
|-------------------------------------|----------------|---------------------------------------------------------------|--|
| Calibration Viability               |                | Factory calibration is valid for 12 months for all ranges and |  |
|                                     |                | operating conditions.                                         |  |
| Isolation Voltage                   |                | Opto-isolated, transformer isolated                           |  |
| terminal block to backplane/chassis |                | 250 Vac continuous/1500 Vdc for 1 minute                      |  |

For product standards and general specifications, refer to Appendix A:.

## **Thermal Derating: ALG626 Current Mode**

For module IC695ALG626 in current mode, the number of inputs that can be on at the same time depends on the ambient temperature as displayed in Figure 315.

Figure 315: Thermal Derating ALG626 Current Mode



#### **LEDs**

Module **OK** LED indicates module status. The **Field Status** LED indicates the presence of a fault on at least one channel or a terminal block error. The TB (Terminal Block) LED indicates the presence or absence of the terminal block. LEDs are powered from the backplane power bus.

| LED          | State                           | Indicates                                               |
|--------------|---------------------------------|---------------------------------------------------------|
| Module OK    | ON Green                        | Module OK and configured                                |
|              | Green or Amber, blinking slowly | Error                                                   |
|              | Green, blinking rapidly         | Module OK but not configured                            |
|              | OFF                             | Module is defective or no backplane power present       |
| Field Status | ON Green                        | No faults on any enabled channel, and Terminal Block is |
|              |                                 | present                                                 |
|              | ON Yellow                       | Fault on at least one channel                           |
|              | OFF                             | Terminal block not present or not fully seated          |
| ТВ           | ON Red                          | Terminal block not present or not fully seated          |
|              | ON Green                        | Terminal block is present                               |
|              | OFF                             | No backplane power to module                            |

# 11.2.3 Configuration: ALG626 and ALG628

## **Module Parameters**

| Parameter            | Default      | Description                                                          |
|----------------------|--------------|----------------------------------------------------------------------|
| Channel Value        | %AIxxxxx     | Starting address for the input data of this module. This defaults to |
| Reference Address    |              | the next available %AI block. The format of this data is shown in    |
|                      |              | Section 11.2.4, Channel Value Reference Data: ALG626 and ALG628.     |
| Channel Value        | ALG628: 16   | The number of words used for the input data of this module. This     |
| Reference Length     | ALG626: 32   | parameter cannot be changed.                                         |
| Diagnostic Reference | %Ixxxxx      | Starting address for the channel diagnostics status data. The        |
| Address              |              | format of this data is shown in Section 11.2.4, Input Channel        |
|                      |              | Diagnostic Reference Data: ALG626 and ALG628.                        |
| Diagnostic Reference | 0            | The number of bit reference bits required for the Channel            |
| Length               |              | Diagnostics data. When set to 0, Channel Diagnostics is disabled.    |
|                      |              | To enable Channel Diagnostics mapping, change this to a non-         |
|                      |              | zero value.                                                          |
| Module Status        | %Ixxxxx      | Starting address for the status data of this module. The format of   |
| Reference Address    |              | this data is shown in Section 11.2.4, Module Status Reference Data:  |
|                      |              | ALG626 and ALG628.                                                   |
| Module Status        | 0            | The number of bits (0 to 32) required for Module Status data.        |
| Reference Length     |              | When set to 0, mapping of Module Status data is disabled. To         |
|                      |              | enable Module Status data mapping, change this to a non-zero         |
|                      |              | value.                                                               |
| HART Data Scan       | No data      | Selects whether the CPU will automatically scan from the HART        |
| Control              |              | module: no data, changed data only, or all data for each HART-       |
|                      |              | enabled channel. Refer to the below for details of memory usage.     |
|                      |              | Dynamic Data Only: the first 18 words or 288 bits of HART data       |
|                      |              | per input device.                                                    |
|                      |              | All Data: all of the HART data (88 words or 1408 bits for each HART  |
|                      |              | input device.                                                        |
| HART Pass-Through    | Once per two | Selects whether Module will automatically service a HART pass-       |
| Service Options      | channel      | through command in each 1, 2, or 4 channel scans or only upon        |
|                      | scans        | change of the HART device configuration or if data hasn't been       |
|                      |              | read for 10 seconds (Pass-Through Only). If Pass-Through Only is     |
|                      |              | selected, scan data is not automatically available to the            |
|                      |              | application program. However, it can be read using COMMREQ 1.        |
| HART Status          |              | Starting address for the HART Status data. The format of this data   |
| Reference Address    |              | is shown on in Section 11.5.1.                                       |
| HART Status          |              | Length of the HART Status data; 4 words or 64 bits.                  |
| Reference Length     |              |                                                                      |

| Parameter            | Default      | Description                                                       |                                            |  |
|----------------------|--------------|-------------------------------------------------------------------|--------------------------------------------|--|
| HART Data Reference  |              | Starting address for the HART data for Module in %I, %Q, %AI,     |                                            |  |
| Address              |              | %AQ, %R, %W, %G, %M, or %T memory. The format of this data is     |                                            |  |
|                      |              | shown in Section 11.4.1.                                          |                                            |  |
| HART Data Reference  | 0            | Length of the HART data                                           | a. If Data Scan Control is set to no data, |  |
| Length               |              | the length is 0. The leng                                         | th is automatically set according to the   |  |
|                      |              | selection made for HAR1                                           | Γ Data Scan Control                        |  |
|                      |              | HART Data Scan                                                    | HART Data                                  |  |
|                      |              | Control                                                           | Reference Length                           |  |
|                      |              | No Data                                                           | 0                                          |  |
|                      |              | Dynamic Data Only                                                 | Highest HART-enabled Channel Number        |  |
|                      |              |                                                                   | X (18 words or 288 bits)                   |  |
|                      |              | All Data                                                          | Highest HART-enabled Channel Number        |  |
|                      |              |                                                                   | X (88 words or 1408 bits)                  |  |
| I/O Scan Set         | 1            | Assigns Module I/O state                                          | us data to a scan set defined in the CPU   |  |
|                      |              | configuration. Determin                                           | es how often the RX3i polls the data       |  |
| Inputs Default       | Force Off    | In the event of module f                                          | ailure or removal, this parameter          |  |
|                      |              | specifies the state of all Channel Value References for Module.   |                                            |  |
|                      |              | Force Off = Channel Va                                            | lues clear to 0.                           |  |
|                      |              | Hold Last State = Chanr                                           | nel Values hold their last state.          |  |
| Inputs Default w/o   | Enabled      | Enabled / Disabled: Controls whether inputs will be set to their  |                                            |  |
| Terminal Block       |              | defaults if the Terminal Block is removed.                        |                                            |  |
| Channel Faults w/o   | Disabled     | Enabled / Disabled: Controls whether channel faults and           |                                            |  |
| Terminal Block       |              | configured alarm respor                                           | nses will be generated after a Terminal    |  |
|                      |              | Block removal. The defa                                           | ult setting of Disabled means channel      |  |
|                      |              | faults and alarms are su                                          | ppressed when the Terminal Block is        |  |
|                      |              | removed. This paramete                                            | er does not affect module faults including |  |
|                      |              | the Terminal Block loss/                                          |                                            |  |
| Analog Input Mode    | Single-ended | Single-ended / Differential: This selection must match the input  |                                            |  |
|                      | Input Mode   | wiring to Module.                                                 |                                            |  |
| A/D Filter Frequency | 40Hz         | Low pass A/D hardware filter setting for all inputs on Module: 8, |                                            |  |
|                      |              |                                                                   | z. Default is 40Hz. Frequencies below the  |  |
|                      |              | filter setting are not filte                                      | red by hardware.                           |  |

#### **Channel Parameters**

| Parameter           | Default          | Description                                                    |
|---------------------|------------------|----------------------------------------------------------------|
| Range Type          | Disabled         | Current/Voltage, Disabled                                      |
| Range               | -10 Vdc to +10   | For Current/Voltage: -10 Vdc to +10 Vdc, 0 to +10 Vdc, 0 to    |
| (Not for Range Type | Vdc              | +5Vdc, 1Vdc to +5Vdc, -5Vdc to +5Vdc, -20mA to +20mA, 4 to 20  |
| Disabled)           |                  | mA, 0 to 20 mA                                                 |
| Channel Value       | 32-bit Floating- | 16-bit integer or 32-bit floating-point                        |
| Format              | point            |                                                                |
| High Scale Value    | The defaults for | Note: Scaling is disabled if both High Scale Eng. Units equals |
| (Eng Units)         | the four Scaling | High Scale A/D Units and Low Scale Eng. Units equals Low Scale |
|                     | parameters       | A/D Units.                                                     |
|                     | depend on the    | Default is High A/D Limit of selected range type.              |
| Low Scale Value     | configured       | Default is Low A/D Limit of selected range type. Must be lower |
| (Eng Units)         | Range Type and   | than the high scaling value.                                   |
| High Scale Value    | Range. Each      | Default is High A/D Limit of selected range type. Must be      |
| (A/D Units)         | Range and        | greater than the low scaling value.                            |
| Low Scale Value     | Range Type       | Default is Low A/D Limit of selected range type.               |
| (A/D Units)         | have a different |                                                                |
|                     | set of defaults. |                                                                |

#### Input Scaling: ALG626 and ALG628

By default, Module converts a voltage or current input over the entire span of its configured Range into a floating-point value for the CPU. For example, if the Range of a channel is 4 to 20mA, Module reports channel input values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the PLC that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.

#### Example 1

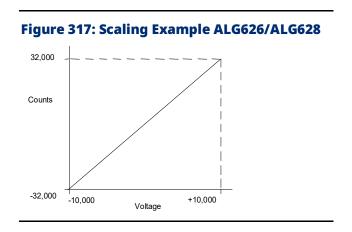
For a voltage input, 6.0 volts represents a speed of 20 feet per second, and 1.0 volt represents 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000 Low Scale Value (Eng Units) = 0.000 High Scale Value (A/D Units) = 6.000 Low Scale Value (A/D Units) = 1.000

For this example, 1.0 Vdc to 6.0 Vdc is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 10.0V were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or take other precautions for scaled inputs that are outside the acceptable range or invalid.

Feet per Second (Engineering Units)

Voltage (A/D Units)


6.000

1.000

#### Example 2

An existing application uses traditional analog to digital (A/D) count integer values. With scaling and the optional 16-bit integer input option, a channel can be configured to report integer count values. In this example, the application should interpret +10 Vdc as 32000 counts and -10 Vdc as -32000 counts. The following channel configuration will scale a ±10 Vdc input channel to ±32000 counts.

Channel Value Format = 16-bit Integer
High Scale Value (Eng Units) = 32000.0
Low Scale Value (Eng Units) = -32000.0
High Scale Value (A/D Units) = 10.000
Low Scale Value (A/D Units) = -10.000



#### **Channel Parameters (Continued)**

| Parameter                     | Default | Description                                              |
|-------------------------------|---------|----------------------------------------------------------|
| Positive Rate of Change Limit | 0.0     | Rate of change in Engineering Units per Second that      |
| (Eng Units)                   |         | will trigger a Positive Rate of Change alarm. Default is |
|                               |         | disabled. Used with "Rate of Change Sampling Rate"       |
|                               |         | parameter.                                               |
| Negative Rate of Change Limit | 0.0     | Rate of change in Engineering Units per Second that      |
| (Eng Units)                   |         | will trigger a Negative Rate of Change alarm. Default is |
|                               |         | disabled. Used with "Rate of Change Sampling Rate"       |
|                               |         | parameter.                                               |
| Rate of Change Sampling Rate  | 0.0     | Time to wait between comparisons (from 0 to 300          |
|                               |         | seconds). Default of 0.0 is to check after every input   |
|                               |         | sample.                                                  |

#### Rate of Change Alarms: ALG626 and ALG628

These modules can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either Rate of Change parameter is configured to be non-zero, Module takes the difference in Engineering Units between the previous rate of change sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Units change from the previous sample to current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Units change between samples is positive, Module compares the results in comparing the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the "Diagnostic Reporting Enable", "Fault Reporting Enable", and "Interrupts Enabled" parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. If the Rate of Change Sampling Rate is 0 or any time period less than the channel update rate, Module compares the Rate of Change for every input sample of the channel.

# **Channel Parameters (Continued)**

| Default          | Description                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The defaults for | Alarms and Deadbands                                                                                                                                                  |
| the High-High,   | All of the alarm parameters are specified in                                                                                                                          |
| High, Low, and   | Engineering Units. To use alarming, the A/D Alarm                                                                                                                     |
| Low-Low          | Mode must also be configured as enabled.                                                                                                                              |
| parameters       | High-High Alarm and Low-Low Alarm: When the                                                                                                                           |
| depend on the    | configured value is reached or passed, a Low-Low                                                                                                                      |
| configured Range | Alarm or High-High Alarm is triggered. The configured                                                                                                                 |
| Type and Range.  | values must be lower than/higher than the                                                                                                                             |
| Each Range and   | corresponding low/high alarm limits.                                                                                                                                  |
| Range Type has a | High Alarm and Low Alarm: When the configured value                                                                                                                   |
| different set of | is reached or below (above), a Low (High) Alarm is                                                                                                                    |
| default values.  | triggered.                                                                                                                                                            |
|                  | High and Low Alarm Deadbands: A range in                                                                                                                              |
|                  | Engineering Units above the alarm condition (low                                                                                                                      |
|                  | deadband) or below the alarm condition (high                                                                                                                          |
|                  | deadband) where the alarm status bit can remain set                                                                                                                   |
|                  | even after the alarm condition goes away. For the                                                                                                                     |
|                  | alarm status to clear, the channel input must fall                                                                                                                    |
|                  | outside the deadband range.                                                                                                                                           |
|                  | Alarm Deadbands should not cause the alarm clear                                                                                                                      |
|                  | condition to be outside the Engineering Unit User                                                                                                                     |
|                  | Limits range. For example, if the engineering unit                                                                                                                    |
|                  | range for a channel is -1000.0 to +1000.0 and a High                                                                                                                  |
|                  | Alarm is set at +100.0, the High Alarm Deadband value                                                                                                                 |
|                  | range is 0.0 to less than 1100.0. A deadband of 1100.0                                                                                                                |
|                  | or more would put the High Alarm clear condition                                                                                                                      |
|                  | below –1000.0 units making the alarm impossible to                                                                                                                    |
|                  | clear within the limits.                                                                                                                                              |
| 0.0              | Engineering Units offset to change the base of the                                                                                                                    |
|                  | input channel. This value is added to the scaled value                                                                                                                |
|                  | on the channel prior to alarm checking.                                                                                                                               |
| Disabled         | Disabled / Enabled. Controls whether software filtering                                                                                                               |
|                  | will be performed on the inputs.                                                                                                                                      |
| 0                | Specifies the amount of time in milliseconds for the                                                                                                                  |
|                  | software filter to reach 63.2% of the input value.                                                                                                                    |
|                  | A value of 0 indicates software filter is disabled. A                                                                                                                 |
|                  | value of 100 indicates data will achieve 63.2% of its                                                                                                                 |
|                  | value in 100ms. Default is 0.                                                                                                                                         |
|                  | the High-High, High, Low, and Low-Low parameters depend on the configured Range Type and Range. Each Range and Range Type has a different set of default values.  0.0 |

#### Using Alarming: ALG626 and ALG628

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

#### **Using Interrupts**

To properly configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of this module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address corresponding to that channel.

#### **Example:**

In this example, the Channel Values Reference Address block is mapped to %AI0001-%AI0020. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AI00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AI0003" as the Trigger.

#### **Fault Reporting and Interrupts**

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

#### **Channel Parameters (Continued)**

| Parameter            | Default  | Description                                                      |
|----------------------|----------|------------------------------------------------------------------|
| HART Communications  | Disabled | Enabled/disabled. Set this to <i>enabled</i> if the channel will |
|                      |          | use HART communications. Enabling HART                           |
|                      |          | communications on a channel forces the channel to 4-             |
|                      |          | 20mA operation.                                                  |
| HART Slot Variables  | Disabled | Enabled/disabled. If HART Slot Variables is enabled,             |
|                      |          | Module will periodically send HART command #33 to                |
|                      |          | request data. Channel variables will be read and placed in       |
|                      |          | the HART scan block channel data. For each slot, the             |
|                      |          | variable assignment code can be set between 0 and 255.           |
| Slot Code 0, 1, 2, 3 | 1        | The slot transmitter variable assignment code that will be       |
|                      |          | used to retrieve data from the connected HART device.            |
|                      |          | This is used with HART Pass-Through command 33, byte 0.          |
|                      |          | These values are used in the request data for HART               |
|                      |          | command #33.                                                     |

## 11.2.4 Input Module Data Formats: ALG626 and ALG628

This section explains how Module uses separate reference areas that can be assigned during module configuration:

- Channel Value Reference Data, required memory for the analog input channel values.
- Input Channel Diagnostic Reference Data, optional memory for channel faults and alarms.
- *Module Status Reference Data,* optional memory for general module status data.

In addition, during configuration, optional *HART Reference Data*, memory can be assigned. Refer to the section "HART Reference Data" later in this chapter for details.

#### Channel Value Reference Data: ALG626 and ALG628

Module reports its input channel data in its configured *Channel Value Reference* input words, beginning at its assigned Channel Value Reference Address. Each channel value occupies 2 words, whether the channel is used or not:

| Channel Value<br>Reference Address | Contains this Input |
|------------------------------------|---------------------|
| +0, 1                              | Channel 1           |
| +2, 3                              | Channel 2           |
| +4, 5                              | Channel 3           |
| +6, 7                              | Channel 4           |
| +8, 9                              | Channel 5           |
| +10, 11                            | Channel 6           |
| +12, 13                            | Channel 7           |
| +14, 15                            | Channel 8           |
| For Module IC695ALG6               | 526 Only:           |
| +16, 17                            | Channel 9           |
| +18, 19                            | Channel 10          |
| +20, 21                            | Channel 11          |
| +22, 23                            | Channel 12          |
| +24, 25                            | Channel 13          |
| +26, 27                            | Channel 14          |
| +28, 29                            | Channel 15          |
| +30, 31                            | Channel 16          |

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

#### Resolution and Range Type

The actual resolution for each input depends on the Range Type and A/D Filter Frequency configured for that channel. At higher Filter Frequencies, input resolution decreases. The approximate resolution in bits for each Filter Frequency and Range Type are displayed in the following table.

|                     | Range Type |                                      |                                                           |  |
|---------------------|------------|--------------------------------------|-----------------------------------------------------------|--|
| Filter<br>Frequency | ±10<br>Vdc | 0 to 10<br>Vdc,<br>±5Vdc,<br>±20 Vdc | 0 to 5Vdc,<br>1Vdc to<br>5Vdc,<br>0 to 20mA,<br>4 to 20mA |  |
| 8 Hz                | 18         | 17                                   | 16                                                        |  |
| 12 Hz               | 17         | 16                                   | 15                                                        |  |
| 16 Hz               | 17         | 16                                   | 15                                                        |  |
| 40 Hz               | 16         | 15                                   | 14                                                        |  |
| 200 Hz              | 15         | 14                                   | 13                                                        |  |
| 500 Hz              | 14         | 13                                   | 12                                                        |  |

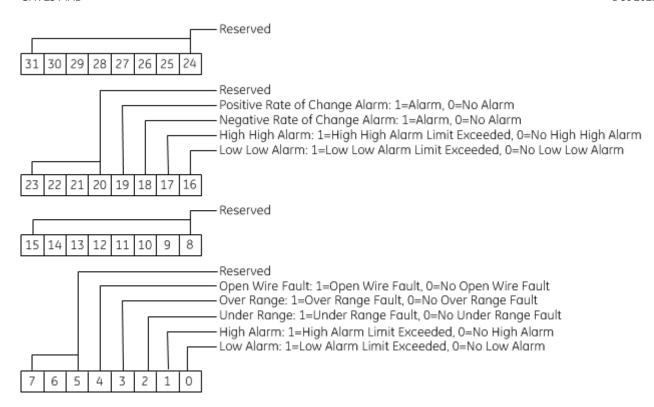
#### **Channel Scanning**

These modules use 4 A/D converters to achieve the fastest possible channel scan times. Module has up to four acquisition cycles for each module scan. The acquisition cycles and channels acquired during each cycle are:

| Acquisition | Channels Acquired |              |  |
|-------------|-------------------|--------------|--|
| Cycle       | IC695ALG628       | IC695ALG626  |  |
| 1           | 1, 5              | 1, 5, 9, 13  |  |
| 2           | 2, 6              | 2, 6, 10, 14 |  |
| 3           | 3, 7              | 3, 7, 11, 15 |  |
| 4           | 4, 8              | 4, 8, 12, 16 |  |

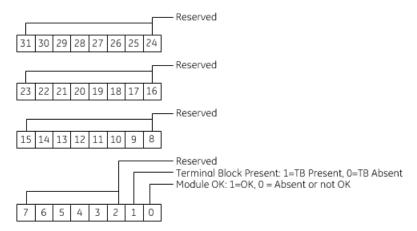
To bypass an acquisition cycle, all channels that would be acquired during that cycle must be disabled.

For fastest scan times, always wire by acquisition cycle. For example, if only eight channels were used on the 16-channel module, IC695ALG626, channels 1, 2, 5, 6, 9, 10, 13, and 14 should be used for optimum performance.


# Input Channel Diagnostic Reference Data: ALG626 and ALG628

If Module is configured to use a *Diagnostic Reference Address*, it reports channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for this module. Use of this feature is optional.

The diagnostics data for each channel occupies 2 words (whether the channel is used or not):


| Dinapostis                   | Contains         |  |  |
|------------------------------|------------------|--|--|
| Diagnostic Reference Address | Diagnostics Data |  |  |
| Reference Address            | for:             |  |  |
| +0, 1                        | Channel 1        |  |  |
| +2, 3                        | Channel 2        |  |  |
| +4, 5                        | Channel 3        |  |  |
| +6, 7                        | Channel 4        |  |  |
| +8, 9                        | Channel 5        |  |  |
| +10, 11                      | Channel 6        |  |  |
| +12, 13                      | Channel 7        |  |  |
| +14, 15                      | Channel 8        |  |  |
| For Module IC695ALG626 Only: |                  |  |  |
| +16, 17                      | Channel 9        |  |  |
| +18, 19                      | Channel 10       |  |  |
| +20, 21                      | Channel 11       |  |  |
| +22, 23                      | Channel 12       |  |  |
| +24, 25                      | Channel 13       |  |  |
| +26, 27                      | Channel 14       |  |  |
| +28, 29                      | Channel 15       |  |  |
| +30, 31                      | Channel 16       |  |  |

When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel. For each channel, the format of this data is:



#### Module Status Reference Data: ALG626 and ALG628

Module can optionally be configured to return two bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Reference* area configured for this module.



During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

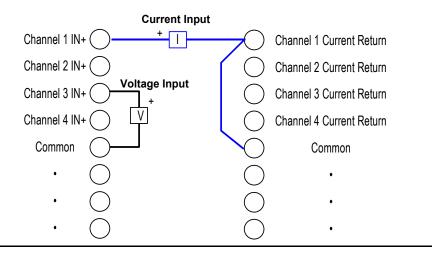
#### **Terminal Block Detection**

Module automatically checks for the presence of a Terminal Block. The TB LED indicates the state of the terminal block of this module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block." If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 2 of Module Status Reference indicates the status of the terminal block.

## 11.2.5 Field Wiring: IC695ALG626 and ALG628, Single-Ended Mode


The following table lists wiring connections for Single-ended mode.

| Terminal | ALG628        | ALG626         | ALG628                           | ALG626                             | Terminal |
|----------|---------------|----------------|----------------------------------|------------------------------------|----------|
| 1        | Channel 1 IN+ |                | Channel 1 Current Return (IRTN1) |                                    | 19       |
| 2        | Channel 2 IN+ |                | Channel 2 Curre                  | ent Return (IRTN2)                 | 20       |
| 3        | Channel 3 IN+ |                | Channel 3 Curre                  | ent Return (IRTN3)                 | 21       |
| 4        | Channel 4 IN+ |                | Channel 4 Curre                  | ent Return (IRTN4)                 | 22       |
| 5        | Common        |                | Common                           |                                    | 23       |
| 6        | Channel 5 IN+ |                | Channel 5 Current Return (IRTN5) |                                    | 24       |
| 7        | Channel 6 IN+ |                | Channel 6 Current Return (IRTN6) |                                    | 25       |
| 8        | Channel 7 IN+ |                | Channel 7 Current Return (IRTN7) |                                    | 26       |
| 9        | Channel 8 IN+ |                | Channel 8 Current Return (IRTN8) |                                    | 27       |
| 10       | No Connection | Channel 9 IN+  | No Connection                    | Channel 9 Current Return (IRTN9)   | 28       |
| 11       | No Connection | Channel 10 IN+ | No Connection                    | Channel 10 Current Return (IRTN10) | 29       |
| 12       | No Connection | Channel 11 IN+ | No Connection                    | Channel 11 Current Return (IRTN11) | 30       |
| 13       | No Connection | Channel 12 IN+ | No Connection                    | Channel 12 Current Return (IRTN12) | 31       |
| 14       | Common        |                | Common                           |                                    | 32       |
| 15       | No Connection | Channel 13 IN+ | No Connection                    | Channel 13 Current Return (IRTN13) | 33       |
| 16       | No Connection | Channel 14 IN+ | No Connection                    | Channel 14 Current Return (IRTN14) | 34       |
| 17       | No Connection | Channel 15 IN+ | No Connection                    | Channel 15 Current Return (IRTN15) | 35       |
| 18       | No Connection | Channel 16 IN+ | No Connection                    | Channel 16 Current Return (IRTN16) | 36       |

There are no shield terminals on these modules. For shielding, tie the cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided for this purpose.

All the common terminals are connected together internally, so any common terminal can be used for the negative lead of the external power supply.

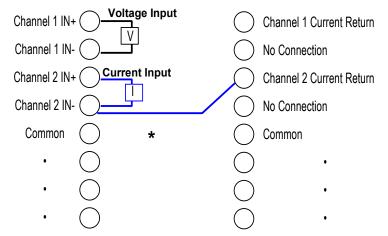
Figure 318: Field Wiring Single-Ended ALG626 or ALG628



For single-ended mode, a voltage input should be connected between its Channel IN+ terminal and a Common (COM) return terminal.

A current input should be connected between its Channel IN+ terminal and its Channel Current Return Terminal. In addition, a jumper wire should be connected between the Channel Current Return terminal and a Common (COM) return.

# 11.2.6 Field Wiring: IC695ALG626 and ALG628, Differential Mode


The following table lists wiring connections for modules configured for Differential mode.

| Terminal | ALG628                      | ALG626        | ALG628                           | ALG626                           | Terminal |
|----------|-----------------------------|---------------|----------------------------------|----------------------------------|----------|
| 1        | Channel 1 IN+               |               | Channel 1 Current Return (IRTN1) |                                  | 19       |
| 2        | Channel 1 IN -              |               | No Connection                    |                                  | 20       |
| 3        | Channel 2 IN+               |               | Channel 2 Curre                  | nt Return (IRTN2)                | 21       |
| 4        | Channel 2 IN -              |               | No Connection                    |                                  | 22       |
| 5        | Common                      |               | Common                           |                                  | 23       |
| 6        | Channel 3 IN+               |               | Channel 3 Curre                  | nt Return (IRTN3)                | 24       |
| 7        | Channel 3 IN-               |               | No Connection                    |                                  | 25       |
| 8        | Channel 4 IN+               |               | Channel 4 Current Return (IRTN4) |                                  | 26       |
| 9        | Channel 4 IN-               |               | No Connection                    |                                  | 27       |
| 10       | No Connection               | Channel 5 IN+ | No Connection                    | Channel 5 Current Return (IRTN5) | 28       |
| 11       | No Connection               | Channel 5 IN- | No Connection                    |                                  | 29       |
| 12       | No Connection               | Channel 6 IN+ | No Connection                    | Channel 6 Current Return (IRTN6) | 30       |
| 13       | No Connection Channel 6 IN- |               | No Connection                    |                                  | 31       |
| 14       | Common                      |               | Common                           |                                  | 32       |
| 15       | No Connection               | Channel 7 IN+ | No Connection                    | Channel 7 Current Return (IRTN7) | 33       |
| 16       | No Connection               | Channel 7 IN- | No Connection                    |                                  | 34       |
| 17       | No Connection               | Channel 8 IN+ | No Connection                    | Channel 8 Current Return (IRTN8) | 35       |
| 18       | No Connection               | Channel 8 IN- | No Connection                    |                                  | 36       |

There are no shield terminals on these modules. For shielding, tie the cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided for this purpose.

All the common terminals are connected together internally, so any common terminal can be used for the negative lead of the external power supply.

Figure 319: Field Wiring Differential Mode ALG626 or ALG628



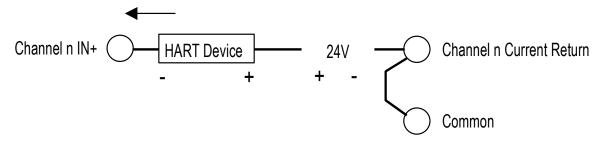
<sup>\*</sup> Keep this jumper as short as possible to minimize error due to the added resistance of the wire. This resistance should be  $25m\Omega$  or less.

For differential inputs, two adjacent terminals are connected as one channel. The lower-numbered terminal acts as the high side.

A voltage input is connected between the two adjacent Channel IN terminals, as shown in Figure 319.

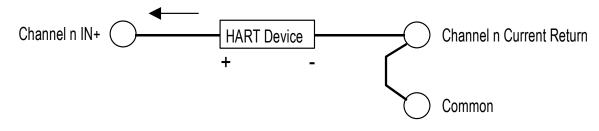
A current input is connected between the Channel IN+ and Current Return terminals for that channel. In addition, a jumper wire must be connected between the Channel IN - terminal and the corresponding Channel Current Return terminal.

Tie common to signal ground for improved channel-to-channel Crosstalk immunity.


Two door cards are provided with Module: one shows connections for single-ended mode and the other shows connections for differential. Insert the card that matches the wiring that will be used.

#### 11.2.7 HART Device Connections

Example connections for 2-wire transmitters are displayed in the following figure.


#### **Connecting Two-Wire Current Loop**

**Figure 320: HART 2-Wire Current Loop Connection** 



## **Connecting an Active-Source Device**

#### **Figure 321: HART Active Source Device Connection**



# 11.3 Analog Output Module 8-Channel Current/Voltage with HART: IC695ALG728

# Figure 322: IC695ALG728



**Non-Isolated Analog Current/Voltage Output** module, IC695ALG728, provides eight configurable voltage or current output channels with HART version 5.0 communications capability on each channel. Module has two internal HART modems. Four single-ended channels are multiplexed with each HART modem.

Analog channels can be configured for these output ranges:

- Current: 0 to 20mA, 4 to 20mA
- Voltage: ±10 Vdc, 0 to 10 Vdc

Channels that will use HART communications must be configured for the 4-20mA range.

#### 11.3.1 Features

- Completely software-configurable, no module jumpers to set
- Individually enable or disable channels
- Clamping and Alarm Limits
- Latching of Alarms
- Configurable output bias
- Rapid channel acquisition times based on filter frequency
- Full auto-calibration
- On-board error-checking
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Configurable Hold Last State or Output Defaults
- Version 5.0 HART communications
- Module must be located in an RX3i Universal Backplane.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Hot Insertion and Removal.
- Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>
- This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Terminal Blocks are ordered separately.

#### 11.3.2 Isolated +24Vdc Power

Module must receive its 24Vdc power from an external source. The external source must be connected directly to the terminal block of this module. It cannot be connected via the TB1 connector on the RX3i Universal Backplane.

#### 11.3.3 LEDs: ALG728

Module **OK** LED indicates module status. The **Field Status** LED indicates whether the external +24Vdc power supply is present and is above the minimum level and whether or not faults are present. All LEDs are powered from the backplane power bus.

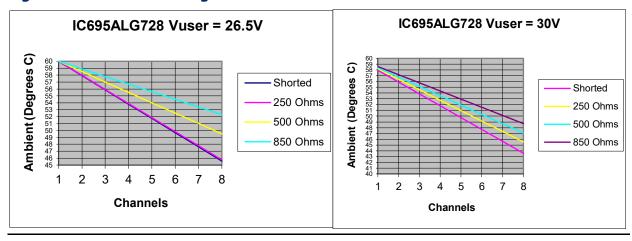
| LED          | State                           | Indicates                                                   |
|--------------|---------------------------------|-------------------------------------------------------------|
| Module OK    | ON Green                        | Module OK and configured                                    |
|              | Green or Amber, blinking slowly | Module OK but not configured                                |
|              | Green, blinking rapidly         | Module performing power-up sequence                         |
|              | OFF                             | Module is defective or no backplane power present           |
| Field Status | ON Green                        | No faults on any enabled channel, and Terminal Block is     |
|              |                                 | present                                                     |
|              | ON Amber and TB Green           | Terminal Block is installed, fault on at least one channel, |
|              |                                 | or field power is not present                               |
|              | ON Amber and TB Red             | Terminal Block not fully removed, field power still         |
|              |                                 | detected.                                                   |
|              | OFF and TB Red                  | Terminal block not present and no field power is            |
|              |                                 | detected.                                                   |
| ТВ           | ON Red                          | Terminal block not present or not fully seated              |
|              | ON Green                        | Terminal block is present                                   |
|              | OFF                             | No backplane power to module                                |

# 11.3.4 Specifications: ALG728

| ALG728                                  | Specifications                                                                      |  |
|-----------------------------------------|-------------------------------------------------------------------------------------|--|
| Output Ranges                           | Current: 0 to 20mA, 4 to 20mA                                                       |  |
|                                         | Voltage: ±10 Vdc, 0 to 10 Vdc                                                       |  |
| Backplane Power Requirements            | For ALG728-CB or earlier: 380 mA maximum at 3.3Vdc                                  |  |
|                                         | For ALG728-DC or later: 250 mA maximum at 3.3Vdc                                    |  |
| Power Dissipation within Module         | 7.25 Watts maximum                                                                  |  |
| (V <sub>user</sub> =24Vdc)              |                                                                                     |  |
| Thermal Derating                        | Refer to <i>Thermal Derating Charts ALG728</i> below. Applies to Current Mode only. |  |
| External Power Supply V <sub>user</sub> | Voltage Range: +19.2Vdc to +30 Vdc                                                  |  |
|                                         | Current required: 250mA maximum                                                     |  |
| Resolution                              | ±10 Vdc: 15.9 bits, 0 to 10 Vdc: 14.9 bits, 0 to 20mA: 15.9 bits,                   |  |
|                                         | 4 to 20mA: 15.6 bits                                                                |  |
| HART Communications                     | Version 5.0 HART protocol                                                           |  |
| Output Data Format                      | Configurable as floating-point IEEE 32-bit or 16-bit integer in a 32-bit field      |  |
| Analog Update Rate                      | 16ms with HART (approximate, all eight channels)                                    |  |
| (Determined by I/O scan time,           | 8ms without HART (approximate, all eight channels)                                  |  |
| application dependent.)                 |                                                                                     |  |

**HART Data Scan Time (in seconds)** The HART data scan can consist of up to two acquisition cycles (similar but asynchronous to the analog scan time).

Each cycle includes a specific set of channels. For ALG728: 1-4, 5-8 are separate channel groups. Total HART scan time depends on the number of acquisition cycles in the scan, number of retries, enabling/disabling of slot variables, and use of pass-through commands. If slot variables are enabled, update times are doubled.


| 1 HART device in group            | Each HART Data channel updates every 0.7 second (typical)       |  |
|-----------------------------------|-----------------------------------------------------------------|--|
| 2 HART devices in group           | Each HART Data channel updates every 1.9 seconds (typical)      |  |
| Output Over-voltage Protection    | Current outputs only: -30V for 60 seconds, +30V for one hour    |  |
| Calibrated Accuracy <sup>69</sup> | Accurate to within 0.15% of full scale at 25°C                  |  |
|                                   | Accurate to within 0.30% of full scale at 60°C                  |  |
| Output Load Reactance             | Current: 10µH maximum, Voltage: 1µF maximum                     |  |
| Maximum Output Load               | Current: 850 $\Omega$ maximum at $V_{user}$ = 20V               |  |
|                                   | Voltage: 2 kΩ minimum                                           |  |
| Output Gain Drift                 | Voltage output: 20ppm per degree C typical                      |  |
|                                   | Current output: 35ppm per degree C typical                      |  |
| Output Settling Time              | Voltage Output: 2ms, 0 to 95%                                   |  |
|                                   | Current output with HART: 70ms, 0 to 95%                        |  |
|                                   | Current output without HART: 23ms, 0 to 95%                     |  |
| Isolation, Field to Backplane     | 2550 Vdc for one second                                         |  |
| Maximum Compliance Voltage        | V <sub>user</sub> – 3V (minimum) to V <sub>user</sub> (maximum) |  |
|                                   |                                                                 |  |

For product standards and general specifications, refer to Appendix A:.

 $<sup>^{69}</sup>$  In the presence of severe RF interference (IC 801-3, 10V/m), accuracy may be degraded to  $\pm 1\%$  FS. Analog Modules with HART Communications

## **Thermal Derating, ALG728 Current Mode**

Figure 323: Thermal Derating Charts ALG728 Current Mode



## 11.3.5 Configuration: ALG728

#### **Module Parameters**

| Parameter            | Default    | Description                                                         |
|----------------------|------------|---------------------------------------------------------------------|
| Outputs Reference    | %AQxxxxx   | Starting address for the output data of this module. This defaults  |
| Address              |            | to the next available %AQ block. The format of this data is shown   |
|                      |            | on in Section 11.4.1.                                               |
| Outputs Reference    | ALG728: 16 | The number of words used for the output data of this module.        |
| Length               |            | This parameter cannot be changed.                                   |
| Output Command       | %AIxxxxx   | Stating address for the command feedback data of this module.       |
| Feedback Reference   |            | This defaults to the next available %AI address after a non-zero    |
| Address              |            | length is configured.                                               |
| Output Command       | 0          | The number of words used for the command feedback data of           |
| Feedback Length      |            | this module. Length defaults to 0. It can be set to 8 or 16,        |
|                      |            | depending on Module type being configured.                          |
| Diagnostic Reference | %Ixxxxx    | Starting address for the channel diagnostics status data. This      |
| Address              |            | defaults to the next available %I block. The format of this data is |
|                      |            | shown in Section 11.4.1, Output Channel Diagnostic Reference Data:  |
|                      |            | ALG728.                                                             |
| Diagnostic Reference | 0          | Read Only. The number of bit reference bits required for the        |
| Length               |            | Channel Diagnostics data. Default is 0, which means mapping of      |
|                      |            | Channel Diagnostics is disabled. Change this to a non-zero value    |
|                      |            | to enable Channel Diagnostics mapping. Maximum length is 256        |
|                      |            | bits.                                                               |
| Module Status        | %Ixxxxx    | Starting address for the status data of this module. This defaults  |
| Reference Address    |            | to the next available %I block. The format of this data is shown in |
|                      |            | Section 11.4.1, Module Status Data: ALG728.                         |
| Module Status        | 0          | Read Only. The number of bits (0 or 32) required for Module         |
| Reference Length     |            | Status data. Default is 0, which means mapping of Module Status     |
|                      |            | data is disabled. Change this to a non-zero value to enable         |
|                      |            | Module Status data mapping.                                         |

#### Analog Output Commanded Feedback

Module returns a copy of the analog output data received from CPU in its corresponding channel analog input shared memory. Output Feedback can be monitored to check the values being sent to the channels. The data is in the same scaled format as the output data for each channel. During normal operation, this feedback data should match the actual output data after one or more PLC scans of module inputs. During faults, ramping, over-range, and clamping conditions, the analog output data may differ from the commanded output.

#### Over-Temperature

If Over-Temperature is enabled, Module generates an Over-Temperature alarm if the internal temperature of this module is too great for the number of outputs that are on at the same time. In addition to the configurable options for Over-Temperature fault reporting and interrupts, an over temperature condition is also indicated by the Over-Temperature bit in the Status Reference data of this module. Detection of the Over-temperature status bit is always enabled.

### **Module Parameters (Continued)**

| Parameter           | Default  | Description                                                                    |                                                 |  |  |
|---------------------|----------|--------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| HART Data Scan      | No data  | Selects whether the CPU will automatically scan from the HART module: no       |                                                 |  |  |
| Control             |          | data, changed data only, or all data for each HART-enabled channel. Refer to   |                                                 |  |  |
|                     |          | the below for details of mer                                                   | mory usage.                                     |  |  |
|                     |          | Dynamic Data Only: the firs                                                    | t 18 words or 288 bits of HART data per input   |  |  |
|                     |          | device.                                                                        |                                                 |  |  |
|                     |          | All Data: all of the HART dat                                                  | a (88 words or 1408 bits for each HART input    |  |  |
|                     |          | device.                                                                        |                                                 |  |  |
| HART Pass-Through   | Once per | Selects whether Module wil                                                     | l automatically service a HART pass-through     |  |  |
| Service Options     | two      | command each 1, 2, or 4-ch                                                     | annel scans or only upon change of HART device  |  |  |
|                     | channel  | configuration, or if data has                                                  | sn't been read for 10 seconds (Pass-Through     |  |  |
|                     | scans    | Only). If Pass-Through Only                                                    | is selected, scan data is not available to the  |  |  |
|                     |          | application program.                                                           |                                                 |  |  |
| HART Status         |          | Starting address of the HAR                                                    | RT Status data. Format of this data is shown in |  |  |
| Reference Address   |          | Section 11.5.1.                                                                | Section 11.5.1.                                 |  |  |
| HART Status         |          | Length of the HART Status data; 4 words or 64 bits.                            |                                                 |  |  |
| Reference Length    |          |                                                                                |                                                 |  |  |
| HART Data Reference |          | Starting address for the HART data of this module in %I, %Q, %AI, %AQ, %R,     |                                                 |  |  |
| Address             |          | %W, %G, %M, or %T memory. Format of this data is shown in Section 11.4.1.      |                                                 |  |  |
| HART Data Reference | 0        | Length of the HART data. If Data Scan Control is set to no data, the length is |                                                 |  |  |
| Length              |          | 0. The length is automatically set according to the selection made for HART    |                                                 |  |  |
|                     |          | Data Scan Control:                                                             |                                                 |  |  |
|                     |          | HART Data Scan Control                                                         | HART Data Reference Length                      |  |  |
|                     |          | No Data                                                                        | 0                                               |  |  |
|                     |          | Dynamic Data Only                                                              | Highest HART-enabled Channel Number X (18       |  |  |
|                     |          |                                                                                | words or 288 bits)                              |  |  |
|                     |          | All Data                                                                       | Highest HART-enabled Channel Number X (88       |  |  |
|                     |          |                                                                                | words or 1408 bits)                             |  |  |
| I/O Scan Set        | 1        | Assigns Module I/O status data to a scan set defined in the CPU                |                                                 |  |  |
|                     |          | configuration. Determines how often the RX3i polls the data                    |                                                 |  |  |

| Parameter           | Default  | Description                                                                   |
|---------------------|----------|-------------------------------------------------------------------------------|
| Channel Faults w/o  | Disabled | Enabled / Disabled: Controls whether channel faults and configured alarm      |
| Terminal Block      |          | responses will be generated after a Terminal Block removal. The default       |
|                     |          | setting of Disabled means channel faults and alarms are suppressed when       |
|                     |          | the Terminal Block is removed. This parameter does not affect module faults   |
|                     |          | including the Terminal Block loss/add fault generation.                       |
| Module Fault        | Enabled  | Enabled / Disabled. Controls whether Module will report faults resulting from |
| Reporting Enabled   |          | either loss of field power or over-temperature conditions.                    |
| Field Power Removed | Enabled  | Enabled / Disabled. With Module Fault Reporting enabled, this parameter       |
| Enabled             |          | controls reporting of Field Power Removed module faults.                      |
| Over Temp Enabled   | Enabled  | Enabled / Disabled. With Module Fault Reporting enabled, this parameter       |
|                     |          | controls reporting of Over-temperature module faults.                         |
| Module Interrupt    | Disabled | Enabled / Disabled.                                                           |
| Reporting Enabled   |          |                                                                               |
| Field Power Removed | Disabled | Enabled / Disabled. With Module Interrupt Reporting enabled, this parameter   |
| Enabled             |          | controls interrupts for Field Power Removed module faults.                    |

## **Channel Parameters**

| Parameter        | Default       | Description                                                              |
|------------------|---------------|--------------------------------------------------------------------------|
| Range Type       | Disabled      | Sets up the type of output to be used for each channel. Choices are:     |
|                  | Current       | Disabled Voltage, Disabled Current, Current/Voltage. Channels used       |
|                  |               | for HART communications must have Range Type set to                      |
|                  |               | Current/Voltage.                                                         |
| Range (Only for  | -10 Vdc to    | For Current/Voltage: -10 Vdc to +10 Vdc, 0V to +10 Vdc, 4mA to 20 mA,    |
| Range Type       | +10 Vdc       | 0mA to 20 mA. Channels used for HART communications must have            |
| Current/Voltage) |               | Range set to 4mA to 20A.                                                 |
| Channel Value    | 32-bit        | 16-bit integer or 32-bit floating-point                                  |
| Format           | Floating-     |                                                                          |
|                  | point         |                                                                          |
| Outputs Default  | Force to      | Controls the state the output will be set to in Outputs Disabled mode    |
|                  | Default Value | (stop), if a fault occurs, if power is lost, or if the configuration is  |
|                  |               | cleared.                                                                 |
|                  |               | Choices are Hold Last State, or default to a specific configured default |
|                  |               | value.                                                                   |

#### Range Type

Each channel on Module that will be used should be configured for Current/Voltage. Its voltage or current range and other parameters can then be configured as needed. If the channel output will not be used and is not wired, select either "Disabled" option. If a channel is disabled, it is not necessary to configure any of its other parameters.

If the channel is wired to a current output, but is not being used, select "Disabled Current". This will set the output current for that channel to 0mA (the output voltage for that channel will be non-zero).

If the channel is wired to a voltage output, but is not being used, select "Disabled Voltage". This will set the output voltage for that channel to 0V (the output current for that channel will be non-zero).

#### **Output Defaults**

If Hold Last State is enabled, an output will hold its last commanded value when the CPU indicates Outputs Not Enabled, or if one of the fault conditions listed below occurs. If Hold Last State is disabled, the output is commanded to go to the Default Value. The Default Value must be set within the selected output range. If both Default Value and Ramp Rate are enabled, the channel will ramp to the default value. Fault conditions are:

- CPU outputs are not enabled
- Backplane power is not ok. In that case, there is no ramping, even if ramping is enabled.
- Loss of communications from CPU.
- Loss of I/O communications.
- Loss of field power.

#### **Outputs Default Notes**

- Hot Removal of Module in an I/O Enabled mode will cause all outputs to Hold Last State (even channels configured for Force to Default Value). If that operation is not desirable, the outputs can be forced to default by first turning off field power and removing the Terminal Block of this module before hot-removing Module.
- Resetting Module using SVC\_REQ 24 causes all channels to Hold Last State even if Default Value is configured. The application program must handle output defaulting before execution of the Service Request.
- Default Ramp Rate configuration is ignored if backplane power from the power supply is lost. Channels configured for Default Value go to the default value immediately.
- The first time a configuration is stored following a return of backplane power, the Default Ramp rate is not used. Any channel configured for Default Value goes to its default value immediately. If analog power was not lost and the same configuration is restored on the next power-up, the channel state is unchanged from the time the power was lost. The Default Ramp Rate is used for any subsequent reconfiguration.

#### **Output Default Conditions and Actions**

| Condition           | Hold Last     | Default   | Outputs     | Channel Output Setting             |
|---------------------|---------------|-----------|-------------|------------------------------------|
|                     | State or      | Ramp Rate | Enabled and | (Except where indicated, field     |
|                     | Default       | Enabled   | Ramp Rate   | power is assumed to be present).   |
|                     | Value         |           | Enabled     |                                    |
| Outputs Enabled and | N/A           | N/A       | No          | Output goes to its commanded       |
| No Faults           |               |           |             | value from reference memory;       |
|                     |               |           |             | defaults don't apply.              |
|                     | N/A           | N/A       | Yes         | Output is ramped to the            |
|                     |               |           |             | commanded output from reference    |
|                     |               |           |             | memory at the Outputs Enabled      |
|                     |               |           |             | ramp rate. Defaults don't apply.   |
| Outputs Disabled,   | Default Value | No        | N/A         | Output is set to the Default Value |
| Fault Mode, or      | Default Value | Yes       | N/A         | Output is ramped to the Default    |
| Reconfiguration     |               |           |             | Value at the Default ramp rate,    |
|                     |               |           |             | starting at the last commanded     |
|                     |               |           |             | value before entering mode.        |
|                     | Hold Last     | N/A       | N/A         | Output is held at the last         |
|                     | State         |           |             | commanded value                    |

| Condition                                                           | Hold Last<br>State or<br>Default<br>Value | Default<br>Ramp Rate<br>Enabled | Outputs Enabled and Ramp Rate Enabled | Channel Output Setting (Except where indicated, field power is assumed to be present). |
|---------------------------------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|
| Loss of Backplane Power or First Configuration Store                | Default Value                             | N/A                             | N/A                                   | Output is set to the Default Value.                                                    |
| after Power-up                                                      | Hold Last<br>State                        | N/A                             | N/A                                   | Output is held at last commanded value.                                                |
| Hot Removal, Reset<br>with SVCREQ 24 or<br>Cleared<br>Configuration | N/A                                       | N/A                             | N/A                                   | Output is held at last commanded value.                                                |
| Loss of Field Power                                                 | N/A                                       | N/A                             | N/A                                   | All outputs go to 0V and 0mA.                                                          |

#### **Channel Parameters (Continued)**

| Parameter        | Default               | Description                                             |
|------------------|-----------------------|---------------------------------------------------------|
| High Scale Value | The defaults for the  | Note: Scaling is disabled if both High Scale Eng. Units |
| (Eng Units)      | four Scaling          | equals High Scale A/D Units and Low Scale Eng. Units    |
|                  | parameters depend on  | equals Low Scale A/D Units.                             |
|                  | the configured Range  | Default = High A/D Limit of selected range type.        |
| Low Scale Value  | Type and Range.       | Default is Low A/D Limit of selected range type. Must   |
| (Eng Units)      | Each Range and Range  | be lower than the high scaling value.                   |
| High Scale Value | Type have a different | Default is High A/D Limit of selected range type.       |
| (A/D Units)      | set of defaults.      | Must be greater than the low scaling value.             |
| Low Scale Value  |                       | Default is Low A/D Limit of selected range type.        |
| (A/D Units)      |                       |                                                         |

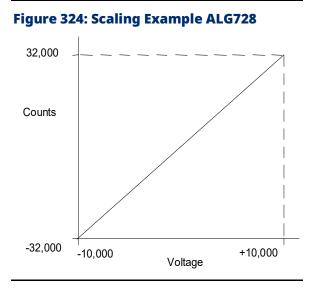
#### **Output Scaling: ALG728**

By default, Module converts a floating-point value from the CPU into a voltage or current output over the entire span of its configured Range. For example, if the Range of a channel is 4 to 20mA, Module accepts channel output values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D units value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the output.

## 11.4 Example

In this example, the application should interpret 32000 counts as  $\pm 10$  Vdc and  $\pm 32000$  counts as  $\pm 10$  Vdc. The following channel configuration will scale a  $\pm 10$  Vdc output channel to  $\pm 32000$  counts.


Channel Value Format = 16-bit Integer

High Scale Value (Eng Units) = 32000.0

Low Scale Value (Eng Units) = -32000.0

High Scale Value (A/D Units) = 10.000

Low Scale Value (A/D Units) = -10.000



## **Channel Parameters (Continued)**

| Parameter               | Default           | Description                                                            |
|-------------------------|-------------------|------------------------------------------------------------------------|
| High Alarm              | The defaults      | All of the alarm parameters are specified in Engineering Units. When   |
| (Eng Units)             | depend on the     | the configured value is reached or below (above), a Low (High) Alarm   |
| Low Alarm               | configured Range. | is triggered.                                                          |
| (Eng Units)             |                   |                                                                        |
| Outputs Enabled Ramp    | 0.0               | The rate in Engineering Units at which the output will change during   |
| Rate                    |                   | normal operation.                                                      |
| (Eng Units)             |                   |                                                                        |
| Default Ramp Rate       | 0.0               | The rate in Engineering Units at which the output will change if a     |
| (Eng Units)             |                   | fault condition occurs or if outputs are not enabled.                  |
| Output Clamping Enabled | Disabled          | Enabled / Disabled. Refer to description below.                        |
| Upper Clamp Limit       | The defaults      | The Upper Clamp Limit must be greater than the Lower Clamp Limit.      |
| (Eng Units)             | depend on the     | This parameter can be used to restrict the output to a range that is   |
| Lower Clamp Limit       | configured Range. | narrower than its configured Range Type. For example, a channel        |
| (Eng Units)             |                   | configured for –10 Vdc to +10 Vdc could be restricted to -8Vdc to      |
|                         |                   | +7.5Vdc.                                                               |
| Default Value           | 0.0               | If Hold Last State is disabled, the output is commanded to go to the   |
| (Eng Units)             |                   | Default Vale when the CPU is not in Outputs Enabled mode or under      |
|                         |                   | certain fault conditions.                                              |
| User Offset             | 0.0               | A configurable value that can be used to change the base of the        |
| (Eng Units)             |                   | channel. This value is added to the scaled value of the channel before |
|                         |                   | alarm-checking.                                                        |

#### Lower, Upper Clamp and Alarms: ALG728

Alarms can be used to indicate when Module has been commanded to meet or exceed the configured high or low limits for each channel. These are set at six configurable alarm trigger points:

- High Alarm and Low Alarm
- Upper Clamp and Lower Clamp
- Over-range and Under-range Alarm

Each alarm is individually configurable per channel to generate diagnostics bit status, fault alarms, or interrupt alarms.

If a channel is commanded higher than the Upper Clamp value, the output is set to the Upper Clamp value and an Upper Clamp condition is indicated. If a channel is commanded lower than the Lower Clamp value, the output is set to the Lower Clamp value and a Lower Clamp condition is indicated.

The High and Low Alarm checks are performed on the engineering units output value after possibly being adjusted by ramping, clamping, and fault conditions.

#### **Channel Parameters (Continued)**

| Parameter                                 | Default  | Description                                                 |
|-------------------------------------------|----------|-------------------------------------------------------------|
| Diagnostic Reporting Enable               | Disabled | Diagnostic Reporting Enable options are used to enable      |
| If Diagnostic Reporting is enabled, the   |          | reference memory reporting of alarms into the Diagnostic    |
| additional parameters listed below can be |          | Reference area.                                             |
| used to enable specific types of alarms.  |          | Fault Reporting Enable options enable fault logging of      |
| Fault Reporting Enable                    | Disabled | alarms into the I/O Fault Table.                            |
| If Fault Reporting is enabled, the        |          | These parameters enable or disable the individual           |
| additional parameters listed below can be |          | diagnostics features of a channel.                          |
| used to enable specific types of Faults.  |          | When any of these parameters is enabled, Module uses        |
| Interrupts Enable                         | Disabled | associated parameters to perform the enabled feature.       |
| Low Alarm Enable                          | Disabled |                                                             |
| High Alarm Enable                         | Disabled | For example, if Over Range is enabled in the "Diagnostic    |
| Under Range Enable                        | Disabled | Reporting Enable" menu, Module will set the Over Range bit  |
| Over Range Enable                         | Disabled | in the Diagnostic Reference for the channel.                |
| Lower Clamp Alarm Enable                  | Disabled |                                                             |
| Upper Clamp Alarm Enable                  | Disabled | If any of these parameters is disabled, Module does not     |
|                                           |          | react to the associated alarm conditions.                   |
|                                           |          |                                                             |
|                                           |          | For example, if Low Alarm Enable is set to Disabled in the  |
|                                           |          | "Fault Reporting Enable" menu, the Low Alarm fault is not   |
|                                           |          | logged in the I/O Fault Table when Low Alarm is detected on |
|                                           |          | the channel.                                                |

#### Alarming and Fault Reporting: ALG728

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

#### **Using Interrupts**

To properly configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of this module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address corresponding to that channel.

#### Example:

In this example, the Outputs Reference Address block is mapped to %AQ0001-%AQ0008. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AQ00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the *I/O Interrupt* Type and *%AQ0003* as the Trigger.

#### Fault Reporting and Interrupts

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a

condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

#### **Channel Parameters (Continued)**

| Parameter            | Default  | Description                                                |
|----------------------|----------|------------------------------------------------------------|
| HART Communications  | Disabled | Enabled/disabled. Set HART Communications to enabled if    |
|                      |          | the channel will use HART communications. Enabling         |
|                      |          | HART communications forces the channel to 4-20mA           |
|                      |          | operation.                                                 |
| HART Slot Variables  | Disabled | Enabled/disabled. If HART Slot Variables is enabled,       |
|                      |          | Module will periodically send HART command #33 to          |
|                      |          | request data. Channel variables will be read and placed in |
|                      |          | the HART scan block channel data. For each slot, the       |
|                      |          | variable assignment code can be set between 0 and 255.     |
| Slot Code 0, 1, 2, 3 | 1        | The slot transmitter variable assignment code that will be |
|                      |          | used to retrieve data from the connected HART device.      |
|                      |          | These values are used in the request data for HART         |
|                      |          | command #33.                                               |

## 11.4.1 Output Module Data Formats: ALG728

This section explains how Module uses separate reference areas that can be assigned during module configuration:

- Output Value Reference Data, required memory for the analog output channel values.
- Output Channel Diagnostic Reference Data, optional memory for channel faults and alarms.
- *Module Status Reference Data,* optional memory for general module status data.

In addition, during configuration, optional *HART Reference Data*, memory can be assigned. Refer to the section "HART Reference Data" later in this chapter for details.

#### **Output Value Reference Data: ALG728**

Module receives its channel data from its configured output words, beginning at its assigned *Outputs Reference Address*. Each channel occupies 2 words, whether the channel is used or not:

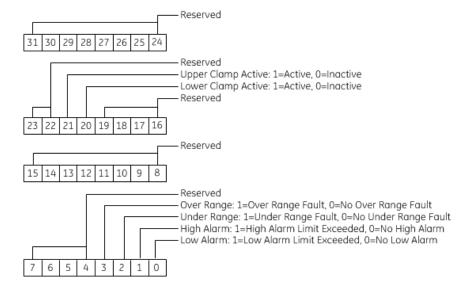
| Outputs Reference | Contains Data |
|-------------------|---------------|
| Address           | for:          |
| +0, 1             | Channel 1     |
| +2, 3             | Channel 2     |
| +4, 5             | Channel 3     |
| +6, 7             | Channel 4     |
| +8, 9             | Channel 5     |
| +10, 11           | Channel 6     |
| +12, 13           | Channel 7     |
| +14, 15           | Channel 8     |

Depending on its configured Channel Value Format, each enabled channel output reference location is read as a 32-bit floating-point or 16-bit integer value.

In the 16-bit integer mode, low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bits is ignored. The full range of the 16-bit integer is a signed decimal value from +32767 to -32768.

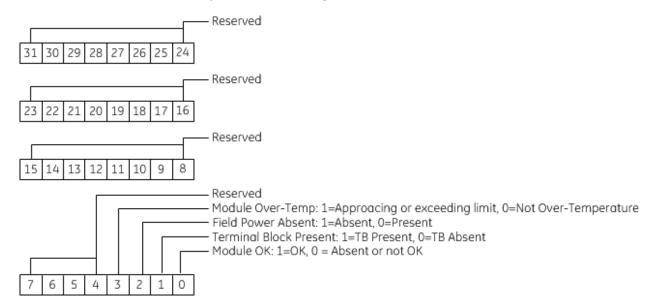
Because the channel reference location is 32 bits, it is possible for the application program to write 32-bit signed decimal values to the output reference. However, the program logic must restrict the magnitude of the value to the range +32767 to -32768. Exceeding this range will result in misinterpretation of the sign bit, and incorrect output channel operation.

#### **Output Channel Diagnostic Reference Data: ALG728**


Module can optionally be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for this module. Use of this feature is optional.

The diagnostics data each channel occupies 2 words (whether the channel is used or not):

| Diagnostic        | <b>Contains Diagnostics</b> |
|-------------------|-----------------------------|
| Reference Address | Data for:                   |
| +0, 1             | Channel 1                   |
| +2, 3             | Channel 2                   |
| +4, 5             | Channel 3                   |
| +6, 7             | Channel 4                   |
| +8, 9             | Channel 5                   |
| +10, 11           | Channel 6                   |
| +12, 13           | Channel 7                   |
| +14, 15           | Channel 8                   |


When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data is:

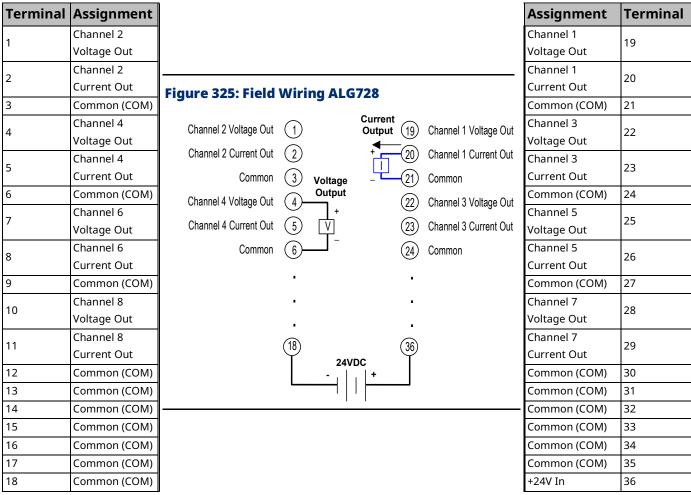


#### **Module Status Data: ALG728**

Module can also optionally be configured to return 4 bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data reference* area configured for this module.



#### **Terminal Block Detection**


Module automatically checks for the presence of a Terminal Block. The TB LED indicates the state of the terminal block of this module. It is green when the Terminal Block is present or red if it is not.

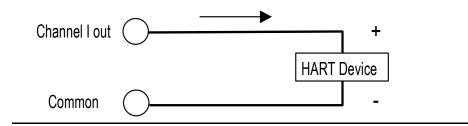
Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 2 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

## 11.4.2 Field Wiring: ALG728

The following table lists wiring connections for Module. There are no shield terminals. For shielding, tie cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provide in the ground bar for this purpose.

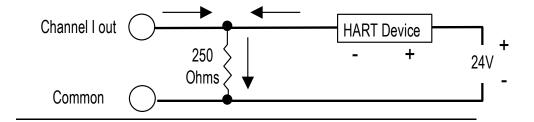



Each channel can be individually-configured to operate as a voltage output or a current output, not both simultaneously. All the common terminals are connected together internally. Therefore, any common terminal can be used for the negative lead of the external power supply.

#### 11.4.3 HART Device Connections

Example connections for 2-wire transmitters are displayed in the following figure.

#### Connecting a HART Output Device


Figure 326: Attaching HART 2-Wire Output Device



#### Connecting a HART Input Transmitter to an Output Channel

In this type of application, the HART output module, IC695ALG728, cannot read the analog current level from the HART device. However, Module can communicate with the HART signal. There is no analog input to Module.

Figure 327: HART Input Transmitter attached to Analog Output Channel



#### 11.5 HART Reference Data

If *HART Data Scan Control* is configured as "Dynamic Data Only" or "All Data", the CPU automatically scans the HART data listed on the next page into the *HART Data Reference Address* configured for this module. The data length depends on whether All Data or Dynamic Data is selected.

This data includes response data associated with several HART Pass-Through Commands. Module stores this data, and then passes it to the CPU either in the automatic HART data scan described above, or in response to function blocks in the application program.

Note that invalid or uninitialized REAL (floating-point) data will be set to NaN (Not-A-Number).

#### 11.5.1 HART Status Data

In addition to the HART Reference Data, Module reports the status of HART communications in its configured HART Status Reference Address. The length of this data is 4 words / 64 bits:

| Hart Status Data | Definition                                                                          |
|------------------|-------------------------------------------------------------------------------------|
| Word 1           | Device Present, one bit per channel. Channel 1 in lowest bit. For 8-channel module, |
|                  | bits 9-16 are not used.                                                             |
| Word 2           | Device Initializing, one bit per channel. Channel 1 in lowest bit. For 8-channel    |
|                  | module, bits 9-16 are not used.                                                     |
| Words 3 and 4    | Not used                                                                            |

## 11.5.2 HART Data Format

|                        | Byte Off | set    | Field Description                                                                                                                | Туре   |
|------------------------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------|--------|
|                        | Begin    | End    |                                                                                                                                  |        |
| Ą                      | 0x0000   | 0x0003 | HART Primary Variable, CMD#3, Bytes 5-8                                                                                          | REAL   |
|                        | 0x0004   | 0x0007 | HART Secondary Variable CMD#3, Bytes 10-13                                                                                       | REAL   |
|                        | 0x0008   | 0x000b | HART Tertiary Variable CMD#3, Bytes 15-18                                                                                        | REAL   |
| Dynamic HART Data Only | 0x000c   | 0x000f | HART Fourth Variable CMD#3, Bytes 20-23                                                                                          | REAL   |
| ıţa                    | 0x0010   | 0x0013 | Slot 0 value. CMD#33, Bytes 2-5                                                                                                  | REAL   |
| Ď                      | 0x0014   | 0x0017 | Slot 1 value CMD#33, Bytes 8-11                                                                                                  | REAL   |
| K                      | 0x0018   | 0x001b | Slot 2 value CMD#33, Bytes 14-17                                                                                                 | REAL   |
| Ŧ                      | 0x001c   | 0x001f | Slot 3 value CMD#33, Bytes 20-23                                                                                                 | REAL   |
| nic                    | 0x0020   |        | HART communication status byte from the last HART command response.                                                              | BYTE   |
| Jar                    | 0x0021   |        | HART device status byte from the last HART command response.                                                                     | BYTE   |
| ᅙ                      | 0x0022   |        | Spare for alignment.                                                                                                             | BYTE*: |
|                        | 0x0024   |        | HART device Manufacturer ID. CMD#0, Byte 1                                                                                       | BYTE   |
|                        | 0x0025   |        | HART device type code. CMD#0, Byte 2                                                                                             | BYTE   |
|                        | 0x0026   |        | Minimum number of preambles device requires. CMD#0, Byte 3                                                                       | BYTE   |
|                        | 0x0027   |        | HART Universal command code. CMD#0, Byte 4                                                                                       | BYTE   |
|                        | 0x0028   |        | HART Transmitter specific revision. CMD#0, Byte 5                                                                                | BYTE   |
|                        | 0x0029   |        | HART device software revision number. CMD#0, Byte 6                                                                              | BYTE   |
|                        | 0x002A   |        | HART device hardware revision number. CMD#0, Byte 7                                                                              | BYTE   |
|                        | 0x002B   |        | HART flags. CMD#0, Byte 8                                                                                                        | BYTE   |
|                        | 0x002C   | 0x002F | HART device ID number. CMD#0, Byte 9-11                                                                                          | BYTE*  |
|                        | 0x0030   | 0x0037 | 8-character device tag. CMD#13, Bytes 0-5 in unpacked ASCII.                                                                     | BYTE*8 |
|                        | 0x0038   | 0x0047 | Device Descriptor. CMD#13, Bytes 6-17 in unpacked ASCII                                                                          | BYTE*  |
|                        | 0x0048   |        | HART Primary Variable Units. CMD#3, Byte 4                                                                                       | BYTE   |
|                        | 0x0049   |        | HART Secondary Variable Units. CMD#3, Byte 9, 0 if not present.                                                                  | BYTE   |
|                        | 0x004a   |        | HART Tertiary Variable Units. CMD#3, Byte 14, 0 if not present.                                                                  | BYTE   |
|                        | 0x004b   |        | HART Fourth Variable Units. CMD#3, Byte 19, 0 if not present.                                                                    | BYTE   |
|                        | 0x004c   |        | HART Primary Variable Code. CMD#50, Byte 0                                                                                       | BYTE   |
|                        | 0x004d   |        | HART Secondary Variable Code. CMD#50, Byte 1                                                                                     | BYTE   |
|                        | 0x004e   |        | HART Tertiary Variable Code. CMD#50, Byte 2                                                                                      | BYTE   |
|                        | 0x004f   |        | HART Fourth Variable Code. CMD#50, Byte 3                                                                                        | BYTE   |
|                        | 0x0050   |        | Units code for range parameter. CMD#15, Byte 2                                                                                   | BYTE   |
|                        | 0x0051   | 0x0053 | Spare for alignment                                                                                                              | BYTE*: |
|                        | 0x0054   | 0x0057 | Low transmitter range for analog signal in eng. units. CMD#15, Bytes 3-6                                                         | REAL   |
|                        | 0x0058   | 0x005b | High transmitter range for analog signal in eng. units. CMD#15, Bytes 7-10                                                       | REAL   |
|                        | 0x005c   |        | Slot 0 units code. CMD#33, Byte 1                                                                                                | BYTE   |
|                        | 0x005d   |        | Slot 1 units code. CMD#33, Byte 7                                                                                                | BYTE   |
|                        | 0x005e   |        | Slot 2 units code. CMD#33, Byte 13                                                                                               | BYTE   |
|                        | 0x005f   |        | Slot 3 units code. CMD#33, Byte 19                                                                                               | BYTE   |
|                        | 0x0060   |        | Slot 0 variable code. CMD#33, Byte 0                                                                                             | BYTE   |
|                        | 0x0061   |        | Slot 1 variable code. CMD#33, Byte 6                                                                                             | BYTE   |
|                        | 0x0062   |        | Slot 2 variable code. CMD#33, Byte 12                                                                                            | BYTE   |
|                        | 0x0063   |        | Slot 3 variable code. CMD#33, Byte 18                                                                                            | BYTE   |
|                        | 0x0064   | 0x0083 | 32-character message. CMD#12, Bytes 0-23 unpacked ASCII.                                                                         | BYTE*: |
|                        | 0x0084   | 0x0087 | Stored date in the field device. CMD#13, Bytes 18-20.                                                                            | BYTE*  |
|                        | 0x0088   | 0x008b | The final assembly number is used for identifying the material and electronics that comprise the field device. CMD#16, Bytes 0-2 | BYTE*  |
|                        | 0x008c   | 0x00a4 | The extended status returned by HART command 48.                                                                                 | BYTE*: |
|                        | 0x00a5   | 0x00af | Spare                                                                                                                            | BYTE*  |

## 11.6 COMMREQs for HART Modules

Three Communication Request (COMMREQ) functions can be used in the application program to communicate with RX3i HART modules.

#### COMMREQ 1, Get HART Device Information, reads (local rack)

• The TaskID must be set to 1.

#### Remote Get HART Device Information, reads (remote rack)

- The TaskID must be set to:
  - Rack mounted PNC, Hex 85 or decimal 133
  - Embedded PNC, Hex 20085 or decimal 131205

Note that a UDFB that automates the COMMREQ control logic is available for download from the Emerson support website. (Search Article ID: 000052451). A link is provided at the end of this document.

#### COMMREQ 2, Send HART Pass-Through Command

The TaskID must be set to 1.

# 11.6.1 Get HART Device Information, COMMREQ 1 Command Block

| Word<br>Offset | Value<br>Dec (Hex) | Definition                                                                                                                                       |                                                                                                  |                  |  |  |
|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------|--|--|
| Word 1         | 8 (0008)           | Length of command Data Block in words beginning at Word 7.                                                                                       |                                                                                                  |                  |  |  |
| Word 2         | 0 (0000)           | Always 0 (no-wait mode request)                                                                                                                  |                                                                                                  |                  |  |  |
| Word 3         |                    | Memory type of CC                                                                                                                                | MMREQ status word. (Words 3 and 4 spec                                                           | ify the starting |  |  |
|                |                    | address where the                                                                                                                                | status word will be written.) It can be:                                                         |                  |  |  |
|                |                    | Memory Type                                                                                                                                      | Memory Type                                                                                      | Decimal code     |  |  |
|                |                    | %I                                                                                                                                               | Discrete input table (Bit mode)                                                                  | 70               |  |  |
|                |                    | %Q                                                                                                                                               | Discrete output table (Bit mode)                                                                 | 72               |  |  |
|                |                    | %I                                                                                                                                               | Discrete input table (Byte mode)                                                                 | 16               |  |  |
|                |                    | %Q                                                                                                                                               | Discrete output table (Byte mode)                                                                | 18               |  |  |
|                |                    | %R                                                                                                                                               | Register memory                                                                                  | 8                |  |  |
|                |                    | %W                                                                                                                                               | Word memory                                                                                      | 196              |  |  |
|                |                    | %AI                                                                                                                                              | Analog input table                                                                               | 10               |  |  |
|                |                    | %AQ                                                                                                                                              | Analog output table                                                                              | 12               |  |  |
| Word 4         | 0-based offset     | COMMREQ status word address minus 1.  Example: if Words 3 and 4 contain values of 8 and 9 respectively, the status word will be written to %R10. |                                                                                                  |                  |  |  |
| Word 5, 6      | 0 (0000)           | Reserved                                                                                                                                         |                                                                                                  |                  |  |  |
| Word 7         | 1 (0001)           | Command code for                                                                                                                                 | the COMMREQ to be executed.                                                                      |                  |  |  |
|                | , ,                | Get HART Device In                                                                                                                               |                                                                                                  |                  |  |  |
| Word 8         | 1 (0001)           | Number of Respon                                                                                                                                 | Number of Response Reference areas that follow (does not include COMMREQ status word). Always 1. |                  |  |  |
| Word 9         |                    | Memory type for th                                                                                                                               | Memory type for the reply data. (Words 9—12 specify the starting address                         |                  |  |  |
|                |                    | where the response                                                                                                                               | e will be written.)                                                                              |                  |  |  |
|                |                    | Memory Type                                                                                                                                      | Memory Type                                                                                      | Decimal code     |  |  |
|                |                    | %I                                                                                                                                               | Discrete input table (Byte mode)                                                                 | 16               |  |  |
|                |                    | %Q                                                                                                                                               | Discrete output table (Byte mode)                                                                | 18               |  |  |
|                |                    | %W                                                                                                                                               | Word memory                                                                                      | 196              |  |  |
|                |                    | %R                                                                                                                                               | Register memory                                                                                  | 8                |  |  |
|                |                    | %AI                                                                                                                                              | Analog input table                                                                               | 10               |  |  |
|                |                    | %AQ                                                                                                                                              | Analog output table                                                                              | 12               |  |  |
|                |                    | %T                                                                                                                                               | Discrete temporary memory (Byte)                                                                 | 20               |  |  |
|                |                    | %M                                                                                                                                               | Discrete internal memory (Byte)                                                                  | 22               |  |  |
| Word 10        | 0 (0000)           | Bit Offset (must be                                                                                                                              | 0 for all requests).                                                                             | •                |  |  |

| Word<br>Offset | Value<br>Dec (Hex) | Definition                                                                    |
|----------------|--------------------|-------------------------------------------------------------------------------|
| Word 11        | 0-based offset     | Starting address to which the response will be written. The value entered is  |
|                | (low word).        | the 0-based offset from the beginning of PLC memory for the memory type       |
|                |                    | specified in Word 9. This offset is in bytes or words depending on the memory |
|                |                    | type specified. Valid ranges of values depend on the memory ranges of the     |
|                |                    | host PLC.                                                                     |
|                |                    | Example: If Words 9 and 11 contain values of 8 and 250 respectively, the      |
|                |                    | response will be written to %R251.                                            |
| Word 12        | 0-based offset     | High word of offset. Value = 0 for most memory types. High word is non-zero   |
|                | (high word)        | only on if %W memory is used.                                                 |
| Word 13        | Words: 90          | Maximum size of response area. Must be 90 if word memory type is used; 180    |
|                | (005A)             | if discrete memory type is used.                                              |
|                | Bytes: 180         |                                                                               |
|                | (00B4)             |                                                                               |
| Word 14        | Range 1-16.        | Channel Number 1-16 (valid range depends on module channel count and          |
|                |                    | single-ended versus differential mode)                                        |

# 11.6.2 Remote Get HART Device Information, Command Block

| Word<br>Offset                                               | Value<br>Dec (Hex) | Definition                                                                                       |                                                                                                                                           |                 |  |
|--------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Word 1                                                       | 11 (000B)          | Length of command Data Block in words beginning at Word 7.                                       |                                                                                                                                           |                 |  |
| Word 2                                                       | 0 (0000)           | Always 0 (no-wait mode request)                                                                  |                                                                                                                                           |                 |  |
| Word 3                                                       |                    |                                                                                                  | mory type of COMMREQ status words <sup>70</sup> . (Words 3 and 4 specify the<br>dress where the status words will be written.) It can be: |                 |  |
|                                                              |                    | Memory Type                                                                                      | Memory Type                                                                                                                               | Decimal code    |  |
|                                                              |                    | %I                                                                                               | Discrete input table (Bit mode)                                                                                                           | 70              |  |
|                                                              |                    | %Q                                                                                               | Discrete output table (Bit mode)                                                                                                          | 72              |  |
|                                                              |                    | %I                                                                                               | Discrete input table (Byte mode)                                                                                                          | 16              |  |
|                                                              |                    | %Q                                                                                               | Discrete output table (Byte mode)                                                                                                         | 18              |  |
|                                                              |                    | %R                                                                                               | Register memory                                                                                                                           | 8               |  |
|                                                              |                    | %W                                                                                               | Word memory                                                                                                                               | 196             |  |
|                                                              |                    | %AI                                                                                              | Analog input table                                                                                                                        | 10              |  |
| Word 4                                                       | 0-based offset     | %AQ                                                                                              | Analog output table vords address minus 1.                                                                                                | 12              |  |
| Word 5, 6                                                    | 0 (0000)           | •                                                                                                | 3 and 4 contain values of 8 and 9 respectiven to %R10 and %R11.                                                                           | ely, the status |  |
| Word 7 1 (0001) Command code for the COMMREQ to be executed. |                    | the COMMPEO to be executed                                                                       |                                                                                                                                           |                 |  |
| word /                                                       | 1 (0001)           | Get HART Device Information = 1.                                                                 |                                                                                                                                           |                 |  |
| Word 8                                                       | 1 (0001)           | Number of Response Reference areas that follow (does not include COMMREQ status word). Always 1. |                                                                                                                                           |                 |  |
| Word 9                                                       |                    |                                                                                                  | Memory type for the reply data. (Words 9—12 specify the starting address where the response will be written.)                             |                 |  |
|                                                              |                    | Memory Type                                                                                      | Memory Type                                                                                                                               | Decimal code    |  |
|                                                              |                    | %I                                                                                               | Discrete input table (Byte mode)                                                                                                          | 16              |  |
|                                                              |                    | %Q                                                                                               | Discrete output table (Byte mode)                                                                                                         | 18              |  |
|                                                              |                    | %W                                                                                               | Word memory                                                                                                                               | 196             |  |
|                                                              |                    | %R                                                                                               | Register memory                                                                                                                           | 8               |  |
|                                                              |                    | %AI                                                                                              | Analog input table                                                                                                                        | 10              |  |
|                                                              |                    | %AQ                                                                                              | Analog output table                                                                                                                       | 12              |  |
|                                                              |                    | %T                                                                                               | Discrete temporary memory (Byte)                                                                                                          | 20              |  |
|                                                              |                    | %M                                                                                               | Discrete internal memory (Byte)                                                                                                           | 22              |  |
| Word 10                                                      | 0 (0000)           | Bit Offset (must be                                                                              | 0 for all requests).                                                                                                                      |                 |  |

<sup>&</sup>lt;sup>70</sup> The COMMREQ status words consist of two words of memory. The lower 16-bit word provides the COMMREQ Status and the upper 16-bit word provides the Command Status.

| Word    | Value          | Definition                                                                    |
|---------|----------------|-------------------------------------------------------------------------------|
| Offset  | Dec (Hex)      | Definition                                                                    |
| Word 11 | 0-based offset | Starting address to which the response will be written. The value entered is  |
|         | (low word).    | the 0-based offset from the beginning of PLC memory for the memory type       |
|         |                | specified in Word 9. This offset is in bytes or words depending on the memory |
|         |                | type specified. Valid ranges of values depend on the memory ranges of the     |
|         |                | host PLC.                                                                     |
|         |                | Example: If Words 9 and 11 contain values of 8 and 250 respectively, the      |
|         |                | response will be written to %R251.                                            |
| Word 12 | 0-based offset | High word of offset. Value = 0 for most memory types. High word is non-zero   |
|         | (high word)    | only on if %W memory is used.                                                 |
| Word 13 | Words: 90      | Maximum size of response area. Must be 90 if word memory type is used; 180    |
|         | (005A)         | if discrete memory type is used.                                              |
|         | Bytes: 180     |                                                                               |
|         | (00B4)         |                                                                               |
| Word 14 | Range 1-16.    | Channel Number 1-16 (valid range depends on module channel count and          |
|         |                | single-ended versus differential mode)                                        |
| Word 15 | Device ID      | ID of Remote PROFINET Scanner.                                                |
| Word 16 | Slot           | Remote Rack Slot number of HART capable Analog module.                        |
| Word 17 | SubSlot        | Remote Rack SubSlot number of HART capable Analog module                      |

#### **Command Status Word**

The Command status word for the Remote Get HART Device Information command is displayed in the following figure.

| Value |        | Description                                               |  |
|-------|--------|-----------------------------------------------------------|--|
| Dec   | (Hex)  |                                                           |  |
| 0     | (0000) | No command-specific status available.                     |  |
| 1     | (0001) | Invalid PROFINET device number.                           |  |
| 2     | (0002) | Undeclared PROFINET device (invalid name or nonexistent). |  |
| 3     | (0003) | Invalid slot or subslot number.                           |  |
| 4     | (0004) | Non-specific PROFINET error.                              |  |
| 5     | (0005) | Invalid channel number.                                   |  |
| 6     | (0006) | Non-specific command error.                               |  |

#### **Minimum Firmware & GSDML Requirements**

The Remote Get HART Device Information COMMREQ requires the following firmware revisions and GSDMLs:

- RX3i CPUs with version 8.95 or later
- IC695PNC001 RX3i PROFINET Controller version 2.26 or later
- IC695PNS001 RX3i PROFINET Scanner version 2.41 or later, or IC695PNS101
- IC695PNS001 RX3i PROFINET Scanner GSDML-V2.3-GEIP-RX3iPNS-20160602.xml

Note that the updated IC695PNS001 RX3i PROFINET Scanner GSDML-V2.3-GEIP-RX3iPNS-20160602.xml is required to enable the HART Pass Through Service Options settings for HART capable analog modules in PME. The settings are:

- Once per Channel Scan
- Once per Two Channel Scans (default)
- Once per Four Channel Scans
- Pass-Thru Only

The first three option settings set the rate at which an analog module that supports HART communications queries a HART device for its Remote Get HART Device Information data. Whereas, the Pass-Thru Only setting configures channel scanning that occurs only when the HART device configuration changes or has not been read for 10 seconds. Note that the Remote Get HART Device Information feature does not work when the "Pass-Thru Only" setting is selected.

## 11.6.3 COMMREQ Status Word

The COMMREQ status word for the <u>Remote and Local</u> Get HART Device Information command is displayed in the following figure.

| Value | ,      | Description                                                                          |
|-------|--------|--------------------------------------------------------------------------------------|
| Dec   | (Hex)  |                                                                                      |
| 0     | (0000) | Device has not yet processed the COMMREQ.                                            |
| 1     | (0001) | Command Complete                                                                     |
|       |        | <b>Note:</b> This status does not necessarily mean success. Some commands have reply |
|       |        | data that must also be checked.                                                      |
| 2     | (0002) | Command Terminated – module busy                                                     |
| 3     | (0003) | Command Terminated – invalid command                                                 |
| 4     | (0004) | Command Terminated – invalid command data                                            |
| 5     | (0005) | Command Terminated – not enough data                                                 |
| 6     | (0006) | Not used                                                                             |
| 7     | (0007) | Command Terminated – not enough memory in reply area                                 |
|       |        | The command did not specify sufficient PLC memory for the reply. Command will be     |
|       |        | ignored.                                                                             |
| 8     | (8000) | Command Terminated – command-specific error.                                         |
|       |        | Local COMMREQ: Refer to Additional Code in the Status Block for more information.    |
|       |        | Remote COMMREQ; Refer to the additional codes in Section 11.6.2, Command Status      |
|       |        | Word for more information.                                                           |
|       |        | Example: If the first word (lower) contains a value of 8 and the second word (upper) |
|       |        | contains a value of 3 then the error is an "Invalid slot or subslot number."         |
| 265   | (0109) | Error, Hart device not connected                                                     |
| 521   | (0209) | Error, Channel not HART-enabled                                                      |
| 777   | (0309) | Error, Analog Output Module, No field power                                          |
| 1033  | (0409) | Error. HART command not allowed                                                      |
| 1289  | (0509) | Error. Invalid HART command                                                          |
| 1545  | (0609) | Error. Device did not respond                                                        |
| 1801  | (0709) | Error, HART data count too large                                                     |

# 11.6.4 Remote and Local Get HART Device Information, Reply Data Format

The response to a <u>Remote and Local</u> *Get HART Device Information* COMMREQ is written to the PLC memory location specified in words 9-12 of the COMMREQ.

| Byte  | Name                                        | Description                                           |
|-------|---------------------------------------------|-------------------------------------------------------|
| 1, 2  | Command Code                                | Echo of Command code. (0x0001)                        |
| 3, 4  | Channel Number                              | Echo of Channel Number                                |
| 5-8   | HART Primary Variable                       | CMD#3, Bytes 5-8. Type: REAL                          |
| 9-12  | HART Secondary Variable                     | CMD#3, Bytes 10-13 Type: REAL                         |
| 13-16 | HART Tertiary Variable                      | CMD#3, Bytes 15-18. Type: REAL                        |
| 17-20 | HART Fourth Variable                        | CMD#3, Bytes 20-23. Type: REAL                        |
| 21-24 | Slot 0 value                                | CMD#33, Bytes 2-5. Type: BYTE                         |
| 25-28 | Slot 1 value                                | CMD#33, Bytes 8-11. Type: BYTE                        |
| 29-32 | Slot 2 value                                | CMD#33, Bytes 14-17. Type: BYTE                       |
| 33-36 | Slot 3 value                                | CMD#33, Bytes 20-23. Type: BYTE                       |
|       | HART communication status byte from the     |                                                       |
| 37    | last HART command response, refer to next   |                                                       |
|       | page                                        |                                                       |
| 38    | HART device status byte from the last HART  |                                                       |
| 50    | command response, refer to next page.       |                                                       |
| 39-40 | Spare for alignment.                        | Type: BYTE                                            |
| 41    | HART device Manufacturer ID. CMD#0, Byte 1  | Type: BYTE                                            |
| 42    | HART device type code. CMD#0, Byte 2        | Type: BYTE                                            |
| 43    | Minimum number of preambles device requires | CMD#0, Byte 3. Type: BYTE                             |
| 44    | HART Universal command code                 | CMD#0, Byte 4. Type: BYTE                             |
| 45    | HART Transmitter specific revision          | CMD#0, Byte 5 Type: BYTE                              |
| 46    | HART device software revision number        | CMD#0, Byte 6 Type: BYTE                              |
| 7     | HART device hardware revision number        | CMD#0, Byte 7 Type: BYTE                              |
| 48    | HART flags                                  | CMD#0, Byte 8 Type: BYTE                              |
| 49-52 | HART device ID number                       | CMD#0, Byte 9-11 Type: 4 BYTEs                        |
| 53-60 | 8-character device tag.                     | CMD#13, Type: 8 BYTEs. Bytes 0-5 are unpacked ASCII   |
| 61-76 | Device Descriptor                           | CMD#13, TYPE: 16 BYTEs. Bytes 6-17 are unpacked ASCII |
| 77    | HART Primary Variable Units                 | CMD#3, Byte 4. Type: BYTE                             |
| 78    | HART Secondary Variable Units               | CMD#3, Byte 9, 0 if not present. Type: BYTE           |
| 79    | HART Tertiary Variable Units                | CMD#3, Byte 14, 0 if not present. Type: BYTE          |
| 80    | HART Fourth Variable Units                  | CMD#3, Byte 19, 0 if not present. Type: BYTE          |
| 81    | HART Primary Variable Code                  | CMD#50, Byte 0 Type: BYTE                             |

| Byte    | Name                                                           | Description                                       |
|---------|----------------------------------------------------------------|---------------------------------------------------|
| 82      | HART Secondary Variable Code                                   | CMD#50, Byte 1 Type: BYTE                         |
| 83      | HART Tertiary Variable Code                                    | CMD#50, Byte 2 Type: BYTE                         |
| 84      | HART Fourth Variable Code                                      | CMD#50, Byte 3 Type: BYTE                         |
| 85      | Units code for range parameter                                 | CMD#15, Byte 2 Type: BYTE                         |
| 86-88   | Spare for alignment                                            | 3 BYTEs                                           |
| 89-92   | Low transmitter range for analog signal in engineering units   | CMD#15, Bytes 3-6 Type: REAL                      |
| 93-96   | High transmitter range for analog signal in engineering units  | CMD#15, Bytes 7-10 Type: REAL                     |
| 97      | Slot 0 units code                                              | CMD#33, Byte 1 Type: REAL                         |
| 98      | Slot 1 units code                                              | CMD#33, Byte 7 Type: REAL                         |
| 99      | Slot 2 units code                                              | CMD#33, Byte 13 Type: REAL                        |
| 100     | Slot 3 units code                                              | CMD#33, Byte 19 Type: REAL                        |
| 101     | Slot 0 variable code                                           | CMD#33, Byte 0 Type: REAL                         |
| 102     | Slot 1 variable code                                           | CMD#33, Byte 6 Type: REAL                         |
| 103     | Slot 2 variable code                                           | CMD#33, Byte 12 Type: REAL                        |
| 104     | Slot 3 variable code                                           | CMD#33, Byte 18 Type: REAL                        |
| 105-136 | 32-character message                                           | CMD#12, Bytes 0-23 unpacked ASCII. Type: 32 BYTEs |
| 137-140 | Stored date in the field device                                | CMD#13, Bytes 18-20. Type 4 BYTEs                 |
| 141-144 | Number identifying the field device's material and electronics | CMD#16, Bytes 0-2. Type 4 BYTEs                   |
| 145-169 | The extended status returned by HART command 48.               | Type: 25 BYTEs                                    |
| 170-180 | Spare for alignment                                            | Type: 11 BYTEs                                    |

## 11.6.5 Sending a HART Pass-Through Command to a HART Device

The HART module automatically uses several HART Pass-Through commands as described earlier in this chapter. In addition, the application program can use the Send HART Pass-Through Command (COMMREQ 2) to send HART Pass-Through commands to an RX3i HART module. The HART module stores the data returned by the command in its on-board memory. This data can then be scanned automatically by the CPU or read as needed from the application program.

A list of Pass-Through commands is included in this section. The RX3i HART module then passes the command to the intended HART input or output device. Responses to HART Pass-Through commands are available to the application program in the COMMREQ replies.

The Send HART Pass-Through Command COMMREQ automatically fills in the Start Character, Address, Byte Count, Status, and the checksum. The RX3i HART module waits until the data from the HART device is available before it replies to this command, so the application program does not have to query Module for the response. The application program must check the COMMREQ Status word to determine when the reply data is available. The reply is returned between 750mS and 8 seconds later. The reply time depends on the number of channels enabled, the Pass-Through rate selected, and whether other Pass-Through operations are occurring at the same time.

Only one application program Pass-Through command per channel is allowed at a time. If another request is made on a channel that has a Pass-Through in-progress, Module returns a COMMREQ Status Word = 0x0002 (module busy).

## **HART Pass-Through Command Block, COMMREQ 2**

| Word    | Value  | •         | Definition         |                                                           |                     |
|---------|--------|-----------|--------------------|-----------------------------------------------------------|---------------------|
| Offset  | Dec    | (Hex)     | Definition         |                                                           |                     |
| Word 1  | 10+x   | 000A + x  | Length of comm     | Length of command Data Block in words beginning at Word 7 |                     |
| Word 2  | 0      | 0000      | Always 0 (no-wai   | t mode request)                                           |                     |
|         |        | •         | Memory type of     | COMMREQ status word. It can be:                           |                     |
|         |        |           | Memory Type        | Memory Type                                               | Decimal code        |
|         |        |           | %I                 | Discrete input table (Bit mode)                           | 70                  |
|         |        |           | %Q                 | Discrete output table (Bit mode)                          | 72                  |
| M/      |        |           | %I                 | Discrete input table (Byte mode)                          | 16                  |
| Word 3  |        |           | %Q                 | Discrete output table (Byte mode)                         | 18                  |
|         |        |           | %R                 | Register memory                                           | 8                   |
|         |        |           | %W                 | Word memory                                               | 196                 |
|         |        |           | %AI                | Analog input table                                        | 10                  |
|         |        |           | %AQ                | Analog output table                                       | 12                  |
|         |        |           | COMMREQ statu      | s word address minus 1                                    |                     |
| Word 4  | 0-base | ed offset | Example: if Word   | ls 3 and 4 contain values of 8 and 9 respe                | ctively, the status |
|         |        |           | word will be writ  | ten to %R10.                                              |                     |
| Word 5  | 0      | 0000      | Reserved           |                                                           |                     |
| Word 6  | 0      | 0000      | Reserved           |                                                           |                     |
| Word 7  | 2 0002 |           | Command code       | for the COMMREQ to be executed.                           |                     |
| vvoru / |        |           | HART Pass-Throu    | ıgh Command = 2                                           |                     |
| Word 8  | 1 0001 |           | Number of Resp     | onse Reference areas that follow (does no                 | ot include          |
| word 8  | '      | 0001      | COMMREQ statu      | s word). Always 1                                         |                     |
|         |        |           | Memory type for    | the reply data. (Words 9—12 specify the                   | starting address    |
|         |        |           | where the respon   | nse will be written).                                     |                     |
|         |        |           | Memory Type        | Memory Type                                               | Decimal code        |
|         |        |           | %I                 | Discrete input table (Byte mode)                          | 16                  |
|         |        |           | %Q                 | Discrete output table (Byte mode)                         | 18                  |
| Word 9  |        |           | %W                 | Word memory                                               | 196                 |
|         |        |           | %R                 | Register memory                                           | 8                   |
|         |        |           | %AI                | Analog input table                                        | 10                  |
|         |        |           | %AQ                | Analog output table                                       | 12                  |
|         |        |           | %T                 | Discrete temporary memory (Byte)                          | 20                  |
|         |        |           | %M                 | Discrete internal memory (Byte)                           | 22                  |
| Word 10 | 0      | 0000      | Bit Offset (must l | be 0 for all requests)                                    | •                   |

| Word         | Value                         |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Offset       | Dec (Hex)                     | Definition                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Word 11      | 0-based offset<br>(low word)  | Starting address to which the response will be written. The value entered is the 0-based offset from the beginning of PLC memory for the memory type specified in Word 9. This offset will be in bytes or words depending on the memory type specified. Valid ranges of values depend on the memory ranges of the host PLC.  Example: If Words 9 and 11 contain values of 8 and 250 respectively, the response will be written to %R251. |
| Word 12      | 0-based offset<br>(high word) | High word of offset. Value = 0 for most memory types. Would only have a non-zero value if %W memory is used                                                                                                                                                                                                                                                                                                                              |
| Word 13      | Response data<br>size         | Maximum size of response area. Size in bytes if discrete memory type used for response. Size in words if word type used                                                                                                                                                                                                                                                                                                                  |
| Word 14      | Channel<br>Number<br>(1-16).  | Channel Number 1-16 (valid range depends on module channel count and single-ended versus differential mode)                                                                                                                                                                                                                                                                                                                              |
| Word 15      | HART command<br>(0x0 – 0xff)  | HART Pass-Through Command type. HART Pass-Through Commands that can be sent to an RX3i HART module are listed in this section.                                                                                                                                                                                                                                                                                                           |
| Word 16      | Command Data byte count       | Size (in bytes) of command data that follows                                                                                                                                                                                                                                                                                                                                                                                             |
| •••          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Word<br>16+x |                               | HART Command Data. Request data must be byte-packed and in big-endian format, PLC CPU format is little-endian, so some commands may require swapping of fields from little-endian to big-endian format as described in this chapter. This is usually needed for floating-point data.                                                                                                                                                     |

## **HART Pass-Through Reply Data Format**

The RX3i HART module returns the response data below to the CPU memory location specified by words 9-12 of the COMMREQ. Data beginning at Word 7 of the reply is byte-packed and in big-endian format. PLC CPU format is little-endian, so some commands may require swapping of fields from big-endian to little-endian format as described in this chapter. This is usually needed for floating-point data.

| Word        | Name           | Description                                                                 |  |  |  |  |
|-------------|----------------|-----------------------------------------------------------------------------|--|--|--|--|
| 1           | Command        | Echo of Command code (0x0002)                                               |  |  |  |  |
|             | Code           | ,                                                                           |  |  |  |  |
| 2           | Channel        | Echo of Channel Number (same as request)                                    |  |  |  |  |
|             | Number         | cho of Chairle Number (Same as request)                                     |  |  |  |  |
| 3           | HART           | Echo of HART Pass-Through Command type. Refer to the tables in this         |  |  |  |  |
| 3           | command        | section.                                                                    |  |  |  |  |
| 4           | HART Status    | Low byte is HART Comm Status and high byte is HART Dev Status from HART     |  |  |  |  |
|             | TIART Status   | device response.                                                            |  |  |  |  |
| 5           | Spare          | Spare for future use. User logic should not check this value because future |  |  |  |  |
|             |                | module revisions may make this non-zero.                                    |  |  |  |  |
| 6           | Response       | Size in bytes of the response data that follows.                            |  |  |  |  |
|             | Byte Count (x) | size in bytes of the response data that follows.                            |  |  |  |  |
| 7L          | Data Low       | First response data byte from device.                                       |  |  |  |  |
| 7H          | Data High      | Second response data byte from device.                                      |  |  |  |  |
|             |                |                                                                             |  |  |  |  |
| 7+(x-1)/2 L | Data Low       |                                                                             |  |  |  |  |
| 7+(x-1)/2 H | Data High      | Last response data byte from device.                                        |  |  |  |  |

## **COMMREQ Status Word**

The following table defines the values that can be returned in the COMMREQ status word.

| Value |        | Description                                                                          |  |  |  |  |  |  |
|-------|--------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Dec   | (Hex)  |                                                                                      |  |  |  |  |  |  |
| 0     | (0000) | Device has not yet processed the COMMREQ.                                            |  |  |  |  |  |  |
| 1     | (0001) | Command Complete. This status does not necessarily mean success. Some commands       |  |  |  |  |  |  |
|       |        | have reply data that must also be checked.                                           |  |  |  |  |  |  |
| 2     | (0002) | Command Terminated – module busy                                                     |  |  |  |  |  |  |
| 3     | (0003) | Command Terminated – invalid command                                                 |  |  |  |  |  |  |
| 4     | (0004) | Command Terminated – invalid command data                                            |  |  |  |  |  |  |
| 5     | (0005) | Command Terminated – not enough data                                                 |  |  |  |  |  |  |
| 6     | (0006) | Not used                                                                             |  |  |  |  |  |  |
| 7     | (0007) | Command Terminated – not enough memory in reply area. The command did not specify    |  |  |  |  |  |  |
|       |        | sufficient PLC memory for the reply. Command will be ignored.                        |  |  |  |  |  |  |
| 8     | (8000) | Command Terminated – command-specific error. Refer to the additional codes in in the |  |  |  |  |  |  |
|       |        | Status Block for more information.                                                   |  |  |  |  |  |  |
| 265   | (0109) | Error, Hart device not connected                                                     |  |  |  |  |  |  |
| 521   | (0209) | Error, Channel not HART-enabled                                                      |  |  |  |  |  |  |
| 777   | (0309) | Error, Analog Output Module, No field power                                          |  |  |  |  |  |  |
| 1033  | (0409) | Error. HART command not allowed                                                      |  |  |  |  |  |  |
| 1289  | (0509) | Error. Invalid HART command                                                          |  |  |  |  |  |  |

This status information relates to the execution of the COMMREQ function, not to the status of the HART communications. HART communications status is provided in the response data, as shown previously in this section.

# 11.6.6 HART Pass-Through Commands and Command Codes for RX3i Modules

Within a HART command, data can be represented as integers, floating-point numbers, ASCII text strings, or enumerated item lists. Unmarked data types are 8-, 16, or 24-bit integers (including code values)

| Uni | Universal Commands                |        | Data in Command    |                   |               | Data in Reply                  |             |  |  |
|-----|-----------------------------------|--------|--------------------|-------------------|---------------|--------------------------------|-------------|--|--|
| #   | Function                          | Byte D | ata                | Туре              | Byte          | Data                           | Туре        |  |  |
|     |                                   | None   |                    |                   | 0             | "254" (expansion)              |             |  |  |
|     |                                   |        |                    |                   | 1             | Manufacturer identification    |             |  |  |
|     |                                   |        |                    |                   |               | code                           |             |  |  |
|     |                                   |        |                    |                   | 2             | Manufacturer device type       |             |  |  |
|     |                                   |        |                    |                   | 2             | code                           |             |  |  |
|     |                                   |        |                    |                   | 3             | Number of preambles            |             |  |  |
|     |                                   |        |                    |                   | 5             | required                       |             |  |  |
| 0   | Read unique                       |        |                    |                   | 4             | Universal command revision     |             |  |  |
|     | identifier                        |        |                    |                   | 5             | Device-specific command        |             |  |  |
|     |                                   |        |                    |                   | J             | revision                       |             |  |  |
|     |                                   |        |                    |                   | 6             | Software revision              |             |  |  |
|     |                                   |        |                    |                   | 7             | Hardware revision              | Integer     |  |  |
|     |                                   |        |                    |                   |               | Device function flags:         |             |  |  |
|     |                                   |        |                    |                   | 8             | bit 0 = multisensor device,    | Bit         |  |  |
|     |                                   |        |                    |                   |               | bit 1 = protocol bridge device |             |  |  |
|     |                                   |        |                    |                   | 9-11          | Device ID number               |             |  |  |
| 1   | Read primary                      | None   |                    |                   | 0             | PV units code                  |             |  |  |
|     | variable                          | None   |                    |                   | 1-4           | Primary variable (PV)          | Floating pt |  |  |
| 2   | Read current and percent of range | None   |                    |                   | 0-3           | Current (mA)                   | Floating pt |  |  |
|     |                                   |        |                    |                   | 0-3           | Current (mA)                   | Floating pt |  |  |
|     |                                   |        |                    | 4                 | PV units code |                                |             |  |  |
|     |                                   | None   |                    |                   | 5-8           | Primary variable (PV)          | Floating pt |  |  |
|     | Read current and                  |        |                    |                   | 9             | SV units code                  |             |  |  |
| 3   | four predefined                   |        |                    |                   | 10-13         | Secondary variable (SV)        | Floating pt |  |  |
|     | dynamic variables                 |        |                    |                   | 14            | TV units code                  |             |  |  |
|     |                                   |        |                    |                   | 15-18         | Third variable (VT)            | Floating pt |  |  |
|     |                                   |        |                    |                   | 19            | FV units code                  |             |  |  |
|     |                                   |        |                    |                   | 20-23         | Fourth variable (FV)           | Floating pt |  |  |
| 6   | Write polling address             | 0      | Polling<br>address | I same as command |               |                                | •           |  |  |

| Uni | versal Commands                                  | Data in Command                       |                                       |       | [     | Data in Reply   |                                            |             |  |
|-----|--------------------------------------------------|---------------------------------------|---------------------------------------|-------|-------|-----------------|--------------------------------------------|-------------|--|
| #   | Function                                         | Byte                                  | Data                                  | Туре  | Е     | Byte            | Data                                       | Туре        |  |
| 11  | Read unique<br>identifier associated<br>with tag | 0-5                                   | Tag                                   | ASCII | C     | D-11            | Same as command #0, refer to above         |             |  |
| 12  | Read message                                     | None                                  | <u>.</u>                              |       | C     | 0-23            | Message (32 characters)                    | ASCII       |  |
|     | Read tag, descriptor,                            | None                                  |                                       |       |       | D-5             | Tag (8 characters)                         | ASCII       |  |
| 13  | date                                             |                                       |                                       |       |       | 5-17            | Descriptor (16 characters)                 | ASCII       |  |
|     | date                                             |                                       |                                       |       |       | 18-20           | Date                                       | Date        |  |
|     |                                                  |                                       |                                       |       |       | )-2             | Sensor serial number                       |             |  |
| 14  | Read Primary                                     | None                                  |                                       |       |       | 3               | Units code for sensor limits and min. span |             |  |
| 14  | Variable sensor information                      |                                       |                                       |       |       | <b>1-7</b>      | Upper sensor limit                         | Floating pt |  |
|     |                                                  |                                       |                                       |       |       | 3-11            | Lower sensor limit                         | Floating pt |  |
|     |                                                  |                                       |                                       |       |       | 12-15           | Minimum span                               | Floating pt |  |
|     |                                                  |                                       |                                       |       | C     | )               | Alarm select code                          |             |  |
|     |                                                  |                                       |                                       |       |       | 1               | Transfer function code                     |             |  |
|     |                                                  |                                       |                                       |       |       | 2               | PV/range units code                        |             |  |
| 15  | Read output                                      | None                                  |                                       |       | 3     | 3-6             | Upper range value                          | Floating pt |  |
|     | information                                      |                                       |                                       |       | 7     | 7-10            | Lower range value                          | Floating pt |  |
|     |                                                  |                                       |                                       |       |       | 11-14           | Damping value (seconds)                    | Floating pt |  |
|     |                                                  |                                       |                                       |       |       | 15              | Write-protect code                         |             |  |
|     |                                                  |                                       |                                       |       |       | 16              | Private-label distributor code             |             |  |
| 16  | Read final assembly number                       | None                                  | None                                  |       |       | 0-2             | Final assembly number                      |             |  |
| 17  | Write message                                    | 0-23                                  | 0-23 Message<br>(32 characters) ASCII |       |       | Same as command |                                            |             |  |
|     | Write tag, descriptor,<br>date                   | 0-5                                   | Tag<br>(8 characters                  | ASC   | II    |                 |                                            |             |  |
| 18  |                                                  | 6-17 Descriptor (16 characters) ASCII |                                       |       | III S | Same as command |                                            |             |  |
|     |                                                  | 18-20                                 | Date                                  | Dat   | е     | 1               |                                            |             |  |
| 19  | Write final assembly number                      | 0-2                                   | Final assemb                          | oly   | S     | Same as command |                                            |             |  |

Among the common-practice commands listed below, commands #60 and #62 through #70 are used to configure and control the multiple outputs generated by some multivariable transmitters. Such multiple outputs are numbered 1 to 4, corresponding to the HART dynamic variables: PV (primary variable), SV (secondary variable), TV (third variable) and FV (fourth variable).

| Comi | mon-Practice                |       | Data in Command                      |             |       | Data in Reply                           |                                      |                |  |
|------|-----------------------------|-------|--------------------------------------|-------------|-------|-----------------------------------------|--------------------------------------|----------------|--|
| Comi | mands                       |       |                                      |             |       |                                         |                                      |                |  |
| #    | Function                    | Byte  | Data                                 | 1           | Гуре  | Byte                                    | Data                                 | Туре           |  |
|      |                             | 0     | Transmitted variable                 |             | 0     | Transmitted variable code               |                                      |                |  |
|      |                             | U     | code for slot 0                      |             |       | for slot 0                              |                                      |                |  |
|      |                             | 1     | Transmitted variable                 |             |       | 1                                       | 1 Units code for slot 0              |                |  |
|      |                             | !     | code for slot 1                      |             |       |                                         |                                      |                |  |
|      |                             | 2     | Transmitted variable code for slot 2 |             |       | 2-5                                     | Variable for slot 0                  | Floating point |  |
|      |                             |       |                                      |             |       |                                         |                                      | 31             |  |
|      |                             | 3     | Transmitted varial                   | ble         |       | 6                                       | Transmitted variable code            |                |  |
|      |                             |       | code for slot 3                      |             |       | _                                       | for slot 1                           |                |  |
| l    | Read                        |       |                                      |             |       | 7                                       | Units code for slot 1                |                |  |
| 33   | transmitter                 |       |                                      |             |       | 8-11                                    | Variable for slot 1                  | Floating point |  |
| l    | variables                   |       |                                      |             |       | 12                                      | Transmitted variable code for slot 2 |                |  |
|      |                             |       |                                      |             |       | 13                                      | Units code for slot 2                |                |  |
|      |                             | Trunc | ated after last requested code       |             | 14-17 | Variable for slot 2                     | Floating point                       |                |  |
| ĺ    |                             |       |                                      |             |       | 18                                      | Transmitted variable code for slot 3 |                |  |
| Ì    |                             |       |                                      |             |       | 19                                      | Units code for slot 3                |                |  |
|      |                             |       |                                      |             |       | 20-23                                   | Variable for slot 3                  | Floating point |  |
|      |                             |       |                                      |             |       | Truncated after last requested variable |                                      |                |  |
| 34   | Write                       | 0-3   | Damping value Floating               |             |       | Samo as command                         |                                      |                |  |
| 34   | damping value               | 0-3   | (seconds)                            | point       |       | Same as command                         |                                      |                |  |
|      |                             | 0     | Range units code                     |             |       |                                         |                                      |                |  |
|      | Write range                 | 1-4   | Upper range                          | Floating    |       |                                         |                                      |                |  |
| 35   | values                      |       | value                                | value point |       | Same as command                         |                                      |                |  |
|      |                             | 5-8   | Lower range                          | Floating    |       |                                         |                                      |                |  |
|      |                             |       | value                                | point       |       |                                         |                                      |                |  |
| Ì    | Set upper                   |       |                                      |             |       |                                         |                                      |                |  |
| 36   | range value (=              | None  |                                      |             |       | none                                    |                                      |                |  |
|      | push SPAN                   |       |                                      |             |       |                                         |                                      |                |  |
|      | button)                     |       |                                      |             |       |                                         |                                      |                |  |
|      | Set lower<br>range value (= |       |                                      |             |       | none                                    |                                      |                |  |
| 37   | push ZERO                   | None  |                                      |             |       |                                         |                                      |                |  |
|      | button)                     |       |                                      |             |       |                                         |                                      |                |  |
|      | Reset                       |       |                                      |             |       |                                         |                                      |                |  |
| 38   | Configuration               | None  |                                      |             |       | none                                    |                                      |                |  |
|      | Changed flag                |       |                                      |             |       |                                         |                                      |                |  |
|      |                             | 1     |                                      |             |       |                                         |                                      |                |  |

|    | non-Practice<br>nands                   |                                                                   | Data in Command                             |                   | Data in Reply     |                                        |      |  |
|----|-----------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------|-------------------|----------------------------------------|------|--|
| #  | Function                                | Byte                                                              | Data                                        | Туре              | Byte              | Data                                   | Туре |  |
| 39 | EEPROM<br>control                       | EEPROM control code: (0 = write to EEPROM 1 = read EEPROM to RAM) |                                             |                   | Same as command   |                                        |      |  |
| 40 | Enter/exit<br>fixed current<br>mode     | 0-3                                                               | Current (mA)<br>(0 = fixed current<br>mode) | Floating<br>point | Same as command   |                                        |      |  |
| 41 | Perform<br>device self-test             | None                                                              |                                             |                   | none              |                                        |      |  |
| 42 | Perform<br>master reset                 | None                                                              |                                             |                   | none              |                                        |      |  |
| 43 | Set (trim) PV<br>zero                   | None                                                              |                                             |                   | none              |                                        |      |  |
| 44 | Write PV units                          | 0                                                                 | PV units code                               |                   | Same as command   |                                        |      |  |
| 45 | Trim DAC zero                           | 0-3                                                               | Measured current<br>(mA)                    | Floating point    | Same as command   |                                        |      |  |
| 46 | Trim DAC gain                           | 0-3                                                               | Measured current<br>(mA)                    | Floating<br>point | Same as command   |                                        |      |  |
| 47 | Write transfer function                 | 0                                                                 | Transfer function code                      |                   | Same as command   |                                        |      |  |
|    |                                         |                                                                   |                                             |                   |                   | Device-specific status                 | Bit  |  |
|    | Read                                    |                                                                   |                                             |                   |                   | Operational modes (1-5)                |      |  |
| 48 | additional                              | None                                                              |                                             |                   | 8-10              | Analog outputs saturated <sup>71</sup> | Bit  |  |
|    | device status                           |                                                                   |                                             |                   | 11-13             | Analog outputs fixed <sup>71</sup>     | Bit  |  |
|    |                                         |                                                                   |                                             |                   | 14-24             | Device-specific status                 | Bit  |  |
| 49 | Write PV<br>sensor serial<br>number     | 0-2                                                               | Sensor serial number                        |                   | Same a            | as command                             |      |  |
|    | Dood dynamic                            |                                                                   |                                             |                   | 0                 | PV transmitter variable code           |      |  |
| 50 | Read dynamic<br>variable<br>assignments | None                                                              |                                             |                   | 1                 | SV transmitter variable code           |      |  |
| 30 |                                         | None                                                              |                                             |                   | 2                 | TV transmitter variable code           |      |  |
|    |                                         |                                                                   |                                             |                   | 3                 | FV transmitter variable code           |      |  |
| 51 | Read dynamic variable                   | 0                                                                 | PV transmitter variable code                |                   | - Same as command |                                        |      |  |
| 51 | assignments                             | 1                                                                 | SV transmitter variable code                |                   |                   |                                        |      |  |

<sup>&</sup>lt;sup>71</sup> 24 bytes each: LSB...MSB refers to analog outputs 1 to 24. Response is truncated after last byte implemented. Analog Modules with HART Communications

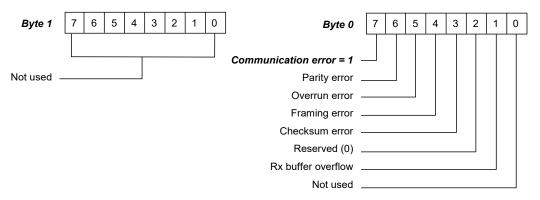
|    | 14AD                                           |      |                                                    |                |           |                                           | Dec 2022       |  |
|----|------------------------------------------------|------|----------------------------------------------------|----------------|-----------|-------------------------------------------|----------------|--|
|    | mon-Practice<br>mands                          |      | Data in Command                                    |                | Data i    | in Reply                                  |                |  |
| #  | Function                                       | Byte | Data                                               | Туре           | Byte      | Data                                      | Туре           |  |
|    |                                                | 2    | TV transmitter variable code                       |                |           |                                           |                |  |
|    |                                                | 3    | FV transmitter variable code                       |                |           |                                           |                |  |
| 52 | Set<br>transmitter<br>variable zero            | 0    | Transmitter variable code                          |                | Same      | as command                                |                |  |
| 53 | Write<br>transmitter                           | 0    | transmitter variable code transmitter variable     |                | Same      | as command                                |                |  |
|    | variable units                                 | 1    | units code                                         |                |           |                                           |                |  |
|    |                                                |      |                                                    |                | 0         | Transmitter variable code                 |                |  |
|    |                                                |      |                                                    |                | 1-3       | Transmitter variable sensor serial number |                |  |
|    | Read<br>transmitter<br>variable<br>information |      |                                                    |                | 4         | Transmitter variable limits units code    |                |  |
| 54 |                                                | 0    | Transmitter variable                               |                | 5-8       | Transmitter variable upper limit          | Floating point |  |
|    |                                                |      | code                                               |                | 9-12      | Transmitter variable lower limit          | Floating point |  |
|    |                                                |      |                                                    |                | 13-<br>16 | Transmitter variable damping value (sec.) | Floating point |  |
|    |                                                |      |                                                    |                | 17-<br>20 | Transmitter variable minimum span         | Floating point |  |
|    | Write                                          | 0    | transmitter variable code                          |                |           |                                           | -              |  |
| 55 | transmitter<br>variable<br>damping value       | 1-4  | transmitter variable<br>damping value<br>(seconds) | Floating point | Same      |                                           |                |  |
|    | Write<br>transmitter                           | 0    | transmitter variable code                          |                |           |                                           |                |  |
| 56 | variable sensor serial number                  |      | transmitter variable<br>sensor serial<br>number    | Floating point | Same      | Same as command                           |                |  |
|    |                                                |      |                                                    | 1              | 0-5       | Unit tag (8 characters)                   | ASCII          |  |
| 57 | Read unit tag,<br>descriptor,                  | None |                                                    |                | 6-17      | Unit descriptor (16 characters)           | ASCII          |  |
|    | date                                           |      |                                                    |                | 18-20     | Unit date (3 bytes: day,<br>month, year)  | Date           |  |
| 58 |                                                | 0-5  | Unit tag (8<br>characters)                         | ASCII          | Same      | as command                                |                |  |

|    | mon-Practice<br>mands              |       | Data in Command                            |          | Data in Reply |                                         |                |  |  |
|----|------------------------------------|-------|--------------------------------------------|----------|---------------|-----------------------------------------|----------------|--|--|
| #  | Function                           | Byte  | Data                                       | Туре     | Byte          | Data                                    | Туре           |  |  |
|    | Write unit tag, descriptor,        | 6-17  | Unit descriptor (16 characters)            | ASCII    |               |                                         |                |  |  |
|    | date                               | 18-20 | Unit date (3 bytes:<br>day, month, year)   | Date     |               |                                         |                |  |  |
| 59 | Write number of response preambles | 0     | Number of response preambles               |          | Same          |                                         |                |  |  |
|    | Read analog                        |       |                                            |          | 0             | Analog output number code               |                |  |  |
|    | output and                         |       | analog output                              |          | 1             | Analog output units code                |                |  |  |
| 60 | percent of                         | 0     | number code                                |          | 2-5           | Analog output level                     | Floating point |  |  |
|    | range                              |       |                                            |          | 6-9           | Analog output percent of range          | Floating point |  |  |
|    |                                    |       |                                            |          | 0             | PV analog output units code             |                |  |  |
|    |                                    |       |                                            |          | 1-4           | PV analog output level                  | Floating point |  |  |
|    |                                    |       |                                            |          | 5             | PV units code                           |                |  |  |
|    | Read dynamic                       |       |                                            |          | 6-9           | Primary variable (PV)                   | Floating point |  |  |
|    | variables and<br>Primary           |       |                                            |          | 10            | SV analog output units code             |                |  |  |
| 61 |                                    | None  |                                            |          | 11-14         | Secondary variable                      | Floating point |  |  |
|    | Variable                           |       |                                            |          | 15            | TV analog output units code             |                |  |  |
|    | analog output                      |       |                                            |          | 16-19         | Third variable                          | Floating point |  |  |
|    |                                    |       |                                            |          | 20            | FV analog output units code             |                |  |  |
|    |                                    |       |                                            |          | 21-24         | Fourth variable                         | Floating point |  |  |
|    |                                    |       |                                            |          |               | Truncated after last supported variable |                |  |  |
|    |                                    | 0     | Analog output<br>number code for<br>slot 0 |          | 0             | Slot 0 analog output number code        |                |  |  |
|    |                                    | 1     | Analog output<br>number code for<br>slot 1 |          | 1             | Slot 0 units code                       |                |  |  |
| 62 | Read analog outputs (5.1)          | 2     | Analog output<br>number code for<br>slot 2 |          | 2-5           | Slot 0 level                            | Floating point |  |  |
|    | σαιραίδ (3.1)                      | 3     | Analog output<br>number code for<br>slot 3 |          | 6             | Slot 1 analog output number code        |                |  |  |
|    |                                    |       |                                            |          | 7             | Slot 1 units code                       |                |  |  |
|    |                                    |       |                                            |          | 8-11          | Slot 1 level                            | Floating point |  |  |
|    |                                    | Trunc | ated after last request                    | ed level | 12            | Slot 2 analog output number code        |                |  |  |
|    |                                    |       |                                            |          | 13            | Slot 2 units code                       |                |  |  |

|           | non-Practice                         |      | Data in Command                              |                   | Data in Reply   |                                                  |                |  |  |
|-----------|--------------------------------------|------|----------------------------------------------|-------------------|-----------------|--------------------------------------------------|----------------|--|--|
| Comn<br># | Function                             | Byte | Data                                         | Туре              | Byte            | Data                                             | Туре           |  |  |
|           |                                      |      |                                              |                   | 14-<br>17       | Slot 2 level Floating                            |                |  |  |
|           |                                      |      |                                              |                   | 18              | Slot 3 analog output number code                 |                |  |  |
|           |                                      |      |                                              |                   | 19              | Slot 3 units code                                |                |  |  |
|           |                                      |      |                                              |                   | 20-<br>23       | Slot 3 level                                     | Floating point |  |  |
|           |                                      |      | <del>,</del>                                 |                   |                 | ated after last requested level                  |                |  |  |
|           |                                      |      |                                              |                   | 0               | Analog output number code                        |                |  |  |
|           |                                      |      |                                              |                   | 1               | Analog output alarm select code                  |                |  |  |
|           |                                      |      |                                              |                   | 2               | Analog output transfer function code             |                |  |  |
| 63        | Read analog<br>output<br>information | 0    | Analog output                                |                   | 3               | Analog output range units code                   |                |  |  |
|           |                                      |      | mumber code                                  |                   | 4-7             | Analog output upper range value                  | Floating point |  |  |
|           |                                      |      |                                              |                   | 8-11            | Analog output lower range value                  | Floating point |  |  |
|           |                                      |      |                                              |                   | 12-<br>15       | Analog output additional damping value (seconds) | Floating point |  |  |
|           | Write analog                         | 0    | Analog output number code                    |                   |                 |                                                  |                |  |  |
| 64        | additional<br>damping value          | 1-4  | Analog output<br>additional damping<br>value | Floating<br>point | Same as command |                                                  |                |  |  |
|           |                                      | 0    | Analog output number code                    |                   |                 |                                                  |                |  |  |
| CF        | Write analog                         | 1    | Analog output units code                     |                   | Cama            | 22 22 22 22 22 2                                 |                |  |  |
| 65        | output range<br>values               | 2-5  | Analog output upper range value              | Floating point    | Same as command |                                                  |                |  |  |
|           |                                      | 6-9  | Analog output lower range value              | Floating point    |                 |                                                  |                |  |  |
| CC        | Enter/exit                           | 0    | Analog output number code                    |                   | Ca :            | d                                                |                |  |  |
| 66        | fixed analog<br>output mode          | 1    | Analog output units code                     |                   |                 | - Same as command                                |                |  |  |

|     | non-Practice<br>nands                 |      | Data in Command                                       |                   | Data in Reply   |                                    |                |  |  |  |  |
|-----|---------------------------------------|------|-------------------------------------------------------|-------------------|-----------------|------------------------------------|----------------|--|--|--|--|
| #   | Function                              | Byte | Data                                                  | Туре              | Byte            | Data                               | Туре           |  |  |  |  |
|     |                                       | 2-5  | Analog output level <sup>72</sup>                     | Floating point    |                 |                                    |                |  |  |  |  |
|     |                                       | 0    | Analog output number code                             |                   |                 |                                    |                |  |  |  |  |
| 67  | 7 Trim analog output zero             |      | Analog output units code                              |                   | Same as command |                                    |                |  |  |  |  |
|     |                                       | 2-5  | Externally-measured analog output level <sup>72</sup> | Floating<br>point |                 |                                    |                |  |  |  |  |
|     |                                       | 0    | Analog output number code                             |                   |                 |                                    |                |  |  |  |  |
| 68  | Trim analog output gain               | 1    | Analog output units code                              |                   | Same            | as command                         |                |  |  |  |  |
|     |                                       | 2-5  | Externally-measured analog output level <sup>72</sup> | Floating<br>point |                 |                                    |                |  |  |  |  |
|     | Write analog output transfer function |      | Analog output<br>number code                          |                   | Same as command |                                    |                |  |  |  |  |
| 69  |                                       |      | Analog output<br>transfer function<br>code            |                   |                 |                                    |                |  |  |  |  |
|     |                                       |      |                                                       |                   | 0               | Analog output number code          | 2              |  |  |  |  |
|     | Read analog<br>output                 |      | Analog output                                         |                   | 1               | Analog output endpoint uni<br>code | ts             |  |  |  |  |
| 70  | endpoint<br>values                    | 0    | number code                                           |                   | 2-5             | Analog output upper endpoint value | Floating point |  |  |  |  |
|     |                                       |      |                                                       |                   | 6-9             | Analog output lower endpo<br>value | Floating point |  |  |  |  |
|     | Write burst                           | 0    | Transmitter variable code for slot 0                  |                   |                 |                                    |                |  |  |  |  |
| 107 | mode<br>transmitter                   | 1    | Transmitter variable code for slot 1                  |                   | Same            | as command                         |                |  |  |  |  |
| 107 | variable (for command 33)             | 2    | Transmitter variable code for slot 2                  |                   | Same as command |                                    |                |  |  |  |  |
|     | 3                                     |      | Transmitter variable code for slot 3                  |                   |                 |                                    |                |  |  |  |  |
| 108 | Write burst mode Burst mode           |      |                                                       |                   |                 |                                    |                |  |  |  |  |

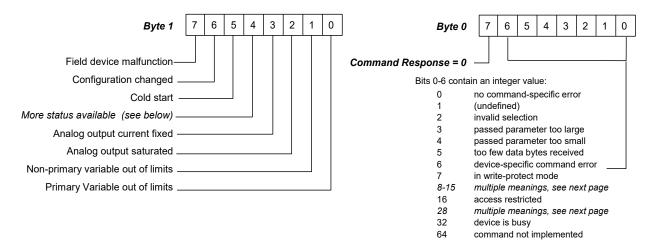
<sup>&</sup>lt;sup>72</sup> "not a number" exits fixed output mode Analog Modules with HART Communications


| Common-Practice<br>Commands |                      |      | Data in Command       |  |                 | Data in Reply               |                |  |  |  |
|-----------------------------|----------------------|------|-----------------------|--|-----------------|-----------------------------|----------------|--|--|--|
| #                           | Function             | Byte | Byte Data Type        |  |                 | Data                        | Туре           |  |  |  |
|                             | Burst mode           |      | Burst mode control    |  |                 |                             |                |  |  |  |
| 109                         | control              | 0    | code                  |  | Same as command |                             |                |  |  |  |
|                             | Control              |      | (0 = exit, 1 = enter) |  |                 |                             |                |  |  |  |
|                             |                      |      |                       |  | 0               | Primary Variable units code |                |  |  |  |
|                             |                      |      |                       |  | 1-4             | Primary Variable value      | Floating point |  |  |  |
|                             | Read all             |      |                       |  | 5               | Second Variable units code  |                |  |  |  |
| 110                         |                      | nono |                       |  | 6-9             | Second Variable value       | Floating point |  |  |  |
| 110                         | dynamic<br>variables | none |                       |  | 10              | Third Variable units code   |                |  |  |  |
|                             | variables            |      |                       |  | 11-14           | Third Variable value        | Floating point |  |  |  |
|                             |                      |      |                       |  | 15              | Fourth Variable units code  |                |  |  |  |
|                             |                      |      |                       |  | 16-19           | Fourth Variable value       | Floating point |  |  |  |

#### 11.6.7 HART Communications Status

Each message from a field slave device includes two bytes of status information, which is also referred to as the "response code". The format of the HART communications status data is shown in this section.

#### **Response Data with Command Response = 1**


If the Most Significant Bit of the first byte is 1 (Communications Error), an error has occurred in the outgoing HART communication. The rest of the bits individually indicate one or more error conditions:



Error conditions include parity and overrun errors. In addition, a field device will report an overflow of its receive buffer. It will also report any discrepancy between the message content and the received checksum.

#### **Response Data with Command Response = 0**

If the Most Significant Bit of the first byte is 0 (Command Response), the outgoing HART communications completed normally. The first byte then contains an integer value (the Command Response code) with the command status. The second byte contains the field device status, indicating the operational state of the slave device:



#### **Field Device Status Codes**

The Field Device Status codes in the second byte are explained below.

| Field Device Status Code       | Meaning                                                                        |
|--------------------------------|--------------------------------------------------------------------------------|
| Field device malfunction       | Measurements may not be correct.                                               |
| Configuration changed          | The configuration has been changed, so the master should check the             |
|                                | configuration, and clear the bit by sending Command #38.                       |
| Cold start                     | Set for the first transaction when a field device is powered up.               |
| More status available          | The master should issue Command #48 to read more status information.           |
| Analog output fixed            | The output has been set to a fixed value for testing. This bit applies only to |
|                                | analog output #1. In a multi-drop output device, command #48 may               |
|                                | return similar status information for the other outputs.                       |
| Analog output saturated        | Analog output #1 is out of range.                                              |
| Primary variable out of limits | The primary measurement is outside the sensor operating limits. The            |
|                                | analog signal and the digital signal read by HART commands may be              |
|                                | incorrect.                                                                     |
| Non-primary variable out of    | A non-primary measurement is outside the sensor operating limits. The          |
| limits                         | analog signal and the digital signal read by HART commands may be              |
|                                | incorrect. Command #48 may provide more information.                           |

# **Command Codes with Multiple Meanings**

The interpretation of Command Codes 8-15 and 28 in the first Command Response byte depends on the command that was issued.

| Code in     |                          |                                                 |  |  |  |  |  |  |
|-------------|--------------------------|-------------------------------------------------|--|--|--|--|--|--|
| First       | For these Commands       | Meaning of the Code                             |  |  |  |  |  |  |
| Byte        |                          |                                                 |  |  |  |  |  |  |
| 8           | 1, 2, 3, 33, 60, 62, 110 | Update failure                                  |  |  |  |  |  |  |
| (warning)   | 34, 55, 64               | Set to nearest possible value                   |  |  |  |  |  |  |
| (warriirig) | 48                       | Update in progress                              |  |  |  |  |  |  |
| 9           | 35, 65                   | Lower range value too high                      |  |  |  |  |  |  |
| (error)     | 36, 37, 43, 52           | Applied process too high                        |  |  |  |  |  |  |
| (error)     | 45, 46, 67, 68           | Not in proper current mode (fixed at 4 or 20mA) |  |  |  |  |  |  |
| 10          | 6                        | Multi-drop not supported                        |  |  |  |  |  |  |
|             | 35, 65                   | Lower range value too low                       |  |  |  |  |  |  |
| (error)     | 36, 37, 43, 52           | Applied process too low                         |  |  |  |  |  |  |
| 11          | 35, 65                   | Upper range value too high                      |  |  |  |  |  |  |
| (error)     | 40, 45, 46, 66, 67, 68   | In multi-drop mode                              |  |  |  |  |  |  |
| (error)     | 53                       | Invalid transmitter variable code               |  |  |  |  |  |  |
| 12          | 35, 65                   | Upper range value too high                      |  |  |  |  |  |  |
| (error)     | 53, 66, 67, 68           | Invalid units code                              |  |  |  |  |  |  |
| 13          | 35, 65                   | Both range values out of limits                 |  |  |  |  |  |  |
| (error)     | 69                       | Invalid transfer function code                  |  |  |  |  |  |  |
| 14          | 35, 36, 65               | Span too small                                  |  |  |  |  |  |  |
| (warning)   | 37                       | Pushed upper range value over limit             |  |  |  |  |  |  |
| 15          | 65, 66, 67, 68, 69       | Invalid analog output number code               |  |  |  |  |  |  |
| (error)     | 03, 00, 07, 08, 09       | Invalid analog output number code               |  |  |  |  |  |  |
| 28          | 65                       | Invalid range units code                        |  |  |  |  |  |  |
| (error)     | US .                     | Invalid range units code                        |  |  |  |  |  |  |

#### 11.7 Function Blocks to Read HART Data

PAC Machine Edition release 5.5 includes two custom HART function blocks for use in ladder logic application programs. These function blocks can be used to assign variable names to HART data inputs or on HART Get Device Information response data, beginning at word 3.

- DYN\_HART\_STRUCT interprets the first 36 bytes of the HART data map for a channel. This function block reads on demand the same data that would be automatically scanned if Module were configured for HART Data Scan Control set to "Dynamic Data".
- ALL\_HART\_STRUCT interprets the entire HART data for a channel, including the data interpreted by the DYN\_HART\_STRUCT function block. This function block reads on demand the same data that would be automatically scanned if Module were configured for HART Data Scan Control set to "All Data".

Instead of being read into an assigned CPU reference address, the data read by these Function Blocks is placed into a reference address that is defined by the Function Block.

The HART function blocks are located in the Toolchest under the folder "HART Utilities". To create an instance of one of these function blocks, drag and drop the desired function from the Toolchest folder into LD logic.

### 11.7.1 DYN\_HART\_STRUCT

The DYN\_HART\_STRUCT function block interprets the first 36 bytes on the data (offsets 0x0000 to 0x0023) of the HART data map for a channel. Refer to the example in this section. Use of this function block is not required. It only provides a mechanism to assign variable names to the HART data,

When the DYN\_HART\_STRUCT function executes (receives power flow), each of the HART variables in reference memory is assigned to DYN\_HART\_STRUCT instance variables. The instance variable names closely match the names listed in the table. They can be used as input to other functions, or for debugging purposes. The entire instance can be added to a Data Watch window so that HART data is easily viewed.

The instance data variables are only updated when the function block receives power flow. An instance of the function block is needed for each HART channel on which automatic assignment is desired.

Parameter types:

IN - Type = WORD, Length = 18, Pass-by = Reference

# Data Obtained with the DYN\_HART\_STRUCT Function Block

| Byte Offset |        | Field Description                                            | Data Type |
|-------------|--------|--------------------------------------------------------------|-----------|
| Begin       | End    |                                                              |           |
| 0x0000      | 0x0003 | HART Primary Variable, CMD#3, Bytes 5-8                      | REAL      |
| 0x0004      | 0x0007 | HART Secondary Variable CMD#3, Bytes 10-13                   | REAL      |
| 0x0008      | 0x000b | HART Tertiary Variable CMD#3, Bytes 15-18                    | REAL      |
| 0х000с      | 0x000f | HART Fourth Variable CMD#3, Bytes 20-23                      | REAL      |
| 0x0010      | 0x0013 | Slot 0 value. CMD#33, Bytes 2-5                              | REAL      |
| 0x0014      | 0x0017 | Slot 1 value CMD#33, Bytes 8-11                              | REAL      |
| 0x0018      | 0x001b | Slot 2 value CMD#33, Bytes 14-17                             | REAL      |
| 0x001c      | 0x001f | Slot 3 value CMD#33, Bytes 20-23                             | REAL      |
| 0x0020      |        | HART communication status byte from the last HART command    | BYTE      |
|             |        | response. Refer to Section 11.6.7.                           |           |
| 0x0021      |        | HART device status byte from the last HART command response. | BYTE      |
|             |        | (Dynamic Data)                                               |           |
| 0x0022      |        | Spare for alignment. (Dynamic Data)                          | BYTE*2    |

## 11.7.2 ALL\_HART\_STRUCT

The ALL\_HART\_STRUCT function block interprets the entire HART data map for a channel. This is the same data obtained by the DYN\_HART\_STRUCT block, plus the additional data displayed in the following figure.

Parameter types:

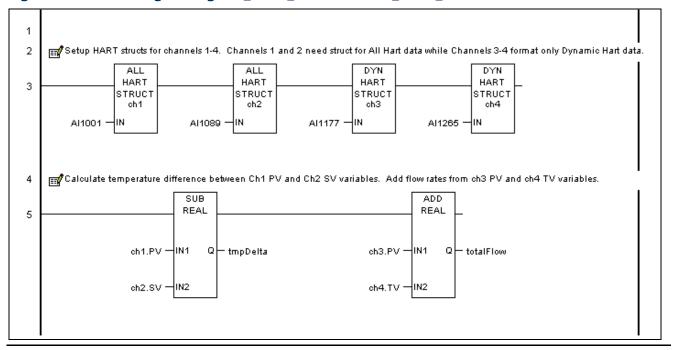
IN - Type = WORD, Length = 88, Pass-by = Reference

# Additional Data Obtained with the ALL\_HART\_STRUCT Function Block

| Byte Offset |        | Field Becomination                                                                | Data    |
|-------------|--------|-----------------------------------------------------------------------------------|---------|
| Begin       | End    | Field Description                                                                 | Туре    |
| 0x0024      |        | HART device Manufacturer ID. CMD#0, Byte 1                                        | BYTE    |
| 0x0025      |        | HART device type code. CMD#0, Byte 2                                              | BYTE    |
| 0x0026      |        | Minimum number of preambles device requires. CMD#0, Byte 3                        | BYTE    |
| 0x0027      |        | HART Universal command code. CMD#0, Byte 4                                        | BYTE    |
| 0x0028      |        | HART Transmitter specific revision. CMD#0, Byte 5                                 | BYTE    |
| 0x0029      |        | HART device software revision number. CMD#0, Byte 6                               | BYTE    |
| 0x002A      |        | HART device hardware revision number. CMD#0, Byte 7                               | BYTE    |
| 0x002B      |        | HART flags. CMD#0, Byte 8                                                         | BYTE    |
| 0x002C      | 0x002F | HART device ID number. CMD#0, Byte 9-11                                           | BYTE*4  |
| 0x0030      | 0x0037 | 8-character device tag. CMD#13, Bytes 0-5 in unpacked ASCII.                      | BYTE*8  |
| 0x0038      | 0x0047 | Device Descriptor. CMD#13, Bytes 6-17 in unpacked ASCII                           | BYTE*16 |
| 0x0048      |        | HART Primary Variable Units. CMD#3, Byte 4                                        | BYTE    |
| 0x0049      |        | HART Secondary Variable Units. CMD#3, Byte 9, 0 if not present.                   | BYTE    |
| 0x004a      |        | HART Tertiary Variable Units. CMD#3, Byte 14, 0 if not present.                   | BYTE    |
| 0x004b      |        | HART Fourth Variable Units. CMD#3, Byte 19, 0 if not present.                     | BYTE    |
| 0x004c      |        | HART Primary Variable Code. CMD#50, Byte 0                                        | BYTE    |
| 0x004d      |        | HART Secondary Variable Code. CMD#50, Byte 1                                      | BYTE    |
| 0x004e      |        | HART Tertiary Variable Code. CMD#50, Byte 2                                       | BYTE    |
| 0x004f      |        | HART Fourth Variable Code. CMD#50, Byte 3                                         | BYTE    |
| 0x0050      |        | Units code for range parameter. CMD#15, Byte 2                                    | BYTE    |
| 0x0051      | 0x0053 | Spare for alignment                                                               | BYTE*3  |
| 0x0054      | 0x0057 | Low transmitter range for analog signal in engineering units. CMD#15, Bytes 3-6   | REAL    |
| 0x0058      | 0x005b | High transmitter range for analog signal in engineering units. CMD#15, Bytes 7-10 | REAL    |
| 0x005c      |        | Slot 0 units code. CMD#33, Byte 1                                                 | BYTE    |
| 0x005d      |        | Slot 1 units code. CMD#33, Byte 7                                                 | BYTE    |

| Byte Of | fset   | Field Description                                                              | Data    |  |  |  |
|---------|--------|--------------------------------------------------------------------------------|---------|--|--|--|
| Begin   | End    | Field Description                                                              | Туре    |  |  |  |
| 0x005e  |        | Slot 2 units code. CMD#33, Byte 13                                             | BYTE    |  |  |  |
| 0x005f  |        | Slot 3 units code. CMD#33, Byte 19                                             | BYTE    |  |  |  |
| 0x0060  |        | Slot 0 variable code. CMD#33, Byte 0                                           | BYTE    |  |  |  |
| 0x0061  |        | Slot 1 variable code. CMD#33, Byte 6                                           | BYTE    |  |  |  |
| 0x0062  |        | Slot 2 variable code. CMD#33, Byte 12                                          | BYTE    |  |  |  |
| 0x0063  |        | Slot 3 variable code. CMD#33, Byte 18                                          | BYTE    |  |  |  |
| 0x0064  | 0x0083 | 32-character message. CMD#12, Bytes 0-23 unpacked ASCII.                       | BYTE*32 |  |  |  |
| 0x0084  | 0x0087 | Stored date in the field device. CMD#13, Bytes 18-20.                          | BYTE*4  |  |  |  |
| 0x0088  | 0x008b | The final assembly number is used for identifying the material and electronics | BYTE*4  |  |  |  |
| 00000   | UXUUOD | that comprise the field device. CMD#16, Bytes 0-2                              |         |  |  |  |
| 0x008c  | 0x00a4 | The extended status returned by HART Command 48.                               | BYTE*25 |  |  |  |
| 0x00a5  | 0x00af | Spare                                                                          | BYTE*11 |  |  |  |

#### Example: ALL\_HART\_STRUCT and DYN\_HART\_STRUCT


This example uses the following HART module hardware configuration parameters:

- HART Data Scan Control is set to: All Data
- HART Data Reference Address is configured as: %AI1001

The example shows ALL\_HART\_STRUCT for channels 1 and 2 on a HART module, and DYN\_HART\_STRUCT for channels 3 and 4 on the same module. The math function blocks in the example show how the structure instance variables can be used on the HART data.

When using either ALL\_HART\_STRUCT or DYN\_HART\_STRUCT, the instance data should be made global. This is done by adding ",g" to the end of the instance name when it is created (for example, "ch1,g" creates a global instance named "ch1"). If the instance data is not global, the instance can only be used in the program block where the ALL\_HART\_STRUCT or DYN\_HART\_STRUCT function block is executed.





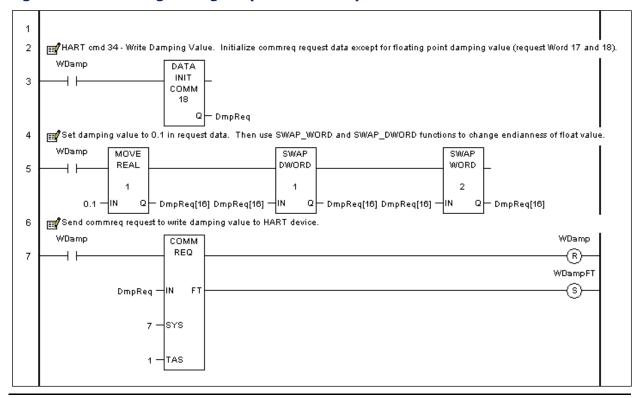
# 11.8 Converting HART Data to / from RX3i Format

When using HART Pass-Through COMMREQ (command 2) only, HART data must be both byte-packed and in big-endian format as defined by the HART Specification. Because PACSystems CPUs use little-endian format, floating-point values and ASCII data must be reformatted by the program logic.

Note that this conversion is not required when using COMMREQ 1 or for HART data that is automatically scanned.

Two function blocks in the PAC Machine Edition release 5.5 toolchest can be used to pack/unpack HART ASCII data:

- ASCII\_PACK prepares ASCII data before sending it to a HART module.
- ASCII\_UNPACK can be used to unpack ASCII characters returned by a HART device.


These are described in the next section.

# 11.8.1 Converting Floating-Point Data (Endian Flip)

Floating-point values that begin at word 17 of a Pass-Through Request must be converted *to* big-endian format. Floating-point values that begin at word 7 of the reply must be converted *from* big-endian format.

The basic procedure is to pass any HART float values through the SWAP\_DWORD (size = 1) and SWAP\_WORD (size = 2) functions, as displayed in the following figure. This swaps the words within the float DWord, and swaps the bytes within the two float words. In this example shows how to format floating-point data prior to sending HART command 34, *Write Damping Value*.

Figure 329: Ladder Logic Using Swap DWord & Swap Word



#### 11.8.2 ASCII\_PACK

ASCII\_PACK prepares ASCII data before sending it to a HART module using COMMREQ2 (HART Pass-Through Request). All of the function block parameters are either Type = WORD, Pass-By = Value or word arrays of Type = WORD and Pass-by = Reference. All word-based reference memory types and symbolics can be used.

It is possible to use data of a different type for the array data (for example, using a byte array of data as input to the ASCII\_PACKED and ASCII\_UNPACKED blocks), although Machine Edition will issue a warning during verification. In the example mentioned, the size of the input byte array would need to be at least as large as the data size of the function block parameter word array.

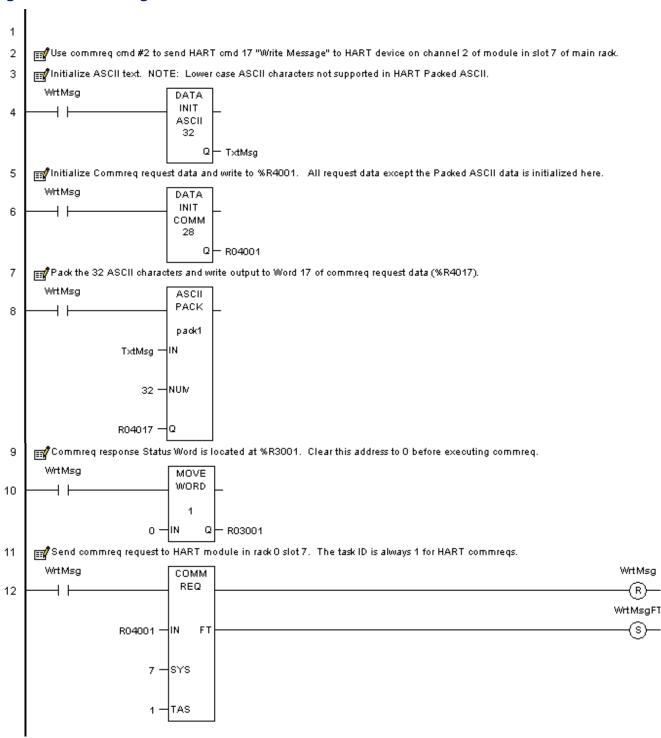
#### Parameter types:

IN - Type = WORD, Length = 16, Pass-by = Reference

NUM - Type = WORD, Length = 1, Pass-by = Value

Q - Type = WORD, Length = 12, Pass-by = Reference

#### Example Function Block: ASCII\_PACK


This example shows how ASCII\_PACK can be used to prepare ASCII data before using a COMMREQ to send it to a HART module. First, the logic sets up the data that will be used by the COMMREQ. The ASCII\_PACK function block packs the 32 ASCII characters of the message and also places that into the COMMREQ data area. After clearing the COMMREQ status to 0, the logic uses a COMMREQ to send HART command 17 "Write Message" to the device.

HART ASCII format packs data into 6 bits per character, 4 characters per 3 bytes. This chart shows the format with the most significant hex digits in the rightmost column and the lowest row.

| Less | ess significant |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |
|------|-----------------|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|
|      | 0               | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F |
| 0    | at              | Α | В | С | D  | Е | F | G | Н | I | J | K | L | М | N | 0 |
| 1    | Р               | Q | R | S | Т  | U | V | W | Х | Υ | Z | [ | ١ | ] | ٨ | _ |
| 2    | SP              | ! | " | # | \$ | % | & | , | ( | ) | * | + | , | - |   | / |
| 3    | 0               | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | : | ; | < | = | > | ? |

More significant

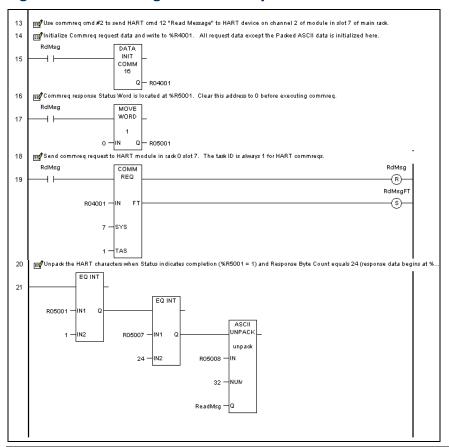
#### Figure 330: Ladder Logic for ACSII Pack



## 11.8.3 ASCII\_UNPACK

ASCII\_UNPACK can be used to unpack ASCII characters returned by a HART device in Pass-Through Reply data send in response to COMMREQ 2.

All of the function block parameters are either Type = WORD, Pass-By = Value or word arrays of Type = WORD and Pass-by = Reference. All word-based reference memory types and symbolics can be used.


#### Parameter types:

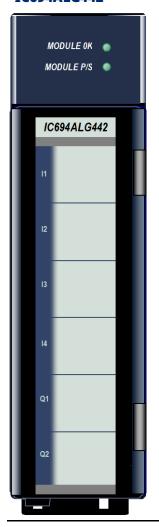
```
IN - Type = WORD, Length = 12, Pass-by = Reference
```

# 11.8.4 Example Function Block 3: ASCII\_UNPACK:

In this example, after initializing the COMMREQ completion status, the ladder logic sends COMMREQ command #12, "Read Message" to the HART module in Rack 0, Slot 7. When the status = complete and the Response Byte Count =24, showing that all the data is present, the ASCII\_UNPACK function block unpacks the HART ASCII data.

Figure 331: Ladder Logic for ACSII Unpack




# Section 12: Analog Mixed I/O Modules

This chapter describes the following Analog Mixed I/O modules for PACSystems RX3i controllers.

| Analog Mixed I/O Module Description                                      | Catalog<br>Number | Section |
|--------------------------------------------------------------------------|-------------------|---------|
| Analog Module 4-Input 2-Output Current/Voltage                           | IC694ALG442       | 12.1    |
| Analog Module 4-Input 2-Output Current/Voltage with Advanced Diagnostics | IC694ALG542       | 12.2    |

# 12.1 Analog Module 4-Input/2-Output Current/Voltage: IC694ALG442

#### Figure 332: IC694ALG442



Analog Current/Voltage Input/Output module, IC694ALG442, provides four differential input channels and two single-ended output channels. Each channel can be configured with the Machine Edition software for one of the following ranges:

- 0 to +10 volts (unipolar), default.
- -10 to +10 volts (bipolar)
- 0 to 20 mA
- 4 to 20 mA

Input channels can also be configured for 4 - 20 mA Enhanced mode.

This module may be installed in any I/O slot in the RX3i system.

#### 12.1.1 Features

Outputs can be configured to either Hold Last State if system power is interrupted or to reset to the low end of their range. Outputs can also be configured to operate in ramp mode on command from the application program. In ramp mode, the output channel ramps to a new value over a period of time, rather than taking the new value immediately.

High and low alarm limits can be set for all input channels and an open-wire fault (current output modes) can be reported to the CPU for each output channel.

Revision BA & later supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 12.1.2 Isolated +24 Vdc Power

This module must receive 24 Vdc power from an external source. The external source must be connected to the terminal block of this module.

#### 12.1.3 LEDs: ALG442

Module **OK** LED provides module status information as follows:

ON: status is OK, module configured;

*OFF:* no backplane power or software not running (watchdog timer timed out);

Continuous rapid blinking: configuration data not received from CPU;

*Slow blinking, then OFF:* failed power-up diagnostics or encountered code execution error.

The **USER SUPPLY** LED indicates that the external 24Vdc supply is within specifications.

# 12.1.4 Specifications: ALG442

| Power Requirements                      |                                                                              |  |  |
|-----------------------------------------|------------------------------------------------------------------------------|--|--|
| External Supply Voltage Range           | 20 to 30 Vdc (24 Vdc typical)                                                |  |  |
| Power Supply Rejection Ratio            | Current:5 μΑ/V (typical), 10 μΑ/V (maximum)                                  |  |  |
|                                         | Voltage: 25 m V/V (typical), 50 mV/V (maximum)                               |  |  |
|                                         | (Measured by varying V <sub>USER</sub> from 24Vdc to 30 Vdc)                 |  |  |
| Voltage Ripple                          | 10%                                                                          |  |  |
| Power Consumption                       | 95 mA from internal +5Vdc Supply, 150 mA from external supply                |  |  |
|                                         |                                                                              |  |  |
| Update Rate                             | Update Rate: 3 ms                                                            |  |  |
| Isolation, Field to Backplane (optical) | 250 Vac continuous; 1500 Vac for 1 minute                                    |  |  |
| and to frame ground                     |                                                                              |  |  |
| Analog Outputs                          | Two, Single–Ended                                                            |  |  |
| Analog Current Output                   |                                                                              |  |  |
| Output Ranges                           | 0 to 20 mA, 4 to 20 mA                                                       |  |  |
| Resolution                              | 0 to 20 mA: 0.6 μA (1 LSB = 0.6 μA)                                          |  |  |
|                                         | 4 to 20 mA: 0.5 μA (1 LSB = 0.5 μA)                                          |  |  |
| Absolute Accuracy <sup>73,74</sup>      | ±0.1% of full scale at 25°C (77°F), typical                                  |  |  |
|                                         | ±0.25% of full scale at 25°C (77°F), maximum                                 |  |  |
|                                         | ±0.5% of full scale over operating temperature range (maximum)               |  |  |
| Maximum Compliance Voltage              | V <sub>USER</sub> –3 V (minimum) to V <sub>USER</sub> (maximum)              |  |  |
| User Load                               | 0 to 850Ω (minimum at $V_{USER}$ = 20 V, maximum 1350Ω at $V_{USER}$ = 30 V) |  |  |
| Output Load Capacitance                 | 2000 pF (maximum)                                                            |  |  |
| Output Load Inductance                  | 1 H (maximum)                                                                |  |  |
| Analog Voltage Output                   |                                                                              |  |  |
| Output Ranges                           | -10 to +10 V (bipolar), 0 to +10 V (unipolar)                                |  |  |
| Resolution                              | –10 V to +10 V: 0.3125 mV (1 LSB = 0.3125 mV)                                |  |  |
|                                         | 0 to +10 V: 0.3125 mV (1 LSB = 0.3125 mV)                                    |  |  |
| Absolute Accuracy <sup>75,74</sup>      | ±0.25% of full scale at 25°C (77°F), typical                                 |  |  |
|                                         | ±0.5% of full scale at 25°C (77°F), maximum                                  |  |  |
|                                         | ±1.0% of full scale over operating temperature range (maximum)               |  |  |
| Output Loading                          | 5 mA ( $2k\Omega$ minimum resistance)                                        |  |  |
| Output Load Capacitance                 | 1 μF (maximum capacitance)                                                   |  |  |
| Analog Inputs                           | Four, differential                                                           |  |  |

<sup>&</sup>lt;sup>73</sup> Analog Current output: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±1% of full scale.

<sup>&</sup>lt;sup>74</sup> Applicable for all inputs and outputs: In the presence of severe Conducted RF interference (IEC 61000-4-6, 10Vrms), accuracy may be degraded to ±2% of full scale.

<sup>&</sup>lt;sup>75</sup> Analog Voltage output: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±4% of full scale.

| Power Requirements                 |                                                                                                |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
| Analog Current Input               |                                                                                                |  |  |  |
| Input Ranges                       | 0 to 20 mA, 4 to 20 mA, 4 to 20 mA Enhanced                                                    |  |  |  |
| Resolution                         | Versions –Dx and later: 0.625μA (1 LSB = 0.625μA)                                              |  |  |  |
|                                    | Earlier versions: $5 \mu A (1 LSB = 5\mu A)$                                                   |  |  |  |
| Absolute Accuracy <sup>76</sup>    | ±0.25% of full scale at25°C (77°F)                                                             |  |  |  |
|                                    | ±0.5% of full scale over specified operating temperature range                                 |  |  |  |
| Linearity                          | <1 LSB                                                                                         |  |  |  |
| Common Mode Voltage                | 200 Vdc (maximum)                                                                              |  |  |  |
| Common Mode Rejection              | >70 dB at DC; >70 dB at 60 Hz                                                                  |  |  |  |
| Cross Channel Rejection            | >80 dB from DC to 1 kHz                                                                        |  |  |  |
| Input Impedance                    | 250 Ω                                                                                          |  |  |  |
| Input Filter Response              | 29 Hz                                                                                          |  |  |  |
| Analog Voltage Input               |                                                                                                |  |  |  |
| Input Ranges                       | 0 to +10 V (unipolar), -10 to +10 V (bipolar)                                                  |  |  |  |
| Resolution                         | Versions –Dx and later, both ranges: 0.3125 mV (1 LSB = 0.3125 mV)                             |  |  |  |
|                                    | Earlier versions: $0 \text{ to } +10 \text{ V}$ : $2.5 \text{ mV}$ (1 LSB = $2.5 \text{ mV}$ ) |  |  |  |
|                                    | -10 to +10 V: 5 mV (1 LSB = 5 mV)                                                              |  |  |  |
| Absolute Accuracy <sup>77,74</sup> | ±0.25% of full scale at25°C (77°F);                                                            |  |  |  |
|                                    | ±0.5% of full scale over specified operating temperature range                                 |  |  |  |
| Linearity                          | <1 LSB                                                                                         |  |  |  |
| Common Mode Voltage                | 200 Vdc (maximum)                                                                              |  |  |  |
| Common Mode Rejection              | >70 dB at DC; >70 dB at 60 Hz                                                                  |  |  |  |
| Cross Channel Rejection            | >80 dB from DC to 1 kHz                                                                        |  |  |  |
| Input Impedance                    | 800kΩ (typical)                                                                                |  |  |  |
| Input Filter Response              | 38 Hz                                                                                          |  |  |  |

For product standards and general specifications, refer to refer to Appendix A:.

In order to meet the IEC 1000-4-3 levels for RF Susceptibility refer to Appendix A:. When this module is present, the system must be mounted in a metal enclosure.

<sup>&</sup>lt;sup>76</sup> Analog Current Input: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±2% of full scale.

<sup>&</sup>lt;sup>77</sup> Analog Voltage Input: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±1% of full scale

# 12.1.5 Field Wiring: ALG442

The diagram below shows voltage and current connections for Module. Each channel can be configured independently as a voltage or a current channel, not both simultaneously.

| Terminal | Signal               | nal Definition                             |  |
|----------|----------------------|--------------------------------------------|--|
| 1        | 24VIN                | User-supplied +24Vdc Input                 |  |
| 2        | IN ADA               | Jumper terminal for connecting $250\Omega$ |  |
| 2        | JMP1                 | sense resistor for CH1                     |  |
| 3        | JMP2                 | Jumper terminal for connecting $250\Omega$ |  |
| 3        | JIVIFZ               | sense resistor for CH2                     |  |
| 4        | +CH1                 | Positive connection for differential       |  |
| 4        | +CIII                | analog input channel 1                     |  |
| 5        | +CH2                 | Positive connection for differential       |  |
|          | +C112                | analog input channel 2                     |  |
| 6        | -CH1                 | Negative connection for differential       |  |
|          | -CIII                | analog input channel 1                     |  |
| 7        | -CH2                 | Negative connection for differential       |  |
|          | -C112                | analog input channel 2                     |  |
| 8        | JMP3                 | Jumper terminal for connecting $250\Omega$ |  |
| 0        | JIVIFS               | sense resistor for CH3                     |  |
| 9        | JMP4                 | Jumper terminal for connecting $250\Omega$ |  |
| 9        | JIVIP4               | sense resistor for CH4                     |  |
| 10       | +CH3                 | Positive connection for differential       |  |
| 10       | +C113                | analog input channel 3                     |  |
| 11       | +CH4                 | Positive connection for differential       |  |
| 11       | 1014                 | analog input channel 4                     |  |
| 12       | -CH3                 | Negative connection for differential       |  |
| 12       | -C115                | analog input channel 3                     |  |
| 13       | -CH4                 | Negative connection for differential       |  |
| 13       | -C114                | analog input channel 4                     |  |
| 14       | V <sub>out</sub> CH1 | Voltage output for channel 1               |  |
| 15       | I <sub>out</sub> CH1 | Current output for channel 1               |  |
| 16       | V <sub>out</sub> CH2 | Voltage output for channel 2               |  |
| 17       | I <sub>out</sub> CH2 | Current output for channel 2               |  |
| 18       | V COM                | Common return for voltage outputs          |  |
| 19       | I RET                | Common return for User-supplied            |  |
| 19       | I IVE                | +24 V and current outputs                  |  |
| 20       | GND                  | Frame ground connections for cable         |  |
|          | טאוט                 | shields                                    |  |

Figure 333: Field Wiring ALG442 Field **Terminals Field** Wiring Wiring 24 VDC IN (2)JMP1 JMP2 3 (5)11 (6 12 JMP3 (8 JMP4 9 (10)(11) 13 14 (13)<del>(−)</del> (+) (15) IQ1 (+) (-) (16)VQ2 **←** (**-**) (+) IQ2 VCOM COM (19) (IRET) FGND\* Optional Shield

Connection

# 12.1.6 Input Scaling: ALG442

Resolution per bit depends on the configured input or output range as shown in the table of module specifications. Module scales each current and voltage input to a value in counts for the CPU.

| Configured Range    | Scaled Counts Values |
|---------------------|----------------------|
| 0 to 10 V (default) | 0 to 32767           |
| -10 to 10 V         | -32768 to 32767      |
| 4 to 20 mA          | 0 to 32767           |
| 0 to 20 mA          | 0 to 32767           |
| 0 to 20 mA Enhanced | -8000 to 32,000      |

In the 0 to +10 V default range, 0 volts corresponds to a count of 0 and +10 volts corresponds to a count of 32000. In the -10 to +10 volt range, -10 volts corresponds to a count of -32000 and +10 volts corresponds to a count of +32000. Full 12-bit resolution is available over either range.

In the 4 to 20 mA range, 4 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000. In the 0 to 20 mA range, 0 mA corresponds to a count of 0 and 20 mA corresponds to a count of 32000. Full 12-bit resolution is available over the 0 to 20 mA range. If the value exceeds 32,000 it is truncated to 32,000.

In the 4 to 20 mA Enhanced range, 0 mA corresponds to a count of -8000, 4 mA corresponds to a count of 0 (zero) and 20 mA corresponds to a count of +32000. The Enhanced range automatically provides 4 to 20 mA range scaling. Negative digital values are provided for input current levels between 4 mA and 0 mA. This creates a low alarm limit that detects when the input current falls from 4 mA to 0 mA, providing open-wire fault detection in 4 to 20 mA applications. If the value exceeds 32,000 it is truncated to 32,000.

Figure 334: Input Voltage Scaling ALG442

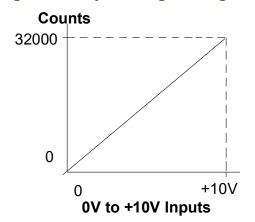
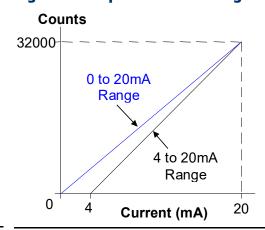




Figure 335: Input Current Scaling ALG442

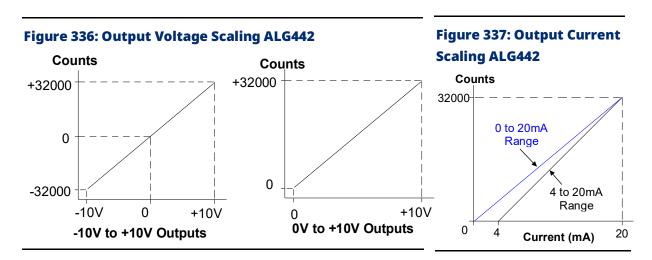


If the current source is reversed into the input, or is less than the low end of the current range, Module inputs a data word corresponding to the low end of the current range (0000H in %AI). If an input is out of range (greater than 20 mA), the A/D converter adjusts it to full scale (corresponding to 7FFFH in %AI).

# 12.1.7 Output Scaling: ALG442

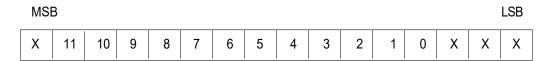
Module scales counts data received from the CPU to a current or voltage value for each output.

| Configured          | Values Sent By  | Values Accepted by |
|---------------------|-----------------|--------------------|
| Range               | CPU             | Module             |
| 0 to 10 V (default) | 0 to 32767      | 0 to 32767         |
| -10 to 10 V         | -32768 to 32767 | - 32768 to 32767   |
| 4 to 20 mA          | 0 to 32767      | 0 to 32000         |
| 0 to 20 mA          | 0 to 32767      | 0 to 32767         |


For a 0 to 10 V output, Module scales count outputs from 0 to 32000 to output voltages from 0 to +10 volts. Module scales count values from 32001 to 32767 to over range voltages up to a maximum of approximately 10.24 volts.

For a -10 to +10 V output, Module scales count outputs in the range  $\pm 32000$  to output voltages from -10 V to +10 V. Module scales count values from -32001 to -32768 and from +32001 to +32767 to over range voltages up to a maximum of approximately  $\pm 10.24$  V.

For a 4 to 20 mA output, Module scales count outputs from 0 to 32000 counts to output currents from 4 to 20 mA. If the CPU sends a value


above 32000 counts, Module uses the value 32000 in the D/A converter. No error is returned.

For a 0 to 20 mA output, Module scales count outputs from 0 to 32000 to output currents from 0 to 20 mA. Module scales count values from 32001 to 32767 up to a maximum output current of approximately 20.5 mA.



#### 12.1.8 I/O Data: ALG442

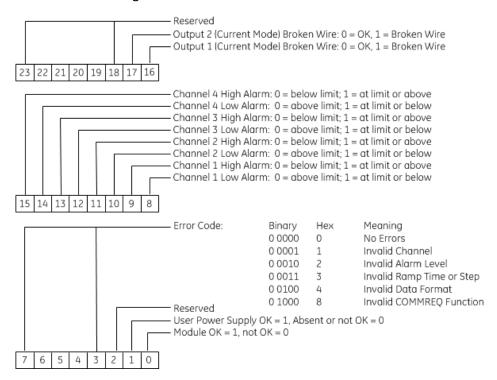
This module uses two %AQ references and four %AI references, depending on configuration. Data in the %AI and %AQ registers is in 16-bit 2's complement format.



Module also uses 8, 16 or 24 %I references for status data, depending on the alarm status configuration. Status data format is shown on the next page.

#### **Input Data**

Resolution of the converted signal is 12-bit binary (1 part in 4096). The placement of the 12 bits from the A/D converter in the %AI data word is shown above.


The bits in the %AI data table that were not used are forced to 0 (zero) by the analog input channel.

#### **Output Data**

Each output channel is capable of converting 15 to 16 bits (depending on the range selected) of binary data to an analog output.

#### 12.1.9 Status Data: ALG442

The Analog Module can be configured to return 8, 16, or 24 status bits to the PLC CPU. Content of the status data is displayed in the following figure.



#### **Error Code**

Byte 1 of the status data contains a status/error code for COMMREQs sent to Module. Only the most recent error is reported; an existing error code will be overwritten if another error occurs. The priority of errors is:

- 1. Invalid COMMREQ function (highest priority)
- 2. Invalid channel.
- 3. Invalid data (ramp or alarm parameter) (lowest priority).

If multiple errors occur, the one with the highest priority is reported in the error code. Module will not stop standard operation if an error is detected; these error bits are informational only, and can be ignored.

# 12.1.10 Configuration: ALG442

The following module parameters can be configured using the Machine Edition software:

#### **Module Settings**

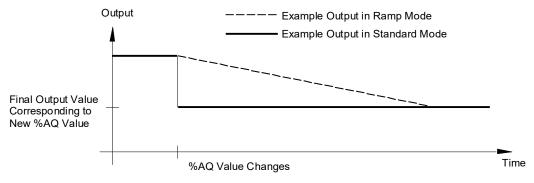
| Parameter                                 | Choices                                                                                                                              | Description                                                                                                                                                                                                                                                             |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Stop Mode                                 |                                                                                                                                      |                                                                                                                                                                                                                                                                         |  |
| Input Channel Value<br>Reference Address  | Valid memory type: %AI                                                                                                               | Starting %AI address for the analog input data of this module.                                                                                                                                                                                                          |  |
| Input Channel Value<br>Reference Length   | Read-only                                                                                                                            | Each input channel provides 16 bits (1 word) of analog input data to the Controller CPU.                                                                                                                                                                                |  |
| Output Channel Value<br>Reference Address | Valid memory type: %AQ                                                                                                               | Starting %AQ address for the analog output data of this module.                                                                                                                                                                                                         |  |
| Output Channel Value<br>Reference Length  | Read-only                                                                                                                            | Each input channel receives 16 bits (1 word) of analog input data to the Controller CPU.                                                                                                                                                                                |  |
| Module Status Reference<br>Address        | Valid memory type: %I                                                                                                                | Starting %I address for the status data of this module.                                                                                                                                                                                                                 |  |
| Module Status Reference<br>Length         | 0 (Module status reporting Disabled) 8 (module and power status only) 16 (above plus input status) 24 (all above plus output status) | Number of status bits (0 to 24) that will be used for module and channel status data.  When set to 0, status reporting is disabled.  To enable status reporting, set this parameter to a value other than 0.  For resulting data format, refer to Section 12.1.9 above. |  |
| I/O Scan Set                              | 1 through 32                                                                                                                         | Assigns Module I/O status data to a scan set defined in the CPU configuration. Determines how often the RX3i polls the data                                                                                                                                             |  |

The choice for Stop Mode (Hold or DeFlow) determines how outputs operate when Module goes from Run to Stop mode. If the configured Stop Mode is Hold (the default), Module holds outputs at the last state received from the CPU. If the Stop Mode is DeFlow, the outputs will go to their low values. In current mode (4-20 mA), outputs go to 4 mA if configured for DeFlow. In current mode (0-20 mA), outputs go to 0 mA if configured for DeFlow. In voltage mode (unipolar (0 to +10 Vdc) and bipolar (+10 Vdc to -10 Vdc), outputs go to 0V if configured for DeFlow.

#### **Output Channel Configuration Parameters ALG442**

| Parameter    | Choices                   | Description           |
|--------------|---------------------------|-----------------------|
| Output Range | 0 to +10 V, -10 to +10 V, | Type of output range. |
|              | 4 to 20 mA, 0 to 20 mA    |                       |

## **Input Channel Configuration Parameters ALG442**


| Parameter        | Choices                   | Description                                                    |  |
|------------------|---------------------------|----------------------------------------------------------------|--|
| Input Range      | 0 to +10 V, -10 to +10 V, | Type of input range                                            |  |
|                  | 4 to 20 mA, 0 to 20 mA,   |                                                                |  |
|                  | 4 to 20 mA Enhanced       |                                                                |  |
| Alarm Low Limit  | -32768 to 32759           | Low limit alarm value for each input.                          |  |
|                  |                           | Must be less than the high alarm for the same channel.         |  |
| Alarm High Limit | -32767 to 32760           | High limit alarm value for each input.                         |  |
|                  |                           | The Alarm Low and Alarm High parameters can be used to set     |  |
|                  |                           | up limits that cause alarms to be passed to the Controller for |  |
|                  |                           | each channel. Values entered without a sign are assumed to be  |  |
|                  |                           | positive.                                                      |  |
|                  |                           | These configured alarm limits are stored until changed by a    |  |
|                  |                           | new configuration. The configured high and low alarm limits    |  |
|                  |                           | can be changed temporarily by a COMMREQ command.               |  |

The Alarm Low and Alarm High parameters can be used to set up limits that cause alarm indications to be passed to the PLC for each channel. Values entered without a sign are assumed to be positive. These configured alarm limits are stored until changed by a new configuration. The configured high and low alarm limits can be changed temporarily by a COMMREQ from the application program as described later in this chapter.

# 12.1.11 Ramp Mode Operation: ALG442

Outputs on module ALG442 can be set up by a COMMREQ command to operate in Ramp mode. In normal operating mode, a new value entered in the %AQ reference for an output channel causes the output to change directly to the new value. In Ramp mode, the output goes to the new value over a period of time. The output channel starts a new ramp (either up or down) each time the value in its %AQ reference changes. Module performs range checking on new output values and automatically adjusts out-of-range values before making the ramp computations.

Figure 338: Ramp Mode Example ALG442



Use of Ramp mode is set up for either channel or both output channels using a COMMREQ command as explained in this chapter. The ramp slope can be set up in the COMMREQ as:

- a total ramp time from 1 millisecond to 32 seconds, or:
- a sequence of 1 to 32000 1-millisecond steps.

A channel stays in Ramp mode until Module receives a new COMMREQ either changing or canceling the ramp operation, or until power is cycled. The channel will not change modes after a hardware configuration download. Because COMMREQ settings are temporary, it will be lost after a power cycle.

If Module receives a new COMMREQ that changes ramp operation while an output is in the process of ramping, the new ramp settings take effect as follows:

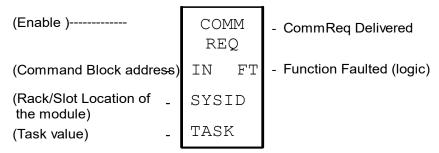
• If Ramp mode is turned off during a ramp, the channel goes directly to the value in its %AQ reference.

- If a channel is set up to ramp over a period of time, but a new COMMREQ is received commanding the channel to instead ramp in a sequence of measured steps, ramp operation changes as soon as the COMMREQ is processed (assuming that the step is valid).
- If a channel is set up to ramp as a sequence of measured steps, but a new COMMREQ is received commanding the channel to instead ramp over a period of time, it immediately starts a new ramp using the present output as the starting output and the present time as the start time.

If Module receives a Ramp command for an invalid channel, step height or ramp time, Module ignores the command and returns an error code in the first byte of its %I status references. The error code can be cleared by a Clear Errors COMMREQ as described in this chapter, or by reconfiguring Module.

# 12.1.12 Changing Module Operation on Command: ALG442

Module ALG442 can respond directly to a specific COMMREQ command from the application program to:


- clear the %I error code for this module
- modify the Input alarm limits, and
- put one or both outputs in Ramp mode and set up the ramp characteristics

These changes to module are not retained during loss of power. If Module is power-cycled, new commands must be sent to Module to again modify the configured alarm limits, or to set up Ramp operation for the outputs.

#### **COMMREQ Format**

The Communications Request is triggered when the logic program passes power to the COMMREQ Function Block.

#### Figure 339: COMMREQ usage ALG442



When sent to module ALG442, the parameters of the COMMREQ are:

| Parameter | Description                                                                                  |
|-----------|----------------------------------------------------------------------------------------------|
| Enable    | Control logic for activating the COMMREQ Function Block.                                     |
| IN        | The location of the Command Block. The Command Block contains the parameters of the          |
|           | COMMREQ request. It can be located at any valid address within a word-oriented memory        |
|           | area (%R, %AI, %AQ, %P, %L, or %W) in the PACSystems PLC.                                    |
| SYSID     | A hexadecimal word value that gives the rack (high byte) and slot (low byte) location of the |
|           | analog module.                                                                               |
| TASK      | Task must be set to zero.                                                                    |
| FT Output | The FT output is set if the PLC CPU is unable to deliver the COMMREQ to Module. When the     |
|           | FT output is set, Module is unable to return a COMMREQ status word to the PLC logic          |
|           | application.                                                                                 |

## **COMMREQ Command Block**

The format of the COMMREQ for module ALG442 is displayed in the following figure. For more information about using COMMREQs, refer to the online help and the *PACSystems, RX3i and RSTi-EP CPU Reference Manual*, GFK-2222.

| Word Offset | Value                      | Description                                  |  |
|-------------|----------------------------|----------------------------------------------|--|
| Word 1      | Must be 0004               | Length of the command block                  |  |
| Word 2      | 0000                       | Not used                                     |  |
| Word 3      | (Refer to below)           | Memory type of COMMREQ Status Word           |  |
| Word 4      | 0-based.                   | Offset of COMMREQ Status Word                |  |
| Word 5      | 0                          | Reserved                                     |  |
| Word 6      | 0                          | Reserved                                     |  |
| Word 7      | E201H (-7679 decimal)      | COMMREQ command number                       |  |
| Word 8      | 0006                       | Byte length of Command Data (refer to below) |  |
| Word 9      | (Refer to Memory Types and | Memory type in the CPU for the Command Data  |  |
|             | Offsets below)             |                                              |  |
| Word 10     | 0-based                    | Memory offset for the Command data           |  |

# **Memory Types and Offsets**

The COMMREQ Command Block specifies a memory type and location to receive status information about the execution of the command (word 3), and for the command data (word 9). The memory types are listed in the following table. *For word 4 and word 10, the address offset is a zero-based number.* For example, the offset for %R100 is 99 decimal.

| Туре | Value     | Value  | Description                                     |  |
|------|-----------|--------|-------------------------------------------------|--|
|      | (Decimal) | (Hex.) |                                                 |  |
| %R   | 8         | 08H    | Register memory (word mode)                     |  |
| %AI  | 10        | 0AH    | Analog input memory (word mode)                 |  |
| %AQ  | 12        | 0CH    | Analog output memory (word mode)                |  |
| %I   | 16        | 10H    | Discrete input memory (byte mode)               |  |
|      | 70        | 46H    | Discrete input memory (bit mode)                |  |
| %Q   | 18        | 12H    | Discrete output memory (byte mode)              |  |
|      | 72        | 48H    | Discrete output memory (bit mode)               |  |
| %T   | 20        | 14H    | Discrete temporary memory (byte mode)           |  |
|      | 74        | 4AH    | Discrete temporary memory (bit mode)            |  |
| %M   | 22        | 16H    | Discrete momentary internal memory (byte mode)  |  |
|      | 76        | 4CH    | Discrete momentary internal memory (bit mode)   |  |
| %G   | 56        | 38H    | Discrete global data table (byte mode)          |  |
|      | 86        | 56H    | Discrete global data table (bit mode)           |  |
| %W   | 196       | C4H    | Word memory (word mode; limited to %W1-%W65536) |  |

#### **COMMREQ Command Data Format**

In the COMMREQ Command Block (above) words 9 and 10 assign a CPU memory location for six bytes of command data. The program logic can use these bytes to set the parameters of the COMMREQ. This module does not use the last command data word.

word 1 command word word 2 alarm or ramp data word 3 Unused for module ALG442

| Command to be Performed                       | Word 1          | Word 2 Contains                        |
|-----------------------------------------------|-----------------|----------------------------------------|
|                                               | Contains        |                                        |
| Change the low alarm limit of the specified   | 0000 (Input 1)  | New low alarm limit for the input      |
| input channel to the value in word 2.         | 0001 (Input 2)  |                                        |
|                                               | 0002 (Input 3)  |                                        |
|                                               | 0003 (Input 4)  |                                        |
| Change the high alarm limit of the specified  | 0010 (Input 1)  | New high alarm limit for the input     |
| input channel to the value in word 2.         | 0011 (Input 2)  |                                        |
|                                               | 0012 (Input 3)  |                                        |
|                                               | 0013 (Input 4)  |                                        |
| Change the low alarm limit of the specified   | 0020 (Input 1)  | Increment used to change the           |
| input channel by the increment in word 2.     | 0021 (Input 2)  | configured low alarm limit. Increment  |
|                                               | 0022 (Input 3)  | can be + or                            |
|                                               | 0023 (Input 4)  |                                        |
| Change the high alarm limit of the specified  | 0030 (Input 1)  | Increment used to change the           |
| input channel by the increment in word 2.     | 0031 (Input 2)  | configured high alarm limit. Increment |
|                                               | 0032 (Input 3)  | can be + or                            |
|                                               | 0033 (Input 4)  |                                        |
| Turn off Ramp operation for the specified     | 0040 (Output 1) |                                        |
| output channel and put it in normal mode.     | 0041 (Output 2) |                                        |
| Put the specified output channel in Ramp step | 0050 (Output 1) | Step (1 to 32000 counts) to be taken   |
| mode. Step increment in word 2.               | 0051 (Output 2) | each millisecond.                      |
| Put the specified output channel in Ramp time | 0060 (Output 1) | Time in milliseconds: 1 to 32000       |
| mode. Ramp total time in word 2.              | 0061 (Output 2) | (1 ms to 32 seconds)                   |
| Clear the %I error code for this module.      | 00C0            |                                        |

If the requested command is not valid (for example, if the changed alarm limit would be out of range) Module ignores the COMMREQ command and returns an error code in the %I status data for this module. Module does NOT stop operating; these error bits are informational only and can be ignored. The error code remains in the %I status bits until cleared by another COMMREQ (command 00C0, refer to directly above), or until Module is reconfigured.

%T0004 —(s)

#### **COMMREQ Example**

This example shows setting up COMMREQ data and issuing the COMMREQ to an Analog Mixed module.

The application program should verify the completion of the COMMREQ in progress before initiating another, so Module does not receive COMMREQs faster than it can process them. One way to do that is to zero the contents of the COMMREQ status (%R0001 in this example) as the COMMREO is enabled. Since the status returned for a completed COMMREQ is never zero, a non-zero status word indicates that the COMMREQ has completed.

In this example, the COMMREQ command block starts at %R0002 and is initialized on the first scan. The 6 bytes of COMMREQ data sent to Module must have been moved into %R0101-%R0103 before the COMMREQ is enabled.

Module is located in rack 0, slot 2 so the SYSID input to the COMMREQ is 0002.

Figure 340: COMMREQ Example ALG442 FST SCN BLKMV MOVE MOVE INT WORD WORD %R0001 IN1 Q CONST %R0008 %R0009 +00000 CONST CONST a IN  $\Omega$ IN E201 CONST 0006 IN2 LEN LEN +00004 00001 00001 CONST +00000 IN3 CONST +00008 IN4 CONST +00000 IN5 CONST +00000 IN<sub>6</sub> CONST +00000 IN7 FST\_SCN MOVE MOVE INT INT %R0011 CONST %R0010 CONST ΙN ΙN +00008 +00100 LEN LEN 00001 00001 %T0001 %T0002 MOVE (s) %T0003 %R0001 CONST IN +00000 LEN %T,00Q1 00001 (R) %T0003 %M0001 СОММ (s) REQ %R0002 IN FT CONST SYSID 0002 CONST TASK 0000 %T0002 NE INT %T0002 CONST (<sub>R</sub>) 11

Setting %T0001 moves zero into the COMMREQ status word, enables %T0003 for one sweep to initiate the COMMREQ, and sets %T0002 to begin checking the status word. When a non–zero status word is detected, %T0002 is reset to discontinue checking and %T0004 is set to indicate that Module is ready for the next COMMREQ. Reference %M0001 is set if a COMMREQ fault occurs.

+00000

%R0001

12

# 12.2 Analog Module 4-Input/2-Output Current/Voltage with Advanced Diagnostics: IC694ALG542

Advanced Diagnostics mixed I/O Analog Current/Voltage module, IC694ALG542, provides four differential input channels and two single-ended output channels. Each channel can be configured with the Machine Edition software for one of the following ranges:

- 0 to +10 volts (unipolar), default.
- -10 to +10 volts (bipolar)
- 0 to 20 mA
- 4 to 20 mA

Input channels can also be configured for 4–20 mA Enhanced mode. Individual outputs can be configured to either Hold Last State if system power is interrupted or to reset to the low end of their range. Outputs can also be configured to operate in ramp mode on command from the application program. In ramp mode, the output channel ramps to a new value over a period of time, rather than taking the new value immediately.

High and low alarm limits can be set for all input channels and an open wire fault (current output modes) can be reported to the CPU for each output channel.

#### 12.2.1 Features

- Open-circuit detection for all inputs in 4 to 20 mA Enhanced Range
- Configurable scaling and offsets per channel
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting selectable per channel
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program
- Positive and negative Rate of Change Alarms
- Display of module serial number, revision and manufacturing date code in programming software.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, Hot Insertion and Removal.
- Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

Figure 341: IC694ALG542



#### 12.2.2 Isolated +24Vdc Power

This module requires 150mA plus loop current(s) from a user-supplied 24Vdc external source.

#### 12.2.3 LEDs: ALG542

Module **OK** LED provides module status information as follows:

ON: status is OK, module configured;

*OFF*: no backplane power or software not running (watchdog timer timed out);

Continuous rapid blinking: configuration data not received from CPU;

*Slow blinking, then OFF:* failed power-up diagnostics or encountered code execution error.

The **USER SUPPLY** LED indicates that the external 24Vdc supply is within specifications.

#### 12.2.4 Specifications: ALG542

| Power Requirements                     |                                                               |  |
|----------------------------------------|---------------------------------------------------------------|--|
| External Supply Voltage Range          | 20 to 30 Vdc (24 Vdc typical)                                 |  |
| Power Supply Rejection Ratio           | Current:5 μA/V (typical), 10 μA/V (maximum)                   |  |
|                                        | Voltage: 25 mV/V (typical), 50 mV/V (maximum)                 |  |
|                                        | (Measured by varying V <sub>USER</sub> from 24 Vdc to 30 Vdc) |  |
| Voltage Ripple                         | 10%                                                           |  |
| Power Consumption                      | 95 mA from backplane +5 Vdc supply                            |  |
|                                        | 150 mA from external +24 Vdc supply                           |  |
| Update Rate                            | Update Rate: 2ms                                              |  |
|                                        |                                                               |  |
| Isolation Field to Backplane (optical) | 250 Vac continuous; 1500 Vac for 1 minute                     |  |
| and to frame ground                    |                                                               |  |
| Analog Outputs                         | Two, Single-Ended                                             |  |
| Analog Current Output                  |                                                               |  |
| Output Current Ranges                  | 0 to 20 mA, 4 to 20 mA                                        |  |
| Resolution                             | 0 to 20 mA: 0.625 μA (1 LSB = 0.625 μA)                       |  |
|                                        | 4 to 20 mA: 0.5 μA (1 LSB = 0.5 μA)                           |  |

| Power Requirements                            |                                                                              |
|-----------------------------------------------|------------------------------------------------------------------------------|
| Absolute Accuracy <sup>78,79</sup>            | ±0.1% of full scale at 25°C (77°F), typical                                  |
|                                               | ±0.25% of full scale at 25°C (77°F), maximum                                 |
|                                               | ±0.5% of full scale over operating temperature range (maximum)               |
| Maximum Compliance Voltage                    | V <sub>USER</sub> –3 V (minimum) to V <sub>USER</sub> (maximum)              |
| User Load                                     | 0 to 850Ω (minimum at $V_{USER}$ = 20 V, maximum 1350Ω at $V_{USER}$ = 30 V) |
| Output Load Capacitance                       | 2000 pF (maximum)                                                            |
| Output Load Inductance                        | 1 H (maximum)                                                                |
| Analog Voltage Output                         |                                                                              |
| Output Ranges                                 | -10 to +10 V (bipolar), 0 to +10 V (unipolar)                                |
| Resolution                                    | -10 V to +10 V: 0.3125 mV (1 LSB = 0.3125 mV)                                |
|                                               | 0 to +10 V: 0.3125 mV (1 LSB = 0.3125 mV)                                    |
|                                               | ±0.25% of full scale at 25°C (77°F), typical                                 |
| Absolute Accuracy <sup>80,79</sup>            | ±0.5% of full scale at 25°C (77°F), maximum                                  |
|                                               | ±1.0% of full scale over operating temperature range (maximum)               |
| Output Loading                                | 5 mA (2 kΩ minimum resistance)                                               |
| Output Load Capacitance                       | 1 μF (maximum capacitance)                                                   |
| Analog Inputs                                 | Four, differential                                                           |
| Analog Current Input                          |                                                                              |
| Input Ranges                                  | 0 to 20 mA, 4 to 20 mA, 4 to 20 mA Enhanced                                  |
| Resolution                                    | 0–20 mA: 0.625 μA (1 LSB = 0.625 μA)                                         |
|                                               | 4–20 mA: 0.5 μA/bit (1 LSB = 0.5 μA)                                         |
|                                               | 4–20 mA Enhanced: 0.5 μA/bit (1 LSB = 0.5 μA                                 |
| Absolute Accuracy at 0–20 mA <sup>81,79</sup> | ±0.25% of full scale at25°C (77°F);                                          |
|                                               | ±0.5% of full scale over specified operating temperature range               |
| Absolute Accuracy at 4–20 mA <sup>81,79</sup> | ±0.25% of full scale at25°C (77°F);                                          |
|                                               | ±0.5% of full scale over specified operating temperature range               |
| Absolute Accuracy at 4–20 mA                  | ±0.25% of full scale at25°C (77°F);                                          |
| Enhanced <sup>81, 79</sup>                    | ±0.5% of full scale over specified operating temperature range               |
| Linearity                                     | <4 LSB                                                                       |
| Common Mode Voltage                           | 200 Vdc (maximum)                                                            |
| Common Mode Rejection                         | >70 dB at DC; >70 dB at 60 Hz                                                |
| Cross Channel Rejection                       | >80 dB from DC to 1 kHz                                                      |
|                                               |                                                                              |
| Input Impedance                               | 250 Ω                                                                        |

\_

<sup>&</sup>lt;sup>78</sup> Analog Current Output: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±1% of full scale.

<sup>&</sup>lt;sup>79</sup> Applicable for all outputs and inputs: In the presence of severe Conducted RF interference (IEC 61000-4-6, 10Vrms), accuracy may be degraded to  $\pm 2\%$  of full scale.

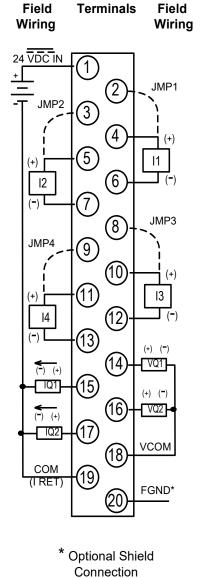
<sup>&</sup>lt;sup>80</sup> Analog Voltage Output: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±4% of full scale

<sup>&</sup>lt;sup>81</sup> Analog Current Input: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±2% of full scale.

| Power Requirements                 |                                                                |  |
|------------------------------------|----------------------------------------------------------------|--|
| Analog Voltage Input               |                                                                |  |
| Input Ranges                       | 0 to +10 V (unipolar), -10 to +10 V (bipolar)                  |  |
| Calibration                        | Factory calibrated to:                                         |  |
|                                    | 2.5 mV per count on 0 V to +10 V (unipolar) range              |  |
|                                    | 5 mV per count on -10 to +10 V (bipolar) range                 |  |
| Resolution at 0V to +10 Vdc        | 0 to +10 V: 0.3125 mV (1 LSB = 0.3125 mV)                      |  |
|                                    | -10 to +10 V: 0.3125 mV (1 LSB = 0.3125 mV)                    |  |
| Resolution at -10 Vdc to +10 Vdc   | 1 LSB = 0.3125 mV                                              |  |
| Absolute Accuracy <sup>82,79</sup> | ±0.25% of full scale at25°C (77°F);                            |  |
| over specified operating           | ±0.5% of full scale over specified operating temperature range |  |
| temperature range                  |                                                                |  |
| Linearity                          | <4 LSB                                                         |  |
| Common Mode Voltage                | 200 Vdc (maximum)                                              |  |
| Common Mode Rejection              | >70 dB at DC; >70 dB at 60 Hz                                  |  |
| Cross Channel Rejection            | >80 dB from DC to 1 kHz                                        |  |
| Input Impedance                    | 800k $\Omega$ (typical)                                        |  |
| Input Filter Response              | 55 Hz                                                          |  |

For product standards and general specifications, refer to Appendix A:.

In order to meet the IEC 1000-4-3 levels for RF Susceptibility specified in Appendix A:, when this module is present, the system must be mounted in a metal enclosure.


<sup>&</sup>lt;sup>82</sup> Analog Voltage Input: In the presence of severe Radiated RF interference (IEC 61000-4-3, 10V/m), accuracy may be degraded to ±1% of full scale.

### 12.2.5 Field Wiring: ALG542

The diagram below shows voltage and current connections for Module. Each channel can be configured independently as a voltage or a current channel, not both simultaneously.

| Terminal | Signal                                         | Definition                                        |     |
|----------|------------------------------------------------|---------------------------------------------------|-----|
| 1        | 24VIN                                          | User-supplied +24Vdc Input                        |     |
| 2        | IN ADA                                         | Jumper terminal for connecting $250\Omega$ sense  | Fig |
| 2        | JMP1                                           | resistor for CH1 current mode                     | AL  |
| 3        | JMP2                                           | Jumper terminal for connecting 250 $\Omega$ sense |     |
| 3        | JIVIFZ                                         | resistor for CH2 current mode                     |     |
| 4        | +CH1                                           | Positive connection for differential analog input |     |
| т        | . СП                                           | channel 1                                         |     |
| 5        | +CH2                                           | Positive connection for differential analog input |     |
| 3        | . CI 12                                        | channel 2                                         |     |
| 6        | -CH1                                           | Negative connection for differential analog       |     |
|          |                                                | input channel 1                                   |     |
| 7        | -CH2                                           | Negative connection for differential analog       |     |
|          |                                                | input channel 2                                   |     |
| 8        | JMP3                                           | Jumper terminal for connecting 250Ω sense         |     |
|          | J 0                                            | resistor for CH3 current mode                     |     |
| 9        | JMP4                                           | Jumper terminal for connecting 250Ω sense         |     |
|          | - 11VII                                        | resistor for CH4 current mode                     |     |
| 10       | +CH3                                           | Positive connection for differential analog input |     |
|          |                                                | channel 3                                         |     |
| 11 +CH4  |                                                | Positive connection for differential analog input |     |
|          |                                                | channel 4                                         |     |
| 12       | -CH3                                           | Negative connection for differential analog       |     |
|          |                                                | input channel 3                                   |     |
| 13       | -CH4                                           | Negative connection for differential analog       |     |
| _        |                                                | input channel 4                                   |     |
| 14       | V <sub>out</sub> CH1                           | Voltage output for channel 1                      |     |
| 15       | I <sub>out</sub> CH1                           | Current output for channel 1                      |     |
| 16       | V <sub>out</sub> CH2                           | 3 1                                               |     |
| 17       | I <sub>out</sub> CH2                           | Current output for channel 2                      |     |
| 18       | V COM                                          | Common return for voltage outputs                 |     |
| 19       | I RET                                          | Common return for User-supplied +24 Vdc and       |     |
| . 5      | - 1121                                         | current outputs                                   |     |
| 20       | GND Frame ground connections for cable shields |                                                   |     |

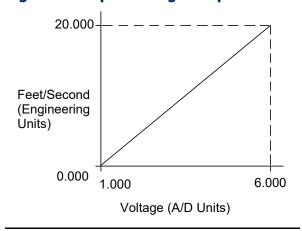
Figure 342: Field Wiring ALG542



#### 12.2.6 Input Scaling: ALG542

By default, Module converts a voltage or current input over the entire span of its configured Range. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters), the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the Controller that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible.

All alarm values apply to the scaled Engineering Units value, not to the A/D input value. The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.


#### Example:

For a voltage input, 6.0 volts equals a speed of 20 feet per second, and 1.0 volt equals 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000 Low Scale Value (Eng Units) = 0.000 High Scale Value (A/D Units) = 6.000 Low Scale Value (A/D Units) = 1.000

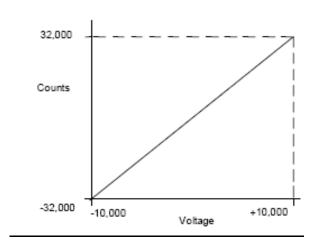
For this example, 1.0V to 6.0V is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 10.0V were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or other precautions for scaled inputs that are outside the acceptable range or otherwise invalid.

Figure 343: Input Scaling Example ALG542



#### 12.2.7 Output Scaling: ALG542

By default, Module converts a floating-point value from the CPU into a voltage or current output over the entire span of its configured Range. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters), the scaled Engineering Unit range can be changed for a specific application. Scaling is always linear and inverse scaling is possible.


All alarm values apply to the scaled Engineering Units value, not to the A/D Units value. The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the output.

#### **Example:**

In this example, the application should interpret 32000 counts as +10 Vdc and -32000 counts as -10 Vdc. The following channel configuration will scale a  $\pm 10$  Vdc output channel to  $\pm 32000$  counts.


Channel Value Format = 16-Bit Integer High Scale Value (Eng Units) = 32000.0 Low Scale Value (Eng Units) = -32000.0 High Scale Value (A/D Units) = 10.000 Low Scale Value (A/D Units) = -10.000

Figure 344: Output Scaling Example ALG542



#### 12.2.8 I/O Data: ALG542

This module uses two %AQ references and four %AI references, depending on configuration. Data in the %AI and %AQ registers is in 16-bit 2's complement format.



#### **Input Data**

Module reports its channel input data in its configured input words, beginning at its assigned Channel Value Reference Address. Each channel occupies 2 words, whether or not the channel is used:

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

#### **Output Data**

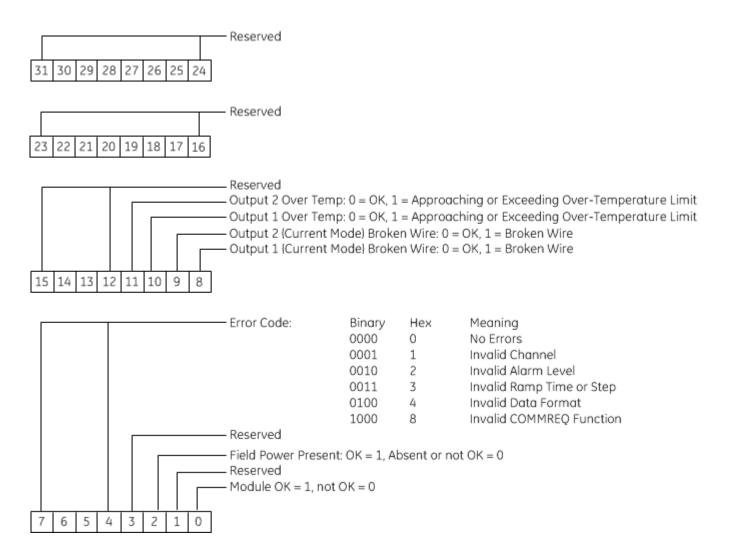
Module drives its channel output data in its configured output words, beginning at its assigned Channel Value Reference Address. Each channel occupies 2 words, whether or not the channel is used:

Depending on its configured Channel Value Format, each enabled channel drives analog voltage/current corresponding to a 32-bit floating-point or 16-bit integer value driven by CPU.

In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be driven as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

#### 12.2.8.1 Channel Diagnostic Data

In addition to the input data from field devices, the module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the module's configured Diagnostic Reference Address. Use of this feature is optional.


The diagnostics data for each channel occupies 2 words (whether the channel is used or not):

When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data will be as shown in below table.

| Bit     | Description                   |
|---------|-------------------------------|
| 0       | Low Alarm                     |
| 1       | High Alarm                    |
| 2       | Under-range                   |
| 3       | Over-range                    |
| 4       | Open wire fault               |
| 5 – 15  | Reserved (set to 0)           |
| 16      | Low-Low Alarm                 |
| 17      | High-High Alarm               |
| 18      | Negative Rate of Change Alarm |
| 19      | Positive Rate of Change Alarm |
| 20      | Lower Clamp                   |
| 21      | Upper Clamp                   |
| 22 - 31 | Reserved (set to 0)           |

#### 12.2.9 Status Data: ALG542



## 12.2.10 Configuration: ALG542

The following parameters can be configured using the Machine Edition software.

### **Module Settings**

| Parameter                            | Choices                                                                                | Description                                                                                                                                                                                                                          |
|--------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Reference<br>Address           | Valid memory types: %AI<br>(default), %AQ, %R, %W,<br>Symbolic Memory. <sup>83</sup>   | The starting address in memory for input data from Module.                                                                                                                                                                           |
| Input Reference<br>Length            | Read-only                                                                              | Each input channel provides two words of analog data to the Controller CPU.                                                                                                                                                          |
| Output Reference<br>Address          | Valid memory types: %AI<br>(default), %AQ, %R, %W,<br>Symbolic Memory. <sup>83</sup>   | The starting address in memory for output data to Module.                                                                                                                                                                            |
| Output Reference<br>Length           | Read-only                                                                              | Each channel accepts two words of analog output data to the Controller CPU.                                                                                                                                                          |
| Diagnostic Reference<br>Address      | Valid memory types: %I<br>(default), %Q, %G, %M, %T,<br>Symbolic Memory. <sup>83</sup> | Starting address for the channel diagnostics data. Used only when Module Level Diagnostic Reporting is enabled.                                                                                                                      |
| Diagnostic reference<br>Length       | Read-only                                                                              | The amount of memory required for the channel diagnostics data. When Module Level Diagnostic Reporting is enabled, two words (32 bits) of diagnostic data are allocated for each channel, whether or not the channel is used.        |
| Module Status<br>Reference Address   | Valid memory types: %I<br>(default), %Q, %G, %M, %T,<br>Symbolic Memory. <sup>83</sup> | The starting address in memory for status information from Module.                                                                                                                                                                   |
| Module Status<br>Reference Length    | 0, 32                                                                                  | The number of module status bits reported to the Controller. Data format is displayed in the following figure.  When set to 0, status reporting is disabled. To enable status reporting, set this parameter to a value other than 0. |
| I/O Scan Set                         | 1 through 32                                                                           | Assigns Module I/O status data to a scan set defined in the CPU configuration. Determines how often the RX3i polls the data                                                                                                          |
| Inputs Default                       | Force Off (default) or<br>Hold Last State                                              | In the event of module failure or removal, this parameter specifies the state of all Channel Value References for Module.  Force Off = Channel Values clear to 0.  Hold Last State = Channels hold their last state.                 |
| Module Level<br>Diagnostic Reporting | Disabled (default) or Enabled                                                          | If enabled, 32 bits of data are allocated for each active channel. Diagnostic Reporting and Fault Reporting can be enabled separately for each channel.                                                                              |

 $<sup>^{83}</sup>$  To use this feature "Variable Mode" property must be enabled in PAC Machine Edition.

## **Output Channel Configuration Parameters ALG542**

| Parameter        | Choices                 | Description                                                       |
|------------------|-------------------------|-------------------------------------------------------------------|
| Range Type       | Disabled (default),     | Enables/disables the output channel.                              |
|                  | Voltage/Current         |                                                                   |
| Range            | 0 to +10 V (default),   | Selects the analog output type.                                   |
|                  | -10 to +10 V,           |                                                                   |
|                  | 4 to 20 mA, 0 to 20 mA  |                                                                   |
| Channel Value    | 32-Bit Floating-point   | 32-Bit Floating-point: A real value, range 3.40282e+38 through    |
| Format           | (default)               | 3.40282e+38                                                       |
|                  | 16-Bit Integer          | 16-Bit Integer: The low word of the 32-bit channel data           |
|                  |                         | contains the 16-bit integer channel value. The high word is       |
|                  |                         | ignored. It is possible for the application program to write 32-  |
|                  |                         | bit signed decimal values to the output reference. However,       |
|                  |                         | the program logic must restrict the magnitude of the value to     |
|                  |                         | the range +32767 to -32768. Exceeding this range results in       |
|                  |                         | misinterpretation of the sign bit and incorrect output channel    |
|                  |                         | operation.                                                        |
| Outputs Default  | Force to Default Value  | Determines how the output channel operates when one of the        |
|                  | (default)               | following events occurs:                                          |
|                  | Hold Last State         | The CPU transitions to Stop Disabled mode.                        |
|                  |                         | The CPU transitions to Run Disabled mode.                         |
|                  |                         | There is a loss of backplane power fault.                         |
|                  |                         | There is a non-recoverable module fault for this module.          |
|                  |                         | There is a critical CPU fault.                                    |
|                  |                         | The configuration is cleared.                                     |
|                  |                         | Force To Default Value: When an event listed above occurs,        |
|                  |                         | Module sets the channel output to the Default Value set for the   |
|                  |                         | channel. The channel output remains set to the default value      |
|                  |                         | until the CPU completes a successful reconfiguration of the       |
|                  |                         | outputs. If the Default Ramp Rate is set to a value other than 0, |
|                  |                         | the channel ramps to the default value.                           |
|                  |                         | Hold Last State: When one of the listed events occurs, Module     |
|                  |                         | retains the last successful configured state on its outputs until |
|                  |                         | the CPU completes a successful reconfiguration of the outputs.    |
| High Scale Value | The defaults and ranges | Scaling is disabled if:                                           |
| (Eng Units)      | for the four scaling    | High Scale Eng. Units = High Scale A/D Units                      |
| Low Scale Value  | parameters depend on    | and                                                               |
| (Eng Units)      | the configured Range    | Low Scale Eng. Units = Low Scale A/D Units.                       |
| High Scale Value | and Channel Value       | Default is High A/D Limit of selected range type.                 |
| (A/D Units)      | Format.                 | When Channel Value Format is set to 32-Bit Floating-point,        |
| Low Scale Value  |                         | range is -3.40282e+38 through 3.40282e+38. When set to 16-        |
| (A/D Units)      |                         | Bit Integer, range -32,768 through +32,767.                       |

| Parameter       | Choices                   | Description                                                      |
|-----------------|---------------------------|------------------------------------------------------------------|
| High Alarm      | The defaults and ranges   | The alarm parameters are specified in Engineering Units. To      |
| (Eng Units)     | for these parameters      | use alarming, Diagnostic Reporting or Fault Reporting must be    |
| Low Alarm       | depend on the             | enabled.                                                         |
| (Eng Units)     | configured Range and      | High Alarm: When the channel value reaches or exceeds this       |
|                 | Channel Value Format.     | value, a High Alarm is triggered.                                |
|                 |                           | Low Alarm: When the channel value reaches or goes below this     |
|                 |                           | value, a Low Alarm is triggered.                                 |
| Outputs Enabled | Valid range: 0.0, or      | The maximum rate at which the output will change during          |
| Ramp Rate       | Lower Limit: (High Scale  | normal operation (outputs are enabled and no fault conditions    |
| (Eng Units/ms)  | Eng Units -Low Scale      | exist).                                                          |
|                 | Eng Units) / 60,000       | A value of 0 disables ramping.                                   |
|                 | through High Scale Eng    |                                                                  |
|                 | Units                     |                                                                  |
| Default Ramp    | Valid range: 0.0, or      | The maximum rate at which the output will change if the          |
| Range           | Lower Limit: (High Scale  | Outputs Default parameter is set to Force to Default and one     |
| (Eng Units/ms)  | Eng Units -Low Scale      | or more of the events defined for Force to Default occurs.       |
|                 | Eng Units) / 60,000       | A value of 0 disables ramping.                                   |
|                 | through High Scale Eng    |                                                                  |
|                 | Units                     |                                                                  |
| Output Clamping | Disabled (default),       | Disabled: The Upper Clamp Limit is set to the same value as      |
| Enable          | Enabled                   | the High Scale Value. The Lower Clamp Limit is set to the same   |
|                 |                           | value as the Low Scale Value.                                    |
|                 |                           | Enabled: You can select the values for Upper Clamp Limit and     |
|                 |                           | Lower Clamp Limit.                                               |
| Upper Clamp     | Valid range: 0.0, or      | Enabled when Output Clamping is Enabled.                         |
| Limit           | Lc+ through Heu+,         | The highest value to which the output can be set. If the         |
| (Eng Units)     | where Lc+ is a value      | commanded value exceeds the upper clamp limit, the output is     |
|                 | greater than the Lower    | set to the upper clamp limit and an Upper Clamp condition        |
|                 | Clamp Limit, and Heu+ is  | occurs: an alarm is issued if the Upper Clamp Alarm Enable       |
|                 | a calculated value        | parameter is set to Enabled under Diagnostic Reporting Enable    |
|                 | slightly greater than the | and/or Fault Reporting Enable.                                   |
|                 | High Scale Value (Eng     | If Output Clamping Enable is set to Disabled, the Upper Clamp    |
|                 | Units).                   | Limit is set to the same value as the High Scale Value (Eng      |
|                 | Default: Heu+.            | Units).                                                          |
|                 |                           | Note: If you change the High Scale Value (Eng Units), the        |
|                 |                           | Upper Clamp Limit is not automatically updated. To update it     |
|                 |                           | automatically to Heu+, set the Output Clamping Enable            |
|                 |                           | parameter to Disabled and then set it to Enabled. This also sets |
|                 |                           | the value of the Lower Clamp Limit to its default.               |

| Parameter        | Choices                    | Description                                                        |
|------------------|----------------------------|--------------------------------------------------------------------|
| Lower Clamp      | Valid range: 0.0, or       | Enabled when Output Clamping is Enabled.                           |
| Limit            | Leu- through Hc-, where    | The lowest value to which the output can be set. If the            |
| (Eng Units)      | Leu is a calculated value  | commanded value exceeds the lower clamp limit, the output is       |
|                  | slightly lower than the    | set to the lower clamp limit and a Lower Clamp condition           |
|                  | Low Scale Value (Eng       | occurs: an alarm is issued if the Lower Clamp Alarm Enable         |
|                  | Units), and Hc- is a value | parameter is set to Enabled under Diagnostic Reporting Enable      |
|                  | lower than the Upper       | and/or Fault Reporting Enable.                                     |
|                  | Clamp Limit (Eng Units).   | If Output Clamping Enable is set to Disabled, the Lower Clamp      |
|                  | Default: Leu               | Limit is set to the same value as the Low Scale Value (Eng Units). |
|                  |                            | Note: If you change the Low Scale Value (Eng Units), the Lower     |
|                  |                            | Clamp Limit is not automatically updated. To update it             |
|                  |                            | automatically to Leu-, set the Output Clamping Enable              |
|                  |                            | parameter to Disabled and then set it to Enabled. This also sets   |
|                  |                            | the value of the Upper Clamp Limit to its default.                 |
| Default Value    | Valid range: 0.000 -       | If the Outputs Default parameter is set to Force to Default        |
| (Eng Units)      | 10.500                     | Value the channel will be set to this value if one or more of the  |
|                  | Default:                   | events defined for Force to Default Value occurs.                  |
|                  | -10 to +10 V: 0.0          |                                                                    |
|                  | Other ranges: Lowest       |                                                                    |
|                  | value of configured        |                                                                    |
|                  | Range.                     |                                                                    |
| User Offset      | 16-Bit Integer range:      | Engineering Units offset to change the base of the channel.        |
|                  | -32768 to 32768            | This value is added to the scaled value on the channel prior to    |
|                  | 32-Bit Floating-point,     | alarm checking.                                                    |
|                  | range:                     |                                                                    |
|                  | -3.40282e+38 through       |                                                                    |
|                  | 3.40282e+38. 0.0           |                                                                    |
|                  | (default)                  |                                                                    |
| Diagnostic       | Disabled (default) or      | If Diagnostic Reporting is enabled, Module reports channel         |
| Reporting Enable |                            | alarms in the Diagnostic Reference memory. Channel alarms          |
|                  | (Available only if Module  | can be individually enabled.                                       |
|                  | Level Diagnostic           |                                                                    |
|                  | Reporting is enabled on    |                                                                    |
|                  | the Settings tab.)         |                                                                    |
| Fault Reporting  |                            | If Fault Reporting is enabled, Module logs a fault log in the I/O  |
| Enable           |                            | Fault table for each occurrence of a channel alarm. Fault          |
|                  |                            | reporting for channel alarms can be individually enabled.          |

# **Input Channel Configuration Parameters ALG542**

| Parameter     | Choices                  | Description                                                      |
|---------------|--------------------------|------------------------------------------------------------------|
| Range Type    | Disabled (default),      | Enables/disables the output channel.                             |
|               | Voltage/Current          |                                                                  |
| Input Range   | Disabled (default)       | Selects the analog input type.                                   |
|               | 0 to +10 V,              |                                                                  |
|               | -10 to +10 V,            |                                                                  |
|               | 4 to 20 mA, 0 to 20 mA,  |                                                                  |
|               | 4 to 20 mA Enhanced      |                                                                  |
| Channel Value | 32-Bit Floating-point    | 32-Bit Floating-point: A real value, range 3.40282e+38 through   |
| Format        | (default)                | 3.40282e+38                                                      |
|               | 16-Bit Integer           | 16-Bit Integer: The low word of the 32-bit channel data          |
|               |                          | contains the 16-bit integer channel value. The high word is      |
|               |                          | ignored. It is possible for the application program to write 32- |
|               |                          | bit signed decimal values to the output reference. However,      |
|               |                          | the program logic must restrict the magnitude of the value to    |
|               |                          | the range +32767 to -32768. Exceeding this range results in      |
|               |                          | misinterpretation of the sign bit and incorrect output channel   |
|               |                          | operation.                                                       |
| High Scale    | The defaults and ranges  | Scaling is disabled if:                                          |
| Value         | for the four scaling     | High Scale Eng. Units = High Scale A/D Units                     |
| (Eng Units)   | parameters depend on the | and                                                              |
| Low Scale     | configured Range and     | Low Scale Eng. Units = Low Scale A/D Units.                      |
| Value         | Channel Value Format.    | Default is High A/D Limit of selected range type.                |
| (Eng Units)   |                          | When Channel Value Format is set to 32-Bit Floating-point,       |
| High Scale    |                          | range is -3.40282e+38 through 3.40282e+38. When set to 16-       |
| Value         |                          | Bit Integer, range -32,768 through +32,767.                      |
| (A/D Units)   |                          |                                                                  |
| Low Scale     |                          |                                                                  |
| Value         |                          |                                                                  |
| (A/D Units)   |                          |                                                                  |
| Positive Rate | Range: 0.0 (default)     | Rate of change in Engineering Units per Second that will         |
| of Change     | through 3.40282e+38      | trigger a Positive Rate of Change alarm. If set to 0, limit is   |
| Limit         |                          | disabled. Used with "Rate of Change Sampling Rate"               |
| (Eng          |                          | parameter.                                                       |
| Units/Sec)    |                          |                                                                  |
| Negative Rate | Range: 0.0 (default)     | Rate of change in Engineering Units per Second that will         |
| of Change     | through 3.40282e+38      | trigger a Negative Rate of Change alarm. If set to 0, limit is   |
| Limit         |                          | disabled. Used with "Rate of Change Sampling Rate"               |
| (Eng          |                          | parameter.                                                       |
| Units/Sec)    |                          |                                                                  |

| Parameter     | Choices                  | Description                                                       |
|---------------|--------------------------|-------------------------------------------------------------------|
| Rate of       | 0.06 (default) through   | Time from 0.06 through 300 seconds to wait between                |
| Change        | 300.0                    | comparisons. If set to 0.0, Module checks after every 0.06        |
| Sampling Rate |                          | second input sample.                                              |
| (Seconds)     |                          | <b>Note:</b> Module will start the Rate of Change detection 100ms |
|               |                          | after switching CPU to RUN mode or module field power is          |
|               |                          | cycled. This is to ignore any glitches in the input signal.       |
| High-High     | The defaults and ranges  | Alarms and Deadbands                                              |
| Alarm         | for these parameters     | All of the alarm parameters are specified in Engineering Units.   |
| (Eng Units)   | depend on the configured | To use alarming, Diagnostic Reporting or Fault Reporting must     |
| High Alarm    | Range and Channel Value  | be enabled.                                                       |
| (Eng Units)   | Format.                  | High-High Alarm and Low-Low Alarm: When the configured            |
| Low Alarm     |                          | value is reached or passed, a Low-Low Alarm or High-High          |
| (Eng Units)   |                          | Alarm is triggered. The configured values must be lower           |
| Low-Low       |                          | than/higher than the corresponding low/high alarm limits.         |
| Alarm         |                          | High Alarm and Low Alarm: When the configured value is            |
| (Eng Units)   |                          | reached or below (above), a Low (High) Alarm is triggered.        |
| High-High     |                          | High and Low Alarm Deadbands: A range in Engineering Units        |
| Alarm         |                          | above the alarm condition (low deadband) or below the alarm       |
| Deadband      |                          | condition (high deadband) where the alarm status bit can          |
| (Eng Units)   |                          | remain set even after the alarm condition goes away. For the      |
| High Alarm    |                          | alarm status to clear, the channel input must fall outside the    |
| Deadband      |                          | deadband range.                                                   |
| (Eng Units)   |                          | Alarm Deadbands should not cause the alarm clear condition        |
| Low Alarm     |                          | to be outside the Engineering Unit User Limits range. For         |
| Deadband      |                          | example, if the engineering unit range for a channel is -1000.0   |
| (Eng Units)   |                          | to +1000.0 and a High Alarm is set at +100.0, the High Alarm      |
| Low-Low       |                          | Deadband value range is 0.0 to less than 1100.0. A deadband       |
| Alarm         |                          | of 1100.0 or more would put the High Alarm clear condition        |
| Deadband      |                          | below –1000.0 units making the alarm impossible to clear          |
| (Eng Units)   |                          | within the limits.                                                |
| User Offset   | 16-Bit Integer range:    | Engineering Units offset to change the base of the input          |
|               | -32768 through 32768     | channel. This value is added to the scaled value on the channel   |
|               | 32-Bit Floating-point    | prior to alarm checking.                                          |
|               | range:                   | -                                                                 |
|               | -3.40282e+38 through     |                                                                   |
|               | 3.40282e+38.             |                                                                   |
|               | 0.0 (default)            |                                                                   |
| Software      | Disabled (default) or    | Controls whether software filtering will be performed on the      |
| Filtering     | Enabled                  | inputs.                                                           |

| Parameter   | Choices                    | Description                                                        |
|-------------|----------------------------|--------------------------------------------------------------------|
| Integration | 0 (default) through        | Specifies the amount of time in milliseconds for the software      |
| Time        | 4294967295 ms              | filter to reach 63.2% of the input value.                          |
| (ms)        |                            | A value of 0 indicates software filter is disabled. A value of 100 |
|             |                            | indicates data will achieve 63.2% of its value in 100ms.           |
| Diagnostic  | Disabled (default) or      | If Diagnostic Reporting is enabled, Module reports channel         |
| Reporting   | Enabled                    | alarms in the Diagnostic Reference memory. Channel alarms          |
| Enable      | (Available only if Module  | can be individually enabled.                                       |
|             | Level Diagnostic Reporting |                                                                    |
|             | is enabled on the Settings |                                                                    |
|             | tab.)                      |                                                                    |
| Fault       |                            | If Fault Reporting is enabled, Module logs a fault log in the I/O  |
| Reporting   |                            | Fault table for each occurrence of a channel alarm. Fault          |
| Enable      |                            | reporting for channel alarms can be individually enabled.          |

#### **Outputs Default Notes**

- Hot Removal of the module without removing the Field Terminal Block in an I/O Enabled mode will result in an undefined output. The outputs shall be forced to default by first turning off field power and removing the Terminal Block of this module before hot-removing Module.
- Resetting Module using SVC\_REQ 24 causes all channels to Hold Last State even if Default Value is configured. The application program must handle output defaulting before execution of the Service Request.
- Default Ramp Rate configuration is ignored if backplane power from the power supply is lost. Channels configured for Default Value go to the default value immediately.
- The first time a configuration is stored following a return of backplane power, the Default Ramp rate is not used. Any channel configured for Default Value goes to its default value immediately. If analog power was not lost and the same configuration is restored on the next power-up, the channel state is unchanged from the time the power was lost. The Default Ramp Rate is used for any subsequent reconfiguration.
- The operation of clear command is undefined when module "Outputs
   Default" parameter is configured for "Force To Default Value" and CPU
   is in Stop Enabled mode. For the outputs to stay in Hold Last state,
   place the CPU in Stop Disabled mode before sending a clear
   command.

### **Output Default Conditions and Actions**

| Condition           | Hold Last     | Default | Outputs  | <b>Channel Output Setting</b>       |
|---------------------|---------------|---------|----------|-------------------------------------|
|                     | State or      | Ramp    | Enabled  | (Except where indicated, field      |
|                     | Default       | Rate    | and Ramp | power is assumed to be              |
|                     | Value         | Enabled | Rate     | present).                           |
|                     |               |         | Enabled  |                                     |
| Outputs Enabled and | N/A           | N/A     | No       | Output goes to its commanded        |
| No Faults           |               |         |          | value from reference memory;        |
|                     |               |         |          | defaults don't apply.               |
|                     | N/A           | N/A     | Yes      | Output is ramped to the             |
|                     |               |         |          | commanded output from               |
|                     |               |         |          | reference memory at the Outputs     |
|                     |               |         |          | Enabled ramp rate. Defaults don't   |
|                     |               |         |          | apply.                              |
| Outputs Disabled,   | Default Value | No      | N/A      | Output is set to the Default Value  |
| Fault Mode, or      | Default Value | Yes     | N/A      | Output is ramped to the Default     |
| Reconfiguration     |               |         |          | Value at the Default ramp rate,     |
|                     |               |         |          | starting at the last commanded      |
|                     |               |         |          | value before entering mode.         |
|                     | Hold Last     | N/A     | N/A      | Output is held at the last          |
|                     | State         |         |          | commanded value                     |
| Loss of Backplane   | Default Value | N/A     | N/A      | Output is set to the Default Value. |
| Power or First      |               |         |          |                                     |
| Configuration Store |               |         |          |                                     |
| after Power-up      | Hold Last     | N/A     | N/A      | Output is held at last commanded    |
|                     | State         |         |          | value.                              |
| Reset with SVCREQ   | N/A           | N/A     | N/A      | Output is held at last commanded    |
| 24 or Cleared       |               |         |          | value.                              |
| Configuration       |               |         |          |                                     |
| Loss of Field Power | N/A           | N/A     | N/A      | All outputs go to 0V and 0mA.       |

#### 12.2.11 Rate of Change Alarms: ALG542

The ALG542 can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to current sample is negative, Module compares the rate change with the *Negative Rate of Change* parameter.

If the Engineering Unit change between samples is positive, Module compares the rate change with the *Positive Rate of Change* parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the *Diagnostic Reporting Enable* and *Fault Reporting Enable* parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. The minimum value which can be used with this parameter is 60 ms i.e., Module can compare the rate of change after every 60 ms.


When the CPU transitions to RUN mode or Module field power is cycled, the ALG542 waits 100ms before starting Rate of Change detection. This is to ignore any glitches in the input signal.

#### 12.2.12 Ramp Mode Operation: ALG542

In ALG542, the output channels can be set up to operate in Ramp mode. In this mode, the output goes to the new value over a period of time, instead of changing directly to the new value (Standard Mode). The output channel starts a new ramp (either up or down) each time the value in its %AQ reference changes.

In normal operating mode, the ramp operation of any given output channel is defined by the channel configuration parameter *Outputs Enabled Ramp Rate (Eng Units / ms)*. A value of zero indicates that the ramp operation is disabled and the respective output channel operates in Standard mode.

Figure 345: Ramp Mode Example ALG542



An output channel can also be set up to operate in Ramp mode using COMMREQ command. The ramp slope can be set up in the COMMREQ as:

- 1. Ramp Time Mode: A total ramp time from 1 millisecond to 32 seconds.
- 2. Ramp Step Mode: A step size of 1 to 32000 counts in every millisecond.

A channel stays in any one of the above modes until Module receives a new COMMREQ either changing or canceling the ramp operation, or until power is cycled. In this case the value of channel configuration parameter *Outputs Enabled Ramp Rate (Eng Units / ms)* is overridden by

the data sent along with the command. The output channel will not change modes even after re-loading the hardware configuration.

After canceling the ramp operation using a new COMMREQ the value of channel configuration parameter *Outputs Enabled Ramp Rate (Eng Units / ms)* is restored and the ramp operation is enabled / disabled accordingly.

If Module receives a new COMMREQ that changes ramp operation while an output is in the process of ramping, the new ramp settings take effect as follows:

- 1. If Ramp mode is turned off during a ramp, the channel goes directly to the value in its %AQ reference.
- If a channel is set up to ramp over a period of time, but a new COMMREQ is received commanding the channel to instead ramp in a sequence of measured steps, ramp operation changes as soon as the COMMREQ is processed (assuming that the step is valid).
- 3. If a channel is set up to ramp as a sequence of measured steps, but a new COMMREQ is received commanding the channel to instead ramp over a period of time, it immediately starts a new ramp using the present output as the starting output and the present time as the start time.

If Module receives a command for an invalid channel, step height or ramp time, Module ignores the command and returns an error code in its %I status references. The error code can be cleared by a Clear Errors COMMREQ or by reconfiguring Module.

#### 12.2.13 Clamp Mode Operation: ALG542

# Output Channel Clamping Enable Upper Clamp Limit (Eng Units)

Available when Output Clamping Enable is set to Enabled. This permits the user to define the uppermost value to which the output can be set. If the commanded value exceeds the upper clamp limit, the output is set to the upper clamp limit and an Upper Clamp condition occurs: an alarm is issued if the Upper Clamp Alarm Enable parameter is set to Enabled under Diagnostic Reporting Enable and/or Fault Reporting Enable and/or Interrupts Enable.

User can use the upper clamp to restrict the maximum output to a value lower than its configured Range Type.

For example, a -10 Vdc to +10 Vdc channel can be restricted to -10 Vdc to +8.5Vdc.

The Upper Clamp Limit also provides an output over range capability.

If Output Clamping Enable is set to Disabled, the Upper Clamp Limit is set to the same value as the High Scale Value (Eng Units).

Valid range: Lc+ through Heu+, where Lc+ is a value greater than the Lower Clamp Limit, and Heu+ is a calculated value slightly greater than the High Scale Value (Eng Units).

Default: Heu+. If you change the High Scale Value (Eng Units), the Upper Clamp Limit is not automatically updated. To update it automatically to Heu+, set the Output Clamping Enable parameter to Disabled and then set it to Enabled. This also sets the value of the Lower Clamp Limit to its default.

# Output Channel Clamping Enable Lower Clamp Limit (Eng Units)

Available when Output Clamping Enable is enabled. This permits the user to define the lowest value to which the output can be driven. If the commanded value exceeds the lower clamp limit, the output is set to the lower clamp limit and a Lower Clamp condition occurs: an alarm is issued if the Lower Clamp Alarm Enable parameter is set to Enabled under Diagnostic Reporting Enable and/or Fault Reporting Enable and/or Interrupts Enable.

User can use the lower clamp to restrict the minimum output to a value higher than its configured Range Type. For example, a -10 Vdc to +10 Vdc channel can be restricted to -7.5Vdc to +10 Vdc.

The Lower Clamp Limit also provides an output under range capability.

If Output Clamping Enable is set to Disabled, the Lower Clamp Limit is set to the same value as the Low Scale Value (Eng Units).

Valid range: Leu- through Uc-, where Leu is a calculated value slightly lower than the Low Scale Value (Eng Units), and Uc- is a value lower than the Upper Clamp Limit (Eng Units).

Default: Leu-. If you change the Low Scale Value (Eng Units), the Lower Clamp Limit is not automatically updated. To update it automatically to Leu-, set the Output Clamping Enable parameter to Disabled and then set it to Enabled. This also sets the value of the Upper Clamp Limit to its default.

# 12.2.14 Changing Module Operation on Command: ALG542

Module ALG542 can respond directly to a specific COMMREQ (Communication Request) command from the application program to:

- 1. Clear %I error code for Module.
- 2. Modify the Input alarm limits, and.
- 3. Put one or both outputs in Ramp mode and set up the ramp characteristics.

These changes to module are not retained during loss of power. If Module is power-cycled, new commands must be sent to Module to again modify the configured alarm limits, or to set up Ramp operation for the outputs.

#### **COMMREQ Command Block**

The format of the COMMREQ for module ALG542 is displayed in the following figure. The COMMREQ Command Block specifies a memory type and location to receive status information about the execution of the command (word 3), and for the command data (word 9). For more information about using COMMREQs, refer to the online help and the *PACSystems RX3i and RSTi-EP CPU Reference Manual*, GFK-2222.

| Word Offset | Value                    | Description                                 |
|-------------|--------------------------|---------------------------------------------|
| Word 1      | Must be 0004             | Length of the command block                 |
| Word 2      | 0000                     | Not used.                                   |
| Word 3      | Refer to GFK-2222.       | Memory type of COMMREQ status word          |
| Word 4      | 0-based                  | Offset of COMMREQ status word               |
| Word 5      | 0                        | Reserved                                    |
| Word 6      | 0                        | Reserved                                    |
| Word 7      | E201 hex (-7679 decimal) | COMMREQ command number                      |
| Word 8      | 0008                     | Byte length of command data                 |
| Word 9      | Refer to GFK-2222        | Memory type in the CPU for the Command Data |
| Word 10     | 0-based                  | Memory offset for the command data.         |

#### **COMMREQ Command Data Format**

In the COMMREQ Command Block (above) words 9 and 10 assign a CPU memory location for eight bytes of command data. The program logic can use these bytes to set the parameters of the COMMREQ.

- 1. Word 1 Command Word
- 2. Word 2 Channel Value Format (0000 16-Bit Integer / 0001 32-Bit Float).
- 3. Word 3 & 4 Alarm or Ramp data.

| Command to be Performed                 | Word 1 (hex)    | Word 2         | Contents of Word 3 & 4               |
|-----------------------------------------|-----------------|----------------|--------------------------------------|
| Change the low alarm limit of the       | 0000 (Input 1)  | 32-Bit Float / | New low alarm limit for the input /  |
| specified input / output channel to the | 0001 (Input 2)  | 16-Bit Integer | output.                              |
| value in words 3 & 4.                   | 0002 (Input 3)  |                |                                      |
|                                         | 0003 (Input 4)  |                |                                      |
|                                         | 0004 (Output 1) |                |                                      |
|                                         | 0005 (Output 2) |                |                                      |
| Change the high alarm limit of the      | 0010 (Input 1)  | 32-Bit Float / | New high alarm limit for the input / |
| specified input / output channel to the | 0011 (Input 2)  | 16-Bit Integer | output.                              |
| value in words 3 & 4.                   | 0012 (Input 3)  |                |                                      |
|                                         | 0013 (Input 4)  |                |                                      |
|                                         | 0014 (Output 1) |                |                                      |
|                                         | 0015 (Output 2) |                |                                      |
| Change the low-low alarm limit of the   | 0100 (Input 1)  | 32-Bit Float / | New low-low alarm limit for the      |
| specified input channel to the value in | 0101 (Input 2)  | 16-Bit Integer | input.                               |
| words 3 & 4.                            | 0102 (Input 3)  |                |                                      |
|                                         | 0103 (Input 4)  |                |                                      |
| Change the high-high alarm limit of the | 0110 (Input 1)  | 32-Bit Float / | New high-high alarm limit for the    |
| specified input channel to the value in | 0111 (Input 2)  | 16-Bit Integer | input.                               |
| words 3 & 4.                            | 0112 (Input 3)  |                |                                      |
|                                         | 0113 (Input 4)  |                |                                      |
| Change the low alarm dead band limit    | 0200 (Input 1)  | 32-Bit Float / | New low alarm dead band limit for    |
| of the specified input channel to the   | 0201 (Input 2)  | 16-Bit Integer | the input.                           |
| value in words 3 & 4.                   | 0202 (Input 3)  |                |                                      |
|                                         | 0203 (Input 4)  |                |                                      |
| Change the high alarm dead band limit   | 0210 (Input 1)  | 32-Bit Float / | New high alarm dead band limit for   |
| of the specified input channel to the   | 0211 (Input 2)  | 16-Bit Integer | the input.                           |
| value in words 3 & 4.                   | 0212 (Input 3)  |                |                                      |
|                                         | 0213 (Input 4)  |                |                                      |
| Change the low-low alarm dead band      | 0300 (Input 1)  | 32-Bit Float / | New low-low alarm dead band limit    |
| limit of the specified input channel to | 0301 (Input 2)  | 16-Bit Integer | for the input.                       |
| the value in words 3 & 4.               | 0302 (Input 3)  |                |                                      |
|                                         | 0303 (Input 4)  |                |                                      |

| Command to be Performed                 | Word 1 (hex)    | Word 2         | Contents of Word 3 & 4                |
|-----------------------------------------|-----------------|----------------|---------------------------------------|
| Change the high-high alarm dead band    | 0310 (Input 1)  | 32-Bit Float / | New high-high alarm dead band         |
| limit of the specified input channel to | 0311 (Input 2)  | 16-Bit Integer | limit for the input.                  |
| the value in words 3 & 4.               | 0312 (Input 3)  |                |                                       |
|                                         | 0313 (Input 4)  |                |                                       |
| Change the low alarm limit of the       | 0020 (Input 1)  | 32-Bit Float / | Increment used to change the input    |
| specified input / output channel by the | 0021 (Input 2)  | 16-Bit Integer | / output configured low alarm limit.  |
| increment in words 3 & 4.               | 0022 (Input 3)  |                | Increment can be + or                 |
|                                         | 0023 (Input 4)  |                |                                       |
|                                         | 0024 (Output 1) |                |                                       |
|                                         | 0025 (Output 2) |                |                                       |
| Change the high alarm limit of the      | 0030 (Input 1)  | 32-Bit Float / | Increment used to change the input    |
| specified input / output channel by the | 0031 (Input 2)  | 16-Bit Integer | / output configured high alarm limit. |
| increment in words 3 & 4.               | 0032 (Input 3)  |                | Increment can be + or                 |
|                                         | 0033 (Input 4)  |                |                                       |
|                                         | 0034 (Output 1) |                |                                       |
|                                         | 0035 (Output 2) |                |                                       |
| Turn off Ramp operation for the         | 0040 (Output 1) |                |                                       |
| specified output channel and put it in  | 0041 (Output 2) |                |                                       |
| normal mode. <sup>84</sup>              |                 |                |                                       |
| Put the specified output channel in     | 0050 (Output 1) | 32-Bit Float   | Step to be taken (in Eng Units / ms). |
| Ramp step mode. Step increment in       | 0051 (Output 2) |                |                                       |
| word 3 & 4.84                           |                 |                |                                       |
| Put the specified output channel in     | 0060 (Output 1) | 16-Bit Integer | Time in milliseconds: 1 to 32000      |
| Ramp time mode. Ramp total time in      | 0061 (Output 2) |                | (1 ms to 32 seconds)                  |
| word 3 & 4.84                           |                 |                |                                       |
| Clear Module %I error code              | 00C0            |                |                                       |

If the requested command is not valid (for example, if the changed alarm limit would be out of range or the specified data format in word 2 does not match with the data format used by the channel configuration) Module ignores the COMMREQ command and returns an error code in the %I status data for Module. Module does *not* stop operating; these error bits are informational only and can be ignored. The error code remains in the %I status bits until cleared by another COMMREQ (command 00C0, refer to directly above), or until Module is reconfigured.

<sup>&</sup>lt;sup>84</sup> These commands do not modify the configuration parameter Outputs Enabled Ramp Rate of the specified output channel of ALG542.

#### **COMMREQ Error Code**

The first byte of the ALG542 module status data contains a status/error code for COMMREQs sent to Module. Only the most recent error is reported; an existing error code will be overwritten if another error occurs. Following is the list of supported error codes:

| Error Code | Description                |
|------------|----------------------------|
| 0          | No Error.                  |
| 1          | Invalid channel.           |
| 2          | Invalid alarm level.       |
| 3          | Invalid ramp time or step. |
| 4          | Invalid data format.       |
| 8          | Invalid COMMREQ function.  |

The priority of errors is:

- 1. Invalid COMMREQ function (highest priority).
- 2. Invalid channel.
- 3. Invalid data format.
- 4. Invalid data (ramp or alarm parameter) (lowest priority).

If multiple errors occur, the one with the highest priority is reported in the error code. Module will not stop standard operation if an error is detected; these error bits are informational only, and can be ignored.

# Section 13: Universal Analog Input Module

This chapter describes the following Analog module for PACSystems RX3i controllers.

| Universal Analog Input Module Description                  | Catalog<br>Number | Section |  |
|------------------------------------------------------------|-------------------|---------|--|
| Universal Analog Input: Voltage, Current, Resistance, RTD, | IC695ALG600       |         |  |
| Thermocouple; 8-Channel                                    | 1C095ALG000       | 13.1    |  |

# 13.1 Universal Analog Input: Voltage, Current, Resistance, RTD, Thermocouple, 8-Channel + 2 CJC: IC695ALG600

#### Figure 346: IC695ALG600



Universal Analog Input module, IC695ALG600, provides eight general purpose input channels and two Cold Junction Compensation (CJC) channels. Inputs are divided into two equal groups of four. Channels can be individually-configured using the Machine Edition software for:

- Any combination of up to 8 channels of voltage, current, thermocouple, RTD, and resistance inputs.
- Thermocouple Inputs: B, C, E, J, K, N, R, S, T
- RTD Inputs: PT 385 / 3916, N 618 / 672, NiFe 518, CU 426
- Resistance Inputs: 0 to 250 / 500 / 1000 / 2000 / 3000 /  $4000\Omega$
- Current: 0-20 mA, 4-20 mA, +20 mA
- Voltage: <u>+</u>50mV, <u>+</u>150 mV, 0–5 V, 1–5 V, 0–10 Vdc, <u>+</u>10 Vdc

This module must be located in an RX3i Universal Backplane. It cannot be located in an expansion or remote backplane.

#### 13.2 Features

- Completely software-configurable, no module jumpers to set
- Six hardware analog-to-digital filter frequencies, individuallyselectable by channel
- Rapid channel acquisition times based on filter frequency
- Full auto-calibration
- On-board error-checking
- Open-circuit detection for most input types
- Short-circuit detection for RTDs.
- User-defined scaling
- High alarm, low alarm, high-high alarm, low-low alarm detection and reporting
- Module fault reporting
- Supports diagnostic point fault contacts in the logic program.
- Flash memory for future upgrades
- Module Status, Field Status, and TB LEDs
- CJC compensation on terminal block
- Temperature in Celsius or Fahrenheit
- Positive and negative Rate of Change Alarms
- Configurable software filters for each input channel
- Configurable interrupts for channel alarms and faults
- Terminal Block insertion or removal detection
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

#### 13.3 LEDs: ALG600

Module **OK** LED indicates module status. The **Field Status** LED indicates the presence of a fault on at least one channel or a terminal block error. The **TB** (Terminal Block) LED indicates the presence or absence of the terminal block. LEDs are powered from the backplane power bus.

| LED    | Indication           | Meaning                                                          |
|--------|----------------------|------------------------------------------------------------------|
| Module | ON Green             | Module OK and configured.                                        |
| ОК     | Slow Blinking Green  | Module OK but not configured.                                    |
|        | Quick Blinking Green | Module starting up, waiting for CPU-to-module communication to   |
|        |                      | be established.                                                  |
|        | Blinking Amber       | Internal Module Failure.                                         |
|        |                      | (Count the number of blinks for a two-digit blink code.)         |
|        | OFF                  | Module is defective or no backplane power present                |
| Field  | ON Green             | No faults on any enabled channel, and Terminal Block is present. |
| Status | ON Yellow            | Fault on at least one channel.                                   |
|        | OFF                  | Terminal block not present or not fully seated.                  |
| ТВ     | ON Red               | Terminal block not present or not fully seated.                  |
|        | ON Green             | Terminal block is present.                                       |
|        | OFF                  | No backplane power to module.                                    |

# 13.4 Specifications: ALG600

| Specification                      | Description                                                       |                                                      |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
|                                    | For IC695ALG600-DD and earlier: 400 mA maximum at 5Vdc;           |                                                      |  |  |  |  |
| Backplane Power Requirements       | 350 mA maximum at 3.3Vdc                                          |                                                      |  |  |  |  |
| backplane rower Requirements       | For IC695ALG600-EE                                                | and later: 190 mA maximum at 5Vdc;                   |  |  |  |  |
|                                    |                                                                   | 250 mA maximum at 3.3Vdc                             |  |  |  |  |
|                                    | 40 bytes (20 words)                                               | of input references for channel input data.          |  |  |  |  |
| CPU Memory Usage                   | 40 bytes for enhance                                              | ed diagnostics                                       |  |  |  |  |
|                                    | 4 bytes for module status reporting.                              |                                                      |  |  |  |  |
| Power Dissipation within<br>Module | 5.4 watts maximum                                                 |                                                      |  |  |  |  |
|                                    | One bi-color green/a                                              | amber LED to indicate Module status                  |  |  |  |  |
| LEDs                               |                                                                   | yellow LED to indicate the field status              |  |  |  |  |
|                                    |                                                                   | een LED to indicate the terminal block status        |  |  |  |  |
| Character T                        | 10 ms at 1000 Hz, 13                                              | 3 ms at 200 Hz, 27 ms at 40 Hz, 67 ms at 16 Hz,      |  |  |  |  |
| Channel Acquisition Time           | 87 ms at 12 Hz, 127                                               | ms at 8 Hz                                           |  |  |  |  |
|                                    | The sum of the char                                               | nnel acquisition times for a bank of 4 channels plus |  |  |  |  |
|                                    | one of the following                                              | , if applicable:                                     |  |  |  |  |
| Channel Update Time                | RTD Lead resistance measurement time (= channel acquisition time) |                                                      |  |  |  |  |
|                                    | CJC acquisition time 7 ms.                                        |                                                      |  |  |  |  |
| Input resolution                   | 11 to 16 bits, depen                                              | ding on configured range and A/D filter frequency.   |  |  |  |  |
| <u> </u>                           | Resistance                                                        | 0-250, 0-500, 0-1000, 0-2000, 0-3000, 0-4000         |  |  |  |  |
|                                    | Platinum 385                                                      | 100, 200, 500,1000                                   |  |  |  |  |
|                                    | Platinum 3916                                                     | 100, 200, 500,1000                                   |  |  |  |  |
| Inputs in $arOmega$                | Nickel 672                                                        | 120                                                  |  |  |  |  |
|                                    | Nickel 618                                                        | 100,200, 500,1000                                    |  |  |  |  |
|                                    | Nickel-Iron 518                                                   | 604                                                  |  |  |  |  |
|                                    | Copper 426                                                        | 10                                                   |  |  |  |  |
|                                    | Copper 426                                                        | -100 to 260 °C                                       |  |  |  |  |
|                                    | Nickel 618                                                        | -100 to 260 °C                                       |  |  |  |  |
|                                    | Nickel 672                                                        | -80 to 260 °C                                        |  |  |  |  |
| RTD Inputs                         | Nickel-Iron 518                                                   | -100 to 200 °C                                       |  |  |  |  |
|                                    | Platinum 385                                                      | -200 to 850 °C                                       |  |  |  |  |
|                                    | Platinum 3916                                                     | -200 to 630 °C                                       |  |  |  |  |
|                                    | Type B                                                            | 300 to 1820 °C                                       |  |  |  |  |
|                                    | Type C                                                            | 0 to 2315 °C                                         |  |  |  |  |
|                                    | Type E                                                            | -270 to 1000 °C                                      |  |  |  |  |
| Thermocouple Inputs                | Type J                                                            | -210 to 1200 °C                                      |  |  |  |  |
|                                    | Type K                                                            | -270 to 1372 °C                                      |  |  |  |  |
|                                    | Type N                                                            | -210 to 1300 °C                                      |  |  |  |  |
|                                    | Type R                                                            | 0 to 1768 °C                                         |  |  |  |  |

| Specification                     | Description                                                                        |                                                       |  |  |
|-----------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
|                                   | Type S                                                                             | 0 to 1768 °C                                          |  |  |
|                                   | Туре Т                                                                             | -270 to 400 °C                                        |  |  |
| Valtage / Compant Insuits         | -10 Vdc to +10 Vdc, 0 to                                                           | +10 Vdc, 0 to +5Vdc, 1Vdc to +5Vdc, -50mV to          |  |  |
| Voltage / Current Inputs          | +50mV, -150mV to +150                                                              | 0mV, -20mA to +20mA, 4 to 20 mA, 0 to 20 mA           |  |  |
| Configurable Input Filter         | 8Hz, 12Hz, 16Hz, 40Hz                                                              | , 200Hz, 1000Hz                                       |  |  |
| Scaling                           | Floating-point user sca                                                            | ling.                                                 |  |  |
| Max RTD Cable Impedance           | 25 Ω                                                                               |                                                       |  |  |
| RTD Wire Length                   | 1000 ft max w/settling                                                             | time of 1ms                                           |  |  |
| Input Impedance                   | >1MΩ for Tc/V/RTD                                                                  |                                                       |  |  |
| Current Input Resistance          | 249 Ω ±1%                                                                          |                                                       |  |  |
| On an aire vit data stion time    | 5 seconds max. Open o                                                              | circuit detection is available for all configurations |  |  |
| Open circuit detection time       | except ±20mA current                                                               | 0-20mA current, and ±10 Vdc voltage.                  |  |  |
| Max Over-voltage                  | ±14.5Vdc continuous                                                                |                                                       |  |  |
| Max Overcurrent                   | 28mA continuous                                                                    |                                                       |  |  |
| Name al Marda Naisa Daia stian    | 95 dB minimum at 50/60 Hz with 8 Hz filter                                         |                                                       |  |  |
| Normal Mode Noise Rejection       | 85 dB minimum at 50/60 Hz with 12 Hz filter                                        |                                                       |  |  |
| Common Mode Noise Rejection       | 120dB minimum at 50/60 Hz with 8 Hz filter                                         |                                                       |  |  |
| Common wode Noise Rejection       | 110dB minimum at 50/60 Hz with 12 Hz filter                                        |                                                       |  |  |
| Settling time to 5% of Full Scale | <80mS                                                                              |                                                       |  |  |
| (notch filter dependent)          | <001113                                                                            |                                                       |  |  |
| Calibration Viability             | Factory calibration is v conditions.                                               | alid for 12 months for all ranges and operating       |  |  |
| Input Offset Drift with           | 3.0 mΩ/°C maximum                                                                  |                                                       |  |  |
| Temperature                       | 2.0 μV/°C maximum                                                                  |                                                       |  |  |
| Gain Drift with Temperature       | 50 ppm/°C typical (90 p                                                            | opm/°C maximum)                                       |  |  |
|                                   | (Assumes 2 ADCs runn                                                               | ing in parallel, no CJC or lead resistance)           |  |  |
| Module Scan Time                  | 10ms per Channel * 4                                                               | Channels = 40ms (1KHz filter)                         |  |  |
| (notch filter dependent)          | 127ms per Channel * 4                                                              | Channels = 508ms (8Hz filter)                         |  |  |
|                                   | Channels that are disabled are not scanned, shortening scan time.                  |                                                       |  |  |
| Module conversion method          | Sigma-delta                                                                        |                                                       |  |  |
| Isolation Voltage                 | Onto-isolated transfer                                                             | mer isolated                                          |  |  |
| channel to channel                | Opto-isolated, transformer isolated<br>±12.5Vdc channel to channel Tc/V/I/RTD      |                                                       |  |  |
| group to group                    | ±12.5Vdc channel to channel IC/V/I/RTD  250 Vac continuous/1500 Vac for 60 seconds |                                                       |  |  |
| terminal block to                 |                                                                                    |                                                       |  |  |
| backplane/chassis                 | 250 Vac continuous/1500 Vac for 60 seconds                                         |                                                       |  |  |

# 13.4.1 Typical Accuracy Specifications

| Typical Error at:            |                                                 | +25°C       | +25°C    |           |             | 0°C to +60°C |           |  |
|------------------------------|-------------------------------------------------|-------------|----------|-----------|-------------|--------------|-----------|--|
| Configured Input Filter      |                                                 | 8, 12, 16Hz | 200Hz    | 1000Hz    | 8, 12, 16Hz | 200Hz        | 1000Hz    |  |
|                              | ± 10.5 V, 0.0 to +10.5 V                        | ± 5 mV      | ± 5.5 mV | +/- 7mv   | ± 10 mV     | ± 11 mV      | +/-13.7mv |  |
| Maltana Innove 85            | 0 to +5.25 V, +1.0 to +5.25 V                   | ± 3 mV      | ± 3.3 mV | +/-5mv    | ± 5 mV      | ± 5.5 mV     | +/-7mv    |  |
| Voltage Inputs <sup>85</sup> | ± 155 mV                                        | ± 30 μV     | ± 33 μV  | +/-62uV   | ± 110 μV    | ± 121 μV     | +/-160uV  |  |
|                              | ± 55 mV                                         | ± 15 μV     | ± 17 μV  | +/-24.4uV | ± 70 μV     | ± 77 μV      | +/-120uV  |  |
| Current Inputs <sup>85</sup> | ± 22.5 mA, 0.0 to +22.5 mA,<br>+3.0 to +22.5 mA | ± 20 μA     | ± 22 μA  | +/-24.5uA | ± 40 μA     | ± 44 μA      | +-50.5uA  |  |
|                              | Type J (-180°C to +1200°C)                      | ± 0.6°C     | ± 0.7°C  | ±1.4°C    | ± 2.3°C     | ± 2.6°C      | ±3.1°C    |  |
|                              | Type J (-210°C to -180°C)                       | ± 0.8°C     | ± 0.9°C  | ±1.32°C   | ± 3.3°C     | ± 3.7°C      | ±4.1°C    |  |
|                              | Type N (-160°C to +1300°C)                      | ± 1.0°C     | ± 1.1°C  | ±1.30°C   | ± 4.5°C     | ± 5.0°C      | ±1.59°C   |  |
|                              | Type N (-210°C to -160°C)                       | ± 1.8°C     | ± 2.0°C  | ±2.35°C   | ± 8.0°C     | ± 8.8°C      | ±9.9°C    |  |
|                              | Type T (-190°C to +400°C)                       | ± 0.9°C     | ± 1.0°C  | ±1.8°C    | ± 4.0°C     | ± 4.4°C      | ±5°C      |  |
|                              | Type T (-270°C to -190°C)                       | ± 6.7°C     | ± 7.4°C  | ±8.3°C    | ± 18.0°C    | ± 19.8°C     | ±20.9°C   |  |
| Thermocouple                 | Type K (-200°C to +1372°C)                      | ± 1.0°C     | ± 1.1°C  | ±1.3°C    | ± 4.0°C     | ± 4.4°C      | ±5°C      |  |
| Inputs <sup>85</sup>         | Type K (-270°C to -200°C)                       | ± 9.5°C     | ± 10.5°C | ±11.9°C   | ± 21.0°C    | ± 23.1°C     | ±25.5°C   |  |
|                              | Type E (-200°C to +1000°C)                      | ± 0.6°C     | ± 0.7°C  | ±1.4°C    | ± 2.5°C     | ± 2.8°C      | ±4.1°C    |  |
|                              | Type E (-270°C to -200°C)                       | ± 5.3°C     | ± 5.8°C  | ±6.7°C    | ± 14.0°C    | ± 15.4°C     | ±17.1°C   |  |
|                              | Type S and R                                    | ± 2.8°C     | ± 3.1°C  | ±4.6°C    | ± 11.5°C    | ± 12.7°C     | ±13.5°C   |  |
|                              | Type C                                          | ± 1.7°C     | ± 1.9°C  | ±2.7°C    | ± 7.0°C     | ± 7.7°C      | ±9°C      |  |
|                              | Туре В                                          | ± 3.3°C     | ± 3.7°C  | ±4.7°C    | ± 20.0°C    | ± 22.0°C     | ±24.5°C   |  |
|                              | 100 Ω Platinum 385                              | ± 0.7°C     | ± 0.8°C  | ±.95°C    | ± 1.2°C     | ± 1.4°C      | ±1.85°C   |  |
|                              | 200 Ω Platinum 385                              | ± 0.6°C     | ± 0.7°C  | ±.88°C    | ± 1.0°C     | ± 1.1°C      | ±1.3°C    |  |
|                              | 500 Ω Platinum 385                              | ± 0.5°C     | ± 0.6°C  | ±.8°C     | ± 0.9°C     | ± 1.0°C      | ±.8°C     |  |
|                              | 1000 Ω Platinum 385                             | ± 0.5°C     | ± 0.6°C  | ±.8°C     | ± 0.9°C     | ± 1.0°C      | ±.8°C     |  |
|                              | 100 Ω Platinum 3916                             | ± 0.6°C     | ± 0.7°C  | ±.88°C    | ± 1.1°C     | ± 1.2°C      | ±.2.1°C   |  |
| RTD Inputs <sup>85</sup>     | 200 Ω Platinum 3916                             | ± 0.5°C     | ± 0.6°C  | ±.8°C     | ± 0.9°C     | ± 1.0°C      | ±2.1°C    |  |
| KID Inputs                   | 500 Ω Platinum 3916                             | ± 0.4°C     | ± 0.5°C  | ±.67°C    | ± 0.8°C     | ± 0.9°C      | ±2.1°C    |  |
|                              | 1000 Ω Platinum 3916                            | ± 0.4°C     | ± 0.5°C  | ±.67°C    | ± 0.8°C     | ± 0.9°C      | ±1.76°C   |  |
|                              | Nickel 672                                      | ± 0.3°C     | ± 0.4°C  | ±.62°C    | ± 0.5°C     | ± 0.6°C      | ±.95°C    |  |
|                              | Nickel 618                                      | ± 0.3°C     | ± 0.6°C  | ±.64°C    | ± 0.5°C     | ± 0.6°C      | ±1.2°C    |  |
|                              | Nickel-Iron 518                                 | ± 0.4°C     | ± 0.5°C  | ±.64°C    | ± 0.7°C     | ± 0.8°C      | ±1.18°C   |  |
|                              | Copper 426                                      | ± 1.0°C     | ± 1.1°C  | ±4.8°C    | ± 2.4 °C    | ± 2.7 °C     | ±9.25°C   |  |
|                              | 250 Ω                                           | ± 0.25 Ω    | ± 0.28 Ω | ±0.35Ω    | ± 0.35 Ω    | ± 0.39 Ω     | ±0.46Ω    |  |
|                              | 500 Ω                                           | ± 0.3 Ω     | ± 0.33 Ω | ±0.38Ω    | ± 0.45 Ω    | ± 0.5 Ω      | ±0.67Ω    |  |
| Resistance                   | 1000 Ω                                          | ± 0.5 Ω     | ± 0.55 Ω | ±0.64Ω    | ± 0.8 Ω     | ± 0.88 Ω     | ±0.99Ω    |  |
| Inputs <sup>85</sup>         | 2000 Ω                                          | ± 0.9 Ω     | ± 1.0 Ω  | ±0.1.4Ω   | ± 1.5 Ω     | ± 1.65 Ω     | ±1.82Ω    |  |
|                              | 3000 Ω                                          | ± 1.3 Ω     | ± 1.43 Ω | ±1.58Ω    | ± 2.2 Ω     | ± 2.42 Ω     | ±3.38Ω    |  |
|                              | 4000 Ω                                          | ± 1.7 Ω     | ± 1.87 Ω | ±2.0Ω     | ± 2.9 Ω     | ± 3.19 Ω     | ±3.38Ω    |  |
| CJC Sensor                   | ± 0.3°C maximum 0°C to +80°C                    | -           |          |           |             |              |           |  |

<sup>&</sup>lt;sup>85</sup> Accuracy is dependent on the ADC output rate selection, data format, and input noise. In severe RF environments, accuracy may be degraded by up to ±2% of full scale.

## 13.4.2 Maximum Accuracy Specifications

| Maximum Error at:            |                               | +25°C       |         | 0°C to +60°C | 0°C to +60°C |  |
|------------------------------|-------------------------------|-------------|---------|--------------|--------------|--|
| Configured In                | put Filter                    | 8, 12, 16Hz | 200Hz   | 8, 12, 16Hz  | 200Hz        |  |
|                              | ± 10.5 V, 0.0 to +10.5 V      | ±5mV        | ±5.5mV  | ±10mV        | ±11mV        |  |
| 06                           | 0 to +5.25 V, +1.0 to +5.25 V | ±3mV        | ±3.3mV  | ±5mV         | ±5.5mV       |  |
| Voltage Inputs <sup>86</sup> | ± 155 mV                      | ±50uV       | ±55uV   | ±130uV       | ±143uV       |  |
|                              | ± 55 mV                       | ±20uV       | ±22uV   | ±95uV        | ±108uV       |  |
| C                            | ± 22.5 mA, 0.0 to +22.5 mA,   |             |         |              |              |  |
| Current Inputs <sup>85</sup> | +3.0 to +22.5 mA              | ±20uA       | ±22uA   | ±40uA        | ±44uA        |  |
|                              | Type J (-180°C to +1200°C)    | ±0.8°C      | ±0.9°C  | ±2.3°C       | ±2.6°C       |  |
|                              | Type J (-210°C to -180°C)     | ±1.0°C      | ±1.13°C | ±3.3°C       | ±3.7°C       |  |
|                              | Type N (-160°C to +1300°C)    | ±1.0°C      | ±1.1°C  | ±4.5°C       | ±5.0°C       |  |
|                              | Type N (-210°C to -160°C)     | ±1.8°C      | ±2.0°C  | ±8.0°C       | ±8.8°C       |  |
|                              | Type T (-190°C to +400°C)     | ±0.9°C      | ±1.0°C  | ±4.0°C       | ±4.4°C       |  |
|                              | Type T (-270°C to -190°C)     | ±6.7°C      | ±7.4°C  | ±18.0°C      | ±19.8°C      |  |
| Thermocouple                 | Type K (-200°C to +1372°C)    | ±1.0°C      | ±1.1°C  | ±4.00°C      | ±4.4°C       |  |
| Inputs <sup>85</sup>         | Type K (-270°C to -200°C)     | ±9.5°C      | ±10.5°C | ±21.0°C      | ±23.1°C      |  |
|                              | Type E (-200°C to +1000°C)    | ±0.8°C      | ±0.9°C  | ±3.0°C       | 3.4°C        |  |
|                              | Type E (-270°C to -200°C)     | ±5.3°C      | ±5.8°C  | ±14.0°C      | ±15.4°C      |  |
|                              | Type S and R                  | ±2.8°C      | ±3.1°C  | ±11.5°C      | ±12.7°C      |  |
|                              | Type C                        | ±2.1°C      | ±2.3°C  | ±7.0°C       | ±7.7°C       |  |
|                              | Туре В                        | ±3.3°C      | ±3.7°C  | ±20.0°C      | ±22.0°C      |  |
|                              | 100 Ω Platinum 385            | ±0.7°C      | ±0.8°C  | ±1.2°C       | ±1.4°C       |  |
|                              | 200 Ω Platinum 385            | ±0.6°C      | ±0.7°C  | ±1.0°C       | ±1.1°C       |  |
|                              | 500 Ω Platinum 385            | ±0.5°C      | ±0.6°C  | ±0.9°C       | ±1.0°C       |  |
|                              | 1000 Ω Platinum 385           | ±0.5°C      | ±0.6°C  | ±0.9°C       | ±1.0°C       |  |
|                              | 100 Ω Platinum 3916           | ±0.6°C      | ±0.7°C  | ±1.6°C       | ±1.9°C       |  |
| . 95                         | 200 Ω Platinum 3916           | ±0.5°C      | ±0.6°C  | ±1.5°C       | ±1.75°C      |  |
| RTD Inputs <sup>85</sup>     | 500 Ω Platinum 3916           | ±0.4°C      | ±0.5°C  | ±1.4°C       | ±1.6°C       |  |
|                              | 1000 Ω Platinum 3916          | ±0.4°C      | ±0.5°C  | ±1.4°C       | ±1.6°C       |  |
|                              | Nickel 672                    | ±0.3°C      | ±0.4°C  | ±0.6°C       | ±0.7°C       |  |
|                              | Nickel 618                    | ±0.3°C      | ±0.5°C  | ±0.8°C       | ±1.0°C       |  |
|                              | Nickel-Iron 518               | ±0.4°C      | ±0.5°C  | ±0.7°C       | ±0.8°C       |  |
|                              | Copper 426                    | ±3.6°C      | ±4.0°C  | ±7.2°C       | ±8.1°C       |  |
|                              | 250 Ω                         | ±0.25Ω      | ±0.28Ω  | ±0.35Ω       | ±0.39Ω       |  |
|                              | 500 Ω                         | ±0.3Ω       | ±0.33Ω  | ±0.45Ω       | ±0.5Ω        |  |
| Resistance                   | 1000 Ω                        | ±0.5Ω       | ±0.55Ω  | ±0.8Ω        | ±0.88Ω       |  |
| Inputs <sup>85</sup>         | 2000 Ω                        | ±0.9Ω       | ±1.0Ω   | ±1.5Ω        | ±1.65Ω       |  |
|                              | 3000 Ω                        | ±1.3Ω       | ±1.43Ω  | ±2.9Ω        | ±3.19Ω       |  |
|                              | 4000 Ω                        | ±1.7Ω       | ±1.87Ω  | ±2.9Ω        | ±3.19Ω       |  |
| CJC Sensor                   | ± 0.3°C maximum 0°C to +80°C  | <del></del> | I       | L            | 1            |  |

<sup>&</sup>lt;sup>86</sup> Accuracy is dependent on the ADC output rate selection, data format, and input noise. In severe RF environments, accuracy may be degraded by up to ±2% of full scale.

#### 13.5 Field Wiring: ALG600

The following table lists wiring connections for Module. Except for RTD and resistance type inputs, channels are wired as differential inputs. There are no shield terminals. For shielding, tie cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided in the ground bar for this purpose.

| Terminal | RTD or         | TC / Voltage / | RTD or         | TC / Voltage / | Terminal |
|----------|----------------|----------------|----------------|----------------|----------|
| Terminai | Resistance     | Current        | Resistance     | Current        | Terminal |
| 1        |                | CJC1 IN+       | Channel 1 EXC+ |                | 19       |
| 2        |                | CJC1 IN-       | Channel 1 IN+  | Channel 1 IN+  | 20       |
| 3        | Channel 2 EXC+ |                |                | Channel 1 iRTN | 21       |
| 4        | Channel 2 IN+  | Channel 2 IN+  | Channel 1 IN-  | Channel 1 IN - | 22       |
| 5        |                | Channel 2 iRTN | Channel 3 EXC+ |                | 23       |
| 6        | Channel 2 IN-  | Channel 2 IN - | Channel 3 IN+  | Channel 3 IN+  | 24       |
| 7        | Channel 4 EXC+ |                |                | Channel 3 iRTN | 25       |
| 8        | Channel 4 IN+  | Channel 4 IN+  | Channel 3 IN-  | Channel 3 IN-  | 26       |
| 9        |                | Channel 4 iRTN | Channel 5 EXC+ |                | 27       |
| 10       | Channel 4 IN-  | Channel 4 IN - | Channel 5 IN+  | Channel 5 IN+  | 28       |
| 11       | Channel 6 EXC+ |                |                | Channel 5 iRTN | 29       |
| 12       | Channel 6 IN+  | Channel 6 IN+  | Channel 5 IN-  | Channel 5 IN-  | 30       |
| 13       |                | Channel 6 iRTN | Channel 7 EXC+ |                | 31       |
| 14       | Channel 6 IN-  | Channel 6 IN-  | Channel 7 IN+  | Channel 7 IN+  | 32       |
| 15       | Channel 8 EXC+ |                |                | Channel 7 iRTN | 33       |
| 16       | Channel 8 IN+  | Channel 8 IN+  | Channel 7 IN-  | Channel 7 IN-  | 34       |
| 17       |                | Channel 8 iRTN |                | CJC2 IN+       | 35       |
| 18       | Channel 8 IN-  | Channel 8 IN-  |                | CJC2 IN-       | 36       |

Figure 347: Thermocouple / Voltage / Current Field Wiring ALG600

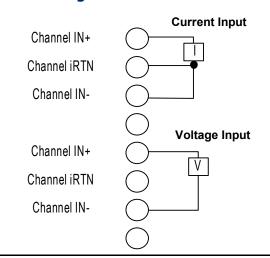
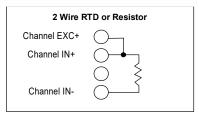
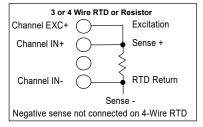
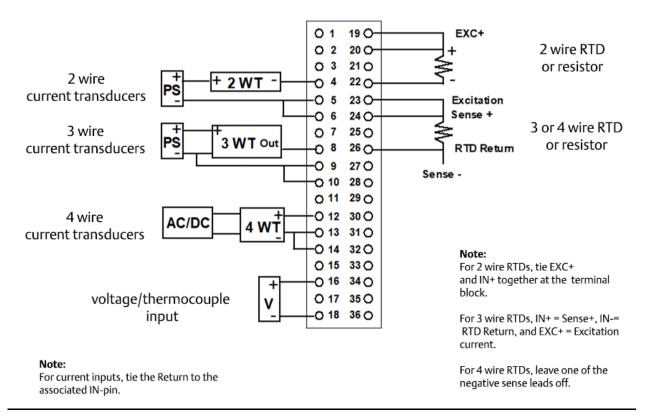





Figure 348: RTD / Resistance Field Wiring ALG600






- For current inputs, tie the Return to the associated IN- pin.
- For 2 wire RTDs, tie EXC+ and IN+ together at the terminal block.
- For 4 wire RTDs, leave one of the negative sense leads unconnected.
- For 3 wire RTDs, IN+ = Sense+, IN- = RTD Return, and EXC+ = Excitation current.
- Unconnected RTD channels must have a jumper installed to assure proper operation. Failure to do so could affect the accuracy of adjacent channels.

Figure 349: Wiring Diagram for ALG600

This Module Doesn't Provide Loop Power for 2 Wire Current Transducers.



# 13.5.1 Installing CJC Sensors

When using thermocouple inputs on this module, the use of CJC sensors is recommended. Installing one CJC sensor will greatly improve the accuracy of thermocouple readings. Installing two CJC sensors will provide the highest thermocouple input accuracy. Refer to "CJC Scan Enable" later in this chapter for information about configuring and using CJC sensors.

A CJC sensor compensates for offset voltages introduced into the input signal where the thermocouple wires are connected to Module. A set of two CJC sensors is available as part number IC695ACC600.

The thermistor end of the CJC sensor must be installed in the CJC1 IN+ or CJC2 IN+ terminal for accurate thermocouple temperature measurements. The gold pin end of the sensor must be installed in the CJC1 IN-or the CJC2 IN- terminal.

Open the Terminal Block contacts fully before installing the CJC sensor. Insert the sensor into the Terminal Block contact, maintaining metal-to-metal contact between the thermistor and the Terminal Block contact.

For a Box-style Terminal Block, maintain pressure while screwing down the contact.

# Figure 350: Installing Cold Junction Sensor Themistor End CJC Sensor CJC 1 IN+ CJC 1N1 Spring-style Terminal Block

# 13.5.2 Connecting Channels to the Same Thermocouple Point

When connecting one or more channels from channels 1–4 and one or more channels from channels 5–8 to the same thermocouple point electrically, the point should be grounded. It can be grounded at either the sensor or Module, by adding a jumper wire from frame ground to the low side of one thermocouple input.

# 13.6 Configuration: ALG600

# 13.6.1 Module Parameters

| Parameter            | Default   | Description                                                          |  |
|----------------------|-----------|----------------------------------------------------------------------|--|
| Channel Value        | %AIxxxxx  | Starting address for the input data of Module. This defaults to the  |  |
| Reference Address    |           | next available %AI block.                                            |  |
| Inputs Default       | Force Off | In the event of module failure or removal, this parameter specifies  |  |
|                      |           | the state of the Channel Value References.                           |  |
|                      |           | Force Off = Channel Values clear to 0.                               |  |
|                      |           | Hold Last State = Channel Values hold their last state.              |  |
| Channel Value        | 20        | The number of words used for the input data of Module.               |  |
| Reference Length     |           |                                                                      |  |
| Diagnostic Reference | %Ixxxxx   | Starting address for the channel diagnostics status data. This       |  |
| Address              |           | defaults to the next available %I block.                             |  |
| Diagnostic Reference | 0         | The number of bit reference bits (0 – 320) required for the Channel  |  |
| Length               |           | Diagnostics data. Default is 0, which means mapping of Channel       |  |
|                      |           | Diagnostics is disabled. Change this to a non-zero value to enable   |  |
|                      |           | Channel Diagnostics mapping.                                         |  |
| Module Status        | %Ixxxxx   | Starting address for the status data of Module. This defaults to the |  |
| Reference Address    |           | next available %I block.                                             |  |
| Module Status        | 0         | The number of bits (0 – 32) required for Module Status data. Default |  |
| Reference Length     |           | is 0, which means mapping of Module Status data is disabled.         |  |
|                      |           | Change this to a non-zero value to enable Module Status data         |  |
|                      |           | mapping.                                                             |  |
| CJC Scan Enable      | Disabled  | Cold Junction Compensation can be: No Scan, Scan CJC1, Scan CJC2,    |  |
|                      |           | Scan Both CJCs. Use of these parameters is described later in this   |  |
|                      |           | section.                                                             |  |
| Channel Faults w/o   | Disabled  | Enabled / Disabled: Controls whether channel faults and configured   |  |
| Terminal Block       |           | alarm responses will be generated after a Terminal Block removal.    |  |
|                      |           | The default setting of Disabled means channel faults and alarms are  |  |
|                      |           | suppressed when the Terminal Block is removed. This parameter        |  |
|                      |           | does not affect module faults including the Terminal Block loss/add  |  |
|                      |           | fault generation.                                                    |  |
| I/O Scan Set         | 1         | Assigns Module I/O status data to a scan set defined in the CPU      |  |
|                      |           | configuration. Determines how often the RX3i polls the data          |  |

# 13.6.2 Channel 1 – 8 Parameters

| Parameter            | Default            | Description                                                                      |  |  |
|----------------------|--------------------|----------------------------------------------------------------------------------|--|--|
| Range Type           | Disabled           | Voltage/Current, Thermocouple, RTD, Resistance,                                  |  |  |
|                      |                    | Disabled                                                                         |  |  |
| Range                | -10 Vdc to +10 Vdc | For voltage/current:                                                             |  |  |
| (Not for Range Type  |                    | -10 Vdc to +10 Vdc, 0 to +10 Vdc, 0 to +5Vdc, 1Vdc to                            |  |  |
| Disabled)            |                    | +5Vdc,                                                                           |  |  |
|                      |                    | -50mV to +50mV, -150mV to +150mV,                                                |  |  |
|                      |                    | -20mA to +20mA, 4 to 20 mA, 0 to 20 mA                                           |  |  |
|                      |                    | For Thermocouple: B, C, E, J, K, N, R, S, T                                      |  |  |
|                      |                    | For RTD:                                                                         |  |  |
|                      |                    | Platinum 385: 100 Ω / 200 Ω/ 500 Ω/ 1000 Ω                                       |  |  |
|                      |                    | Platinum 3916: $100 \Omega / 200 \Omega / 500 \Omega / 1000 \Omega$              |  |  |
|                      |                    | Nickel 672: 120 Ω                                                                |  |  |
|                      |                    | Nickel 618: $100 \Omega / 200 \Omega / 500 \Omega / 1000 \Omega$                 |  |  |
|                      |                    | Nickel-Iron 518: $604 \Omega$                                                    |  |  |
|                      |                    | Copper 426: 10 Ω                                                                 |  |  |
|                      |                    | For Resistance: 0-250 $\Omega$ , 0 – 500 $\Omega$ , 0 – 1000 $\Omega$ , 0 - 2000 |  |  |
|                      |                    | Ω, 0 – 3000 $Ω$ , 0 – 4000 $Ω$                                                   |  |  |
| Channel Value Format | 32-bit Floating-   | 16-bit integer or 32-bit floating-point                                          |  |  |
|                      | point              |                                                                                  |  |  |
| Temperature Units    | Celsius            | Celsius, Fahrenheit                                                              |  |  |
| (for Thermocouple or |                    |                                                                                  |  |  |
| RTD Range Type only) |                    |                                                                                  |  |  |
| RTD                  | RTD 2 Wire         | (for RTD Range Type only) RTD 2 or 3 Wire                                        |  |  |
| RTD Lead Resistance  | Enabled            | (for RTD Range Type only) Enabled, Disabled                                      |  |  |
| Compensation         |                    |                                                                                  |  |  |
| High Scale Value     | The defaults for   | Note: Scaling is disabled if both High Scale Eng. Units equals                   |  |  |
| (Eng Units)          | the four Scaling   | High Scale A/D Units and Low Scale Eng. Units equals Low                         |  |  |
|                      | parameters         | Scale A/D Units.                                                                 |  |  |
|                      | depend on the      | Default is High A/D Limit of selected range type.                                |  |  |
| Low Scale Value      | configured Range   | Default is Low A/D Limit of selected range type.                                 |  |  |
| (Eng Units)          | Type and Range.    | Must be lower than the high scaling value.                                       |  |  |
| High Scale Value     | Each Range and     | Default is High A/D Limit of selected range type.                                |  |  |
| (A/D Units)          | Range Type has a   | Must be greater than the low scaling value.                                      |  |  |
| Low Scale Value      | different set of   | Default is Low A/D Limit of selected range type.                                 |  |  |
| (A/D Units)          | defaults.          |                                                                                  |  |  |

# 13.6.3 Input Scaling: ALG600

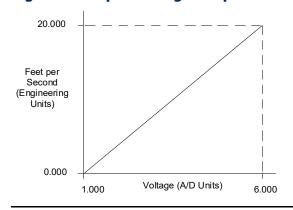
By default, Module converts a voltage, current, resistance, or temperature input over the entire span of its configured Range into a floating-point value for the CPU. For example, if the Range of a channel is 4 to 20mA, Module reports channel input values from 4.000 to 20.000. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the PLC that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.

# 13.6.4 Example 1

For a voltage input, 6.0 Vdc represents a speed of 20 feet per second, and 1.0 Vdc represents 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000


Low Scale Value (Eng Units) = 0.000

High Scale Value (A/D Units) = 6.000

Low Scale Value (A/D Units) = 1.000

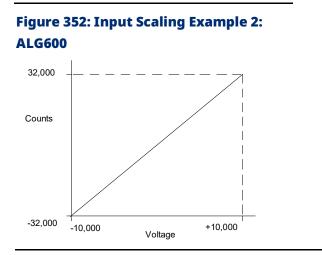
For this example, 1.0V to 6.0V is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 10.0V were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or take other precautions for scaled inputs that are outside the acceptable range or invalid.

Figure 351: Input Scaling Example 1: ALG600



# 13.6.5 Example 2

An existing application uses traditional analog to digital (A/D) count integer values. With scaling and the optional 16-bit integer input option, a channel can be configured to report integer count values. In this example, the application should interpret +10 Vdc as 32000 counts and -10 Vdc as -32000 counts. The following channel configuration will scale a ±10 Vdc input channel to ±32000 counts.


Channel Value Format = 16-bit Integer

High Scale Value (Eng Units) = 32000.0

Low Scale Value (Eng Units) = -32000.0

High Scale Value (A/D Units) = 10.000

Low Scale Value (A/D Units) = -10.000



# Channel 1 - 8 Parameters continued

| Parameter               | Default | Description                                               |  |
|-------------------------|---------|-----------------------------------------------------------|--|
| Positive Rate of Change | 0.000   | Rate of change in Engineering Units per Second that will  |  |
| Limit                   |         | trigger a Positive Rate of Change alarm. Default is       |  |
| (Eng Units)             |         | disabled. Used with "Rate of Change Sampling Rate"        |  |
|                         |         | parameter.                                                |  |
| Negative Rate of Change | 0.000   | Rate of change in Engineering Units per Second that will  |  |
| Limit                   |         | trigger a Negative Rate of Change alarm. Default is       |  |
| (Eng Units)             |         | disabled. Used with "Rate of Change Sampling Rate"        |  |
|                         |         | parameter.                                                |  |
| Rate of Change Sampling | 0.000   | Time from 0 to 300 seconds to wait between                |  |
| Rate                    |         | comparisons. Default of 0.0 is to check after every input |  |
|                         |         | sample.                                                   |  |

# 13.6.6 Rate of Change Alarms: ALG600

The Universal Analog module can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous rate of change sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Unit change between samples is positive, Module compares the results in comparing the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the "Diagnostic Reporting Enable," "Fault Reporting Enable," and "Interrupts Enabled" parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. If the Rate of Change Sampling Rate is 0 or any time period less than the channel update rate, Module compares the Rate of Change for every input sample of the channel.

# **Channel 1 - 8 Parameters continued**

| 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parameter            | Default              | Description                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------------------------------------------------------|
| Low, and Low-Low parameters depend on the configured as enabled.  High-Alarm (Eng Units)  Low Alarm (Eng Units)  Low-Low Alarm (Eng Units)  Low-Low-Low Alarm (Ing Units)  Low-Low Alarm (Ing Units)  Low Alarm (Eng Units)  Low-Low-Low Alarm (Ing Units)  Low-Low-Low Alarm (Ing Units)  Low Alarm (Eng Units)  Low-Low-Low-Alarm (Ing Units)  Low-Low-Low-Alarm (Inguerous)  Low-Low-Alarm (Inguerous)  Low-Low-Low-Alarm (I | High-High Alarm      | The defaults for the | Alarms and Deadbands                                                |
| High Alarm (Eng Units)  Dearmeters depend on the configured Range Type and Range Type and Range Type has a different set of default values.  Dow-Low Alarm (Eng Units)  Low-Low Alarm (Eng Units)  Deadband (Eng Units)  High-High Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units Engineering Units Engineer | (Eng Units)          | High-High, High,     | All of the alarm parameters are specified in Engineering Units.     |
| (Eng Units)  On the configured Range Type and Range Type has a different set of default values.  Low-Low Alarm (Eng Units)  Alarm (Eng Units)  Low-Low Alarm (Eng Units)  High-High Alarm and Low Alarm: When the configured value is reached or pelsow (above), a Low (High) Alarm is triggered. High and Low Alarm: When the configured value is reached or below (above), a Low (High) Alarm is triggered. High and Low Alarm Deadbands: A range in Engineering Units above the alarm condition (low deadband) or below the alarm condition (high deadband) where the alarm status bit can remain set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband range.  Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Alarm Deadband should not cause the alarm clear to be outside the Engineering Unit User Limits range. For example, if the engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm is set at +100.0, the High Alarm beadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below -1000.0 units making the alarm impossible to clear within the limits.  Deadband (Eng Units)  Low Part Part Part Part Part Part Part Part                                                                                                                                                                                                                                                                                                                                                    |                      | Low, and Low-Low     | To use alarming, the A/D Alarm Mode must also be configured         |
| (Eng Units)  On the configured Range Type and Range Type has a different set of default values.    Dow-Low Alarm (Eng Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High Alarm           | parameters depend    | as enabled.                                                         |
| Range. Each Range and Range Type has a different set of default values.  Low-Low Alarm (Eng Units)  Low-Low Alarm (Eng Units)  Low-Low Alarm (Eng Units)  Low-Low Alarm (Eng Units)  High Alarm and Low Alarm: When the configured value is reached or below (above), a Low (High) Alarm is triggered.  High and Low Alarm Deadbands: A range in Engineering Units above the alarm condition (low deadband) or below the alarm condition (high deadband) where the alarm status bit can remain set even after the alarm condition goes away. For the alarm set uses to clear, the channel input must fall outside the deadband range.  Alarm Deadband (Eng Units)  How Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Alarm Deadband (Eng Units)  Low | _                    | on the configured    | High-High Alarm and Low-Low Alarm: When the configured value        |
| Low Alarm (Eng Units)  and Range Type has a different set of default values.  Low-Low Alarm (Eng Units)  Low-Low Alarm (Eng Units)  High Alarm and Low Alarm: When the configured value is reached or below (above), a Low (High) Alarm is triggered.  High and Low Alarm Deadbands: A range in Engineering Units above the alarm condition (low deadband) or below the alarm condition (low deadband) or below the alarm status bit can remain set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband range.  Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Low Alarm Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  L |                      | Range Type and       |                                                                     |
| than the corresponding low/high alarm limits.  a different set of default values.  Low-Low Alarm (Eng Units)  Units)  High Alarm and Low Alarm: When the configured value is reached or below (above), a Low (High) Alarm is triggered.  High and Low Alarm Deadbands: A range in Engineering Units above the alarm condition (low deadband) or below the alarm condition (high deadband) where the alarm status bit can remain set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband range.  Alarm Deadbands should not cause the alarm clear to be outside the Engineering Unit User Limits range. For example, if the engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm is set at +100.0, the High Alarm Deadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below -1000.0 units making the alarm impossible to clear within the limits.  User Offset  O.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter  O.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value.  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                       | Low Alarm            | -                    |                                                                     |
| Low-Low Alarm (Eng Units)  High-High Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Low Alarm Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Low Alarm Low Alarm (Eng Units)  Low Alarm Low A |                      |                      |                                                                     |
| Low-Low Alarm (Eng Units)  High and Low Alarm Deadbands: A range in Engineering Units above the alarm condition (low deadband) or below the alarm condition (high deadband) where the alarm status bit can remain set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband range.  High Alarm Deadband (Eng Units)  High Alarm Deadbands should not cause the alarm clear to be outside the Engineering Unit User Limits range. For example, if the engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter  O.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter (ms)  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Ling Offics)        | a different set of   |                                                                     |
| Units)  above the alarm condition (low deadband) or below the alarm condition (high deadband) where the alarm status bit can remain set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband range.  High Alarm  Deadband  (Eng Units)  High Alarm  Deadband  (Eng Units)  Low Alarm Deadband  (Eng Units)  Low Alarm Deadband  (Eng Units)  Deadband  (Eng Units)  Low Alarm Deadband  (Eng Units)  Low Alarm Deadband  (Eng Units)  Deadband the Engineering Unit User Limits range. For example, if the engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm Deadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below -1000.0 units making the alarm impossible to clear within the limits.  Deadband  User Offset  Deadband  Deadband |                      | default values.      |                                                                     |
| Condition (high deadband) where the alarm status bit can remain set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband (Eng Units)  High Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (E | _                    |                      |                                                                     |
| High-High Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  User Offset  O.000  Engineering Units offset to change the base of the input channel prior to alarm checking.  Software Filter Integration Time (ms)  Alarm Deadband of High Alarm charm charm charms of the indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  Alarm set even after the alarm condition goes away. For the alarm status to clear, the channel input must fall outside the deadband range.  Alarm Deadbands should not cause the alarm clear to be outside the Engineering Unit User Limits range. For example, if the engineering Unit tange for a channel is -1000.0 to +1000.0 and a High Alarm set at +100.0, the High Alarm Deadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below -1000.0 units making the alarm impossible to clear within the limits.  User Offset  O.000  Engineering Units offset to change the base of the input channel prior to alarm checking.  Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value.  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units)               |                      |                                                                     |
| Deadband (Eng Units)  High Alarm Deadband (Eng Units)  Alarm Deadbands should not cause the alarm clear to be outside the Engineering Unit User Limits range. For example, if the engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm is set at +100.0, the High Alarm Deadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below -1000.0 units making the alarm impossible to clear within the limits.  User Offset  O.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter Integration Time (ms)  Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value.  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                      |                                                                     |
| Carre   Carr   | High-High Alarm      |                      | 1                                                                   |
| High Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Company (Eng Units)  Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (Eng Units)  Alarm Deadband (Eng Units)  Alarm Deadband value  range is 0.0 to less than 1100.0. A deadband of 1100.0 or more  would put the High Alarm clear condition below –1000.0 units  making the alarm impossible to clear within the limits.  Deadband  Engineering Units offset to change the base of the input  channel. This value is added to the scaled value on the channel  prior to alarm checking.  Software Filter  Integration Time (ms)  Avalue of 0 indicates software filter is disabled. A value of 100  indicates data will achieve 63.2% of its value in 100ms. Default is  disabled  A/D Filter Frequency  AV Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or  1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deadband             |                      |                                                                     |
| the Engineering Unit User Limits range. For example, if the engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm peadband (Eng Units)  Low Alarm Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband (Eng Units)  Low Alarm Deadband (Eng Units)  Deadband ( | (Eng Units)          |                      | 1                                                                   |
| engineering unit range for a channel is -1000.0 to +1000.0 and a High Alarm is set at +100.0, the High Alarm Deadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below –1000.0 units making the alarm impossible to clear within the limits.  User Offset  0.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter Integration Time (ms)  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | High Alarm           | -                    |                                                                     |
| High Alarm is set at +100.0, the High Alarm Deadband value range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below –1000.0 units making the alarm impossible to clear within the limits.  User Offset  0.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter Integration Time (ms)  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deadband             |                      |                                                                     |
| Low Alarm Deadband (Eng Units)  range is 0.0 to less than 1100.0. A deadband of 1100.0 or more would put the High Alarm clear condition below –1000.0 units making the alarm impossible to clear within the limits.  User Offset  0.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter Integration Time (ms)  O.000  Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value. A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Eng Units)          |                      |                                                                     |
| (Eng Units)    Compare to the second to the  | Low Alarm Deadhand   | -                    |                                                                     |
| User Offset  0.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter Integration Time (ms)  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                      | 1 -                                                                 |
| User Offset  0.000  Engineering Units offset to change the base of the input channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter  O.000  Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value.  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (29 0)               |                      |                                                                     |
| channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter O.000 Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value. A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                      | making the alarm impossible to clear within the limits.             |
| channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter O.000 Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value. A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                      |                                                                     |
| channel. This value is added to the scaled value on the channel prior to alarm checking.  Software Filter O.000 Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value. A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | User Offset          | 0.000                | Engineering Units offset to change the base of the input            |
| Software Filter  Integration Time (ms)  Specifies the amount of time in milliseconds for the software filter to reach 63.2% of the input value. A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                      |                                                                     |
| Integration Time (ms)  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                      | prior to alarm checking.                                            |
| Integration Time (ms) filter to reach 63.2% of the input value. A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency 40 Hz Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Software Filter      | 0.000                | Specifies the amount of time in milliseconds for the software       |
| (ms)  A value of 0 indicates software filter is disabled. A value of 100 indicates data will achieve 63.2% of its value in 100ms. Default is disabled  A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Integration Time     |                      | 1 ·                                                                 |
| disabled  A/D Filter Frequency 40 Hz Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                    |                      | A value of 0 indicates software filter is disabled. A value of 100  |
| A/D Filter Frequency  40 Hz  Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                      | indicates data will achieve 63.2% of its value in 100ms. Default is |
| 1000Hz. Default is 40Hz. Frequencies below this are not filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                      | disabled                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A/D Filter Frequency | 40 Hz                | Low pass A/D hardware filter setting: 8, 12, 16, 40, 200, or        |
| by hardware.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                      | 1000Hz. Default is 40Hz. Frequencies below this are not filtered    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      | by hardware.                                                        |

| Parameter             | Default  | Description                                                       |
|-----------------------|----------|-------------------------------------------------------------------|
| Diagnostic Reporting  | Disabled | Diagnostic Reporting Enable options are used to enable            |
| Enable                |          | reference memory reporting of alarms into the Diagnostic          |
| If Diagnostic         |          | Reference area.                                                   |
| Reporting is enabled, |          | Fault Reporting Enable options enable fault logging of alarms     |
| the additional        |          | into the I/O Fault Table.                                         |
| parameters listed     |          | Interrupts Enable options enable I/O Interrupt trigger when       |
| below can be used to  |          | alarm conditions occur.                                           |
| enable specific types |          | These parameters enable or disable the individual diagnostics     |
| of alarms.            |          | features of a channel.                                            |
| Fault Reporting       | Disabled | When any of these parameters is enabled, Module uses              |
| Enable                |          | associated parameters to perform the enabled feature.             |
| If Fault Reporting is |          |                                                                   |
| enabled, the          |          | For example, if Over Range is enabled in the "Diagnostic          |
| additional            |          | Reporting Enable" menu, Module will set the Over Range bit in     |
| parameters listed     |          | the Diagnostic Reference for the channel.                         |
| below can be used to  |          |                                                                   |
| enable specific types |          | If any of these parameters is disabled, Module does not react to  |
| of Faults.            |          | the associated alarm conditions.                                  |
| Interrupts Enable     | Disabled |                                                                   |
| If Interrupts are     |          | For example, if Low Alarm Enable is set to Disabled in the "Fault |
| enabled, the          |          | Reporting Enable" menu, the Low Alarm fault is not logged in the  |
| additional            |          | I/O Fault Table when Low Alarm is detected on the channel.        |
| parameters listed     |          |                                                                   |
| below can be used to  |          |                                                                   |
| enable specific types |          |                                                                   |
| of Interrupts.        |          |                                                                   |
| Low Alarm Enable      | Disabled |                                                                   |
| High Alarm Enable     | Disabled |                                                                   |
| Under Range Enable    | Disabled |                                                                   |
| Over Range Enable     | Disabled |                                                                   |
| Open Wire Enable      | Disabled |                                                                   |
| Calibration Fault     | Disabled |                                                                   |
| Enable                |          |                                                                   |
| Low-Low Alarm         | Disabled |                                                                   |
| Enable                |          |                                                                   |
| High-High Alarm       | Disabled |                                                                   |
| Enable                |          |                                                                   |
| Negative Rate of      | Disabled |                                                                   |
| Change Detection      |          |                                                                   |
| Enable                |          |                                                                   |
| Positive Rate of      | Disabled |                                                                   |
| Change Detection      |          |                                                                   |
| Enable                |          |                                                                   |

# 13.6.7 Using Alarming: ALG600

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

# 13.6.8 Using Interrupts

To properly configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of Module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address corresponding to that channel.

# 13.6.9 Example:

In this example, the Channel Values Reference Address block is mapped to %AI0001-%AI0020. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AI00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AI0003" as the Trigger.

# **Note on Using Interrupts**

This module has separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

# 13.6.10 CJC Parameters

| Parameter                   | Default        | Description                                     |
|-----------------------------|----------------|-------------------------------------------------|
| Channel Value Format        | 16-bit Integer | 16-bit integer or 32-bit floating-point         |
| Temperature Units           | Celsius        | Celsius, Fahrenheit                             |
| User Offset                 | 0.000          | Temperature offset added to CJC values.         |
| (Temperature Units)         |                | Range –25°C to +25°C with C temp units and      |
|                             |                | -45°F to +45°F with F temp units.               |
| Diagnostic Reporting Enable | Disabled       | These parameters enable or disable the          |
| Under Range Enable          | Disabled       | individual diagnostics features of a CJC input. |
| Over Range Enable           | Disabled       |                                                 |
| Open Wire Enable            | Disabled       |                                                 |
| Fault Reporting Enable      | Disabled       |                                                 |
| Under Range Enable          | Disabled       |                                                 |
| Over Range Enable           | Disabled       |                                                 |
| Open Wire Enable            | Disabled       |                                                 |
| Interrupts Enable           | Disabled       |                                                 |
| Under Range Enable          | Disabled       |                                                 |
| Over Range Enable           | Disabled       |                                                 |
| Open Wire Enable            | Disabled       |                                                 |

# 13.6.11 CJC Scan Enable

Cold Junction Compensation for Module can be configured as: Disabled, CJC1 only, CJC2 only, or Both CJCs.

| Compensation   | Description                                             | CJC1     | CJC2     |
|----------------|---------------------------------------------------------|----------|----------|
| Options        | Description                                             | Scanning | Scanning |
| No Scan        | Module assumes 25°C for any thermocouple                | Disabled | Disabled |
|                | compensation.                                           |          |          |
| Scan Both      | Highest thermocouple compensation accuracy. Uses both   | Enabled  | Enabled  |
|                | values in thermocouple compensation as explained below. |          |          |
| Scan CJC1 only | Lowers the thermocouple compensation accuracy, but can  | Enabled  | Disabled |
|                | improve scan time for channels 5-8.                     |          |          |
| Scan CJC2 only | Lowers the thermocouple compensation accuracy, but can  | Disabled | Enabled  |
|                | improve scan time for channels 1-4.                     |          |          |

When scanning both CJC inputs, Module subtracts the temperature of CJC2 from the temperature of CJC1. It then multiplies the difference by a specific multiplier for each channel to compensate for the position of the channel on the terminal block.

| Channel | Channel Multiplier | Channel | Channel Multiplier |
|---------|--------------------|---------|--------------------|
| 1       | 0.10               | 5       | 0.45               |
| 2       | 0.05               | 6       | 0.60               |
| 3       | 0.25               | 7       | 0.75               |
| 4       | 0.25               | 8       | 0.90               |

For example: if CJC1 is  $30^{\circ}$ C and CJC2 is  $25^{\circ}$ C, the compensated channel 1 terminal block temperature is

30 - [(30-25) \* 0.10] = 29.5°C. Module then adjusts this temperature for the particular thermocouple type to determine the thermoelectric effect (mV) caused by the connection at the terminal block.

## 13.7 Module Data: ALG600

Module reports its input channel data in 20 input words, beginning at its assigned Channel Value Reference Address. Each channel occupies two words (whether the channel is used or not):

| Channel Value<br>Reference Address | Contains this Input |
|------------------------------------|---------------------|
| +0, 1                              | Channel 1           |
| +2, 3                              | Channel 2           |
| +4, 5                              | Channel 3           |
| +6, 7                              | Channel 4           |
| +8, 9                              | Channel 5           |
| +10, 11                            | Channel 6           |
| +12, 13                            | Channel 7           |
| +14, 15                            | Channel 8           |
| +16, 17                            | CJC1                |
| +18, 19                            | CJC2                |

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

In the 16-bit integer mode, low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value are set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

# 13.7.1 Resolution and Update Time

The actual resolution and update time for each input depend on the Range Type and A/D Filter Frequency configured for that channel. At higher Filter Frequencies, channel update time increases while input resolution decreases. The approximate number of bits for each Filter Frequency and Range Type are displayed in the following table.

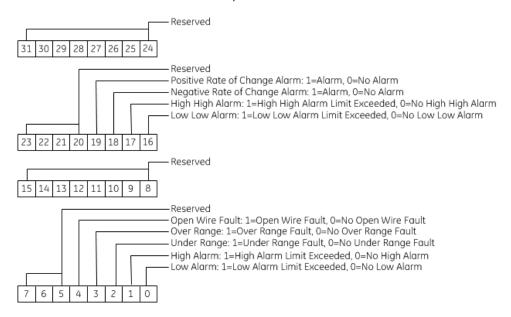
|           | Range Type:       | Range Type:    |                |
|-----------|-------------------|----------------|----------------|
| Filter    | Voltage / Current | TC / mV        | Channel Update |
| Frequency | Approximate       | Approximate    | Time           |
|           | Number of Bits    | Number of Bits |                |
| 8 Hz      | 16                | 16             | 127 ms         |
| 12 Hz     | 16                | 16             | 87 ms          |
| 16 Hz     | 16                | 16             | 67 ms          |
| 40 Hz     | 16                | 14             | 27 ms          |
| 200 Hz    | 14                | 13             | 13 ms          |
| 1000 Hz   | 11                | 11             | 10 ms          |

# 13.7.2 Isolated Input Groups

This module provides two isolated groups of four input channels each. This allows fast inputs and slower or highly-filtered inputs to be connected to the same module without adversely affecting the update rate of the fast inputs. To take advantage of this feature, up to four inputs requiring fast response should be placed together in one isolated group while slower inputs should be connected to the other isolated group. For example, voltage and current inputs with higher frequency input filter settings should be grouped together on one of the isolated groups while thermocouple, RTD, resistance, or voltage/current inputs with low-frequency input filter settings should be grouped together on the other isolated group.

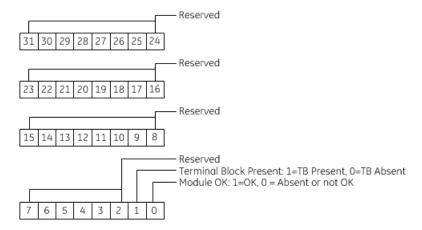
Each isolated group provides a CJC input. The CJC input is considered a slow-response input and will reduce the update rate for the associated channel group when enabled.

# 13.7.3 Channel Diagnostic Data: ALG600


In addition to the 20 words of input data from field devices, Module can be configured to report 320 bits (20 words) of channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for Module. Use of this feature is optional.

The diagnostics data for each channel occupies two words (whether the channel is used or not):

| Diagnostic        | Contains Diagnostics |
|-------------------|----------------------|
| Reference Address | Data for:            |
| +0, 1             | Channel 1            |
| +2, 3             | Channel 2            |
| +4, 5             | Channel 3            |
| +6, 7             | Channel 4            |
| +8, 9             | Channel 5            |
| +10, 11           | Channel 6            |
| +12, 13           | Channel 7            |
| +14, 15           | Channel 8            |
| +16, 17           | CJC1                 |
| +18, 19           | CJC2                 |


When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data is:



#### 13.7.4 Module Status Data: ALG600

Module can also optionally be configured to return two bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data* reference area configured for Module.



## 13.7.5 Terminal Block Detection

Module automatically checks for the presence of a Terminal Block.

The TB LED indicates the state of the terminal block of Module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 1 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

# Section 14: Thermocouple Input Modules

This chapter describes the following Thermocouple input modules for PACSystems RX3i controllers.

| Thermocouple Module Description                                          | Catalog<br>Number | Section |
|--------------------------------------------------------------------------|-------------------|---------|
| Thermocouple Input Module 6-Channel Isolated                             | IC695ALG306       | 14.1    |
| Thermocouple Input Module 12-Channel Isolated                            | IC695ALG312       | 14.1    |
| Thermocouple Input Module 12-Channel Isolated (Improved Noise Rejection) | IC695ALG412       | 14.2    |

For operating information common to these modules, refer to Section 14.3.

# 14.1 Thermocouple Input 6-/12-Channel Isolated Modules IC695ALG306 & IC695ALG312

Thermocouple Input module, IC695ALG306, provides six isolated differential thermocouple input channels.

Thermocouple Input module, IC695ALG312, provides twelve isolated differential thermocouple input channels.

Each channel can be individually configured for inputs from:

- Thermocouple types: J, K, T, E, R, S, B, N, or C
- Voltage: ±150mV or ±50mV

#### 14.1.1 Features

- Completely software-configurable, no module jumpers to set
- Thermocouple Linearization based on ITS-90
- 32-bit IEEE floating-point or 16-bit integer (in 32-bit field) input data format selectable per channel
- Temperature units selectable in °C and °F
- User Scaling
- Programmable notch filter from 2.3Hz to 28Hz per channel
- Under Range/Over Range alarm detection and reporting by channel
- Alarm dead band for high alarm, low alarm, high-high alarm, and low-low alarm by channel
- Wire-off (open circuit) condition support for all inputs.
- Module fault status reporting (Watchdog, Ram Fail, Flash Fail)
- Module identity and status reporting including LED status indicators
- User offset for all channels including CICs.
- Supports Cold Junction Compensation on Terminal Block (Cold Junction Sensors sold separately).
- Support field upgrade of firmware application code.
- Optional "CJC Disable" selection
- Reports CJC temperatures as separate channels in Input Data.
- CJC update rate is fixed at 20Hz.
- CJC filter setting fixed with first notch at 10Hz, and 3dB input attenuation at 4.7Hz.
- Terminal Block detection switch
- Module must be located in an RX3i Universal Backplane.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

Module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Terminal Blocks are ordered separately.

# Figure 353: IC695ALG306



# 14.1.2 Specifications: ALG306 & ALG312

| Specification                        | Description                          |                   |                 |  |  |
|--------------------------------------|--------------------------------------|-------------------|-----------------|--|--|
| Number of Channels                   | 6 / 12 Individually isolated chann   | els               |                 |  |  |
| Resolution                           | 11.5–16 bits (refer to filter table) |                   |                 |  |  |
| Measuring method selectable per      | Voltage: ±50mV and ±150mV            |                   |                 |  |  |
| channel                              | Thermocouple types: J, K, T, E, R,   | S, B, N and C     |                 |  |  |
| Integration time for 12 channels     | Configurable from 15 ms to 120       | ms.               |                 |  |  |
| Voltage Accuracy over temperature    | ±0.1% of voltage span at 25 °C.      |                   |                 |  |  |
| span                                 | ±0.25% of span over temperatur       | e range.          |                 |  |  |
| Thermocouple Input Types and         | Thermocouple Type                    | Temperature R     | ange(°C)        |  |  |
| Ranges                               | Туре В                               | +300 to +1820     |                 |  |  |
|                                      | Type C                               | 0 to +2315        |                 |  |  |
|                                      | Type E                               | -270 to +1000     |                 |  |  |
|                                      | Type J                               | -210 to +1200     |                 |  |  |
|                                      | Type K                               | -270 to +1372     |                 |  |  |
|                                      | Type N                               | -210 to +1300     |                 |  |  |
|                                      | Type R                               | 0 to +1768        |                 |  |  |
|                                      | Type S                               | 0 to +1768        |                 |  |  |
|                                      | Type T                               | -270 to +400      |                 |  |  |
| Voltage Input Ranges                 | Input Type Voltage Range             |                   |                 |  |  |
|                                      | -50mV to +50mV                       | -55.0 mV to +55.  | 0 mV            |  |  |
|                                      | -150mV to +150mV                     | -155.0 mV to +15  | 55.0 mV         |  |  |
| Module temperature accuracy for      | Thermocouple Type & Range            | +25°C             | 0°C to +60°C    |  |  |
| thermocouple inputs over             | Type J (-180°C to +1200°C)           | ±0.6°C            | ±2.3°C          |  |  |
| temperature span (2.3, 4, and 4.7 Hz | Type J (-210°C to -180°C)            | ±0.8°C            | ±3.3°C          |  |  |
| filters). Does not include cold      | Type N (-160°C to +1300°C)           | ±1.0°C            | ±4.5°C          |  |  |
| junction compensation or             | Type N (-210°C to -160°C)            | ±1.8°C            | ±8.0°C          |  |  |
| thermocouple tolerances.             | Type T (-190°C to +400°C)            | ±0.9°C            | ±4.0°C          |  |  |
|                                      | Type T (-270°C to -190°C)            | ±6.7°C            | ±18.0°C         |  |  |
|                                      | Type K (-200°C to +1372°C)           | ±1.0°C            | ±4.0°C          |  |  |
|                                      | Type K (-270°C to -200°C)            | ±9.5°C            | ±21.0°C         |  |  |
|                                      | Type E (-200°C to +1000°C)           | ±0.6°C            | ±2.5°C          |  |  |
|                                      | Type E (-270°C to -200°C)            | ±5.3°C            | ±14.0°C         |  |  |
|                                      | Type S and R                         | ±2.8°C            | ±11.5°C         |  |  |
|                                      | Type C                               | ±1.7°C            | ±7.0°C          |  |  |
|                                      | Туре В                               | ±3.3°C            | ±20.0°C         |  |  |
| Measurement Units                    | Degrees C or F, or Voltage           |                   |                 |  |  |
| Repeatability                        | 0.05% of voltage span at a const     | ant temperature o | ver a 30-second |  |  |
|                                      | 1                                    |                   |                 |  |  |

| Specification   | 1                      | Description                                                 |                                       |  |  |
|-----------------|------------------------|-------------------------------------------------------------|---------------------------------------|--|--|
| Diagnostics re  | ported to the          | User configurable for Over Range, Under Range, High and Low |                                       |  |  |
| controller      |                        | Alarm, High-high and Low-low alarm, Open Circuit Detection, |                                       |  |  |
|                 |                        | Positive and Negative Rate of                               | of Change alarm                       |  |  |
| Channel-to-cha  | annel crosstalk        | 70 dB minimum                                               |                                       |  |  |
| Common Mod      | e Rejection            | 2.3 Hz filter, 50/60Hz: 10                                  | 00 dB                                 |  |  |
|                 |                        | 4 Hz filter, 50Hz: 100 dB                                   |                                       |  |  |
|                 |                        | 4.7 Hz filter, 60Hz: 10                                     | 00 dB                                 |  |  |
| Default or Hole | d Last State           | Configurable per channel fo                                 | r Default to 0 or Hold Last State     |  |  |
| Fault Reportin  | g                      | Configurable per channel to                                 | enable or disable fault reporting for |  |  |
|                 |                        | under or over range alarm,                                  | open circuit, rate of change alarm.   |  |  |
| Rate of change  | ?                      | Configurable per channel to                                 | enable/disable and specify positive   |  |  |
|                 |                        | and negative rate of change                                 | e alarms.                             |  |  |
| Channel Value   | Format                 | Configurable as 16-bit integ                                | er (in a 32-bit field) or 32-bit real |  |  |
|                 |                        | number.                                                     |                                       |  |  |
| Backplane Pov   | ver Requirements       | For ALG306-EB or earlier: 3.                                | .3V = 400mA; 5V = 225mA               |  |  |
|                 |                        | ALG312-EB or earlier: 3.                                    | .3V = 400mA: 5V = 425mA               |  |  |
|                 |                        | For ALG312-FC or later: 3.3V = 315mA: 5V = 150mA            |                                       |  |  |
| Input Impedar   | nce                    | Voltage: >=500kΩ                                            |                                       |  |  |
| Power Dissipat  | tion within Module     | IC695ALG306 = 2.5W max                                      |                                       |  |  |
|                 |                        | IC695ALG312 = 3.5W max                                      |                                       |  |  |
| Isolation Volta | ge (Field to Backplane | 250 Vac Continuous                                          |                                       |  |  |
| and Channel to  | channel)               | 1500 Vac 1 minute                                           |                                       |  |  |
| (CJC inputs are | not isolated from the  | 2550 Vdc 1 second                                           |                                       |  |  |
| backplane)      |                        |                                                             |                                       |  |  |
| Normal Mode     | Noise Rejection        | 2.3 Hz filter, 50Hz/60Hz: 67d                               | IB                                    |  |  |
|                 |                        | 4 Hz filter, 50Hz/60Hz: 80d                                 |                                       |  |  |
|                 |                        | 24 Hz filter, 50Hz/60Hz: 25dB                               |                                       |  |  |
| CJC measurem    | ent resolution         | 0.01° (C or F) for temperatur                               | res 0-60°C                            |  |  |
| CJC Temperatu   | ire Accuracy           |                                                             | sing IC695ACC600 with an accuracy of  |  |  |
|                 | T                      | ±0.3°C)                                                     | ,                                     |  |  |
| Module Filter   | Filter Frequency       | Update Time (ms)                                            | Normal Mode Rejection at              |  |  |
| settings,       | (-3dB frequency)       |                                                             | 50/60 Hz                              |  |  |
| update          | 2.3 Hz                 | 120 (130 max)                                               | 67dB at 50/60 Hz                      |  |  |
| times,          | 4 Hz                   | 70 (80 max)                                                 | 80dB at 50 Hz                         |  |  |
| rejection and   | 4.7 Hz                 | 60 (70 max)                                                 | 80dB at 60 Hz                         |  |  |
| resolution      | 24 Hz                  | 20 (30 max)                                                 | 25dB at 50 Hz                         |  |  |
|                 | 28 Hz                  | 15 (25 max)                                                 | 25dB at 60 Hz                         |  |  |

# **Update Time: ALG306 & ALG312**

The channel update times include channel scan time and filter delay time. The update rate of any individual channel is independent of that of any other channel.

Module update time is the time required for Module to sample and convert the input signals, and provide the resulting data values to the processor.

#### Module Resolution: ALG306 & ALG312

Module resolution depends on the input type and the filter chosen. The following table summarizes the effective number of bits of resolution, by filter and input type. It is based on the full-scale range of the input type. If integer format is used, the resolution is limited to 16 bits.

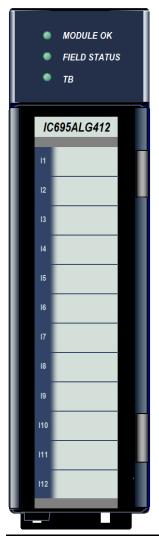
|         |          | Filter | Setting | / Reso | lution |       |      |      |       |      |       |
|---------|----------|--------|---------|--------|--------|-------|------|------|-------|------|-------|
| Input   |          | 2.3Hz  |         | 4.0Hz  |        | 4.7Hz |      | 24Hz |       | 28Hz |       |
| Туре    | Op Range | Bits   | °C      | Bits   | °C     | Bits  | °C   | Bits | °C    | Bits | °C    |
| J       | >-180°C  | 15.0   | 0.09    | 14.8   | 0.10   | 14.7  | 0.11 | 11.6 | 0.93  | 11.0 | 1.40  |
|         | <-180°C  |        | 0.12    |        | 0.14   |       | 0.15 |      | 1.25  |      | 1.89  |
| K       | >-200°C  | 14.6   | 0.15    | 14.4   | 0.17   | 14.3  | 0.18 | 11.2 | 1.56  | 10.6 | 2.37  |
|         | <-200°C  |        | 2.37    |        | 2.72   |       | 2.92 |      | 25.0  |      | 37.9  |
| Т       | >-190°C  | 13.4   | 0.13    | 13.2   | 0.15   | 13.1  | 0.16 | 10.0 | 1.39  | 9.4  | 2.11  |
|         | <-190°C  |        | 1.18    |        | 1.36   |       | 1.46 |      | 12.50 |      | 18.95 |
| E       | >-200°C  | 15.0   | 0.09    | 14.8   | 0.11   | 14.7  | 0.12 | 11.6 | 1.00  | 11.0 | 1.52  |
|         | >-200°C  |        | 1.18    |        | 1.36   |       | 1.46 |      | 12.50 |      | 18.95 |
| R       |          | 13.1   | 0.47    | 12.9   | 0.54   | 12.8  | 0.58 | 9.7  | 5.00  | 9.1  | 7.58  |
| S       |          | 13.0   | 0.47    | 12.8   | 0.54   | 12.7  | 0.58 | 9.6  | 5.00  | 9.0  | 7.58  |
| В       |          | 12.5   | 0.79    | 12.3   | 0.91   | 12.2  | 0.97 | 9.1  | 8.33  | 8.5  | 12.63 |
| N       | >-160°C  | 14.4   | 0.16    | 14.2   | 0.18   | 14.1  | 0.19 | 11.0 | 1.67  | 10.4 | 2.53  |
|         | <-160°C  |        | 0.30    |        | 0.34   |       | 0.36 |      | 3.13  |      | 4.74  |
| С       |          | 14.9   | 0.26    | 14.7   | 0.30   | 14.6  | 0.32 | 11.5 | 2.78  | 10.9 | 4.21  |
| Voltage |          |        | (µV)    |        | (µV)   |       | (µV) |      | (µV)  |      | (µV)  |
|         | ±50mV    | 15.5   | 2.4     | 15.3   | 2.8    | 15.2  | 3.0  | 12.1 | 25.0  | 11.5 | 37.9  |
|         | ±150mV   | 17.0   | 2.4     | 16.8   | 2.8    | 16.7  | 3.0  | 13.6 | 25.0  | 13.0 | 37.9  |

# 14.2 Thermocouple Input 12-Channel Isolated Module IC695ALG412

The Thermocouple Input module, IC695ALG412, provides twelve isolated differential thermocouple input channels. The ALG412 offers a 10dB improvement in noise rejection compared to the ALG312 thermocouple input module.

Each channel can be individually configured for inputs from:

- Thermocouple types: J, K, T, E, R, S, B, N, or C
- Voltage: ±50mV


# 14.2.1 Features

- Completely software-configurable, no module jumpers to set
- Thermocouple Linearization based on ITS-90
- 32-bit IEEE floating-point or 16-bit integer (in 32-bit field) input data format selectable per channel
- Temperature units selectable in °C and °F
- User Scaling
- Programmable notch filter from 2.3 Hz to 28 Hz per channel
- Under Range/Over Range alarm detection and reporting by channel
- Alarm dead band for high alarm, low alarm, high-high alarm, and low-low alarm by channel
- Wire-off (open circuit) condition support for all inputs.
- Module fault status reporting (Watchdog, Ram Fail, Flash Fail)
- Module identity and status reporting including LED status indicators
- User offset for all channels including CICs.
- Supports Cold Junction Compensation on Terminal Block (Cold Junction Sensors sold separately).
- Support field upgrade of firmware application code.
- Optional CJC enable selections
- Reports CJC temperatures as separate channels in Input Data
- CJC update rate is fixed at 20Hz.
- CJC filter setting fixed with first notch at 60Hz, and 3dB input attenuation at 26.5Hz.
- Terminal Block detection switch.
- Module must be located in an RX3i Universal Backplane.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Hot Insertion and Removal.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

These modules can be used with a Box-style (IC694TBB032), Extended Box style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block.

#### Figure 354: IC695ALG412



# 14.2.2 Specifications: ALG412

| Specification                       | Description                          |                                   |              |             |  |  |  |
|-------------------------------------|--------------------------------------|-----------------------------------|--------------|-------------|--|--|--|
| Number of Channels                  | 12 Individually isolated channels    | 12 Individually isolated channels |              |             |  |  |  |
| Resolution                          | 11.5–16 bits (refer to filter table) |                                   |              |             |  |  |  |
| Measuring method selectable per     | Voltage: ±50mV                       |                                   |              |             |  |  |  |
| channel                             | Thermocouple types: J, K, T, E, R    | , S, B, N ar                      | nd C         |             |  |  |  |
| Integration time for 12 channels    | Configurable from 15 ms to 120       | ms.                               |              |             |  |  |  |
| Voltage Accuracy over               | ± 0.1% of voltage span at 25 °C.     |                                   |              |             |  |  |  |
| temperature span                    | ± 0.25% of span over temperatu       | re range.                         |              |             |  |  |  |
| Thermocouple Input Types and        | Thermocouple Type                    | Temper                            | ature Range  | e(°C)       |  |  |  |
| Ranges                              | Туре В                               | +300 to                           | +1820        |             |  |  |  |
|                                     | Type C                               | 0 to +23                          | 15           |             |  |  |  |
|                                     | Type E                               | -270 to +                         | -1000        |             |  |  |  |
|                                     | Type J                               | -210 to +                         | -1200        |             |  |  |  |
|                                     | Type K                               | -270 to +                         | -1372        |             |  |  |  |
|                                     | Type N                               | -210 to +                         | -1300        |             |  |  |  |
|                                     | Type R                               | 0 to +17                          | 68           |             |  |  |  |
|                                     | Type S                               | 0 to +17                          | 68           |             |  |  |  |
|                                     | Type T -270 to +400                  |                                   |              |             |  |  |  |
| Voltage Input Ranges                | Input Type Voltage Range             |                                   |              |             |  |  |  |
|                                     | -50mV to +50mV                       | -55.0 mV to +55.0 mV              |              | /           |  |  |  |
| Module temperature accuracy for     | Thermocouple Type & Range            | +25°C                             | 0°C-60°C     | 40°C-75°C   |  |  |  |
| thermocouple inputs over            | Type J (-180°C to +1200°C)           | ± 0.6°C                           | ± 2.3°C      | -           |  |  |  |
| temperature span (2.3, 4, 4.7 and   | Type J (-210°C to -180°C)            | ± 0.8°C                           | ± 3.3°C      | -           |  |  |  |
| 8Hz filters). Does not include cold | Type J (5°C to 45°C)                 | -                                 | -            | ± 1.25°C    |  |  |  |
| junction compensation or            | Type N (-160°C to +1300°C)           | ± 1.0°C                           | ± 4.5°C      | -           |  |  |  |
| thermocouple tolerances.            | Type N (-210°C to -160°C)            | ± 1.8°C                           | ± 8.0°C      | -           |  |  |  |
|                                     | Type T (-190°C to +400°C)            | ± 0.9°C                           | ± 4.0°C      | -           |  |  |  |
|                                     | Type T (-270°C to -190°C)            | ± 6.7°C                           | ± 18.0°C     | -           |  |  |  |
|                                     | Type K (-200°C to +1372°C)           | ± 1.0°C                           | ± 4.0°C      | -           |  |  |  |
|                                     | Type K (-270°C to -200°C)            | ± 9.5°C                           | ± 21.0°C     | -           |  |  |  |
|                                     | Type K (5°C to 45°C)                 | -                                 | -            | ± 2.5°C     |  |  |  |
|                                     | Type E (-200°C to +1000°C)           | ± 0.6°C                           | ± 2.5°C      | -           |  |  |  |
|                                     | Type E (-270°C to -200°C)            | ± 5.3°C                           | ± 14.0°C     | -           |  |  |  |
|                                     | Type S and R                         | ± 2.8°C                           | ± 11.5°C     | -           |  |  |  |
|                                     | Type C                               | ± 1.7°C                           | ± 7.0°C      | -           |  |  |  |
|                                     | Type B                               | ± 3.3°C                           | ± 20.0°C     | -           |  |  |  |
| Measurement Units                   | Degrees C or F, or Voltage           | l                                 |              | 1           |  |  |  |
| Repeatability                       | 0.05% of voltage span at a const     | ant tempe                         | erature over | a 30-second |  |  |  |

| Specification                     | Description                                                          |                                        |  |  |
|-----------------------------------|----------------------------------------------------------------------|----------------------------------------|--|--|
| Diagnostics reported to the       | User configurable for Over Range, Under Range, High and Low          |                                        |  |  |
| controller                        | Alarm, High-high and Low-low alarm, Open Circuit Detection, Positive |                                        |  |  |
|                                   | and Negative Rate of Change ala                                      | m                                      |  |  |
| Channel-to-channel crosstalk      | 70 dB minimum                                                        |                                        |  |  |
| Common Mode Rejection             | All filters, 50/60 Hz: 110 dB                                        |                                        |  |  |
| Default or Hold Last State        | Configurable per channel for Def                                     | ault to 0 or Hold Last State           |  |  |
| Fault Reporting                   | Configurable per channel to enak                                     | ole or disable fault reporting for     |  |  |
|                                   | under or over range alarm, open                                      | circuit, rate of change alarm.         |  |  |
| Rate of change                    | Configurable per channel to enab                                     | ple/disable and specify positive and   |  |  |
|                                   | negative rate of change alarms.                                      |                                        |  |  |
| Channel Value Format              | Configurable as 16-bit integer (in                                   | a 32-bit field) or 32-bit real number. |  |  |
| Backplane Power Requirements      | For ALG412-CB and earlier: 3.3V                                      | = 400mA; 5.0V = 425mA                  |  |  |
|                                   | For ALG412-DC and later: 3.3V = 315mA; 5.0V = 150mA                  |                                        |  |  |
| Input Impedance                   | Voltage: >=500kΩ                                                     |                                        |  |  |
| Power Dissipation within Module   | IC695ALG412 = 3.5W max                                               |                                        |  |  |
| Isolation Voltage (Field to       | 250 Vac Continuous                                                   |                                        |  |  |
| Backplane and Channel to          | 1500 Vac 1 minute                                                    |                                        |  |  |
| Channel)                          | 2550 Vdc 1 second                                                    |                                        |  |  |
| (CJC inputs are not isolated from |                                                                      |                                        |  |  |
| the backplane)                    |                                                                      |                                        |  |  |
| CJC measurement resolution        | 0.01° (C or F) for temperatures 0-60°C                               |                                        |  |  |
| CJC Temperature Accuracy          | ±1.5°C max (0-60°C) when using IC695ACC600 with an accuracy          |                                        |  |  |
|                                   | of ±0.3°C)                                                           |                                        |  |  |
| Module Filter Frequency           | Update Time                                                          | Normal Mode Noise Rejection at         |  |  |
| Filter (-3dB frequency)           | (milliseconds)                                                       | 50/60 Hz                               |  |  |
| settings, 2.3 Hz                  | 120 (130 max)                                                        | 80dB at 50/60 Hz                       |  |  |
| update 4.0 Hz                     | 70 (80 max)                                                          | 80dB at 50 Hz, 65dB at 60 Hz           |  |  |
| times, 4.7 Hz                     | 60 (70 max)                                                          | 80dB at 50/60 Hz                       |  |  |
| rejection 8.0 Hz                  | 30 (40ms max)                                                        | 48dB at 50 Hz; 28dB at 60 Hz           |  |  |
| and 24.0 Hz                       | 20 (30 max)                                                          | 38dB at 50 Hz                          |  |  |
| resolution 28.0 Hz                | 15 (25 max)                                                          | 38dB at 60 Hz                          |  |  |

# **Update Time: ALG412**

The channel update times include channel scan time and filter delay time. The update rate of any individual channel is independent of that of any other channel.

Module update time is the time required for Module to sample and convert the input signals, and provide the resulting data values to the processor.

#### **Module Resolution: ALG412**

Module resolution depends on the input type and the filter chosen. The following table summarizes the effective number of bits of resolution, by filter and input type. It is based on the full-scale range of the input type. If integer format is used, the resolution is limited to 16 bits.

| Inp   | ut Type | Filter Setting / Resolution |      |       |      |       |      |      |      |      |      |      |      |
|-------|---------|-----------------------------|------|-------|------|-------|------|------|------|------|------|------|------|
|       | Op      | 2.3Hz                       |      | 4.0Hz |      | 4.7Hz |      | 8Hz  |      | 24Hz |      | 28Hz |      |
|       | Range   | Bits                        | °C   | Bits  | °C   | Bits  | °C   | Bits | °C   | Bits | °C   | Bits | °C   |
| J     | <-180°C | 14.8                        | 0.04 | 15.0  | 0.03 | 14.6  | 0.05 | 14.9 | 0.04 | 13.9 | 0.08 | 13.6 | 0.09 |
|       | >-180°C | 14.9                        | 0.04 | 14.9  | 0.04 | 15.2  | 0.03 | 15.2 | 0.03 | 14.4 | 0.05 | 14.0 | 0.07 |
| K     | <-200°C | 13.8                        | 0.06 | 13.5  | 0.08 | 13.1  | 0.10 | 13.0 | 0.11 | 11.7 | 0.27 | 10.9 | 0.48 |
|       | >-200°C | 14.3                        | 0.04 | 14.3  | 0.04 | 14.5  | 0.04 | 14.5 | 0.04 | 13.4 | 0.08 | 12.7 | 0.14 |
| Т     | <-190°C | 13.4                        | 0.05 | 13.4  | 0.05 | 13.4  | 0.05 | 13.1 | 0.06 | 11.7 | 0.16 | 11.1 | 0.25 |
|       | >-190°C | 15.2                        | 0.01 | 15.0  | 0.02 | 15.0  | 0.02 | 15.1 | 0.02 | 14.0 | 0.03 | 13.5 | 0.05 |
| E     | <-200°C | 14.5                        | 0.04 | 14.4  | 0.05 | 14.0  | 0.06 | 14.3 | 0.05 | 13.4 | 0.09 | 12.7 | 0.15 |
|       | >-200°C | 15.1                        | 0.03 | 15.0  | 0.03 | 15.0  | 0.03 | 15.2 | 0.03 | 13.6 | 0.08 | 13.0 | 0.13 |
| R     |         | 14.4                        | 0.07 | 14.6  | 0.06 | 14.7  | 0.06 | 14.4 | 0.07 | 13.1 | 0.16 | 12.2 | 0.31 |
| S     |         | 14.3                        | 0.07 | 14.1  | 0.08 | 14.3  | 0.07 | 14.3 | 0.07 | 13.1 | 0.16 | 13.6 | 0.12 |
| В     |         | 13.2                        | 0.14 | 13.0  | 0.15 | 12.8  | 0.17 | 12.3 | 0.24 | 11.2 | 0.52 | 10.9 | 0.65 |
| Ν     | <-160°C | 14.3                        | 0.06 | 14.3  | 0.06 | 14.3  | 0.06 | 14.2 | 0.07 | 12.9 | 0.16 | 12.7 | 0.18 |
|       | >-160°C | 14.9                        | 0.04 | 14.9  | 0.04 | 15.0  | 0.04 | 14.9 | 0.04 | 13.9 | 0.08 | 13.3 | 0.13 |
| С     | •       | 14.1                        | 0.11 | 13.9  | 0.13 | 14.1  | 0.11 | 14.3 | 0.10 | 13.2 | 0.2  | 12.8 | 0.26 |
| Volta | age     |                             | (µV) |       | (µV) |       | (µV) |      | (µV) |      | (µV) |      | (µV) |
|       | ±50mV   | 17                          | 0.63 | 16.9  | 0.7  | 16.1  | 1.2  | 16.1 | 1.2  | 14.2 | 4.2  | 14.1 | 4.6  |

# 14.3 Thermocouple Module Operation: ALG306, ALG312 & ALG412

The information in this section applies to all three Thermocouple Input Modules: ALG306, ALG312 and ALG412.

# 14.3.1 LEDs: ALG306, ALG312 & ALG412

Module **OK** LED indicates module status. The **Field Status** LED indicates whether the external +24Vdc power supply is present and is above the minimum level and whether or not faults are present. All LEDs are powered from the backplane power bus.

| LED    | Indication              | Meaning                                                                |
|--------|-------------------------|------------------------------------------------------------------------|
| Module | Off                     | Module is not receiving power from the RX3i backplane, or Module       |
| ОК     |                         | has failed self-test.                                                  |
|        | Solid Green             | Module OK and configured.                                              |
|        | Blinking Green, rapidly | Module performing power-up sequence.                                   |
|        | Blinking Green, slowly  | Module has not received configuration from the CPU. If                 |
|        |                         | configuration is not successful, Module will continue to blink in this |
|        |                         | mode.                                                                  |
| Field  | ON Green                | No faults on any enabled channel, Terminal Block is present, and       |
| Status |                         | field power is present.                                                |
|        | ON Amber and            | Terminal Block is installed, fault on at least one channel, or field   |
|        | TB Green                | power is not present.                                                  |
|        | ON Amber and TB Red     | Terminal Block not fully removed, field power still detected.          |
|        | OFF and TB Red          | Terminal block not present and no field power is detected.             |
| ТВ     | ON Red                  | Terminal block not present or not fully seated. Refer to above.        |
|        | ON Green                | Terminal block is present. Refer to above.                             |
|        | OFF                     | No backplane power to module.                                          |

# 14.3.2 Field Wiring: ALG306, ALG312, & ALG412

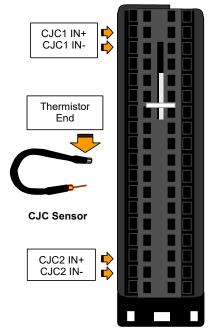
The following table lists wiring connections for the Isolated Thermocouple Input Modules. There are no shield terminals. For the 6-Channel module, IC695ALG306, the channel 7 to 12 connections are not used.

| Terminal | Assignment<br>(All Modules) | Figure 355: Fig<br>ALG312, ALG4 |            | g ALG306,     | Assignment<br>(ALG312 /<br>ALG412 only) | Terminal |
|----------|-----------------------------|---------------------------------|------------|---------------|-----------------------------------------|----------|
| 1        | No Connect                  | (Thermocoupl                    | le/Voltag  | e)            | No Connect                              | 19       |
| 2        | CJC1-IN+                    | ]                               |            | Voltage Input | No Connect                              | 20       |
| 3        | CJC1-IN-                    | Channel IN+                     | $\bigcirc$ |               | No Connect                              | 21       |
| 4        | CH1+                        | - Channel IN-                   | $\sim$     | V             | CH7+                                    | 22       |
| 5        | CH1-                        | Gliailliei iiv-                 |            |               | CH7-                                    | 23       |
| 6        | CH2+                        | ]                               | $\bigcirc$ |               | CH8+                                    | 24       |
| 7        | CH2-                        | ]                               |            |               | CH8-                                    | 25       |
| 8        | CH3+                        | ]                               |            |               | CH9+                                    | 26       |
| 9        | CH3-                        | ]                               |            |               | CH9-                                    | 27       |
| 10       | CH4+                        | ]                               |            |               | CH10+                                   | 28       |
| 11       | CH4-                        | ]                               |            |               | CH10-                                   | 29       |
| 12       | CH5+                        | ]                               |            |               | CH11+                                   | 30       |
| 13       | CH5-                        |                                 |            |               | CH11-                                   | 31       |
| 14       | CH6+                        | 1                               |            |               | CH12+                                   | 32       |
| 15       | CH6-                        | 1                               |            |               | CH12-                                   | 33       |
| 16       | CJC2 IN+                    | 1                               |            |               | No Connect                              | 34       |
| 17       | CJC2 IN-                    | 1                               |            |               | No Connect                              | 35       |
| 18       | No Connect                  |                                 |            |               | No Connect                              | 36       |

Depending on the Terminal block type chosen, the wire gauge supported ranges from 0.081...1.5mm<sup>2</sup> (28...14AWG) solid or stranded wire.

# **Grounding**

There are no shield terminals on these modules. For shielding, tie cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided in the ground bar for this purpose. For optimal performance, thermocouple inputs should be ungrounded, and use shielded cable with the shield(s) grounded at Module end. If a grounded thermocouple is required, a 0.1uF capacitor from the shield to the ground bar may be necessary on Module end to eliminate ground noise created from grounding both ends of the shield.


# **Installing CJC Sensors**

When using thermocouple inputs, the use of CJC sensors is recommended. Installing one CJC sensor will greatly improve the accuracy of thermocouple readings. Installing two CJC sensors will provide the highest thermocouple input accuracy for Module. A CJC sensor compensates for offset voltages introduced into the input signal where the thermocouple wires are connected to Module. A set of two CJC sensors is available as part number IC695ACC600.

Under normal circumstances, adding one or both CJC sensors does not affect the channel or module scan times.

The thermistor end of the CJC sensor must be installed in the CJC1 IN+ or CJC2 IN+ terminal for accurate temperature measurements. The gold pin end of the CJC sensor must be installed in the CJC1 IN- or the CJC2 IN- terminal.

Figure 356: Installing Cold Junction Sensor



**Spring-style Terminal Block** 

Open the Terminal Block contacts fully before installing the CJC sensor. Insert the sensor into the Terminal Block contact, maintaining metal-to-metal contact between the thermistor and the Terminal Block contact.

For a Box-style Terminal Block, maintain pressure while screwing down the contact.

**Note:** To use cold junction compensation, CJC scanning must be enabled in the hardware configuration profile of Module.

For each CJC sensor used, the Open Wire diagnostic should be enabled in the CJC Channel configuration. This diagnostic will allow you to detect improper installation or a failed CJC sensor.

# 14.3.3 Configuration: ALG306, ALG312 & ALG412

# Module Parameters: ALG306, ALG312 & ALG412

| Parameter          | Default   | Description                                                         |
|--------------------|-----------|---------------------------------------------------------------------|
| Channel Value      | %AIxxxxx  | Starting address for the input data of Module. This defaults to the |
| Reference Address  |           | next available %AI block.                                           |
| Channel Value      | 28        | The number of words used for the input data of Module.              |
| Reference Length   |           | Each channel is mapped to 2 words whether or not the channel is     |
|                    |           | used.                                                               |
| Inputs Default     | Force Off | The state of the Channel Value References when Module is not        |
|                    |           | available.                                                          |
|                    |           | Force Off = Channel Values clear to 0.                              |
|                    |           | Hold Last State = Channel Values hold their last state.             |
| Diagnostic         | %Ixxxxx   | Starting address for the channel diagnostics status data. This      |
| Reference Address  |           | defaults to the next available %I block.                            |
| Diagnostic         | 0         | The number of bit reference bits required for the Channel           |
| Reference Length   |           | Diagnostics data. Default is 0, which means mapping of Channel      |
|                    |           | Diagnostics is disabled. Change this to a non-zero value to enable  |
|                    |           | Channel Diagnostics mapping.                                        |
| Module Status      | %Ixxxxx   | Starting address for the status data of Module. This defaults to    |
| Reference Address  |           | the next available %I block.                                        |
| Module Status      | 0         | The number of bits required for Module Status data. Default is 0,   |
| Reference Length   |           | which means mapping of Module Status data is disabled. Change       |
|                    |           | this to a non-zero value to enable Module Status data mapping.      |
| CJC Scan Enable    | Disabled  | Cold Junction Compensation can be: No Scan, Scan CJC1, Scan         |
|                    |           | CJC2, Scan Both CJCs. Use of these parameters is described          |
|                    |           | below.                                                              |
| Channel Faults w/o | Disabled  | Enabled / Disabled: Controls whether channel faults and             |
| Terminal Block     |           | configured alarm responses will be generated after a Terminal       |
|                    |           | Block removal. The default setting of Disabled means channel        |
|                    |           | faults and alarms are suppressed when the Terminal Block is         |
|                    |           | removed. This parameter does not affect module faults including     |
|                    |           | the Terminal Block loss/add fault generation.                       |
| I/O Scan Set       | 1         | Assigns Module I/O status data to a scan set defined in the CPU     |
|                    |           | configuration. Determines how often the RX3i polls the data         |

# **CJC Scan Enable**

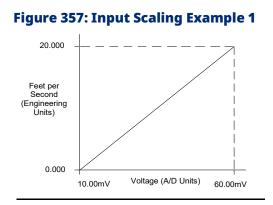
Cold Junction Compensation for Module can be configured as: No Scan, Scan CJC1, Scan CJC2, or Scan Both. Module uses the CJC inputs to compensate for the thermal gradient on the terminal block and adjusts the terminal temperature appropriately.

| Compensation | Description                                             | CJC1     | CJC2     |
|--------------|---------------------------------------------------------|----------|----------|
| Options      | Description                                             | Scanning | Scanning |
| No Scan      | Module assumes 25°C for any thermocouple                | Disabled | Disabled |
|              | compensation.                                           |          |          |
| Scan Both    | Highest thermocouple compensation accuracy. Uses both   | Enabled  | Enabled  |
|              | values in thermocouple compensation as explained below. |          |          |
| Scan CJC1    | Module assumes ambient temperature measured by CJC1     | Enabled  | Disabled |
|              | for any thermocouple compensation.                      |          |          |
| Scan CJC2    | Module assumes ambient temperature measured by CJC2     | Disabled | Enabled  |
|              | for any thermocouple compensation.                      |          |          |

# Channel Parameters: ALG306, ALG312 & ALG412

| Parameter         | Default               | Description                                                  |
|-------------------|-----------------------|--------------------------------------------------------------|
| Range Type        | Disabled              | Voltage, Thermocouple, Disabled                              |
| Range             | Depends on the        | For voltage: -50mV to +50mV, -150mV to +150mV                |
|                   | configured Range      | For Thermocouple: B, C, E, J, K, N, R, S, T                  |
|                   | Туре                  |                                                              |
| Channel Value     | 32-bit Floating-point | 16-bit integer or 32-bit floating-point                      |
| Format            |                       |                                                              |
| Temperature Units | Celsius               | Celsius, Fahrenheit                                          |
| (for Thermocouple |                       |                                                              |
| Range Type only)  |                       |                                                              |
| High Scale Value  | The defaults for the  | The upper end value, in engineering units, used for          |
| (Eng Units)       | Scaling parameters    | scaling.                                                     |
|                   | depend on the         | Note: Scaling is disabled if both High Scale Eng. Units      |
|                   | configured Range      | equals High Scale A/D Units and Low Scale Eng. Units         |
|                   | Type and Range. Each  | equals Low Scale A/D Units.                                  |
|                   | Range and Range       | Default is High A/D Limit of selected range type.            |
| Low Scale Value   | Type has a different  | The lower end value, in engineering units, used for scaling. |
| (Eng Units)       | set of defaults.      | Default is Low A/D Limit of selected range type. Must be     |
|                   |                       | lower than the high scaling value.                           |
| High Scale Value  |                       | The upper end value, in A/D units, used for scaling.         |
| (A/D Units)       |                       | Default is High A/D Limit of selected range type. Must be    |
|                   |                       | greater than the low scaling value.                          |
| Low Scale Value   |                       | The lower end value, in A/D units, used for scaling.         |
| (A/D Units)       |                       | Default is Low A/D Limit of selected range type.             |

# Input Scaling: ALG306, ALG312 & ALG412

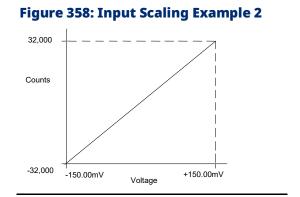

By default, Module converts a voltage or temperature input over the entire span of its configured Range into a floating-point value for the CPU. By modifying one or more of the four channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the PLC that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.

The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.

#### Example 1

For a voltage input, 60 mV equals a speed of 20 feet per second, and 10 mV equals 0 feet per second. The relationship in this range is linear. For this example, the input values should represent speed rather than volts. The following channel configuration sets up this scaling:

High Scale Value (Eng Units) = 20.000 Low Scale Value (Eng Units) = 0.000 High Scale Value (A/D Units) = 60.000 Low Scale Value (A/D Units) = 10.000




For this example, 10.0mV to 60.0mV is the normal voltage range, but Module will attempt to scale the inputs for a voltage that lies outside the range. If a voltage of 100.0mV were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or take other precautions for scaled inputs that are outside the acceptable range or invalid.

#### Example 2

An existing application uses traditional analog to digital (A/D) count integer values. With scaling and the optional 16-bit integer input option, a channel can be configured to report integer count values. In this example, the application should interpret +150mV as 32000 counts and -150mV as -32000 counts. The following channel configuration will scale a ±150mV input channel to ±32000 counts.

Channel Value Format = 16-bit Integer
High Scale Value (Eng Units) = 32000
Low Scale Value (Eng Units) = -32000
High Scale Value (A/D Units) = 150.00
Low Scale Value (A/D Units) = -150.00



# **Channel Parameters (Continued)**

| Parameter                     | Default | Description                                               |
|-------------------------------|---------|-----------------------------------------------------------|
| Positive Rate of Change Limit | 0.0     | Positive rate of change in Engineering Units per Second,  |
| (Eng Units/Second)            |         | above which will trigger a Positive Rate of Change alarm. |
|                               |         | Default is disabled. Used with "Rate of Change Sampling   |
|                               |         | Rate" parameter.                                          |
| Negative Rate of Change       | 0.0     | Negative rate of change in Engineering Units per Second,  |
| Limit (Eng Units)/Second      |         | below which will trigger a Negative Rate of Change alarm. |
|                               |         | Default is disabled. Used with "Rate of Change Sampling   |
|                               |         | Rate" parameter.                                          |
| Rate of Change Sampling       | 0.0     | Time from 0 to 300 seconds to wait between comparisons.   |
| Rate (Seconds)                |         | Default of 0.0 is to check after every input sample.      |

## Rate of Change Alarms: ALG306, ALG312 & ALG412

A Thermocouple Input module can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous rate of change sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Unit change between samples is positive, Module compares the results in comparing the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the "Diagnostic Reporting Enable", "Fault Reporting Enable", and "Interrupts Enabled" parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. If the Rate of Change Sampling Rate is 0 or any time period less than the channel update rate, Module compares the Rate of Change for every input sample of the channel.

# **Channel Parameters (Continued)**

| Parameter       | Default          | Description                                                     |  |  |
|-----------------|------------------|-----------------------------------------------------------------|--|--|
| High-High Alarm | The defaults for | Alarms and Deadbands                                            |  |  |
| (Eng Units)     | the High-High,   | All of the alarm parameters are specified in Engineering Units. |  |  |
|                 | High, Low, and   | To use alarming, the A/D Alarm Mode must also be configured as  |  |  |
| High Alarm      | Low-Low          | enabled.                                                        |  |  |
| (Eng Units)     | parameters       | High-High Alarm and Low-Low Alarm: When the configured          |  |  |
| Low Alarm       | depend on the    | value is reached or passed, a Low-Low Alarm or High-High Alarm  |  |  |
| (Eng Units)     | configured Range | is triggered. The configured values must be lower than/higher   |  |  |
| Low-Low Alarm   | Type and Range.  | than the corresponding low/high alarm limits.                   |  |  |
| (Eng Units)     | Each Range and   |                                                                 |  |  |

| Parameter          | Default          | Description                                                         |  |  |
|--------------------|------------------|---------------------------------------------------------------------|--|--|
| High-High Alarm    | Range Type has a | High Alarm and Low Alarm: When the configured value is              |  |  |
| Deadband           | different set of | reached or below (above), a Low (High) Alarm is triggered.          |  |  |
| (Eng Units)        | default values.  | High and Low Alarm Deadbands: A range in Engineering Units          |  |  |
| High Alarm         |                  | above the alarm condition (low deadband) or below the alarm         |  |  |
| Deadband           |                  | condition (high deadband) where the alarm status bit can remain     |  |  |
| (Eng Units)        |                  | set even after the alarm condition goes away. For the alarm         |  |  |
| Low Alarm          |                  | status to clear, the channel input must fall outside the deadband   |  |  |
| Deadband           |                  | range.                                                              |  |  |
| (Eng Units)        |                  | Alarm Deadbands cannot cause the alarm clear to be outside the      |  |  |
|                    |                  | Engineering Unit User Limits range. For example, if the             |  |  |
|                    |                  | engineering unit range for a channel is -1000.0 to +1000.0 and a    |  |  |
|                    |                  | High Alarm is set at +100.0, the High Alarm Deadband value          |  |  |
|                    |                  | range is 0.0 to 1100.0. A deadband greater than 1100.0 would        |  |  |
|                    |                  | put the High Alarm clear condition below –1000.0 units making       |  |  |
|                    |                  | the alarm impossible to clear within the limits.                    |  |  |
| User Offset        | 0.000            | Engineering Units offset to change the base of the input channel.   |  |  |
| (Eng Units)        |                  | This value is added to the scaled value on the channel prior to     |  |  |
|                    |                  | alarm checking.                                                     |  |  |
| Software Filtering | Disabled         | Enable or disable Software Integration Time Filter.                 |  |  |
| Software Filter    | 0.000            | Specifies the amount of time in milliseconds for the software       |  |  |
| Integration Time   |                  | filter to reach 63.2% of the input value.                           |  |  |
| (ms)               |                  | A value of 0 indicates software filter is disabled. A value of 100  |  |  |
|                    |                  | indicates data will achieve 63.2% of its value in 100ms. Default is |  |  |
|                    |                  | disabled                                                            |  |  |
| A/D Filter         | 4.7Hz            | All modules: 2, 3, 4, 4.7, 24, 28Hz                                 |  |  |
| Frequency          |                  | ALG412 only: 8 Hz                                                   |  |  |

# Using Alarming: ALG306, ALG312 & ALG412

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger execution of an Interrupt Block in the application program, as explained below.

# **Channel Parameters (Continued)**

| Parameter                                 | Default  | Description                                                                                                                                                                                                            |
|-------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagnostic Reporting Enable               | Disabled | Diagnostic Reporting Enable options are used                                                                                                                                                                           |
| If Diagnostic Reporting is enabled, the   |          | to enable reference memory reporting of                                                                                                                                                                                |
| additional parameters listed below can be |          | alarms into the Diagnostic Reference area.                                                                                                                                                                             |
| used to enable specific types of alarms.  |          | Fault Reporting Enable options enable fault                                                                                                                                                                            |
| Fault Reporting Enable                    | Disabled | logging of alarms into the I/O Fault Table.                                                                                                                                                                            |
| If Fault Reporting is enabled, the        |          | Interrupts Enable options enable I/O Interrupt                                                                                                                                                                         |
| additional parameters listed below can be |          | trigger when alarm conditions occur.                                                                                                                                                                                   |
| used to enable specific types of Faults.  |          | These parameters enable or disable the                                                                                                                                                                                 |
| Interrupts Enable                         | Disabled | individual diagnostics features of a channel.                                                                                                                                                                          |
| If Interrupts are enabled, the additional |          | When any of these parameters is enabled,                                                                                                                                                                               |
| parameters listed below can be used to    |          | Module uses associated parameters to                                                                                                                                                                                   |
| enable specific types of Interrupts.      |          | perform the enabled feature.                                                                                                                                                                                           |
| Low Alarm Enable                          | Disabled | For example, if Over Range is enabled in the                                                                                                                                                                           |
| High Alarm Enable                         | Disabled | "Diagnostic Reporting Enable" menu, Module will set the Over Range bit in the Diagnostic Reference for the channel.  If any of these parameters is disabled, Module does not react to the associated alarm conditions. |
| Under Range Enable                        | Disabled |                                                                                                                                                                                                                        |
| Over Range Enable                         | Disabled |                                                                                                                                                                                                                        |
| Open Wire Enable                          | Disabled |                                                                                                                                                                                                                        |
| Low-Low Alarm Enable                      | Disabled |                                                                                                                                                                                                                        |
| High-High Alarm Enable                    | Disabled |                                                                                                                                                                                                                        |
| Negative Rate of Change Detection         | Disabled | For example, if Low Alarm Enable is set to                                                                                                                                                                             |
| Enable                                    |          | Disabled in the "Fault Reporting Enable" menu,                                                                                                                                                                         |
| Positive Rate of Change Detection Enable  | Disabled | the Low Alarm fault is not logged in the I/O                                                                                                                                                                           |
|                                           |          | Fault Table when Low Alarm is detected on the                                                                                                                                                                          |
|                                           |          | channel.                                                                                                                                                                                                               |

## Using Interrupts: ALG306, ALG312 & ALG412

To properly configure an I/O Interrupt, the Interrupt enable bit or bits must be set in the configuration profile of Module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address configured for that channel.

#### Example

In this example, the Channel Values Reference Address block is mapped to %AI0001-%AI0020. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AI00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AI0003" as the Trigger.

#### Note on Using Interrupts

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

## **CJC Parameters**

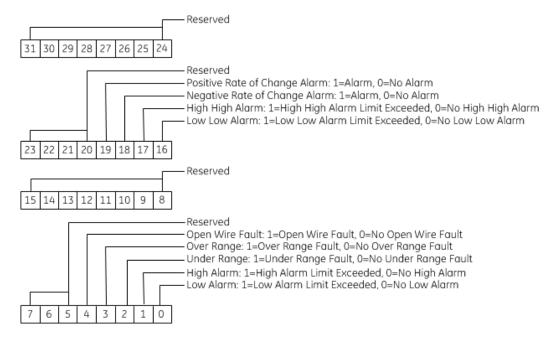
| Parameter                           | Default          | Description                                     |
|-------------------------------------|------------------|-------------------------------------------------|
| Channel Value Format                | 32-bit floating- | 16-bit integer in 32-bit field, or              |
|                                     | point            | 32-bit floating-point                           |
| Temperature Units                   | Celsius          | Celsius, Fahrenheit                             |
| User Offset (Temperature Units)     | 0.0              | Temperature offset added to CJC values.         |
|                                     |                  | For Celsius: -25°C to +25°C                     |
|                                     |                  | For Fahrenheit: -45°F to +45°F                  |
| Diagnostic Reporting Enable         | Disabled         | Diagnostic Reporting Enable options are used to |
| If Diagnostic Reporting is enabled, |                  | enable reference memory reporting of alarms     |
| the additional parameters listed    |                  | into the Diagnostic Reference area.             |
| below can be used to enable         |                  | Fault Reporting Enable options enable fault     |
| specific types of alarms.           |                  | logging of alarms into the I/O Fault Table.     |
| Fault Reporting Enable              | Disabled         | Interrupts Enable options enable I/O Interrupt  |
| If Fault Reporting is enabled, the  |                  | trigger when alarm conditions occur.            |
| additional parameters listed below  |                  | These parameters enable or disable the          |
| can be used to enable specific      |                  | individual diagnostics features of a channel.   |
| types of Faults.                    |                  | When any of these parameters is enabled,        |
| Interrupts Enable                   | Disabled         | Module uses associated parameters to            |
| If Interrupts are enabled, the      |                  | perform the enabled feature.                    |
| additional parameters listed below  |                  | For example, if Over Range is enabled in the    |
| can be used to enable specific      |                  | "Diagnostic Reporting Enable" menu, Module      |
| types of Interrupts.                |                  | will set the Over Range bit in the Diagnostic   |
| Under Range Enable                  | Disabled         | Reference for the channel.                      |
| Over Range Enable                   | Disabled         | If any of these parameters is disabled, Module  |
| Open Wire Enable                    | Disabled         | does not react to the associated alarm          |
|                                     |                  | conditions.                                     |
|                                     |                  | For example, if Low Alarm Enable is set to      |
|                                     |                  | Disabled in the "Fault Reporting Enable" menu,  |
|                                     |                  | the Low Alarm fault is not logged in the I/O    |
|                                     |                  | Fault Table when Low Alarm is detected on the   |
|                                     |                  | channel.                                        |

## 14.3.4 Module Data: ALG306, ALG312 & ALG412

Module reports its input channel data in its assigned input words, beginning at the configured Channel Value Reference Address. Each channel occupies 2 words (whether the channel is used or not):

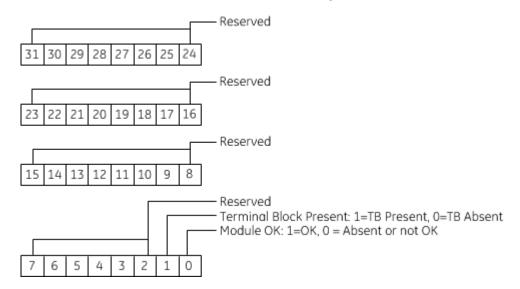
| Channel Value |                         | Channel Value          | Contains this |  |
|---------------|-------------------------|------------------------|---------------|--|
| Reference     | Contains this Input     | Reference Address      | Input         |  |
| Address       |                         | (ALG312 / ALG412 Only) | Input         |  |
| +0, 1         | Channel 1               | +16, 17                | Channel 9     |  |
| +2, 3         | Channel 2               | +18, 19                | Channel 10    |  |
| +4, 5         | Channel 3               | +20, 21                | Channel 11    |  |
| +6, 7         | Channel 4               | +22, 23                | Channel 12    |  |
| +8, 9         | Channel 5               | +24, 25                | CJC1          |  |
| +10, 11       | Channel 6               | +26, 27                | CJC2          |  |
| +12, 13       | CJC1 (IC695ALG306)      |                        |               |  |
|               | Channel 7 (IC695ALG312) |                        |               |  |
| +14, 15       | CJC2 (IC695ALG306)      |                        |               |  |
|               | Channel 8 (IC695ALG312) |                        |               |  |

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.


In the 16-bit integer mode, low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16-bits) of the 32-bit value are set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

## Channel Diagnostic Data: ALG306, ALG312 & ALG412

In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for Module. Use of this feature is optional. The diagnostics data for each channel occupies 2 words (whether the channel is used or not):


| Diagnostic<br>Reference<br>Address | Contains Diagnostic Data for: | Diagnostic<br>Reference Address<br>(ALG312 / ALG412 Only) | Contains Diagnostics Data for: |
|------------------------------------|-------------------------------|-----------------------------------------------------------|--------------------------------|
| +0, 1                              | Channel 1                     | +16, 17                                                   | Channel 9                      |
| +2, 3                              | Channel 2                     | +18, 19                                                   | Channel 10                     |
| +4, 5                              | Channel 3                     | +20, 21                                                   | Channel 11                     |
| +6, 7                              | Channel 4                     | +22, 23                                                   | Channel 12                     |
| +8, 9                              | Channel 5                     | +24, 25                                                   | CJC1                           |
| +10, 11                            | Channel 6                     | +26, 27                                                   | CJC2                           |
| +12, 13                            | CJC1 (ALG306)                 |                                                           |                                |
|                                    | Channel 7 (ALG312 / ALG412)   |                                                           |                                |
| +14, 15                            | CJC2 (ALG306)                 |                                                           |                                |
|                                    | Channel 8 (ALG312 / ALG412)   |                                                           |                                |

When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel. For each channel, the format of this data is:



## Module Status Data: ALG306, ALG312 & ALG412

Module can also optionally be configured to return two bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data* reference area configured for Module.



#### **Terminal Block Detection**

Module automatically checks for the presence of a Terminal Block.

The TB LED indicates the state of the terminal block of Module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block." If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 1 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current Module Status to be scanned and updated in reference memory.

## Section 15: RTD Input Module

This chapter describes the following RTD input module for PACSystems RX3i controllers.

| RTD Module Description              | Catalog<br>Number | Section |
|-------------------------------------|-------------------|---------|
| RTD Input 8-Channel Isolated Module | IC695ALG508       | 15.1    |

# 15.1 RTD Input 8-Channel Isolated Module IC695ALG508

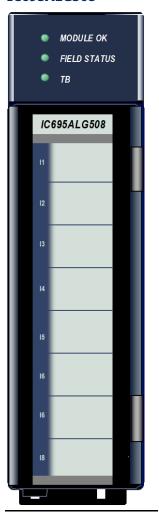
The RTD Input module, IC695ALG508, provides eight isolated differential RTD input channels. Each channel can be individually configured for:

RTD Inputs: 50, 100, 200, 500, and  $1000 \Omega$  Pt 385

50, 100, 200, 500, and 1000  $\Omega$  Pt 391.6 100, 200, 500, and 1000  $\Omega$  Ni 618

120 Ω Ni 672 604 Ω NiFe 518

10, 50 and 100  $\Omega$  Cu 426


Resistance Inputs: 250, 500, 1000, 2000, 3000, and 4000  $\Omega$ 

### 15.1.1 Features

- Completely software-configurable, no module jumpers to set
- RTD Linearization based on ITS-90
- 32-bit IEEE floating-point or 16-bit integer (in 32-bit field) input data format selectable per channel
- Temperature units selectable in °C and °F
- User Scaling
- Programmable notch filter from 2.3Hz to 28Hz per channel
- Under range/Over range alarm detection and reporting by channel
- Alarm dead band for high alarm, low alarm, high-high alarm, and low-low alarm by channel
- Wire-off (open circuit) condition support for all inputs.
- Module fault status reporting (Watchdog, Ram Fail, Flash Fail)
- Module identity and status reporting including LED status indicators
- Support for 2-, 3-, or 4-wire RTD types for each channel.
- For Resistance inputs, fixed 2-wire measurement mode.
- Periodic Lead Resistance compensation measurement update enable/disable control for 3-wire RTDs. When enabled, Module will switch to measure the lead resistance once every 100 samples, and will use this value for the next 100 samples.
- RTD user offset support for all channels
- Terminal Block detection switch.
- Module must be located in an RX3i Universal Backplane.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Hot Insertion and Removal.

This module can be used with a Box-style (IC694TBB032), Extended Box-style (IC694TBB132), Spring-style (IC694TBS032), or Extended Spring-style (IC694TBS132) Terminal Block. Extended terminal blocks provide the extra shroud depth needed for shielded wiring. Terminal Blocks are ordered separately.

Figure 359: IC695ALG508



## 15.1.2 LEDs: ALG508

Module **OK** LED indicates module status. The **Field Status** LED indicates whether the external +24Vdc power supply is present and is above the minimum level and whether or not faults are present. All LEDs are powered from the backplane power bus.

| LED    | Indication              | Meaning                                                              |
|--------|-------------------------|----------------------------------------------------------------------|
| Module | Off                     | Module is defective or no backplane power present                    |
| ОК     | Solid Green             | Module OK and configured                                             |
|        | Blinking Green, rapidly | Module performing power-up sequence                                  |
|        | Blinking Green or       | Module OK but not configured.                                        |
|        | Amber, slowly           |                                                                      |
| Field  | ON Green                | No faults on any enabled channel, Terminal Block is present, and     |
| Status |                         | field power is present.                                              |
|        | ON Amber and            | Terminal Block is installed, fault on at least one channel, or field |
|        | TB Green                | power is not present.                                                |
|        | ON Amber and TB Red     | Terminal Block not fully removed, field power still detected.        |
|        | OFF and TB Red          | Terminal block not present and no field power is detected.           |
| ТВ     | ON Red                  | Terminal block not present or not fully seated. Refer to above.      |
|        | ON Green                | Terminal block is present. Refer to above.                           |
|        | OFF                     | No backplane power to module.                                        |

## 15.1.3 Specifications: ALG508

| Specification                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                       |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|--|
| Number of Channels                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                       |  |
| Measuring method selectable per channel | RTD/resistance: up to $4k\Omega$                                                                                                                                                                                                                                                                                                                                                                                           |                                |                       |  |
| RTD input types                         | 50, 100, 200, 500, and 1000 $\Omega$ Platinum 385 (IEC751 1983, Amend 2 1995; JISC 1604 1997) 50, 100, 200, 500, and 1000 $\Omega$ Platinum 391.6 (JISC 1604: 1981) 100 $\Omega$ , 200 $\Omega$ , 500 $\Omega$ , and 1000 $\Omega$ Nickel 618 (DIN 43760 Sept. 1987) 120 $\Omega$ Nickel 672 (MINCO Application Aid #18, 5/90 Type Ni) 10, 50, and 100 $\Omega$ Copper 426 (SAMA RC21-4-1966) 604 $\Omega$ Nickel-Iron 518 |                                |                       |  |
| Resistance Input Types                  | 0-260, 0-525, 0-10                                                                                                                                                                                                                                                                                                                                                                                                         | 050, 0-2100, 0-3150, 0-4200Ω   |                       |  |
| Maximum RTD Lead<br>Resistance          | 25 $\Omega$ each side, for a total of 50 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                        |                                |                       |  |
| RTD and Resistance Input<br>Types       | Input Type                                                                                                                                                                                                                                                                                                                                                                                                                 | Resistance Range Supported (Ω) | Excitation<br>Current |  |
|                                         | Resistance                                                                                                                                                                                                                                                                                                                                                                                                                 | 0-260, 0-525                   | 0.717 mA              |  |

| Specification                                   | Description            |          |                        |                |
|-------------------------------------------------|------------------------|----------|------------------------|----------------|
|                                                 |                        | 0-1050,  | 0-2100, 0-3150, 0-4200 | 0.238 mA       |
|                                                 |                        | 50       |                        | 1.175 mA       |
|                                                 | Platinum 385           | 100      |                        | 0.717 mA       |
|                                                 |                        | 200, 500 | ), 1000                | 0.238 mA       |
|                                                 |                        | 50       |                        | 1.175 mA       |
|                                                 | Platinum 391.6         | 100, 200 | )                      | 0.717 mA       |
|                                                 |                        | 500, 100 | 00                     | 0.238mA        |
|                                                 | Nickel 672             | 120      |                        | 0.717 mA       |
|                                                 | Ni alsal C10           | 100,200  |                        | 0.717 mA       |
|                                                 | Nickel 618             | 500,100  | 0                      | 0.238 mA       |
|                                                 | Nickel-Iron 518        | 604      |                        | 0.238 mA       |
|                                                 | C 12C                  | 10       |                        | 1.654 mA       |
|                                                 | Copper 426             | 50, 100  |                        | 1.175 mA       |
|                                                 | RTD Type               | Low ten  | np (°C)                | High temp (°C) |
|                                                 | Copper 426             | -100.0   |                        | +260.0         |
|                                                 | Nickel 618             | -100.0   |                        | +260.0         |
| RTD Ranges                                      | Nickel 672 -80.0       |          |                        | +260.0         |
|                                                 | Nickel-Iron 518 -100.0 |          |                        | +200.0         |
|                                                 | Platinum 385 -200.0    |          |                        | +850.0         |
|                                                 | Platinum 391.6 -200.0  |          |                        | +630.0         |
| Temperature accuracy for                        | RTD Type               |          | +25°C                  | 0°C to +60°C   |
| inputs from 4-wire RTDs over                    | 50 Ω Platinum          | 385      | ±1.0°C                 | ±1.7°C         |
| temperature span (2.3, 4, and                   | 100 Ω Platinum         | 385      | ±0.7°C                 | ±1.2°C         |
| 4.7Hz filters). This data does                  | 200 Ω Platinum         | 385      | ±0.6°C                 | ±1.0°C         |
| do not include the RTD sensor                   | 500 Ω Platinum         | 385      | ±0.5°C                 | ±0.9°C         |
| accuracy, which must be                         | 1000 Ω Platinum        | 385      | ±0.5°C                 | ±0.9°C         |
| included when determining                       | 100 Ω Platinum         | 391.6    | ±0.6°C                 | ±1.1°C         |
| the overall system                              | 200 Ω Platinum         | 391.6    | ±0.5°C                 | ±0.9°C         |
| performance.                                    | 500 Ω Platinum         | 391.6    | ±0.4°C                 | ±0.8°C         |
|                                                 | 1000 Ω Platinum        | 391.6    | ±0.4°C                 | ±0.8°C         |
| Three-wire RTDs have similar                    | Nickel 672             |          | ±0.3°C                 | ±0.5°C         |
| accuracies, but depend on the                   | Nickel 618             |          | ±0.3°C                 | ±0.5°C         |
| lead resistances being                          | Nickel-Iron 518        |          | ±0.4°C                 | ±0.7°C         |
| balanced.                                       | 10 Ω Copper 420        | 5        | ±1.0°C                 | ±2.4°C         |
| L For 2 wire DTDs the lead                      | 50 Ω Copper 420        | 5        | ±0.8°C                 | ±1.9°C         |
| For 2-wire RTDs, the lead resistance of the RTD | 100 Ω Copper 426       |          | ±0.8°C                 | ±1.9°C         |
|                                                 |                        |          |                        |                |
|                                                 |                        |          |                        |                |
| contributes to the                              |                        |          |                        |                |
| contributes to the temperature error.           |                        |          |                        |                |
| contributes to the                              |                        |          |                        |                |

| Specification                | Description                                                            |                             |                    |  |  |
|------------------------------|------------------------------------------------------------------------|-----------------------------|--------------------|--|--|
|                              | Resistance                                                             | +25°C                       | 0°C to +60°C       |  |  |
|                              | 250Ω                                                                   | ±0.25 Ω                     | ±0.35 Ω            |  |  |
| Temperature accuracy for     | 500Ω                                                                   | ±0.3 Ω                      | ±0.45 Ω            |  |  |
| Resistance inputs            | 1000Ω                                                                  | ±0.5 Ω                      | ±0.8 Ω             |  |  |
|                              | 2000Ω                                                                  | ±0.9 Ω                      | ±1.5 Ω             |  |  |
|                              | 3000Ω                                                                  | ±1.3 Ω                      | ±2.2 Ω             |  |  |
|                              | 4000Ω                                                                  | ±1.7 Ω                      | ±2.9 Ω             |  |  |
| Measurement Units            | Degrees C or F, or $\Omega$                                            |                             |                    |  |  |
| Donastakilitu.               | 0.05% of span at a constan                                             | t temperature over a 30-s   | econd period (0.1% |  |  |
| Repeatability                | for $10\Omega$ copper, 28Hz filter                                     | )                           |                    |  |  |
| Diagnostics reported to the  | User configurable for Over                                             | Range, Under Range, Hig     | h and Low Alarm,   |  |  |
| controller                   | High-high and Low-low ala                                              | ırm, Open Circuit Detectioı | n, Positive and    |  |  |
| Controller                   | Negative Rate of change a                                              | larm                        |                    |  |  |
| Service Requests             | Report module firmware re                                              | evision                     |                    |  |  |
| Hot-Swap                     | Supports removal and repl                                              | lacement under power        |                    |  |  |
| Calibration                  | Module should be field calibrated via the configuration software.      |                             |                    |  |  |
| Channel-to-channel crosstalk | 70 dB minimum at 120mS update rate for all channels                    |                             |                    |  |  |
|                              | 2.3Hz filter, 50/60Hz: 100 dB for 4-wire,                              |                             |                    |  |  |
|                              | 90 dB for 2- and 3-wire                                                |                             |                    |  |  |
| Common Mode Rejection        | 4Hz filter, 50/60Hz: 100 dB                                            |                             |                    |  |  |
|                              | 4.7Hz filter, 50/60Hz: 100 dB                                          |                             |                    |  |  |
|                              | 24Hz, 28Hz filter 50/60Hz: 80 dB                                       |                             |                    |  |  |
| Default or Hold Last State   | For each of fault and disab                                            | <u> </u>                    | • •                |  |  |
|                              | to default a channel input to 0 or hold the last state of the input    |                             |                    |  |  |
| Fault Reporting              | The configuration can enable or disable fault reporting for either of  |                             |                    |  |  |
|                              | under or over range alarm, open circuit, and rate of change alarm.     |                             |                    |  |  |
| Rate of change               | For each channel, the configuration can enable/disable and specify a   |                             |                    |  |  |
| <u> </u>                     | positive and negative rate of change alarms.                           |                             |                    |  |  |
| Channel Value Format         | 16-bit integer (in a 32-bit field) or 32-bit real number data for each |                             |                    |  |  |
|                              | channel.                                                               |                             |                    |  |  |
| Power Consumption            | ALG508-CA and earlier: 3.3Vdc: 400mA; 5.0 Vdc: 200mA                   |                             |                    |  |  |
| •                            | ALG508-DB and later: 3.3Vdc: 315mA; 5.0 Vdc: 120mA                     |                             |                    |  |  |
| Excitation Current           | 0.238mA-1.654 mA, depen                                                | ding on the input range.    |                    |  |  |
| Power Dissipation            | 2.5W max                                                               |                             |                    |  |  |
| Isolation Voltage            | 250 Vac Continuous                                                     |                             |                    |  |  |
| (Field to Backplane and      | 1500 Vac 1 minute                                                      |                             |                    |  |  |
| Channel to Channel)          | 2550 Vdc 1 second                                                      |                             |                    |  |  |

| Specificati | on                 | Description          |      |                                   |
|-------------|--------------------|----------------------|------|-----------------------------------|
|             |                    | 2.3 Hz filter, 50Hz: | 67dB |                                   |
|             |                    | 2.3 Hz filter, 60Hz: | 67dB |                                   |
| Normal Mod  | la Naisa Paiastian | 4.0 Hz filter, 50Hz: | 80dB |                                   |
| NOTHAL WOO  | le Noise Rejection | 4.7 Hz filter, 60Hz: | 80dB |                                   |
|             |                    | 24 Hz filter, 50Hz:  | 25dB |                                   |
|             |                    | 28 Hz filter, 60Hz:  | 25dB |                                   |
|             | Filter             |                      |      |                                   |
| Filter      | Frequency          | Hadata Time (ma)     |      | Normal Mode Rejection at 50/60 Hz |
| Settings,   | (-3dB              | Update Time (ms)     |      | Normal Mode Rejection at 50/60 Hz |
| Update      | frequency)         |                      |      |                                   |
| Times,      | 2.3 Hz             | 120 (130 max)        |      | 67dB at 50/60 Hz                  |
| Rejection,  | 4.0 Hz             | 70 (80 max)          |      | 80dB at 50 Hz                     |
| and         | 4.7 Hz             | 60 (70 max)          |      | 80dB at 60 Hz                     |
| Resolution  | 24.0 Hz            | 20 (30 max)          |      | 25dB at 50 Hz                     |
|             | 28.0 Hz            | 15 (25 max)          |      | 25dB at 60 Hz                     |

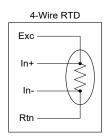
## **Update Time: ALG508**

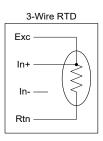
Module update time (refer to above) assumes all channels are configured with the same parameters. If channels are configured differently, Module update time corresponds to the slowest channel update time chosen. Update Time is the time required for Module to sample and convert the input signals to provide the resulting data values to the processor. The channel times include channel scan time and filter delay time.

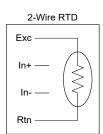
## **Module Resolution: ALG508**

Module resolution depends on the input type and the filter chosen. The following table summarizes the effective resolution for Module by filter chosen, and input type selected for 2- or 4-wire modes. If a 3-wire mode is used, the resolution values shown are reduced by 1.2 bits. If integer format is used, the resolution is limited to 16 bits.

|                 | Filter Setting / Resolution |      |                    |                   |                    |       |                    |       |  |
|-----------------|-----------------------------|------|--------------------|-------------------|--------------------|-------|--------------------|-------|--|
| PTD Tyro        | 2.3Hz                       |      | 4.0 Hz a           | 4.0 Hz and 4.7 Hz |                    | 24 Hz |                    | 28 Hz |  |
| RTD Type        | Bits <sup>87</sup>          | m°C  | Bits <sup>87</sup> | m°C               | Bits <sup>87</sup> | m°C   | Bits <sup>87</sup> | m°C   |  |
| Platinum 385    | 16.5                        | 13.2 | 16.3               | 15.2              | 13.4               | 113   | 12.8               | 172   |  |
| Platinum 391.6  | 16.5                        | 10.6 | 16.3               | 12.2              | 13.4               | 91.0  | 12.8               | 138   |  |
| Nickel 672      | 16.5                        | 5.2  | 16.3               | 6.0               | 13.4               | 44.7  | 12.8               | 67.8  |  |
| Nickel 618      | 16.2                        | 7.3  | 16.0               | 8.3               | 13.1               | 56.2  | 12.5               | 94.3  |  |
| Nickel-Iron 518 | 16.5                        | 5.7  | 16.3               | 6.5               | 13.4               | 48.6  | 12.8               | 73.7  |  |
| Copper 426      |                             |      |                    |                   |                    |       |                    |       |  |
| 10 Ω            | 13.6                        | 29.0 | 13.4               | 33.3              | 10.5               | 249   | 9.9                | 377   |  |
| 50 Ω            | 15.6                        | 7.8  | 15.4               | 8.9               | 12.5               | 66.5  | 11.9               | 101   |  |
| 100 Ω           | 16.2                        | 5.2  | 16.0               | 5.9               | 13.1               | 44.3  | 12.5               | 67.2  |  |
| Resistance      | Bits                        | mΩ   | Bits               | mΩ                | Bits               | mΩ    | Bits               | mΩ    |  |
| 250             | 16.6                        | 2.6  | 16.4               | 3.0               | 13.5               | 22.4  | 12.9               | 34.0  |  |
| 500             | 16.6                        | 5.3  | 16.4               | 6.1               | 13.5               | 45.3  | 12.9               | 68.7  |  |
| 1000            | 16.6                        | 10.6 | 16.4               | 12.1              | 13.5               | 90.6  | 12.9               | 137   |  |
| 2000            | 17.0                        | 16.0 | 16.8               | 18.4              | 13.9               | 137   | 13.3               | 208   |  |
| 3000            | 16.6                        | 31.7 | 16.4               | 36.4              | 13.5               | 272   | 12.9               | 412   |  |
| 4000            | 17.0                        | 32.0 | 16.8               | 36.8              | 13.9               | 275   | 13.3               | 416   |  |


<sup>&</sup>lt;sup>87</sup> The effective number of bits is based on the full-scale range of the input type.


## 15.1.4 Field Wiring: ALG508


| Terminal | Assignment | Assignment | Terminal |
|----------|------------|------------|----------|
| 1        | No Connect | No Connect | 19       |
| 2        | RTD 1 Exc  | RTD 5 Exc  | 20       |
| 3        | RTD 1 In + | RTD 5 In + | 21       |
| 4        | RTD 1 In - | RTD 5 In - | 22       |
| 5        | RTD 1 Rtn  | RTD 5 Rtn  | 23       |
| 6        | RTD 2 Exc  | RTD 6 Exc  | 24       |
| 7        | RTD 2 In + | RTD 6 In + | 25       |
| 8        | RTD 2 In - | RTD 6 In - | 26       |
| 9        | RTD 2 Rtn  | RTD 6 Rtn  | 27       |
| 10       | RTD 3 Exc  | RTD 7 Exc  | 28       |
| 11       | RTD 3 In + | RTD 7 In + | 29       |
| 12       | RTD 3 In - | RTD 7 In - | 30       |
| 13       | RTD 3 Rtn  | RTD 7 Rtn  | 31       |
| 14       | RTD 4 Exc  | RTD 8 Exc  | 32       |
| 15       | RTD 4 In + | RTD 8 In + | 33       |
| 16       | RTD 4 In - | RTD 8 In - | 34       |
| 17       | RTD 4 Rtn  | RTD 8 Rtn  | 35       |
| 18       | No Connect | No Connect | 36       |

The pinout is set up for two, three, or four-wire RTD sensors. No additional jumper or shorting wires are needed for wiring in any of the three modes. Connect the RTD sensor as shown:

Figure 360: Field Wiring for RTDs ALG508







Depending on the Terminal block type chosen, the wire gauge supported ranges from .081...1.5mm<sup>2</sup> (28...14AWG) solid or stranded wire.

## **Grounding**

There are no shield terminals on these modules. For shielding, tie cable shields to the ground bar along the bottom of the backplane. M3 tapped holes are provided in the ground bar for this purpose. For optimal performance, RTD inputs should be ungrounded, and use a shielded cable with the shield(s) grounded at Module end. If a grounded thermocouple is required, a 0.1uF capacitor from the shield to the ground bar may be necessary on Module end to eliminate ground noise created from grounding both ends of the shield.

## 15.1.5 Configuration: ALG508

#### **Module Parameters**

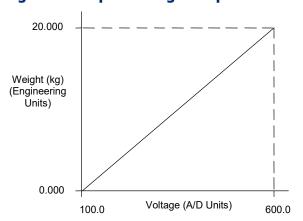
| Parameter          | Default   | Description                                                                  |
|--------------------|-----------|------------------------------------------------------------------------------|
| Channel Value      | %AIxxxxx  | The starting address for the input data of this module. This defaults to the |
| Reference Address  |           | next available %AI block.                                                    |
| Inputs Default     | Force Off | In the event of module failure or removal, this parameter specifies the      |
|                    |           | state of the Channel Value References.                                       |
|                    |           | Force Off = Channel Values clear to 0.                                       |
|                    |           | Hold Last State = Channel Values hold their last state.                      |
| Channel Value      |           | The number of words used for the input data of this module.                  |
| Reference Length   |           |                                                                              |
| Diagnostic         | %Ixxxxx   | The starting address for the channel diagnostics status data. This defaults  |
| Reference Address  |           | to the next available %I block.                                              |
| Diagnostic         | 0         | The number of bit reference bits required for the Channel Diagnostics        |
| Reference Length   |           | data. Default is 0, which means the mapping of Channel Diagnostics is        |
|                    |           | disabled. Change this to a non-zero value to enable Channel Diagnostics      |
|                    |           | mapping.                                                                     |
| Module Status      | %Ixxxxx   | The starting address for the status data of this module. This defaults to    |
| Reference Address  |           | the next available %I block.                                                 |
| Module Status      | 0         | The number of bits required for Module Status data. Default is 0, which      |
| Reference Length   |           | means mapping of Module Status data is disabled. Change this to a non-       |
|                    |           | zero value to enable Module Status data mapping.                             |
| Channel Faults w/o | Disabled  | Enabled / Disabled: Controls whether channel faults and configured alarm     |
| Terminal Block     |           | responses will be generated after a Terminal Block removal. The default      |
|                    |           | setting of Disabled means channel faults and alarms are suppressed           |
|                    |           | when the Terminal Block is removed. This parameter does not affect           |
|                    |           | module faults including the Terminal Block loss/add fault generation.        |
| I/O Scan Set       | 1         | Assigns Module I/O status data to a scan set defined in the CPU              |
|                    |           | configuration. Determines how often the RX3i polls the data                  |

## **Channel Parameters**

| Parameter           | Default            | Description                                                           |  |
|---------------------|--------------------|-----------------------------------------------------------------------|--|
| Range Type Disabled |                    | RTD, Resistance, Disabled                                             |  |
| Range               |                    | For resistance: 0-250, 0-500, 0-1000, 0-2000, 0-3000, 0-4000 $\Omega$ |  |
|                     |                    | For RTD: 50, 100, 200, 500, and 1000 Ω Pt 385                         |  |
|                     |                    | 50, 100, 200, 500, and 1000 $\Omega$ Pt 391.6                         |  |
|                     |                    | 100, 200, 500, and 1000 $\Omega$ Ni 618                               |  |
|                     |                    | 120 Ω Ni 672                                                          |  |
|                     |                    | 604 Ω NiFe 518                                                        |  |
|                     |                    | 10, 50, and 100 $\Omega$ Cu 426                                       |  |
| Channel Value       | 32-bit Floating-   | 16-bit integer or 32-bit floating-point                               |  |
| Format              | point              |                                                                       |  |
| RTD                 | RTD 2 Wire         | (for RTD Range Type only) RTD 2, 3 or 4 Wire                          |  |
| RTD Lead Resistance | Enabled            | (for RTD Range Type only) Enabled, Disabled                           |  |
| Compensation        |                    |                                                                       |  |
| Temperature Units   | Celsius            | Celsius, Fahrenheit                                                   |  |
| High Scale Value    | The defaults for   | Note: Scaling is disabled if both High Scale Eng. Units equal High    |  |
| (Eng Units)         | the Scaling        | Scale A/D Units and Low Scale Eng. Units equal Low Scale A/D Units.   |  |
|                     | parameters         | Default is a High A/D Limit of the selected range type.               |  |
| Low Scale Value     | depend on the      | Default is Low A/D Limit of the selected range type.                  |  |
| (Eng Units)         | configured Range   | Must be lower than the high scaling value.                            |  |
| High Scale Value    | Type and Range.    | Default is a High A/D Limit of the selected range type.               |  |
| (A/D Units)         | Each Range and     | Must be greater than the low scaling value.                           |  |
| Low Scale Value     | Range Type have    | Default is Low A/D Limit of the selected range type.                  |  |
| (A/D Units)         | a different set of |                                                                       |  |
|                     | defaults.          |                                                                       |  |

## Input Scaling: ALG508

By default, Module converts a voltage or temperature input over the entire span of its configured Range into a floating-point value for the CPU. By modifying one or more of the four-channel scaling parameters (Low/High Scale Value parameters) from their defaults, the scaled Engineering Unit range can be changed for a specific application. Scaling can provide inputs to the PLC that are already converted to their physical meaning, or convert input values into a range that is easier for the application to interpret. Scaling is always linear and inverse scaling is possible. All alarm values apply to the scaled Engineering Units value, not to the A/D input value.


The scaling parameters only set up the linear relationship between two sets of corresponding values. They do not have to be the limits of the input.

#### Example

For a resistance input,  $600\Omega$  corresponds to a weight of 20 kg, and  $100\Omega$  corresponds to a weight of 0 kg. The relationship in this range is linear. For this example, the input values should represent weight rather than resistance measured in ohms. The following channel configuration sets up this scaling:

Figure 361: Input Scaling Example ALG508

High Scale Value (Eng Units) = 20.000 Low Scale Value (Eng Units) = 0.000 High Scale Value (A/D Units) = 600.0 Low Scale Value (A/D Units) = 100.0



For this example,  $100\Omega$  to  $600\Omega$  is the normal resistance range, but Module will attempt to scale the inputs for a resistance that lies outside the range. If resistance of  $1000~\Omega$  were input to the channel, Module would return a scaled channel value of 36.000. The application should use alarms or take other precautions for scaled inputs that are outside the acceptable range or invalid.

## **Channel Parameters (Continued)**

| Parameter                                                                                 | Default | Description                                                   |  |
|-------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------|--|
| Positive Rate of Change                                                                   | 0.000   | 00 Rate of change in Engineering Units per Second that will   |  |
| Limit (Eng Units)                                                                         |         | trigger a Positive Rate of Change alarm. Default is disabled. |  |
|                                                                                           |         | Used with "Rate of Change Sampling Rate" parameter.           |  |
| Negative Rate of Change   0.000   Rate of change in Engineering Units per Second that wil |         | Rate of change in Engineering Units per Second that will      |  |
| Limit (Eng Units)                                                                         |         | trigger a Negative Rate of Change alarm. Default is           |  |
|                                                                                           |         | disabled. Used with "Rate of Change Sampling Rate"            |  |
|                                                                                           |         | parameter.                                                    |  |
| Rate of Change                                                                            | 0.000   | Time from 0 to 300 seconds to wait between comparisons.       |  |
| Sampling Rate                                                                             |         | The default of 0.0 is to check after every input sample.      |  |

#### Rate of Change Alarms: ALG508

An RTD Input module can detect both Negative Rate of Change and Positive Rate of Change in Engineering Units per Second. When either of the Rate of Change parameters is configured to be non-zero, Module takes the difference in Engineering Units between the previous rate of change sample and the current sample, then divides by the elapsed time between samples.

If the Engineering Unit change from the previous sample to the current sample is negative, Module compares the rate change with the Negative Rate of Change parameter.

If the Engineering Unit change between samples is positive, Module compares the results in comparing the rate change with the Positive Rate of Change parameter value.

In either case, if the rate of change is greater than the configured rate, a rate of change alarm occurs. The actions taken by Module following the alarm depend on the enabled rate of change actions that have been set up in the "Diagnostic Reporting Enable", "Fault Reporting Enable", and "Interrupts Enabled" parameters.

The Rate of Change Sampling Rate parameter determines how frequently Module compares the Rate of Change. If the Rate of Change Sampling Rate is 0 or any time period less than the channel update rate, Module compares the Rate of Change for every input sample of the channel.

## **Channel Parameters (Continued)**

| Parameter       | Default          | Description                                                 |
|-----------------|------------------|-------------------------------------------------------------|
| High-High Alarm | The defaults for | Alarms and Deadbands                                        |
| (Eng Units)     | the High-High,   | All of the alarm parameters are specified in Engineering    |
|                 | High, Low, and   | Units. To use alarming, the A/D Alarm Mode must also be     |
| High Alarm      | Low-Low          | configured as enabled.                                      |
| (Eng Units)     | parameters       | High-High Alarm and Low-Low Alarm: When the configured      |
| Low Alarm       | depend on the    | value is reached or passed, a Low-Low Alarm or High-High    |
| (Eng Units)     | configured Range | Alarm is triggered. The configured values must be lower     |
| Low-Low Alarm   | Type and Range.  | than/higher than the corresponding low/high alarm limits.   |
| (Eng Units)     | Each Range and   | High Alarm and Low Alarm: When the configured value is      |
| High-High Alarm | Range Type has a | reached or below (above), a Low (High) Alarm is triggered.  |
| Deadband        | different set of | High and Low Alarm Deadbands: A range in Engineering        |
| (Eng Units)     | default values.  | Units above the alarm condition (low deadband) or below the |

| Parameter             | Default  | Description                                                        |
|-----------------------|----------|--------------------------------------------------------------------|
| High Alarm            |          | alarm condition (high deadband) where the alarm status bit         |
| Deadband              |          | can remain set even after the alarm condition goes away. For       |
| (Eng Units)           |          | the alarm status to clear, the channel input must fall outside     |
| Low Alarm Deadband    |          | the deadband range.                                                |
| (Eng Units)           |          | Alarm Deadbands should not cause the alarm clear to be             |
|                       |          | outside the Engineering Unit User Limits range. For example,       |
|                       |          | if the engineering unit range for a channel is -1000.0 to          |
|                       |          | +1000.0 and a High Alarm is set at +100.0, the High Alarm          |
|                       |          | Deadband value range is 0.0 to less than 1100.0. A deadband        |
|                       |          | of 1100.0 or more would put the High Alarm clear condition         |
|                       |          | below –1000.0 units making the alarm impossible to clear           |
|                       |          | within the limits.                                                 |
| User Offset           | 0.000    | Engineering Units offset to change the base of the input           |
|                       |          | channel. This value is added to the scaled value on the            |
|                       |          | channel prior to alarm checking.                                   |
| Software Filter       | 0.000    | Specifies the amount of time in milliseconds for the software      |
| Integration Time in   |          | filter to reach 63.2% of the input value.                          |
| milliseconds.         |          | A value of 0 indicates the software filter is disabled. A value of |
|                       |          | 100 indicates data will achieve 63.2% of its value in 100ms.       |
|                       |          | Default is disabled                                                |
| A/D Filter Frequency  |          | 2, 3, 4, 4.7, 24, 28Hz                                             |
| Diagnostic Reporting  | Disabled | Diagnostic Reporting Enable options are used to enable             |
| Enable                |          | reference memory reporting of alarms into the Diagnostic           |
| If Diagnostic         |          | Reference area.                                                    |
| Reporting is enabled, |          | Fault Reporting Enable options enable fault logging of             |
| the additional        |          | alarms into the I/O Fault Table.                                   |
| parameters listed     |          | Interrupts Enable options to enable I/O Interrupt to trigger       |
| below can be used to  |          | when alarm conditions occur.                                       |
| enable specific types |          | These parameters enable or disable the individual                  |
| of alarms.            |          | diagnostics features of a channel.                                 |
| Fault Reporting       | Disabled | When any of these parameters is enabled, Module uses               |
| Enable                |          | associated parameters to perform the enabled feature.              |
| If Fault Reporting is |          |                                                                    |
| enabled, the          |          | For example, if Over Range is enabled in the "Diagnostic           |
| additional parameters |          | Reporting Enable" menu, Module will set the Over Range bit         |
| listed below can be   |          | in the Diagnostic Reference for the channel.                       |
| used to enable        |          |                                                                    |
| specific types of     |          | If any of these parameters is disabled, Module does not react      |
| Faults.               |          | to the associated alarm conditions.                                |

| Parameter             | Default  | Description                                                 |
|-----------------------|----------|-------------------------------------------------------------|
| Interrupts Enable     | Disabled |                                                             |
| If Interrupts are     |          | For example, if Low Alarm Enable is set to Disabled in the  |
| enabled, the          |          | "Fault Reporting Enable" menu, the Low Alarm fault is not   |
| additional parameters |          | logged in the I/O Fault Table when Low Alarm is detected on |
| listed below can be   |          | the channel.                                                |
| used to enable        |          |                                                             |
| specific types of     |          |                                                             |
| Interrupts.           |          |                                                             |
| Low Alarm Enable      | Disabled |                                                             |
| High Alarm Enable     | Disabled |                                                             |
| Under Range Enable    | Disabled |                                                             |
| Over Range Enable     | Disabled |                                                             |
| Open Wire Enable      | Disabled |                                                             |
| Calibration Fault     | Disabled |                                                             |
| Enable                |          |                                                             |
| Low-Low Alarm         | Disabled |                                                             |
| Enable                |          |                                                             |
| High-High Alarm       | Disabled |                                                             |
| Enable                |          |                                                             |
| Negative Rate of      | Disabled |                                                             |
| Change Detection      |          |                                                             |
| Enable                |          |                                                             |
| Positive Rate of      | Disabled |                                                             |
| Change Detection      |          |                                                             |
| Enable                |          |                                                             |

### Using Alarming: ALG508

The Diagnostic Reporting Enable, Fault Reporting Enable, and Interrupt Enable configuration parameters can be used to enable different types of responses for individual channel alarms. By default, all responses are disabled on every channel. Any combination of alarm enables can be configured for each channel.

- If Diagnostic Reporting is enabled, Module reports channel alarms in reference memory at the Diagnostic Reference address configured for that channel.
- If Fault Reporting is enabled, Module logs a fault log in the I/O Fault table for each occurrence of a channel alarm.
- If Interrupts are enabled, an alarm can trigger the execution of an Interrupt Block in the application program, as explained below.

#### Using Interrupts: ALG508

To properly configure an I/O Interrupt, the Interrupt enables bit or bits must be set in the configuration profile of this module. In addition, the program block that should be executed in response to the channel interrupt must be mapped to the reference address configured for that channel.

#### Example

In this example, the Channel Values Reference Address block is mapped to %AI0001-%AI0020. An I/O Interrupt block should be triggered if a High Alarm condition occurs on channel 2.

- Configure the High-Alarm condition.
- Set the High-Alarm Interrupt Enable flag for Channel 2 in Module configuration.

The reference address for Channel 2 corresponds to %AI00003 (2 Words per channel), so the interrupt program block Scheduling properties should be set for the "I/O Interrupt" Type and "%AI0003" as the Trigger.

#### Note on Using Interrupts

These modules have separate enable/disable options for Diagnostic Reporting and Interrupts. Normally, disabling a diagnostic (such as Low/High Alarm or Over/Under range) in the configuration means that its diagnostic bit is never set. However, if interrupts are enabled for a condition and that interrupt occurs, the diagnostic bit for that condition is also set during the I/O Interrupt block logic execution. The next PLC input scan always clears this interrupt status bit back to 0, because Diagnostic Reporting has it disabled.

## 15.1.6 Module Input Data: ALG508

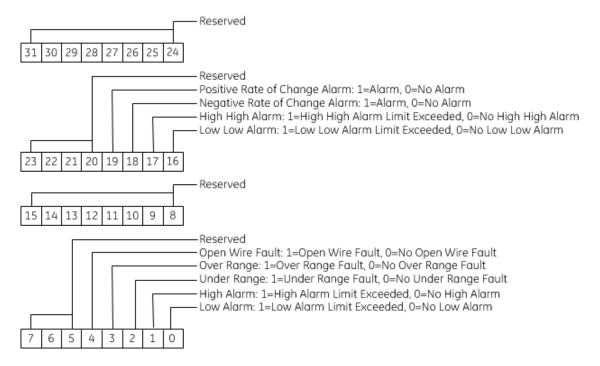
Module reports its input channel data in its assigned input words, beginning at the configured Channel Value Reference Address. Each channel occupies two words (whether the channel is used or not):

| Channel Value     | Contains   |
|-------------------|------------|
| Reference Address | this Input |
| +0, 1             | Channel 1  |
| +2, 3             | Channel 2  |
| +4, 5             | Channel 3  |
| +6, 7             | Channel 4  |
| +8, 9             | Channel 5  |
| +10, 11           | Channel 6  |
| +12, 13           | Channel 7  |
| +14, 15           | Channel 8  |

Depending on its configured Channel Value Format, each enabled channel reports a 32-bit floating-point or 16-bit integer value to the CPU.

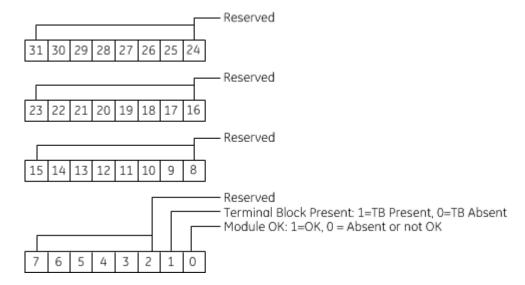
In the 16-bit integer mode, the low word of the 32-bit channel data area contains the 16-bit integer channel value. The high word (upper 16 bits) of the 32-bit value is set with the sign extension of the 16-bit integer. This sign-extended upper word allows the 16-bit integer to be read as a 32-bit integer type in logic without losing the sign of the integer. If the 16-bit integer result is negative, the upper word in the 32-bit channel data has the value 0xFFFF. If the 16-bit integer result is positive, the upper word is 0x0000.

## **Channel Diagnostic Data: ALG508**


In addition to the input data from field devices, Module can be configured to report channel diagnostics status data to the CPU. The CPU stores this data at the *Diagnostic Reference Address* configured for this module. The use of this feature is optional.

The diagnostics data for each channel occupies two words (whether the channel is used or not):

| Diagnostic        | Contains   |
|-------------------|------------|
| Reference Address | this Input |
| +0, 1             | Channel 1  |
| +2, 3             | Channel 2  |
| +4, 5             | Channel 3  |
| +6, 7             | Channel 4  |
| +8, 9             | Channel 5  |
| +10, 11           | Channel 6  |
| +12, 13           | Channel 7  |
| +14, 15           | Channel 8  |


When a diagnostic bit equals 1, the alarm or fault condition is present on the channel. When a bit equals 0 the alarm or fault condition is either not present or detection is not enabled in the configuration for that channel.

For each channel, the format of this data is:



#### **Module Status Data: ALG508**

Module can also optionally be configured to return two bits of module status data to the CPU. The CPU stores this data in the 32-bit *Module Status Data* reference area configured for this module.



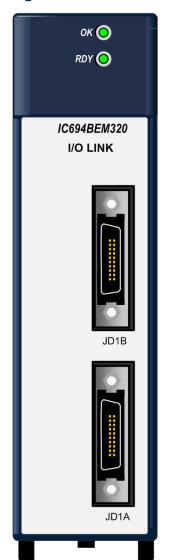
#### **Terminal Block Detection ALG508**

Module automatically checks for the presence of a Terminal Block.

The TB LED indicates the state of the terminal block of this module. It is green when the Terminal Block is present or red if it is not.

Faults are automatically logged in the CPU I/O Fault table when the terminal block is inserted or removed from a configured module in the system. The fault type is Field Fault and the fault description indicates whether the fault is a "Loss of terminal block" or an "Addition of terminal block". If a Terminal Block is not present while a configuration is being stored, a "Loss of terminal block" fault is logged.

Bit 1 of Module Status Reference indicates the status of the terminal block. To enable Module Status reporting, Module Status Reference must be configured. During operation, the PLC must be in an I/O Enabled mode for the current module Status to be scanned and updated in reference memory.


## Section 16: Special Purpose Modules

This chapter describes special-purpose modules for PACSystems RX3i controllers:

| Module Description                                       | Catalog Number   | Section |  |
|----------------------------------------------------------|------------------|---------|--|
| RX3i I/O Link Interface Module                           | IC694BEM320      | 16.1    |  |
| RX3i I/O Link Master Module                              | IC694BEM321      | 16.2    |  |
| RX3i Genius Bus Controller Module                        | IC694BEM331      | 16.3    |  |
| RX3i Serial Communications Module, 2 Ports               | IC695CMM002      | 16.4    |  |
| RX3i Serial Communications Module, 4 Ports               | IC695CMM004      | 16.4    |  |
| RX3i Control Memory Xchange Module                       | IC695CMX128      | 16.6    |  |
| RX3i Redundancy Memory Xchange Module, Multi-mode fiber  | IC695RMX128      | 16.7    |  |
| RX3i Redundancy Memory Xchange Module, Single-mode fiber | IC695RMX228      | 16.7    |  |
| RX3i DeviceNet Master Module                             | IC694DNM200      | 16.8    |  |
| RX3i Motion Mate Module                                  | IC694DSM314      | 16.9    |  |
| RX3i Motion Controller Module                            | IC694DSM324      | 16.10   |  |
| RX3i PACMotion Multi-Axis Motion Controller              | IC695PMM335      | 16.11   |  |
| RX3i IEC 61850 Ethernet Communication Module             | IC695ECM850      | 16.12   |  |
| RX3i Ethernet Transmitter Module                         | IC695ETM001      | 16.13   |  |
| RX3i DNP3 Outstation Module                              | IC695EDS001      | 16.14   |  |
| RX3i Ethernet 104 Server Module                          | IC695EIS001      | 16.15   |  |
| RX3i Ethernet Network Interface Unit                     | IC695NIU001      | 16.16   |  |
| RX3i Ethernet Network Interface Unit                     | IC695NIU001 PLUS | 16.17   |  |
| RX3i PROFIBUS Master Module                              | IC695PBM300      | 16.18   |  |
| RX3i PROFIBUS Slave Module                               | IC695PBS301      | 16.19   |  |
| RX3i PROFINET Controller Module                          | IC695PNC001      | 16.20   |  |
| RX3i PROFINET Scanner Module                             | IC695PNS001      | 16.21   |  |
| KASI PROFINET Scattlet Module                            | IC695PNS101      | 10.21   |  |
| RX3i CEP Carrier                                         | IC695CEP001      | 16.22   |  |
| RX3i CEP Expansion Carrier                               | IC694CEE001      | 16.22   |  |
| RX3i Genius Communications Gateway                       | IC695GCG001      | 16.23   |  |
| RX3i Pressure Transducer Module                          | IC695PRS015      | 16.24   |  |

## 16.1 RX3i I/O Link Interface Module: IC694BEM320

Figure 362: IC694BEM320



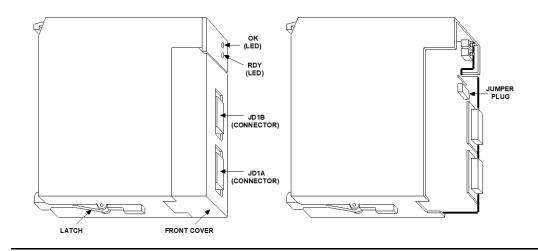
The RX3i I/O Link Interface Module, IC694BEM320, operates as a slave on an I/O Link network. It can exchange either 32 or 64 inputs and outputs with the master. Typical masters on the I/O Link include all modern CNCs and Power Mates, PACSystems controllers, and Series 90 PLCs equipped with an I/O Link Master Module.

An I/O Link Interface Module occupies one module slot in an RX3i backplane. It can be installed in any available backplane slot.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

The maximum number of I/O Link Interface Modules that can be installed in the backplane depends on the power that is available from the power supply. To determine the exact number of modules allowed in your system, refer to the information on power supplies in Chapter 3.

Usually, when there are multiple I/O Link Interface Modules in the same RX3i system, they are on separate I/O Links. However, it is possible to have more than one I/O Link Interface Module in the system connected to the same link, if that suits the needs of the application.


## 16.1.1 Specifications

| Specification | Description                                                                             |        |  |
|---------------|-----------------------------------------------------------------------------------------|--------|--|
| Module type   | RX3i I/O Link Interface Module, providing I/O Link communications with I/O Link Master. |        |  |
| LEDs          | OK, RDY                                                                                 |        |  |
| I/O Points    | 32 or 64, jumper selectable                                                             |        |  |
| +5V current   | without Optical Adapter connected:                                                      | 205mA  |  |
| 13V current   | with Optical Adapter:                                                                   | 405 mA |  |
| User Manual   | RX3i I/O Link Interface Modules User's Manual, GFK-2358                                 |        |  |

## 16.1.2 I/O Size Selection: BEM320

The front cover of Module is removable (Figure 363).

Figure 363: Removable Cover BEM320



## Figure 364: Module Size Selection (JP1) BEM320

A jumper plug (Figure 364) inside the front cover is used to set Module up as a 32-point or 64-point I/O module. The factory-shipped default is 32.

- To select 32 inputs and 32 outputs, apply the jumper to pins 1 &2.
- To select 64 inputs and 64 outputs, apply the jumper to pins 2 & 3.

## 16.1.3 LEDs: BEM320

Module has two LEDs that show its operating, and communications status.

OK: Indicates the operating status of Module.

RDY: Indicates the communications status of Module.

After power-up, the OK LED should remain ON. The RDY LED turns ON after the I/O Link master has established communications with Module.

## 16.1.4 Serial Ports: BEM320

The front of Module has two 20-pin connectors that are used to attach the I/O Link cable. One connector is for the cable to the previous device on the link—either the master or another slave. The other connector is for the cable to the next slave on the link, if there is one. Refer to the *RX3i I/O Link Modules User's Manual*, GFK-2358 for more information. Signal levels are RS422/485 compatible.

#### 16.2 RX3i I/O Link Master Module: IC694BEM321

Figure 365: IC694BEM321



The RX3i I/O Link Master module, IC694BEM321, allows a PACSystems RX3i controller to act as a master on a proprietary I/O Link. The master can receive 1024 discrete inputs from slaves, and send up to 1024 discrete outputs. Typical items running under the control of an I/O Link Master can include clusters of I/O (such as I/O Model A and Connector Panel I/O), PACSystems, and Series 90 PLCs with I/O Link Interface (slave) modules, and Operator Panels that are I/O Link-compatible. An I/O Link Master Module can be installed in any available slot in any RX3i backplane. For best performance, it should be installed in the Main Backplane or in an Expansion Backplane. The maximum number of I/O Link Master Modules that can be installed in the backplane depends on the power that is available from the power supply. To determine the exact number of modules allowed in your system, refer to the information on power supplies in Chapter 3.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see

Hot Insertion and Removal Not Supported).

If there are multiple I/O Link Master modules in the same RX3i system, they must be on separate I/O Links.

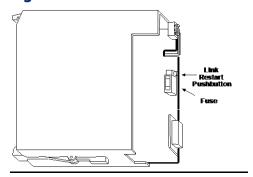
## 16.2.1 Specifications: BEM321

| BEM321                                                              | Specifications                                                                                                                                                                     |  |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module type                                                         | PACSystems RX3i controller module, providing I/O Link communications with up to 16 I/O Link slaves.                                                                                |  |  |
| I/O Points                                                          | Up to 1024 inputs and 1024 outputs                                                                                                                                                 |  |  |
| +5Vdc current                                                       | without Optical Adapter connected: 415mA                                                                                                                                           |  |  |
| required                                                            | with Optical Adapter: 615mA                                                                                                                                                        |  |  |
|                                                                     | ■ PACSystems RX3i CPUs                                                                                                                                                             |  |  |
| Host CPUs                                                           | <ul> <li>Series 90-30 CPUs (models 311, 313, 321, 323, 331, and 341):<br/>release 4.4 or later, and all versions of the CPU models 350,<br/>351, 352, 360, 363, and 364</li> </ul> |  |  |
|                                                                     | <ul><li>Series 90-30 Hand-held Programmer (HHP)</li></ul>                                                                                                                          |  |  |
| User Manual RX3i I/O Link Interface Modules User's Manual, GFK-2358 |                                                                                                                                                                                    |  |  |

## 16.2.2 LEDs: BEM321

Module has three LEDs that show its operating and communications status.

| ОК  | CFG | ACTV | Meaning                                                                                     |
|-----|-----|------|---------------------------------------------------------------------------------------------|
| off | off | off  | No power to Module, or power-up in progress                                                 |
| on  | off | off  | Module powered up but not configured                                                        |
|     |     |      | Module powered up and configured with minimum configuration (input status reference         |
| on  | on  | off  | assigned and output status reference assigned), but the link is not yet active, or has been |
|     |     |      | activated but has gone down                                                                 |
| on  | on  | on   | Normal operation with the active link                                                       |


After power-up, the OK LED should stay ON. The CFG LED goes on after the CPU supplies Module configuration. The ACTV LED goes on when link communications have been established.

## 16.2.3 Restart Pushbutton: BEM321

The LINK RESTART pushbutton can be used to restart the operation of the link if a failure occurs.

**Note**: Pushing the LINK RESTART button while the link is operating has no effect. If the link stops operating, all slaves must be power–cycled before using the LINK RESTART pushbutton to restart operation of the link.

Figure 366: Fuse location BEM321

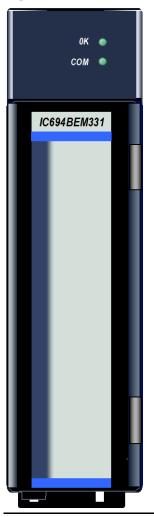


#### **Fuse**

The front cover of Module is removable. A fuse located directly below the Restart pushbutton protects the +5Vdc signal pins used by Optical Adapter cable. It is a replaceable 0.5A fast-blow fuse (5mm diameter x 20mm length).

## 16.2.4 Serial Port: BEM321

The front of Module has one 20–pin, Honda–type connector, used for connection to the first slave on the I/O Link. Signal levels are RS422/485 compatible.


## 16.3 RX3i Genius Bus Controller: IC694BEM331

The RX3i Genius Bus Controller, IC694BEM331, interfaces a PACSystems RX3i and a Genius I/O serial bus. In addition to the Bus Controller, the bus can serve: Genius blocks, other PLCs with Genius Bus Controllers, Remote Drops, VersaMax and Field Control I/O Stations, Genius Hand-Held Monitor (HHM), Multiple hosts.

#### 16.3.1 Features

- The Bus Controller can exchange up to 128 bytes with each device on the Genius I/O bus.
- Genius blocks and other devices on the bus automatically report faults, alarms, and certain other predefined conditions to the Bus Controller. The Bus Controller stores any diagnostic messages it receives. They are read automatically by the CPU. Faults can then be displayed in the fault table using the programming software.
- The Bus Controller supports all Genius datagrams. Refer to Chapter 3 of the Genius I/O System and Communications User's Manual, GEK-90486-1, for details on using datagrams.
- The Bus Controller can send up to 128 bytes of Global Data each bus scan. Global Data is data that is automatically and repeatedly broadcast by a Genius Bus Controller.
- The Bus Controller can receive up to 128 bytes of Global Data each bus scan from every other Bus Controller on its bus.
- Up to eight Genius Bus Controllers can be included in an RX3i system.

Figure 367: IC694BEM331



## 16.3.2 LEDs: BEM331

The LEDs on the front of the Genius Bus Controller indicate its operating status. Both LEDs should be On during normal operation.

**OK** Shows the status of the Bus Controller. This LED turns on after power-up diagnostics are completed.

**COM** Shows the status of the Genius communications bus. This LED is on steadily when the bus is operating properly. It blinks for intermittent bus errors and is off for a failed bus. It is also off when no configuration has been received from the CPU.

## 16.3.3 Specifications: BEM331

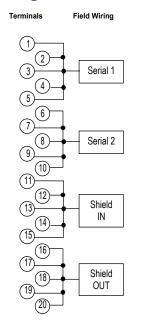
| BEM331                    | Specifications                                                                                             |
|---------------------------|------------------------------------------------------------------------------------------------------------|
| Current Consumption       | 300mA at 5Vdc, maximum                                                                                     |
| Diagnostics               | Advanced diagnostics capabilities                                                                          |
| Communications            | Global Data and Datagrams                                                                                  |
| Data Length               | 128 bytes per message                                                                                      |
| Data Rates                | Configurable: 153.5kbaud standard/extended, 76.8kbaud, or 38.4kbaud                                        |
| Genius Bus Specifications |                                                                                                            |
| Bus Type                  | Daisy-chained bus cable; single twisted-pair plus shield or Twinax. Fiber optical cable                    |
|                           | and modems can also be used.                                                                               |
| Bus Termination           | $75\Omega$ , $100\Omega$ , $120\Omega$ , or $150\Omega$ resistor at both ends of the electrical bus cable. |
| Maximum Bus Length        | 7800 feet at 38.4kbaud, 4500 feet at 76.8kbaud, 3500 feet at 153.6kbaud extended,                          |
|                           | 2000 feet at 153.6Kbaud standard. Maximum length at each baud rate also depends                            |
|                           | on cable type, as listed in the Genius System and Communications Manual GEK-90486-1                        |
| Maximum Number of         | 32 devices at all baud rates except 38.4kbaud. 16 devices at 38.4kbaud.                                    |
| Devices                   |                                                                                                            |
| Isolation                 | 2000 volts Hi-Pot, 1500 volts transient common-mode rejection.                                             |

For product standards and general specifications, refer to Appendix A:.

## **Compatibility**

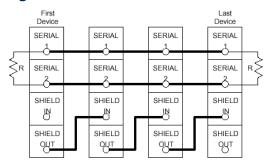
Specific equipment or software versions required for compatibility with the Bus Controller are listed below.

| Equipment/Software | Compatibility                                                                                 |  |
|--------------------|-----------------------------------------------------------------------------------------------|--|
| Series 90-30 PLC   | If the RX3i Genius Bus Controller is installed in a Series 90-30 PLC, the CPU model can be    |  |
|                    | IC693CPU311K, 321K, 331L or later, or any version of the IC693CPU313, 323, 340, 341,          |  |
|                    | 350, 351, 352, 360, 363, and 364. The CPU firmware must be release 5.0 or later.              |  |
| Series Six PLC     | To exchange global data with an RX3i Genius Bus Controller, a Series Six Bus Controller       |  |
|                    | must be catalog number IC660CBB902F/903F (firmware version 1.5), or later.                    |  |
| Genius Hand-Held   | There is no Hand-Held Monitor connector on Module, but a Hand-Held Monitor can                |  |
| Monitor            | communicate with the Bus Controller while connected to any other device on the bus.           |  |
|                    | HHM version IC660HHM501H (revision 4.5) or later is required.                                 |  |
| Genius Bus         | The Genius bus is a shielded twisted-pair wire, daisy-chained between devices, and            |  |
|                    | terminated at both ends. Proper cable selection is critical to the successful operation of    |  |
|                    | the system. Suitable cable types are listed in GEK-90486-1, the <i>Genius I/O System, and</i> |  |
|                    | Communications User's Manual GEK-90486-1.                                                     |  |


## **Genius System Documentation**

Refer to the following manuals for detailed information on the Genius I/O system:

- GEK-90486-1, Genius I/O System and Communications User's Manual
- GEK-90486-2, Genius I/O Discrete, and Analog Blocks User's Manual

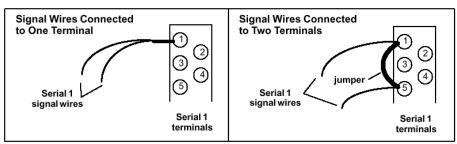

## 16.3.4 Field Wiring: BEM331

## Figure 368: Terminal Assignments BEM331



Using the cable type selected for the application, connect the devices as displayed in Figure 369. Each terminal accepts up to one AWG #14 (2.10mm² wire or two AWG #16 (1.32mm² wires using ring or lug-type connectors.

Figure 369: Interconnection of Devices on Genius Bus




The bus shield wires are not insulated; do not permit them to touch other wires or terminals. Spaghetti tubing should be used to cover these wires.

- 1. Connect the Serial 1 terminals of adjacent devices and the Serial 2 terminals of adjacent devices.
- 2. Connect Shield In to the Shield Out terminal of the previous device. (For the first device on the bus, Shield In is not connected.)
- 3. Connect Shield Out to the Shield In terminal of the next device. (For the last device on the bus, Shield Out is not connected.)

The Serial 1 and Serial 2 terminals are interconnected *on the circuit board*, not on the terminal strip. Incoming and outgoing signal wire pairs can be connected to either one or two Serial 1 or Serial 2 terminals:

Figure 370: Wiring Genius Bus Signals for Continuous Signal Path



When connecting two signal wires to the same terminal, use a spade or lug-type connectors, or twist the exposed ends of the wires together before inserting them. This will allow future removal of the Terminal Assembly without disrupting other devices on the bus.

When connecting two signal wires to separate terminals, install a jumper between the two terminals as shown on the right in Figure 370 above. Failure to install the jumper will cause the entire bus to be disrupted whenever the faceplate is removed.

## **Terminating the Bus**

The bus must be terminated at both ends by its characteristic impedance. The list of suitable cable types in *the Genius I/O System and Communications User's Manual GEK-90486-1* includes the termination requirements for each cable type. If the Bus Controller is at the end of the bus, install a resistor of the appropriate impedance across its Serial 1 and Serial 2 terminals as displayed in Figure 371.

If you need to install the terminating resistor across terminals different than those used for the signal wires, attach jumper wires between the signal wire terminals and the resistor terminals to prevent the bus from becoming unterminated if the Terminal Assembly is removed. Failure to do so will cause the entire bus to be disrupted whenever the faceplate is removed.

Signal Wires and Signal Wires and Resistor Connected **Resistor Connected** to Same Terminals to Different (preferred) jumpers Terminals Serial 1 4 Serial 1 signal wire signal wire resistor resistor  $^{(9)}$ Serial 2 signal wire Serial 2 Serial 1 and 2 Serial 1 and 2 signal wire terminals terminals

Figure 371: Installing Genius Bus Terminating Resistor

## Hot-Swapping IC693BEM331/IC694BEM331 Modules

Genius Bus Controller modules IC693BEM331/IC694BEM331 that are included in a Max-ON redundancy system should not be installed or removed from the PLC that is operating as a Master. If a module is removed from the Master and then re-installed, the outputs for that module will not be enabled until the next Backup-to-Master transition.

Any time a Genius Bus Controller is removed from an active system, there is a possibility that the bus may be disrupted with a subsequent impact on the corresponding I/O devices. For systems that require online maintainability, it is recommended that dual (redundant) Genius busses be used.

# 16.4 RX3i Serial Communications Modules: IC695CMM002, IC695CMM004

PACSystems RX3i Serial Communications modules expand the serial communications capabilities of the RX3i system.

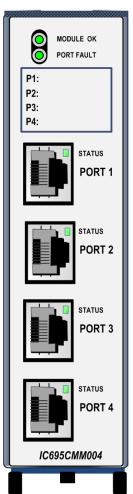
Serial Communications module, IC695CMM002, provides two independent, isolated serial ports.

Serial Communications module, IC695CMM004 (Figure 372), provides four independent, isolated serial ports.

Up to six Serial Communications modules can be located in the main PACSystems RX3i backplane.

Up to four Serial Communications modules can be located in each remote rack that is managed by a PACSystems RX3i PROFINET Scanner. Up to one module can be located in each remote node that is managed by a PACSystems RX3i CEP Carrier.

Each port can be configured for MODBUS Master, MODBUS Slave, or Serial I/O protocol. If any port is configured for DNP3 Master or Slave, the other ports on Module can only be configured for DNP3 Master or Slave. When located in a remote rack that is managed by a PACSystems RX3i PROFINET Scanner or CEP Carrier, only MODBUS Master or MODBUS Slave protocol configurations are supported.


## 16.4.1 Features

- Port-to-port isolation and port-to-backplane isolation
- RS-232, RS-485/422 communication, software-selected
- Hardware handshake: RTS/CTS for RS-232
- Selectable Baud Rates: 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k
- Module fault status reporting (Watchdog, Ram Fail, Flash Fail)
- Module identity and status reporting, including LED status indicators
- Meets CE, UL/CUL 508 and 1604, and ATEX requirements
- Flash memory for future upgrades

These modules must be located in an RX3i Universal Backplane.

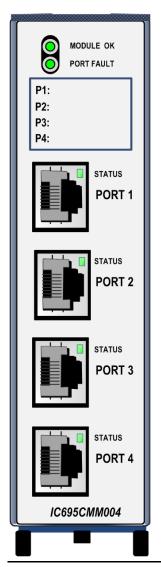

These modules support insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

Figure 372: IC695CMM004



## 16.5 **LEDs: CMM002 & CMM004**

# Figure 373: Module LEDs & Ethernet Port LEDs: CMM004



Module OK LED indicates the status of Module. Solid green indicates that Module has been configured. Module OK LED is off, if Module is not receiving power from the R3i backplane, or if a serious module fault exists.

At power-up, Module OK LED flashes green/off while Module is executing power-up diagnostics. It then flashes more slowly as Module receives its configuration from the CPU.

If a problem occurs, Module OK LED flashes amber. The blink code (below) indicates the cause of the error.

- 1 = watchdog expired
- 2 = RAM error
- 6 = Invalid CPU Master Interface version
- 7 = CPU heartbeat failure
- 8 = Failed to get the semaphore

The Port Fault LED indicates the status of all ports. The Port Fault LED is green when there are no faults present on any enabled port. If this LED turns amber, there is a fault on at least one port.

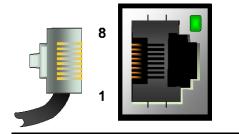
The Port Status LED flashes green when there is activity on the corresponding port.

The area below Module LEDs can be used to record identifying information about each port.

**Note**: If retentive memory is used for Port Control Data, when a power cycle with battery or hot swap of the CMM module occurs, all exchanges whose control bit is in the ON state will be re-executed on the next PLC output scan or output DO I/O. To prevent this, all exchange control bits must be cleared by the application logic on the initial PLC logic scan or upon detection of CMM module removal.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup> Operating information for these modules is provided in the *RX3i Serial Communications Modules Manual*, GFK-2460.

## 16.5.1 Specifications: CMM002 and CMM004


| CMM002/CMM004          | Specifications                                                                  |                               |  |  |
|------------------------|---------------------------------------------------------------------------------|-------------------------------|--|--|
| Number of Serial Ports | IC695CMM002: two independent serial ports                                       |                               |  |  |
|                        | IC695CMM004: four independent serial ports                                      |                               |  |  |
| Connectors             | RJ-45                                                                           |                               |  |  |
| Number of Serial       | Six in the main CPU backplane                                                   |                               |  |  |
| Communications         |                                                                                 |                               |  |  |
| Modules per CPU        |                                                                                 |                               |  |  |
| Backplane power        | IC695CMM002-DF or earlier                                                       | 0.7 Amps maximum at 3.3Vdc    |  |  |
| requirements           |                                                                                 | 0.115 Amps maximum at 5.0 Vdc |  |  |
|                        | IC695CMM004-DF or earlier                                                       | 0.7 Amps maximum at 3.3Vdc    |  |  |
|                        |                                                                                 | 0.150 Amps maximum at 5.0 Vdc |  |  |
|                        | IC695CMM002-EG or later                                                         | 0.270 Amps maximum at 3.3Vdc  |  |  |
|                        |                                                                                 | 0.115 Amps maximum at 5.0 Vdc |  |  |
|                        | IC695CMM004-EG or later                                                         | 0.270 Amps maximum at 3.3Vdc  |  |  |
|                        |                                                                                 | 0.190 Amps maximum at 5.0 Vdc |  |  |
| LEDs                   | Module OK, Port Fault, Port Status (2 or 4)                                     |                               |  |  |
| Port Type              | RS-232 or RS-485/22. 4-wire (full duplex) or 2-wire (half-duplex) operation for |                               |  |  |
|                        | RS-485/422                                                                      |                               |  |  |
| Flow Control for R-232 | Selectable: Hardware (CTS/RTS) or none                                          |                               |  |  |
| Baud rates             | 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k                             |                               |  |  |
| Parity                 | Even, odd, none                                                                 |                               |  |  |
| Data bits              | 7,8                                                                             |                               |  |  |
| Stop bits              | 1, 2                                                                            |                               |  |  |
| Operating Temperature  | 0°C to + 60°C                                                                   |                               |  |  |
| Input Impedance        | Zin > 96 kΩ for RS-485/422                                                      |                               |  |  |
|                        | $3 \text{ k}\Omega < \text{Zin} < 7 \text{ k}\Omega$ for RS-232                 |                               |  |  |
| Max Over-voltage       | ±25V                                                                            |                               |  |  |
| Channel-Channel        | -55dB minimum                                                                   |                               |  |  |
| Crosstalk              |                                                                                 |                               |  |  |
| Isolation              | Port to Backplane and to frame ground: 250 Vac continuous; 1500 Vac for 1       |                               |  |  |
|                        | minute, 2550 Vdc for one second.                                                |                               |  |  |
|                        | Port to port: 500 Vdc continuous, 710 Vdc for one minute.                       |                               |  |  |

To meet emission and immunity requirements for the EMC directive (CE mark), shielded cable must be used with this module.

## 16.5.2 Serial Ports: CMM002 & CMM004

Each port is a standard RJ-45 female connector with the following pin assignments. For MODBUS applications, note that these pin assignments are different than the standard MODBUS pin assignments. If the port is configured for MODBUS master or slave operation, custom cables are needed.

Figure 374: RJ-45 Jack & Pinouts



| RJ-45 Pin | RS-232 | RS-485/422    | RS-485/422    |
|-----------|--------|---------------|---------------|
|           |        | Half Duplex   | Full Duplex   |
| 8         | СОМ    | GND           | GND           |
| 7         |        |               | Termination 2 |
| 6         | CTS    |               | R- (RxD0)     |
| 5         | СОМ    | GND           | GND           |
| 4         |        | Termination 1 |               |
| 3         | RxD    |               | R+ (RxD1)     |
| 2         | TxD    | T- / R- (D0)  | T- (TxD0      |
| 1         | RTS    | T+ / R+ (D1)  | T+ (TxD1)     |

**Note:** There is no shield or frame ground pin on the port connector.

If the Serial Communications module is communicating with a Series 90-30 CPU363 or external PACSystems RX3i CPU serial port, the connections are:

| RX3i Serial Module |    | CPU363/RX3i CPU with Serial |
|--------------------|----|-----------------------------|
|                    |    | Port                        |
| T+                 | То | RD('B')                     |
| T-                 | То | RD('A')                     |
| R+                 | То | SD('B')                     |
| R-                 | То | SD('A')                     |

### **Termination**

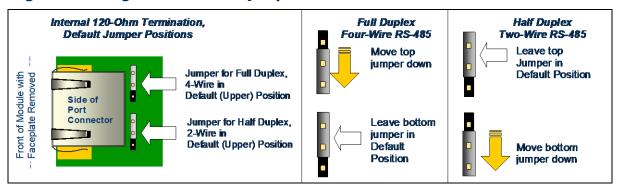
By default, each port is set for no termination. Termination is needed if Module is the first or last device on an RS-485 network, even if there is only one other device on the network. Termination can be provided using either an external resistor as displayed in the following figure or the  $120\Omega$  termination resistor built into the port. If line termination other than  $120~\Omega$  is required, an appropriate external resistor must be supplied.

## User-Supplied Termination for RS-485

Figure 375: Termination RS-485 4-Wire Full Duplex



## Figure 376: Termination RS-485 2-Wire Half Duplex




#### Built-in 120Ω Termination for RS-485

By default, each port is set for no termination. There are two ways to use the built-in  $120\Omega$  termination:

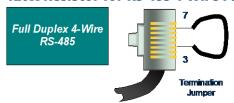
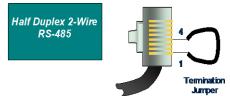

 Using the internal jumpers. To use this method, remove the faceplate of Module by pressing in on the side tabs and pulling the faceplate away from Module. With Module oriented as shown, move *either* the upper or lower jumper:

Figure 377: Using Module Internal Jumpers & Built-in 120 $\Omega$  Resistor for Termination




• Using an external jumper wire. To use this method, do NOT change the positions of the internal jumpers as shown in Figure 377 above. Instead, connect an external jumper wire across connector pins 3 and 7 for RS-485 4-wire, or across connector pins 1 and 4 for RS-485 2-wire.

Figure 378: Using External Jumper & Built-in 120 $\Omega$  Resistor for RS-485 4-Wire Full Duplex



## Figure 379: Using External Jumper & Built-in 120 $\Omega$ Resistor for RS-485 2-Wire Half Duplex



# 16.6 RX3i Control Memory Xchange Module: IC695CMX128

The RX3i Control Memory Xchange, IC695CMX128, module provides deterministic sharing of data among PLCs and other computing devices on a high-speed fiber optic network, using reflective memory technology. A reflective memory network can contain up to 256 nodes. Each node in the network can be any reflective memory device that is compatible with the 5565 family<sup>88</sup>. When data is written to one node, all nodes on the network are automatically updated with the new data. Each node in the reflective memory network is connected in a daisy-chained loop using fiber optic cables. The transmitter of the first node is tied to the receiver of the second. The transmitter of the second node is tied to the receiver of the third node, and so on, until the loop is completed back at the receiver of the first node.

A PACSystems RX3i main rack supports a maximum of six CMX modules.

## 16.6.1 Features

- 128 Mbytes reflective memory with parity.
- No RX3i CPU processing required to operate the network.
- Network error detection.
- Connection with multimode fiber up to 300m/984.25ft
- Software configuration of all node parameters (no jumper or switch settings required).
- Dynamic packet sizes of 4 to 64 bytes, controlled by the CMX module
- Network transfer rate of 43 Mbyte/s (4 byte packets) to 174 Mbyte/s (64 byte packets)
- Network link speed of 2.1 Gigabits/sec.
- Programmable module interrupt output.
- Four general-purpose network interrupts with 32 bits of data each.
- Redundant transfer mode operation.
- Configurable network memory offset.

Figure 380: IC695CMX128



The CMX128 module must be located in an RX3i Universal Backplane.

Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

<sup>&</sup>lt;sup>88</sup> These products are now marketed by Abaco Systems.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

CMX128 modules require a metal enclosure to meet radiated emissions requirements. For details, refer to Module datasheet, GFK-2506.

## 16.6.2 LEDs: CMX128

All front panel LED indicators are green.

| LED                  | Description                                                                          |
|----------------------|--------------------------------------------------------------------------------------|
| ОК                   | ON indicates the CMX module and the CPU are functioning properly.                    |
| CONFIG <sup>89</sup> | ON indicates Module is configured.                                                   |
| SIG DETECT           | ON indicates the receiver is detecting a fiber optic signal.                         |
| OWN DATA             | ON indicates Module has received its own data packet from the network at least once. |

## 16.6.3 Specifications: CMX128

| CMX128                   | Specification                                                                 |
|--------------------------|-------------------------------------------------------------------------------|
| Packet size              | Dynamic packet sizes of 4 to 64 bytes, automatically controlled by the CMX128 |
|                          | module                                                                        |
| Transfer rate            | Network link speed of 2.1 Gbps                                                |
| User memory              | 128MB SDRAM                                                                   |
| Input power              | 660 mA at +3.3Vdc                                                             |
| (from RX3i power supply) | 253 mA at +5Vdc                                                               |
| Connectors               | Fiber optic LC type, conforms to IEC 61754-20                                 |
|                          | Zirconium ceramic ferrule                                                     |
|                          | Insertion loss: 0.35 dB (maximum)                                             |
|                          | Return loss: -30dB                                                            |

For product standards and general specifications, refer to Appendix A:.

<sup>&</sup>lt;sup>89</sup> A reflective memory hub can be used to bypass a node that is not configured.

## 16.6.4 Optical Transceiver: CMX128

The optical transceiver, located on the bottom of Module, has two LC-type fiber optic ports. The port labeled "TX" is the transmitter and the port labeled "RX" is the receiver.

CMX modules are networked together using either simplex (single fiber) or duplex (dual fiber) multimode fiber optic cables. For details on cables, refer to the *PACSystems Memory Xchange Modules User's Manual*, GFK-2300.

# 16.7 RX3i Redundancy Memory Xchange Modules: IC695RMX128, IC695RMX228

Both Redundancy Memory Xchange (RMX) modules operate as a node on a reflective memory network or as a dedicated link between CPUs in an RX3i Hot Standby CPU Redundancy system<sup>90</sup>. When the RMX is not being used as a link in a redundancy system, it is functionally identical to the IC695CMX128 module. Each node in the network can be any reflective memory device that is compatible with the 5565 family<sup>88</sup>. Whenever data is written to one node, all nodes on the network are automatically updated with the new data.

**Note:** A hub is required to connect a single mode fiber device into a ring with multi-mode fiber devices. Hubs are not permitted when connecting redundant pairs.

When used as a node on a reflective memory network, the RMX module provides deterministic sharing of data among PLCs and other computing devices on a high-speed fiber optic network. A reflective memory network can contain up to 256 nodes.

Figure 381: IC695RMX128



Figure 382: IC695RMX228



Each node in the reflective memory network is connected in a daisy-chained loop using fiber optic cables. The transmitter of the first node is tied to the receiver of the second. The transmitter of the second node is tied to the receiver of the third node, and so on, until the loop is completed at the receiver of the first node.

When used in a CPU redundancy system, the RMX modules provide a path for transferring data between the two redundancy CPUs in the redundant system. A complete communications path consists of one RMX in the primary unit, one RMX in the secondary unit, and two high-speed fiber optic cables connecting them to each other. This must be a two-node ring: no other reflective memory nodes are allowed to be part of this fiber optic network.

<sup>&</sup>lt;sup>90</sup> RMX modules are not compatible with rack-less RX3i CPU systems, such as CPE400 & CPL410. Instead, these CPUs use LAN3 to provide a high-speed link in support of Redundancy applications.

Emerson *strongly recommends* two redundancy links (a total of four RMX modules) be configured and installed. Optionally, systems can be configured for a single redundancy link (a total of two RMX modules).

When the RMX is being used as link in a redundancy system, it cannot be used as a general-purpose Memory Xchange module. For details on the operation of a PACSystems CPU redundancy system, refer to the *PACSystems Hot Standby CPU Redundancy User's Manual*, GFK-2308.

A PACSystems RX3i main rack supports a maximum of six Memory Xchange modules in any combination of RMX128, RMX228 and CMX128 modules. A maximum of two RMX modules can be configured as redundancy communication links.

## 16.7.1 Features: RMX128 & RMX228

- PACSystems RX3i single slot form factor.
- 128 Mbytes reflective memory.91
- Software configuration of all node parameters (no jumper or switch settings required).<sup>91</sup>
- High-speed easy-to-use 2.12 GBaud fiber-optic network.
- No RX3i CPU processing required to operate the network.
- Network-compatible with VMIC 5565 family<sup>88</sup> of reflective memory devices

**Note**: A hub is required to connect a single-mode fiber device into a ring with multi-mode fiber devices. Hubs are not permitted when connecting redundant pairs.

- IC695RMX128: Connection with multi-mode fiber up to 300m (984.25ft).
- IC695RMX228: Connection with single-mode fiber up to 10 km (32,808 ft 4 in).
- Dynamic packet sizes of 4 to 64 bytes, controlled by the RMX module.
- Programmable module interrupt output.
- Four general-purpose network interrupts with 32 bits of data each.<sup>91</sup>
- Network error detection.
- Up to 256 nodes per network.<sup>91</sup>
- Redundant transfer mode operation. This optional mode reduces the chance of a data packet being dropped from the network.<sup>91</sup>
- Configurable network memory offset allows you to assign nodes on a network to groups according to the 16MB segment in the network address space that they use.<sup>91</sup>

<sup>&</sup>lt;sup>91</sup> Not available when operating as a redundancy link in a CPU redundancy system.

The RMX128/RMX228 module must be located in an RX3i Universal Backplane. These modules support insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

RMX128/RMX228 modules require a metal enclosure to meet radiated emissions requirements. For details, refer to Module datasheet, GFK-2511.

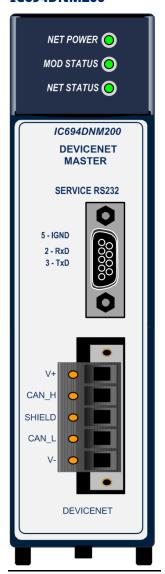
## 16.7.2 Specifications: RMX128 & RMX228

| RMX128/RMX228            | Specifications                                            |
|--------------------------|-----------------------------------------------------------|
| Packet size              | Dynamic, automatically controlled by RMX128/RMX228 module |
| User memory              | 128MB SDRAM                                               |
| Input power              | 580 mA at +3.3Vdc                                         |
| (from RX3i power supply) | 220 mA at +5Vdc                                           |
| Connectors               | Fiber optic LC type, conforms to IEC 61754-20             |
|                          | Zirconium ceramic ferrule                                 |
|                          | Insertion loss: 0.35 dB (maximum)                         |
|                          | Return loss: Refer to cable/connector specifications.     |

For product standards and general specifications, refer to Appendix A:.

## 16.8 RX3i DeviceNet Master Module: IC694DNM200

The DeviceNet Master Module (DNM200) allows the CPU to send and receive data over a DeviceNet network. It can act as master for up to 63 slaves on the DeviceNet network. It can also be configured to simultaneously function as a slave to another master on the bus.


DeviceNet is a communications network that transmits data between control systems (for example: PLCs, PCs, VMEbus computers, and robot controllers) and distributed industrial devices such as switches, sensors, valve manifolds, motor starters, bar code readers, drives, displays, and operator interfaces.

This module can be installed in any available RX3i universal backplane I/O slot; it cannot be located in remote or expansion racks. Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

### 16.8.1 Features

- Bus communications at all standard DeviceNet data rates (125k, 250k, 500k baud)
- Up to 255 bytes input data transfer and 255 bytes output data transfer per slave.
- Up to 3972 bytes of input data transfer and 3972 bytes of output data transfer per master.
- UCMM-capable Group 2 Server
- One or two I/O connections per Slave Typically one connection is used for Polled and the other is used for Strobe, Cyclic, or COS
- Supports Unconnected Message Manager (UCMM) with one proxy connection per slave device
- Configurable global scan rate
- Supports Poll, Strobe, Cyclic and COS I/O connections, Fragmented I/O and Explicit Messaging
- Configurable update rates for Poll and COS/Cyclic on a connection basis.
- Configurable response to loss of communication
- Firmware upgrade via service port on module

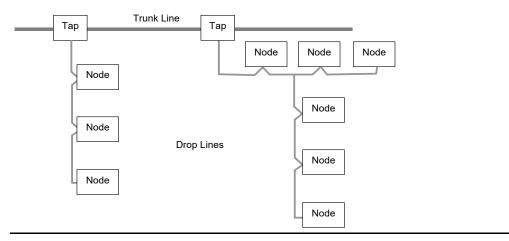
Figure 383: IC694DNM200



## 16.8.2 LEDs and Connectors: DNM200

The three DeviceNet-compliant LEDs of Module show its operating and communications status. The RS-232 serial port is used for a computer connection during firmware upgrades. The DeviceNet connector is a removable spring-clamp terminal. It provides bus continuity and can be removed from Module without disrupting bus operation.

## 16.8.3 Specifications: DNM200


| DNM200                       | Specifications                                                                   |
|------------------------------|----------------------------------------------------------------------------------|
| Backplane Current            | 450mA at 5Vdc (typical)                                                          |
| Consumption                  |                                                                                  |
| Thick Cable General          | Two shielded pairs - Common axis with drain wire in center                       |
| Specifications               | Overall braid shield - 65% coverage; 36 AWG or 0.12mm tinned Cu braid minimum    |
|                              | (individually tinned)                                                            |
|                              | Drain wire- #18 Copper min.; 19 strands minimum (individually tinned)            |
|                              | Outside diameter - 0.410 inches (min) to 0.490 inches (max.) roundness - radius  |
|                              | delta to be within 15% of 0.5 O.D.                                               |
| Thin Cable General           | Two shielded pairs - Common axis with drain wire in center                       |
| Specifications               | Overall braid shield - 65% coverage; 36 AWG or 0.12mm tinned Cu braid minimum    |
|                              | (individually tinned)                                                            |
|                              | Drain wire - #22 Copper; 19 strands minimum (individually tinned)                |
|                              | Outside diameter - 0.240 inches (min.) to 0.280 inches (max.) roundness - radius |
|                              | delta to be within 20% of 0.5 O.D.                                               |
| Network Topology             | Bus with limited branching (trunkline/dropline)                                  |
| Redundancy                   | Not Supported                                                                    |
| Network Power for Node       | Nominal 24Vdc ±4%                                                                |
| devices                      |                                                                                  |
| Allowed Nodes (Bridging      | 64 nodes                                                                         |
| excluded)                    |                                                                                  |
| Data Packet Size             | 0-8 bytes with allowance for message fragmentation                               |
| Duplicate Address Detection  | Addresses verified at power-up                                                   |
| Error Detection / Correction | CRC - retransmission of message if validity not acknowledged by recipient        |

For product standards and general specifications, refer to Appendix A:.

## 16.8.4 The DeviceNet Bus

Devices can be connected directly to the trunk cable, or to drop lines that are joined to the trunk cable with taps. Taps can be mounted in junction boxes or panels. Drop lines and daisy-chains are often used inside control panels where multiple devices are grouped together. When using drops with daisy-chains and branches, the maximum length from a tap to its farthest drop is 20 feet.

Figure 384: DeviceNet Bus Topology



## **Bus Length**

The maximum length of the trunk cable and drops both depend on the cable type and data rate. Individual drops may not exceed 6 meters and are limited to one network node per drop. However, the node may have multiple ports.

| Data Rates                | 125kbps       | 250kbps      | 500kbps      |
|---------------------------|---------------|--------------|--------------|
| thick cable, trunk length | 500m (1640ft) | 250m (820ft) | 100m (328ft) |
| thin cable, trunk length  | 100m (328ft)  | 100m (328ft) | 100m (328ft) |
| maximum drop length       | 6m (20ft)     | 6m (20ft)    | 6m (20ft)    |
| total length of all drops | 156m (512ft)  | 78m (256ft)  | 39m (128ft)  |

For each baud rate, the total drop length is the sum of all the drop lines of both cable types in the network.

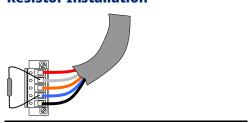
In addition, if the distance from a tap to the most distant device on its drop is longer than the distance from the tap to the nearest terminating resistor, the drop line length also counts as part of the trunk cable length (as well as the overall drop length).

#### **DeviceNet Cable**

Either DeviceNet thick cable or thin cable can be used. Thick cable permits greater cable lengths and higher current levels. Generally, thick cable is used for the trunk cable. Thin cable is normally used for shorter distances and is suitable for drop cables and for installations where more cable flexibility is needed. Both thick cable and thin cable are 5-wire, multi-conductor copper cable. Two wires form a transmission line for network communications. A second pair transmits network power. The fifth conductor forms an electromagnetic shield. Most cables have color coded leads which correspond to the color coding on the terminals on the DeviceNet Master Module.

## **Bus Connector Pin Assignments**

The DeviceNet connector on the RX3i DeviceNet Master module has five color-coded screw-clamp terminals.


|                       | Signal | Pin | Wire Color |
|-----------------------|--------|-----|------------|
| Figure 385: DeviceNet | Signal |     | Wife Color |
| Connector Pinout      | V+     | 5   | Red        |
| V+ 0 0                | CAN_H  | 4   | White      |
| CAN_H O               | Shield | 3   | Bare       |
| CAN_L                 | CAN_L  | 2   | Blue       |
|                       | V-     | 1   | Black      |

Wiring to the DeviceNet Master module depends on its location on the network:

 $121\Omega$  1% ¼ watt terminating resistors MUST be installed at both ends of the DeviceNet network. The terminating resistor is placed across the data communication signals at pin 2 (CAN\_L) and pin 4 (CAN\_H).

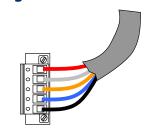

If the DeviceNet module is located at either end of the bus trunk, it is wired with one cable connection and a terminating resistor:

Figure 386: DeviceNet Terminating Resistor Installation



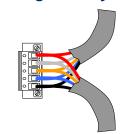

If Module is installed at the end of a drop or drop segment, it is wired with one cable connection only.

Figure 387: DeviceNet
Wiring for End of
Segment



If Module is installed directly on the trunk cable or as part of a daisy-chained drop cable, it has both an incoming and outgoing cable connected:

Figure 388: DeviceNet Wiring for Daisy Chain



## **Grounding**

All DeviceNet cable shields must be tied to ground at each device connection. This is done by tying the bare wire of the cable to pin 3 (Shield) of the connector.

## **Power Requirements**

The DeviceNet Master module consumes 450mA at 5Vdc (typical) from the PLC backplane. This power is used for module operation, The DeviceNet Master powers its network transceiver from the 24Vdc DeviceNet network power source. Linear power supplies are recommended for the DeviceNet power source. The DeviceNet power source should *not* also be used for device power. Transients caused by I/O devices can cause communications errors and even create bus-off conditions.

The DeviceNet specification recommends using a power tap to connect a power supply to the network. The power tap should be appropriately fused for the current capacity of the bus cables. The maximum current on the network depends on the cable type.

The DeviceNet network power supply must be grounded, but only at one point. The V- signal must be connected to protective earth ground at the power supply

only. If multiple power supplies are used, only one power supply must have V-connected to earth ground.

#### Current Limit for Thick Cable

For thick cable, the maximum current on the network is 16 Amps. However, only 8 Amps is permitted on a single network segment. 16 Amps can be drawn from a single power supply by locating the power supply at the center point of two network segments, supplying 8 Amps to each segment.

#### **Current Limit for Thin Cable**

For thin cable, the maximum current permitted is 3 Amps.

## 16.9 Motion Mate Module: IC694DSM314

The Motion Mate Module (DSM314) is a multi-axis motion control module. It supports two control loop configurations:

- Standard Mode (Follower Control Loop Disabled)
- Follower Mode (Follower Control Loop Enabled)

The DSM314 Module can be used with  $\alpha$  Series and  $\beta$  Series digital servo amplifiers and motors. It can also be used with analog SL Series analog servos and third-party analog velocity command interface and analog torque command interface servos. Module features include:

- Velocity Feed forward and Position Error Integrator
- High resolution of programming units
- Simple and powerful motion program instruction set
- Simple 1 to 4-axis motion programs
- Non-volatile storage for 10 programs and 40 subroutines
- Single-point-of-connect for programming and configuration.
- Firmware is stored in flash memory and is updated via COMM port.
- Recipe programming using command parameters.
- Electronic CAM capability
- Home and over-travel switch inputs for each Servo Axis
- Two Position Capture Strobe Inputs for each axis
- 5Vdc, 24Vdc and analog I/O for use by PLC
- Incremental Quadrature Encoder input on each axis for Encoder/Analog mode
- 13-bit Analog Output can be controlled by PLC or used as Digital Servo Tuning monitor
- High-Speed digital output (four each 24V and four each 5V) via on-board Local Logic control

This module can be installed in any available I/O slot in any RX3i or Series 90-30 backplane. Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

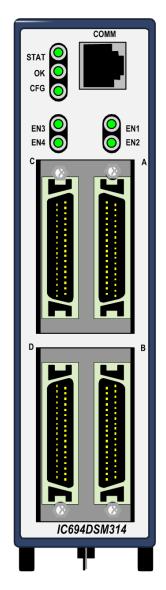



Figure 389: IC694DSM314

#### 16.9.1 Overview: DSM314

The DSM314 integrates high-performance motion control with the logic-solving functions of the RX3i Controller.

Operator Interfaces Machine 1 Amp. 1 D S M 3 1 Encoder 1 Machine 2 Amp. 2 Configuration and Encoder 2 Programming Software: -Configuration -Motion Programming -Local Logic Programming Encoder 3 -CAM Profiles (Follower Master)

Figure 390: System Overview: DSM314

For more information about configuring and installing the DSM314 module, refer to the Motion Mate User's Manual, GFK-1742. For details about interfacing the DSM314 to the SL Servo products, refer to the manual, SL Series Servo User's Manual, GFK-1581.

#### Specifications: DSM314 16.9.2

| DSM314                                   | Specificaitons                                                  |
|------------------------------------------|-----------------------------------------------------------------|
| Power Supply Voltage                     | 5Vdc from backplane                                             |
| Power Supply Current Draw by DSM         | 800 mA plus encoder supply current (refer to next item).        |
| Available +5Vdc Current/Module to supply | 500 mA (if used, must be added to module +5Vdc current draw)    |
| external encoder, if used                |                                                                 |
| Number of DSM314 Modules in              | Up to 5 DSM314 modules in RX3i Main Backplane with Power Supply |
| PACSystems RX3i Main Backplane           | PWR040                                                          |
| Number of DSM314 Modules in              | 3 DSM314 modules in expansion/remote backplane with PWR321      |
| PACSystems RX3i Expansion/Remote         | 6 DSM314modules in remote backplane with PWR330/331             |
| Backplane                                | 7 DSM314modules in expansion backplane with PWR330/331          |

## 16.9.3 Features: DSM314

#### **LEDs**

There are seven LED status indicators on the DSM314 module:

The **STAT** LED is normally On. When the LED is OFF, the DSM314 is not functioning. Slow blinking indicates status errors. Rapid blinking indicates errors that cause the servo to stop.

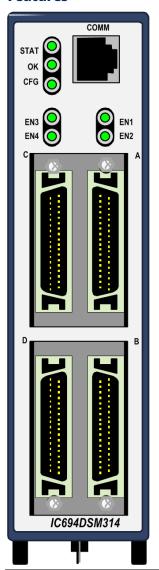
The **OK** LED indicates the current status of the DSM314 module. When the LED is steady On, Module is functioning properly. When the LED is Off, Module is not functioning.

The **CFG** LED is On when a module configuration has been received.

The **EN1** through **EN4** LEDs are On if the Axis 1 through Axis 4 Drive Enable relays are on.

#### **COMM Connector**

The COMM port is an RJ-11 connector, used to download firmware updates to Module.


#### I/O Connectors

The DSM314 is a two-axis digital servo/one axis analog velocity interface or four-axis analog servo (Torque Mode and/or Velocity Mode) controller with four 36-pin I/O connectors labeled A, B, C, and D. All four connectors provide similar analog and digital I/O circuits.

#### **Shield Ground Connection**

The DSM314 must be connected to frame ground via the ground terminal on the bottom of Module.

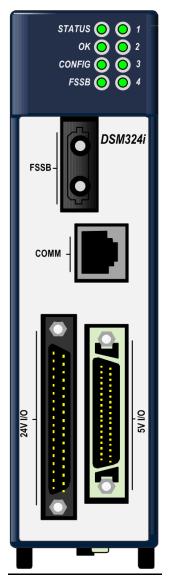
Figure 391: DSM314 Features



# 16.10 Motion Controller Module: IC694DSM324

The Motion Controller Module, IC694DSM324, is a multi-axis motion control module. It supports two control loop configurations:

- Standard Mode (Follower Control Loop Disabled)
- Follower Mode (Follower Control Loop Enabled)


The DSM324 Module can be used with  $\beta i$  Series digital servo amplifiers and motors. Module features include:

- Block Processing time under 5ms
- Velocity Feed forward and Position Error Integrator
- High resolution of programming units
- Simple and powerful motion program instruction set
- Simple 1 to 4-axis motion programs
- Non-volatile storage for 10 programs and 40 subroutines
- Single-point-of-connect for programming and configuration.
- Firmware is stored in flash memory and is updated via COMM port.
- Recipe programming using command parameters.
- Electronic CAM capability
- Home and over-travel switch inputs for each Servo Axis
- Two Position Capture Strobe Inputs for each axis
- 5Vdc, 24Vdc and analog I/O for use by PLC
- Incremental Quadrature Encoder input on each axis for Encoder/Analog mode
- 13-bit Analog Output can be controlled by PLC or used as Digital Servo Tuning monitor
- High-Speed digital output (four each 24Vdc and four each 5Vdc)
   via on-board Local Logic control

This module can be installed in any available I/O slot in any RX3i or Series 90-30 backplane. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

Refer to the *DSM324i Motion Controller for PACSystems RX3i and Series 90-30*, GFK-2347, for more information about the DSM324 module.

Figure 392: IC694DSM324



## 16.10.1 Overview: DSM324

The DSM324 integrates high-performance motion control with the logic-solving functions of the RX3i controller.

Figure 393: System Overview: DSM324 Operator . Interfaces Machine 1 D S M Amp. 1 3 2 4 -0 Encoder 1 Machine 2 Amp. 2 Configuration and Encoder 2 Programming Software: -Configuration <u>\_</u>o` -Motion Programming -Local Logic Programming Encoder 3 -CAM Profiles (Follower Master)

For more information about configuring and installing the DSM324 module, refer to the *DSM324i Motion Controller for PACSystems RX3i and Series 90-30*, GFK-2347. For details about interfacing the DSM324 to the SL Servo products, refer to the manual, *AC Servo Motor*  $\beta$  is Descriptions Manual, GFZ-65302EN.

## 16.10.2 Features: DSM324

#### **LEDs**

There are eight LED status indicators on the DSM324 module:

The **STATUS** LED is normally On. When the LED is OFF, the DSM324 is not functioning as the result of a status error. Flashing signals an error condition.

The **OK** LED indicates the current status of the DSM314 module. When the LED is steady On, Module is functioning properly. When the LED is Off, Module is not functioning.

The **CONFIG** LED is On when a module configuration has been received.

The **FSSB** LED is On when FSSB communications are active. It blinks during FSSB setup. This LED is Off if FSSB communications are inactive or if FSSB setup has failed.

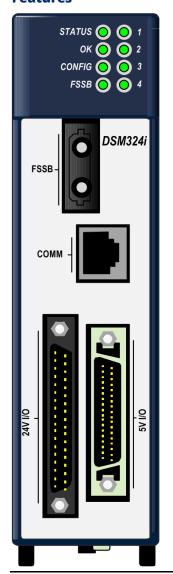
The Axis Enable LEDS, 1 through 4, are On if the Axis 1 through Axis 4 Drives are enabled.

#### **FSSB Connector**

The FSSB connector provides optical fiber connection to Servo Amplifiers for the exchange of command, feedback, and diagnostics data. This connector has a removable protective cap.

#### COMM Connector

The COMM port is an RJ-11 connector, used to download firmware updates to Module.


#### **I/O Connectors**

The DSM324 provides two connectors for 5Vdc and 24Vdc I/O. Pre-manufactured cables are available in 1-meter and 3-meter lengths for both I/O connectors.

#### **Shield Ground Connection**

The DSM324 must be connected to frame ground via the ground terminal on the bottom of Module. The grounding resistance of the system ground should be  $100\Omega$  or less (class 3 grounding).

Figure 394: DSM324 Features



## 16.10.3 Specifications: DSM324

| DSM324                                 | Specifications                                                   |
|----------------------------------------|------------------------------------------------------------------|
| Power Supply Voltage                   | 5Vdc from backplane                                              |
| Power Supply Current Draw by DSM       | 860 mA plus encoder supply current (refer to next item).         |
| Available +5V Current/Module to supply | 500 mA (if used, must be added to module +5v current draw)       |
| external encoder, if used              |                                                                  |
| Number of DSM324i Modules in           | Up to 5 DSM324i modules in RX3i Main Backplane with Power Supply |
| PACSystems RX3i Main Backplane         | PWR040                                                           |
| Number of DSM324i Modules in           | 2 DSM324i modules in expansion/remote backplane with PWR321      |
| PACSystems RX3i Expansion/Remote       | 6 DSM324i modules in remote backplane with PWR330/331            |
| Backplane                              | 6 DSM324i modules in expansion backplane with PWR330/331         |

# 16.11 PACMotion Multi-Axis Motion Controller: IC695PMM335

The PACMotion Multi-Axis Motion Controller, IC695PMM335, is designed with the performance to deliver improved machine productivity required for today's high-speed machines and lean manufacturing environments.

Each module can control up to four servo axes. Up to 40 axes can be controlled from a single RX3i backplane.

The PMM335 supports discrete and synchronous motion control yielding a flexible motion controller that scales to fit your requirements.

## 16.11.1 Servo Types Supported

- Digital: Supports FANUC βi, βHVi and αHVi Series digital servo amplifiers and motors. For a list of supported FANUC motors, refer to *Motor Type Codes* in *PACMotion Multi-Axis Motion Controller User's Manual*, GFK-2448.
- Analog: Provides analog velocity and analog torque command interfaces to third-party analog servos.

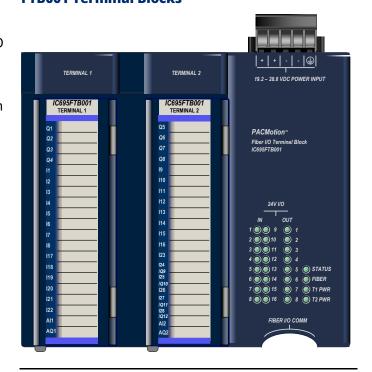
#### 16.11.2 Features: PMM335

- Fast motion path (1ms) planning and position update rates (500μs) deliver improved accuracy and faster response to changing control requirements.
- Consistent motion update rate regardless of the number of axes.
- High reliability FANUC servos improve machine uptime.
- High-Speed synchronization of up to 40 axes over the PACSystems RX3i backplane.
- Advanced CAM and gearing features for electronic line shaft applications.
- Single software development environment for complete automation control solution simplifies programming.
- Distributed architecture for greater machine flexibility up to 100 meters between axes using noise immune fiber cables
- Optional Fiber Terminal Block allows distributed motion-centric I/O to reduce wiring complexity and cost.
- Two high-speed position capture inputs per axis for registration and sequence control.

This module is compatible with all rack-mounted RX3i CPUs except CRU320. It can be installed in any available RX3i I/O slot. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

Figure 395: IC695PMM335




## 16.11.3 Fiber I/O Terminal Block

The DIN-rail mounted FTB, IC695FTB001, allows the user to connect 5-volt, 24-volt, and analog I/O to motion specific devices, such as limit switches and encoders, over a full-duplex fiber optic link up to 100m from the PMM335. FTB I/O can be configured as over-travel switch, home switch, quadrature encoder and high-speed touch probe position capture inputs, digital cam switch outputs or general purpose I/O. The FTB's analog outputs can be used as general-purpose analog outputs, or configured for closed position loop (velocity interface) or velocity loop (torque interface) control of up to two analog servos.

A robust serial protocol encodes and decodes the data as it sent between the PMM and the FTB.

In the event of a system malfunction, such as loss of communication with the PMM, the FTB sets its I/O to the user-configured state.

## Figure 396: PMM335 with DIN-Rail Mounted FTB001 Terminal Blocks

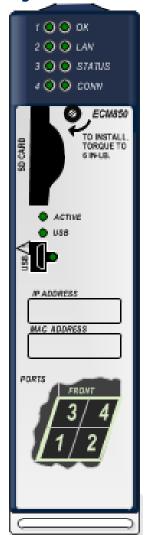


## 16.11.4 Features

- Fiber optic connection allows choice of cable lengths from 1m to 100m
- Fiber optic connection provides optical isolation between the main rack and the FTB.
- Current capability to 0.5A on all 24V outputs.
- Loss of encoder and open wire fault detection on 5V differential inputs (quadrature encoder lines).
- Visual diagnostics provided via individual LEDs that indicate I/O point state.
- DIN-rail mounting allows convenient location of I/O.
- Fiber optic interface reduces remote I/O wiring cost and improves noise immunity.
- Removable RX3i terminal block headers provide ease of use
- A 5Vdc power source for external quadrature encoders

# 16.12 IEC 61850 Ethernet Communication Module: IC695ECM850

The PACSystems RX3i IEC 61850 Ethernet Communication Module, IC695ECM850 (ECM850), connects an RX3i controller to an IEC 61850 network, enabling the controller to act as an IEC 61850 Client and communicate with Intelligent Electronic Devices (IEDs, IEC 61850 servers) on the network using the IEC 61850 protocol. (IEC 61850 is a standard for the design of electrical substation automation.) The ECM850 provides the functions and services required for an IEC 61850 Client, as described in the PICS and MICS in the appendices.


The ECM850 supports 10/100/1000 Mbps copper, 100/1000 Mbps multi-mode fiber, and 100/1000 Mbps single-mode fiber Ethernet connections. The network can include media interfaces of more than one type.

#### Features of the ECM850 include:

- Supports the following IEC 61850 client features
  - o Multiple connections to IEDs
  - Read and write of data values
  - Control model all models
  - Report by exception reporting buffered and un-buffered
  - o Browse data model logical devices, nodes, data objects & attributes
  - Self-description reads data model from IED over IEC 61850 network
- Full programming and configuration services for the IEC 61850 Client, including reading of device Substation Configuration Language (SCL) files and reading configuration data online directly from IEDs using the Machine Edition programming and configuration application.
- Supports operation in hot standby redundant systems.
- Built-in command-line interface function that supports direct monitoring and partial configuration by means of Module's Micro USB port or Telnet over Ethernet.
- Support for both star (switched) and linear (daisy-chained) network topologies.
- Four switched Ethernet ports (located on the underside)
  - Two 8-conductor RJ-45 shielded twisted pair 10/100/1000 Mbps copper interfaces;
  - Two Small Form-factor Pluggable (SFP) cages for user-supplied SFP devices.
- Internal clock synchronized with the RX3i CPU for time-stamped diagnostics.
- Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Hot Insertion and Removal.
- Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

**Note:** The USB port is intended for system setup and diagnostics only. It must not remain permanently connected.

Figure 397: IC695ECM850



## 16.12.1 Specifications: ECM850

| ECM850                                                          | Specifications                                                       |
|-----------------------------------------------------------------|----------------------------------------------------------------------|
| Protocol Support                                                | IEC 61850 Client as per PICs and MICs specifications                 |
| Power Requirements                                              | 3.3Vdc: 1.2 A with no SFP devices installed                          |
|                                                                 | 1.9 A maximum (2 SFP devices installed, 0.35 A per SFP device)       |
|                                                                 | 5Vdc: 1.1 A maximum                                                  |
| Operating Temperature Range                                     | 0 to 60°C                                                            |
|                                                                 | De-rated to 57°C:                                                    |
|                                                                 | • if 100 MB Fiber SFPs installed, or                                 |
|                                                                 | • if Copper SFPs operating at 1 GB.                                  |
| Number of Port Connectors                                       | Two RJ-45 and Two SFP Cages                                          |
|                                                                 | (SFP devices not included, available separately.)                    |
| Micro USB Connector                                             | One, for communication with a computer using Command Line Interface. |
| Local Area Network (LAN)                                        | IEEE 802.2 Logical Link Control Class I                              |
|                                                                 | IEEE 802.3 CSMA/CD Medium Access Control 10/100/1000 Mbps            |
| CPU Status Bits                                                 | 32                                                                   |
| Polling Rate <sup>92</sup>                                      | Configurable for every IED connection from 0 to 31267 ms             |
|                                                                 | (default is 1000 ms).                                                |
| Number of IP Addresses                                          | One                                                                  |
| Number of MAC Addresses                                         | Five. One per external port and one internal.                        |
| Network Topologies Supported                                    | Star (switched), linear (daisy-chain)                                |
| Time Synchronization                                            | SNTP Client – Multicast and Broadcast                                |
| System Maximum Limits                                           |                                                                      |
| ECM850s per RX3i CPU                                            | Four (4). All must be located in main rack.                          |
|                                                                 | (Use in remote or expansion racks not supported).                    |
| No of IED connections supported per ECM850                      | 32                                                                   |
| No of IED connections supported per                             | 128                                                                  |
| RX3i CPU                                                        |                                                                      |
| Maximum I/O Memory per ECM850                                   | 32 Kbytes of combined Input/Output memory                            |
| Maximum I/O Memory per RX3i CPU                                 | 128 Kbytes of combined Input/Output memory                           |
| No of PLC Protocol Variables <sup>93</sup> (PPVs) per<br>ECM850 | 5000                                                                 |
| No of PPVs per RX3i CPU                                         | 20000                                                                |

<sup>&</sup>lt;sup>92</sup> The polling rate for each IED connection can be configured by the IEC 61850 Configurator. ECM850 also supports unsolicited communication using report control blocks (RCB). The RCB can be used for faster updates irrespective of polling rate, based on RCB trigger options. Refer to PACSystems RX3i IEC 61850 Ethernet Communication Module User Manual, GFK-2849 for more details.

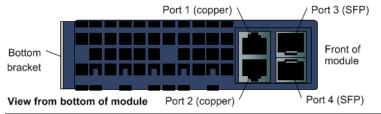
<sup>&</sup>lt;sup>93</sup> PLC Protocol Variables is defined as the set of RX3i controller variables which represents the IEC 61850 protocol data attributes in a structured format in a variable list. This typically includes the additional variables which are required to perform WRITE operations to an IED. Refer to PACSystems RX3i IEC 61850 Ethernet Communication Module User Manual, GFK-2849 for more details.

#### **Indicator LEDs**

The following table summarizes the light-emitting diode (LED) indicator functions. More detailed information about error indications and blink patterns is given in *PACSystems RX3i IEC 61850 Ethernet Communication Module User Manual*, GFK-2849.

| LED        | Description                                                                                                 |  |
|------------|-------------------------------------------------------------------------------------------------------------|--|
| ОК         | Indicates whether Module is able to perform normal operation.                                               |  |
| LAN        | Indicates access to and activity on the Ethernet local area network (LAN). The LAN LED indicates network    |  |
|            | packets are being processed by the network interface (not just passing through the embedded switch)         |  |
| STATUS     | Indicates the condition of the ECM850 during normal operation. It indicates whether an entry other than the |  |
|            | startup event is present in Module's local log. STATUS can also indicate whether any of the MAC addresses   |  |
|            | are invalid.                                                                                                |  |
| CONN       | Indicates whether Module has received its configuration from the RX3i CPU.                                  |  |
| ACTIVE     | Indicates the status of IED connections.                                                                    |  |
| USB        | Indicates activity on the USB port.                                                                         |  |
| 1, 2, 3, 4 | Indicates link speed, link connection and link activity corresponding to each of the four external Ethernet |  |
|            | ports.                                                                                                      |  |

#### **Connectors**


## Secure Digital (SD) Card Slot

The SD card slot is designed to support non-volatile memory cards in both standard capacity (SD) and high-capacity (SDHC) formats. It is provided for future use.

#### Switched Ethernet Ports

The ECM850 connects to an IEC 61850 network by means of one or more of its four switched external Ethernet ports. These are located on the underside of Module. Two 8-conductor RJ-45 shielded twisted pair 10/100/1000 Mbps copper interfaces and two Small Form-factor Pluggable (SFP) cages provide flexibility in media selection.

Figure 398: ECM850 Ethernet Connections (Located Underneath Module)



Module is assigned five Ethernet MAC addresses: one for each of the four external Ethernet ports and one for the internal switch.

#### Micro USB Port

The ECM850 has a USB Micro-B socket for connection to a computer running Windows Vista or Windows 7. The USB port can be used to access the Command Line Interface (CLI) function for the ECM850, using a terminal emulation application such as HyperTerminal. The Command Line Interface function can be used to monitor an ECM850 and check its operation. If a problem occurs, the Command Line Interface can be used to help determine the cause. A driver installation application is provided to configure a Windows computer to communicate with the ECM850 through its USB port. Refer to *PACSystems RX3i IEC 61850 Ethernet Communication Module User Manual,* GFK-2849 for more details.

#### **Restart Pushbutton**

The Restart pushbutton on an ECM850 can be used to manually restart Module without cycling power. The restart operation begins when the pushbutton is released.

## 16.13 Ethernet Interface Module: IC695ETM001

#### Figure 399: IC695ETM001



## Figure 400: IC695ETM001-Kxxx



The Ethernet Interface Module, IC695ETM001-Jx and IC695ETM001-Kxxx, is used to connect a PACSystems RX3i controller to an Ethernet network. It enables the RX3i controller to communicate with other PACSystems equipment and with Series 90 and VersaMax controllers. The Ethernet interface provides TCP/IP communications with other PLCs, host computers running the Host Communications Toolkit or programmer software, and computers running the TCP/IP version of the programming software. These communications use the SRTP and Ethernet Global Data (EGD) protocols over a four-layer TCP/IP (Internet) stack.

Features of the RX3i Ethernet Interface Module include:

- Full PLC programming and configuration services
- Periodic data exchange using Ethernet Global Data (EGD)
- EGD Commands to read and write PLC and EGD exchange memory over the network.
- TCP/IP communication services using SRTP
- Comprehensive station management and diagnostic tools
- Extended PLC connectivity via IEEE 802.3 CSMA/CD 10Mbps and 100Mbps
   Ethernet LAN port connectors.
- Network switch that has Auto-negotiate, Sense, Speed, and crossover detection.
- Direct connection to BaseT (twisted pair) network switch, hub, or repeater without an external transceiver.

This module can be installed in any available RX3i I/O slot. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Hot Insertion and Removal.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit. For more information about this module, please refer to the following publications:

- PACSystems RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual, GFK-2224
- PACSystems TCP/IP Ethernet Communications Station Manager User Manual, GFK-2225

## 16.13.1 Ethernet Interface Specifications:

| Specification            | ETM001-Jx                         | ETM001-Kxxx                              |  |
|--------------------------|-----------------------------------|------------------------------------------|--|
| Ethernet processor speed | 200 MHz                           |                                          |  |
| Connectors               | Station Manager (RS-232) Port: 9- | Ports: Three autosensing RJ-45 ports.    |  |
|                          | pin female D-connector            |                                          |  |
|                          | Two 10BaseT / 100BaseTX           |                                          |  |
|                          | Ports: Two 8-pin female shielded  |                                          |  |
|                          | RJ-45                             |                                          |  |
| LAN                      | IEEE 802.2 Logical Link Control   | IEEE 802.2 Logical Link Control Class I  |  |
|                          | Class I                           | IEEE 802.3 CSMA/CD Medium Access Control |  |
|                          | IEEE 802.3 CSMA/CD Medium         | 10/100/1000 Mbps                         |  |
|                          | Access Control 10/100 Mbps        |                                          |  |
| Number of IP addresses   | One                               | One                                      |  |
| Number of Ethernet Port  | Two, both are 10BaseT /           | Three, all are                           |  |
| Connectors               | 100BaseTX with auto-sensing RJ-45 | 10BaseT/100BaseTX/1000BaseT with auto-   |  |
|                          | connection.                       | sensing RJ-45 connection.                |  |
| Embedded Ethernet Switch | Yes – Allows daisy chaining of    | Yes – Allows daisy chaining of Ethernet  |  |
|                          | Ethernet nodes.                   | nodes.                                   |  |
| Serial Port              | Station Manager Port: RS-232      | Not Applicable.                          |  |
|                          | DCE, 1200 - 115200 bps.           |                                          |  |

For product standards and general specifications, refer to Appendix A:.

## 16.13.2 Ethernet Interface Ports

The latest version of the Ethernet Interface Module (-Kxxx) has three autosensing 10BaseT/100BaseTX/1000BaseT RJ-45 shielded twisted pair Ethernet ports for connection to a 10BaseT, 100BaseTX, or 1000BaseT IEEE 802.3 network.

The early version of the Ethernet Interface Module (-Jx) has two auto-sensing 10BaseT/100Base TX RJ-45 shielded twisted pair Ethernet ports for connection to either a 10BaseT or 100BaseTX IEEE 802.3 network. The port automatically senses the speed (10Mbps or 100Mbps), duplex mode (half duplex or full duplex) and cable (straight-through or crossover) attached to it with no intervention required. There is only one interface to the network (only one Ethernet MAC address and only one IP address).

## 16.13.3 Station Manager<sup>94</sup>

The built-in Station Manager function of the Ethernet Interface Module provides on-line supervisory access to the Ethernet Interface, through the Station Manager port or over the Ethernet cable. Station Manager services include:

- An interactive set of commands for interrogating and controlling the station.
- Unrestricted access to observe internal statistics, an exception log, and configuration parameters.
- Password security for commands that change station parameters or operation.

Refer to the *PACSystems TCP/IP Ethernet Communications Station Manager User Manual*, GFK-2225, for complete information on the Station Manager.

## 16.13.4 Ethernet Global Data (EGD)

Each PACSystems CPU supports up to 255 simultaneous Ethernet Global Data (EGD) exchanges. EGD exchanges are configured using the programmer and stored into the PLC. Both Produced and Consumed exchanges can be configured. PACSystems Ethernet Interfaces support both selective consumption of EGD exchanges and EGD exchange production and consumption to the broadcast IP address of the local subnet.

The Ethernet Interface can be configured to use SNTP to synchronize the timestamps of produced EGD exchanges.

The Ethernet Interface Module implements the capabilities of a Class 1 and Class 2 device. COMMREQ-driven EGD Commands can be used in the application program to read and write data into the CPU or other EGD Class 2 devices.

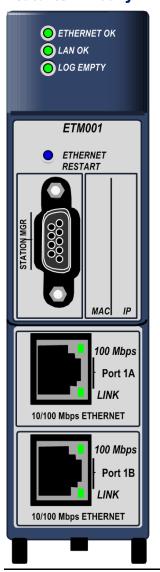
<sup>&</sup>lt;sup>94</sup> This feature only applies to ETM001-Jx. The Station Manager serial port has been replaced on the ETM001-Kxxx by an autosensing RJ45 port on the face of Module.

## 16.13.5 ETM001-Jx Interface Controls and Indicators

#### **LEDs**

- The Ethernet OK LED indicates whether Module is able to perform normal operation. This LED is On for normal operation and flashing for all other operations. If a hardware or runtime failure occurs, the EOK LED blinks a two-digit error.
- The LAN OK LED indicates access to the Ethernet network. The LAN LED blinks when data is being sent or received over the network directed to or from the Ethernet interface. It remains On when the Ethernet interface is not actively accessing the network but the Ethernet physical interface is available and one or both of the Ethernet ports is operational. It is Off otherwise unless software load is occurring.
- The Log Empty LED is On during normal operation. It is Off if an event has been logged.
- Two Ethernet network LEDs (LINK) indicate the network link status.
- Two Ethernet network speed LEDs (100 Mbps) indicate the network data speed (10 (off) or 100 Mb/sec (on)).

#### **Ethernet Restart Pushbutton**


This pushbutton is used to manually restart the Ethernet firmware without power cycling the entire system. It is recessed to prevent accidental operation.

#### **Connectors**

Module has two 10BaseT/100BaseTX Ethernet Network Port Connectors. There is only one interface to the network (only one Ethernet MAC address and only one IP address).

The Station Manager (RS-232) Serial Port is serviced via the D-connector on the front panel.

Figure 401: Ethernet Features ETM001-Jx



## 16.13.6 ETM001-Kxxx Interface Controls and Indicators

#### **LEDs**

- The **OK** LED indicates whether Module is able to perform normal operation. This LED is ON for normal operation and flashing for all other operations. If a hardware or runtime failure occurs, the **OK** LED blinks a two-digit error.
- The LAN OK LED indicates access to the Ethernet network. The LAN OK LED blinks when data is being sent or received over the network directed to or from the Ethernet interface. It remains ON when the Ethernet interface is not actively accessing the network, but the Ethernet physical interface is available and one or both of the Ethernet ports is operational. It is OFF otherwise unless software load is occurring.
- The LOG EMPTY LED is ON during normal operation.
   It is OFF if an event has been logged.
- The Ethernet network LED (LINK) indicate the network link status.
- Six Ethernet network speed LEDs (10/100/1000 Mbps) indicate the network data speed.

#### **Ethernet Restart Pushbutton**

This pushbutton is used to manually restart the Ethernet firmware without power cycling the entire system. It is recessed to prevent accidental operation.

#### **Connectors**

Module has three 10BaseT/100BaseTX/1000BaseT Ethernet Network Port Connectors. There is only one interface to the network (only one Ethernet MAC address and only one IP address).

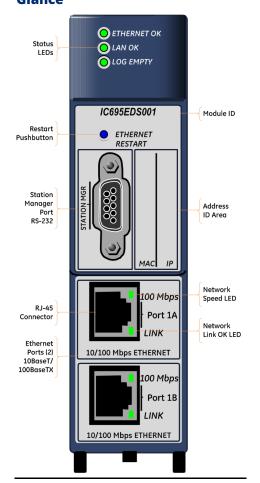
The front panel has an autosensing RJ-45 connector that has replaced the serial connector on the earlier design of the interface module.

The bottom panel has two autosensing RJ-45 connectors designated as Lan 1 and Lan 2.

Figure 402: Ethernet
Features ETM001-Kxxx



## 16.14 RX3i DNP3 Outstation Module: IC695EDS001


The PACSystems RX3i DNP3 Outstation Module IC695EDS001 is an Ethernet-connected module which fits in the RX3i backplane and permits the RX3i to behave as an Outstation on the DNP3 network, where it may interact with up to eight DNP3 masters.

## 16.14.1 Module features:

- Two auto-sensing RJ-45 Ethernet ports with LED indicators
  - Connects via Ethernet at 10BaseT or 100BaseTX
  - Internal network switch with Auto-negotiate, Sense, Speed, and crossover detection
  - Supports Linear (daisy-chained) and Star network configurations
  - TCP/IP and LLA protocols supported
  - One Ethernet MAC Address and one IP Address per module
  - Time synchronization to SNTP Time Server
  - Recessed Ethernet Restarts pushbutton to manually restart the Ethernet firmware without power-cycling Module.
- Dedicated RS-232 Station Manager Port for network supervision
- LED behavior same as ETM001
- DNP3 configuration via a single COMMREQ command
  - Eight DNP3 Objects supported: DI, DI w/time, DO, DO w/time,
     CROB, analog output values, time setting, and class polls
  - Multiple RX3i memory types may be utilized for DNP3 data
  - o Binary DI/DO
  - Analog (32-bit signed, 16-bit signed, or single-precision floating-point)
  - Supports unsolicited data communications with DNP3 Master
- Compatible with any rack-mounted RX3i CPU, including redundant controllers
  - Up to 4 EDS001 per RX3i, as allowed by available power and slots
  - Module can be installed in any available RX3i main rack I/O slot
  - Module supports insertion into and removal from an RX3i backplane which is under power.
  - Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

For more information about this module, please refer to *PACSystems RX3i DNP3 Outstation Module IC695EDS001 User's Manual*, GFK-2911.

## Figure 403: EDS001 Features at a Glance



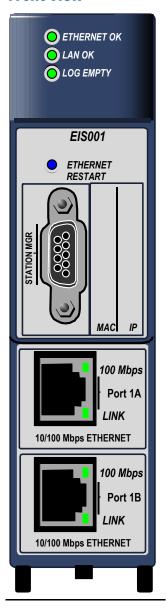
## 16.15 RX3i Ethernet IEC 104 Server Module

The PACSystems RX3i Ethernet IEC 104 Server Module, catalog number IC695EIS001, implements the IEC 60870-5-104 communications protocol. It permits a PACSystems RX3i controller to be connected to an Ethernet network using a standard TCP/IP connection scheme, allowing an IEC 104 Client to poll data from the Server, as well generate unsolicited communications from the Server back to the Client.

Two auto-sensing 10BaseT/100BaseTX RJ-45 shielded twisted-pair Ethernet ports permit direct connection to either a 10BaseT or 100BaseTX IEEE 802.3 network without an external transceiver. Line, Star and Daisy Chain topologies are supported.

The RX3i Ethernet IEC 104 Server Module hosts the IEC104 Server side protocol on a common RX3i ETM001 module hardware platform. Thus, many of the specifications and behaviors are shared with the ETM001 module including protocol support. IC695EIS001 is an Ethernet-connected module that fits in the RX3i backplane and permits the RX3i to behave as a Server on the IEC104 network. The data exchanges between the EIS001 module and IEC104 Client(s) are configurable, using a single COMMREQ instruction in the ladder logic or Structured Text program.

## 16.15.1 Module Features


- Supports one connection to the RX3i Controller data set specified in the configuration.
- Supports Interrogation and RBE for Single Point and Double Point data.
- Supports Interrogation and RBE for Regulated Step.
- Supports Interrogation and Measured data sets for Scaled, normalized, and single precision Float.
- Supports 56-bit IEC 60870-5-104 time format, with the default being 56-bit time format.
- Supports Time Set, and query of the RX3i Controller CPU Clock in UTC time.
- Cause of Transmission size is two octets.

RX3i Interface specifications:

- Up to four EIS001 per RX3i, as allowed by available power and slots.
- Module can be installed in any available RX3i main rack I/O slot.
- Module supports insertion into and removal from an RX3i backplane which is under power.

Module supports firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup> For more information about this module, please refer to *PACSystems RX3i IEC 104 Server Module IC695EIS001User's Manual*, GFK-2949.

### Figure 404: EIS001 Front View

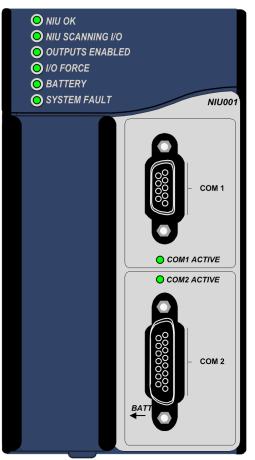


## 16.16 Ethernet Network Interface Unit: IC695NIU001

The PACSystems RX3i Ethernet NIU, IC695NIU001, makes it possible to use PACSystems RX3i and Series 90-30 I/O remotely on an Ethernet network. System control can be provided by any master device that is capable of exchanging Ethernet Global Data.

The Ethernet NIU resides in an I/O station that consists of:

- an RX3i Universal Backplane (IC695CHS0xx)
- an RX3i power supply (IC695PSxxxx)
- the RX3i Ethernet NIU (IC695NIU001)
- one or more RX3i Ethernet modules (IC695ETM001), as required for Ethernet communications
- proprietary application software
- Optional Series 90-30 expansion backplanes.
- PACSystems RX3i and/or Series 90-30 modules, as appropriate for the application.


## 16.16.1 Ethernet NIU Features

- 20Kbytes of optional local logic. Supports all languages except C programming.
- 10 Mbytes of built-in flash memory for local user data storage.
- Battery-backed calendar clock.
- In-system upgradeable firmware.
- Two serial ports: an RS-485 serial port and an RS-232 serial port.
- Supports Ethernet communications via the backplanebased Ethernet Transmitter Module (IC695ETM001)
- Data exchange using Ethernet Global Data (EGD)
- TCP/IP communication services using SRTP
- Comprehensive station management and diagnostic tools
- Supports operation with redundant controllers

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see *Hot Insertion and Removal Not Supported*).

This section gives a brief overview of the Ethernet NIU module. For details of installing, configuring, and operating an Ethernet NIU, please refer to the *PACSystems RX3i Ethernet Network Interface Unit User's Manual*, GFK-2439.

Figure 405: IC695NIU001



## 16.16.2 Compatibility

The Ethernet NIU PLUS is compatible with the same types of modules, backplanes, and other equipment as a PACSystems rack-mounted RX3i CPU. For a list of compatible products, refer to Section 1.3 Modules for RX3i Systems.

## 16.16.3 Specifications: NIU001

| NIU001                     | Specifications                                                                           |
|----------------------------|------------------------------------------------------------------------------------------|
| Battery                    | For estimated battery life under various conditions, refer to the PACSystems Battery and |
|                            | Energy Pack Manual, GFK-2741.                                                            |
| Power requirements         | +3.3Vdc: 1.25 Amps nominal, +5Vdc: 1.0 Amps nominal                                      |
| Operating Temperature      | 0°C to 60°C (32°F to 140°F)                                                              |
| Floating-point             | Yes                                                                                      |
| Embedded                   | RS-232, RS-485                                                                           |
| communications             |                                                                                          |
| Serial Protocols supported | Modbus RTU Slave, SNP, Serial I/O, Modbus RTU Master by application "C" block            |
| Backplane                  | Dual backplane bus support: RX3i PCI and 90-30-style serial                              |
| PCI compatibility          | System designed to be electrically compliant with PCI 2.2 standard                       |

For product standards and general specifications, refer to Appendix A:.

## 16.16.4 Ethernet Global Data Features

The Ethernet NIU communicates with its controller via Ethernet Global Data exchanges. One exchange is used to send outputs to the Ethernet NIU and another exchange is used to send inputs back to the controller.

The Ethernet NIU can also use Ethernet Global Data exchanges to receive the following COMMREQ commands from a PACSystems RX3i controller:

- Modbus Master function codes 1, 2, 3, 4, 5, 6, 7, 15, 16, 17
- Genius enable/disable outputs, switch BSM, clear fault, clear all faults, assign monitor, read diagnostic
- PROFIBUS Master COMMREQs 1, 2, 4, 5, 6
- Motion (DSM314/DSM324) load parameters
- High-Speed Counter Data command
- DeviceNet Master COMMREQs 1, 4, 5, 6, 7, 9
- Analog Module HART Protocol COMMREQs

The Ethernet NIU executes the COMMREQ and sends the results back to RX3i using another Ethernet Global Data exchange.

## 16.16.5 Ports

The NIU has two independent, on-board serial ports, accessed by connectors on the front of Module. These ports provide serial interfaces to external devices.

Port 1 (COM1) is a DCE port that allows a simple straight-through cable to connect with a standard AT-style RS-232 port. It has a 9-pin, female, D-sub connector with a standard pin out.

Port 2 (COM2) is a DCE port that is RS-485 compatible. Port 2 has a 15-pin, female D-sub connector.

The Ethernet NIU does not have an Ethernet port. Ethernet communications are provided by one or more Ethernet Transmitter Modules (described previously in this chapter) located in the I/O Station.

## **Protocols Supported**

| Protocol                                                                  | Port 1                   | Port 2 |
|---------------------------------------------------------------------------|--------------------------|--------|
| RTU (slave)                                                               | Yes                      | Yes    |
| SNP Slave                                                                 | Yes                      | Yes    |
| Serial I/O <sup>95</sup>                                                  | Yes                      | Yes    |
| Firmware Upgrade                                                          | ENIU in STOP/No I/O mode |        |
| Message Mode                                                              | Yes Ye                   | Yes    |
| (C Runtime Library Functions: serial read, serial write, sscanf, sprintf) | 162                      |        |

#### **Serial Port Baud Rates**

| Protocol                       | Port 1                                              | Port 2   |
|--------------------------------|-----------------------------------------------------|----------|
|                                | (RS-232)                                            | (RS-485) |
| Modbus RTU Slave protocol      | 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k |          |
| Message                        | 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k |          |
| Firmware Upgrade via WinLoader | 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k       |          |
| SNP Slave                      | 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k |          |
| Serial I/O                     | 1200, 2400, 4800, 9600, 19.2k, 38.4k, 57.6k, 115.2k |          |

<sup>&</sup>lt;sup>95</sup> Modbus Master is supported in application code in Serial I/O mode.

## 16.17 Ethernet Network Interface Unit: IC695NIU001 PLUS

The PACSystems RX3i Ethernet NIU *PLUS*, IC695NIU001, makes it possible to use PACSystems RX3i and Series 90-30 I/O remotely on an Ethernet network. Once set up by configuration, data exchange is completely automatic. System control can be provided by any master device capable of exchanging Ethernet Global Data (EGD). The Ethernet NIU automatically provides the controller with status information in each exchange. The application program logic in the controller can monitor this status data, and issue appropriate commands to the Ethernet NIU.

An RX3i Ethernet NIU station consists of:

- an RX3i Universal Backplane (IC695CHS0xx)
- an RX3i power supply (IC695PSxxxx)
- the RX3i Ethernet NIU (IC695NIU001)
- one or more RX3i Ethernet modules (IC695ETM001)
- proprietary application software
- optional Series 90-30 expansion backplanes.
- PACSystems RX3i and/or Series 90-30 modules, as appropriate for the application.

Module does not support insertion into or removal from an RX3i Universal Backplane which is under power (see Hot Insertion and Removal Not Supported). This module requires Machine Edition Logic Developer software, version 5.51 or later.

Figure 406: IC695NIU001 PLUS



# 16.17.1 Compatibility

The Ethernet NIU PLUS is compatible with the same types of modules, backplanes, and other equipment as a PACSystems rack-mounted RX3i CPU. For a list of compatible products, refer to Section 1.3.

This module requires Logic Developer software, version 6.50 or later. Additional product enhancements require the use of later programmer software versions, as detailed in the *Ethernet NIU PLUS datasheet*, GFK-2598.

The NIU001 Classic and NIU001 Plus are interchangeable. An application created for an NIU001 PLUS can be used with an NIU001 Classic and vice versa.

#### 16.17.2 Features: Ethernet NIU001 PLUS

- 20 Kbytes of optional local logic. Supports all languages except C programming.
- 10 Mbytes of built-in flash memory for local user data storage.
- Battery-backed Real Time Clock.
- In-system upgradeable firmware.
- Two serial ports: an RS-485 serial port and an RS-232 serial port.
- Supports Ethernet communications via the backplane-based Ethernet Interface module (IC695ETM001)
- Data exchange using EGD
- TCP/IP communication services using SRTP
- Comprehensive station management/diagnostic tools
- Supports operation with redundant controllers
- PACSystems RX3i controllers can send selected COMMREQs to the RX3i ENIU
  via EGD. The ENIU executes the COMMREQs and returns the results to the
  controller.
- During EGD configuration, RX3i Ethernet interfaces are identified by their Backplane/Slot locations.
- Supports display of module hardware revision, serial number and date code in Machine Edition Logic Developer software.
- Units manufactured with date codes greater than 1129 are compliant with EU RoHS Directive 2002/95/EC using the following exemptions identified in the Annex: 7a, 7c-I, & 7c-III.

#### 16.17.3 Ethernet Global Data Features

The Ethernet NIU communicates with its controller via EGD exchanges. One exchange is used to send outputs to the ENIU and another exchange is used to send inputs back to the controller. The ENIU supports receiving outputs from redundant controllers. By sending the EGD exchange to a group address both controllers can receive the inputs. Up to 1300 bytes of outputs can be sent to a set of ENIUs from a controller. Each ENIU can send up to 1300 bytes of inputs to the controller.

A typical system might consist of a controller with five ENIUs. The controller sends 1300 bytes of outputs and each ENIU sends 100 bytes of inputs to the controller. This typical system would have its I/O updates occur in less than 25ms. Whenever the controller scan time is greater than 25ms, the update occurs at the scan rate of the controller. This performance timing is a guideline, not a guarantee, and assumes that there is no other traffic on the Ethernet link to the I/O. Performance data for other system configurations can be found in the *PACSystems RX3i Ethernet Network Interface Unit User's Manual*, GFK-2439.

# 16.17.4 Ethernet NIU COMMREQ Support

The Ethernet NIU supports COMMREQs that are sent to it by a C block application in a PACSystems RX3i controller. This feature is not available with other types of controllers. Ladder code in the RX3i CPU interfaces to the C block. The C block sends COMMREQ commands to the Ethernet NIU in an Ethernet Global Data Exchange. The Ethernet NIU executes the COMMREQ and sends the results back to the RX3i using another EGD exchange. The following COMMREQs can be sent in this way:

- Modbus Master function codes 1, 2, 3, 4, 5, 6, 7, 15, 16, 17
- Genius enable/disable outputs, switch BSM, clear fault, clear all faults, assign monitor, read diagnostic
- PROFIBUS Master COMMREQs 1, 2, 4, 5, 6
- Motion (DSM314/DSM324) load parameters
- High-Speed Counter Data command
- DeviceNet Master COMMREQs 1, 4, 5, 6, 7, 9
- Analog Module HART Protocol COMMREQs.

In addition, any COMMREQ supported by a module in the Ethernet NIU can be sent as a Generic COMMREQ, with the exception of DeviceNet Master Send Extended Explicit Message. For more information, refer to the *PACSystems RX3i Ethernet Network Interface Unit User's Manual*, GFK-2439.

# 16.17.5 Specifications: NIU001 PLUS

| NIUS001 PLUS                 | Specifications                                                                                                          |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Real Time Clock battery life | Estimated 5 years. Battery must be replaced every 5 years on a regular                                                  |
|                              | maintenance schedule.                                                                                                   |
|                              | <b>Note:</b> Module is shipped with a pull-tab on the battery. The pull-tab should be removed before installing Module. |
| Power requirements           | +3.3Vdc: 0.52 Amps nominal                                                                                              |
|                              | +5.0 Vdc: 0.95 Amps nominal                                                                                             |
| Operating Temperature        | 0°C to 60°C (32°F to 140°F)                                                                                             |
| Floating-point               | Yes                                                                                                                     |
| Boolean execution speed,     | 0.072 ms per 1000 Boolean instructions                                                                                  |
| typical                      |                                                                                                                         |
| Embedded communications      | RS-232, RS-485                                                                                                          |
| Serial Protocols supported   | Modbus RTU Slave, SNP, Serial I/O, Modbus RTU Master by application "C" block                                           |
| Backplane                    | Dual backplane bus support: RX3i PCI and 90-30-style serial                                                             |
| PCI compatibility            | System designed to be electrically compliant with PCI 2.2 standard                                                      |
| Ports                        | RS-232 Serial Port                                                                                                      |
|                              | RS-485 Serial Port                                                                                                      |
|                              | External isolation recommended.                                                                                         |
|                              | (For details, refer to RS-485 Port Isolator, IC690ACC903, GFK-1663.)                                                    |

# 16.17.6 NIU001 PLUS vs. NIU001 Classic Comparison

| Feature                           | NIU001 Classic                            | NIU001 PLUS                           |
|-----------------------------------|-------------------------------------------|---------------------------------------|
| Processor                         | Celeron 300 MHz                           | Atom 510, 1.1 GHz                     |
| Real Time Clock Battery           | Not supported                             | IC690ACC001                           |
| Memory Backup and Real Time Clock | IC698ACC701                               | Not supported                         |
| Battery                           |                                           |                                       |
| Embedded communications           | RS-232, RS-485                            | RS-232, RS-485                        |
| Power requirements                | +3.3Vdc: 1.25 Amps nominal                | +3.3Vdc: 0.52 Amps nominal            |
|                                   | +5.0 Vdc: 1.0 Amps nominal                | +5.0 Vdc: 0.95 Amps nominal           |
| Performance                       | Same as CPU310. For performance data,     | Note: The processor has been          |
|                                   | refer to the PACSystems RX3i and RSTi-EP  | upgraded from a 300MHz Celeron to     |
|                                   | CPU Reference Manual, GFK-2222.           | a 1.1 GHz Atom processor. There       |
|                                   |                                           | have been many associated changes     |
|                                   |                                           | to the performance compared to the    |
|                                   |                                           | NIU001 Classic.                       |
|                                   |                                           | For performance data, refer to the    |
|                                   |                                           | PACSystems RX3i and RSTi-EP CPU       |
|                                   |                                           | Reference Manual, GFK-2222R or later. |
| Boolean execution speed, typical  | 0.181 ms per 1000 Boolean instructions    | 0.072 ms per 1000 Boolean             |
|                                   |                                           | instructions                          |
| Battery and switch locations      | For details, refer to the PACSystems RX3i | For details, refer to the PACSystems  |
|                                   | Ethernet Network Interface Unit User's    | RX3i Ethernet Network Interface Unit  |
|                                   | Manual, GFK-2439.                         | User's Manual, GFK-2439               |

#### 16.17.7 Ports

The NIU PLUS has two independent, on-board serial ports, accessed by connectors on the front of Module. These ports provide serial interfaces to external devices.

Port 1 (COM1) is a DCE port that allows a simple straight-through cable to connect with a standard AT-style RS-232 port. It has a 9-pin, female, D-sub connector with a standard pin out.

Port 2 (COM2) is a DCE port that is RS-485 compatible. Port 2 has a 15-pin, female D-sub connector.

The Ethernet NIU does not have an Ethernet port. Ethernet communications are provided by one or more Ethernet Transmitter Modules (described previously in this chapter) located in the I/O Station.

# **Protocols Supported**

| Protocol                                                                  | Port 1          | Port 2   |
|---------------------------------------------------------------------------|-----------------|----------|
| RTU (slave)                                                               | Yes             | Yes      |
| SNP Slave                                                                 | Yes             | Yes      |
| Serial I/O <sup>96</sup>                                                  | Yes             | Yes      |
| Firmware Upgrade                                                          | ENIU in STOP/No | I/O mode |
| Message Mode                                                              | Yes             | Yes      |
| (C Runtime Library Functions: serial read, serial write, sscanf, sprintf) | 162             | 165      |

## **Serial Port Baud Rates**

| Protocol                       | Port 1                               | Port 2           |
|--------------------------------|--------------------------------------|------------------|
| Protocol                       | (RS-232)                             | (RS-485)         |
| Modbus RTU Slave protocol      | 1200, 2400, 4800, 9600, 19.2k, 38.4  | k, 57.6k, 115.2k |
| Message                        | 1200, 2400, 4800, 9600, 19.2k, 38.4  | k, 57.6k, 115.2k |
| Firmware Upgrade via WinLoader | 2400, 4800, 9600, 19.2k, 38.4k, 57.6 | 5k, 115.2k       |
| SNP Slave                      | 1200, 2400, 4800, 9600, 19.2k, 38.4  | k, 57.6k, 115.2k |
| Serial I/O                     | 1200, 2400, 4800, 9600, 19.2k, 38.4  | k, 57.6k, 115.2k |

<sup>&</sup>lt;sup>96</sup> Modbus Master is supported in application code in Serial I/O mode.

## 16.18 PROFIBUS Master Module: IC695PBM300

The RX3i PROFIBUS Master Module, IC695PBM300, allows the RX3i CPU to send and receive data on a PROFIBUS-DP network.

Figure 407: IC695PBM300



#### 16.18.1 Features

The IC695PBM300 module provides the following features:

- supports up to 125 PROFIBUS-DP slaves
- supports up to 244 bytes of input data and 244 bytes of output data per slave
- Supports up to 3,584 bytes of input data and 3,584 bytes of output data total
- Supports all standard data rates
- Supports Sync and Freeze modes
- Supports DP-V1 Read, Write and Alarm messages
- PROFIBUS-compliant Module and Network Status LEDs

This module must be located in an RX3i Universal Backplane. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

For more information about this module, please refer to the *PACSystems RX3i PROFIBUS Module User's Manual*, GFK-2301.

#### 16.18.2 PROFIBUS Master Module Controls and Indicators

#### **Network Connector**

The PROFIBUS Master module has a 9-pin sub-D connector for attaching the bus cable. For pin assignments, segment length, cable type and termination requirements, refer to the *RX3i PACSystems PROFIBUS Modules User's Manual*, GFK-2301.

#### **LEDs**

The PROFIBUS Master module provides three PROFIBUS-compliant LEDs that indicate module and network status.

- The green OK LED indicates the presence of power, and completion of backplane reset.
- The bicolor Network LED is steadily yellow when Module is holding the PROFIBUS token and able to transmit PROFIBUS telegrams. It flashes yellow if Module is sharing the network with another PROFIBUS master. The Network LED is red if a communications problem such as a connection timeout exists with at least one slave on the network.
- The bi-color Mod Status LED indicates module status. When this LED is steadily green, Module is configured and has established a connection with a least one device on the network. If it is flashing green, Module may be waiting for a configuration or may have a firmware problem. If it is flashing yellow, Module is in boot loader mode, downloading firmware, or has a non-recoverable error. The rate of LED flashing provides additional status information as described in the RX3i PROFIBUS Modules User's Manual.

# 16.18.3 Specifications: PBM300

| PBM300                        | Specifications                                                     |
|-------------------------------|--------------------------------------------------------------------|
| Backplane Current Consumption | 440 mA at 3.3Vdc                                                   |
| Data rates                    | Supports all standard data rates (9.6 kbps, 19.2 kbps, 93.75 kbps, |
|                               | 187.5 kbps, 500 kbps, 1.5 Mbps, 3 Mbps, 6 Mbps and 12 Mbps)        |
| Status Information Available  | Slave Status Bit Array Table                                       |
|                               | Network Diagnostic Counters                                        |
|                               | DP Master Diagnostic Counters                                      |
|                               | Firmware Module Revision                                           |
|                               | Slave Diagnostic Address                                           |

#### 16.19 PROFIBUS Slave Module: IC695PBS301

The IC695PBS301 provides slave communications on a PROFIBUS DP network. The slave module automatically exchanges data with a master device. The slave module has no bus access rights. It can only acknowledge received messages or transmit messages to a master upon request.

The PROFIBUS Slave module provides the following PROFIBUS communications features:

- Ability to read up to 244 bytes of input data from the network, and send up to 244 bytes of output data
- Support for all standard PROFIBUS data rates
- Support for DP-V1 Read, Write and Alarm messages
- PROFIBUS-compliant module and network status LEDs

This module must be located in an RX3i Universal Backplane. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to Section 2.6.4, *Hot Insertion and Removal*.

The PROFIBUS module receives its firmware upgrades indirectly from the host controller CPU using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.<sup>24</sup>

Figure 408: IC695PBS301



## 16.19.1 PROFIBUS Slave Module Controls and Indicators

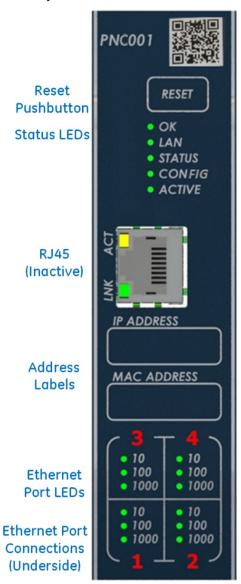
#### **Network Connector**

The PROFIBUS Slave module has a 9-pin sub-D connector for attaching the bus cable. For pin assignments, segment length, cable type and termination requirements, refer to the *RX3i PACSystems PROFIBUS Modules User's Manual*, GFK-2301.

#### **LEDs**

The PROFIBUS Slave module provides three PROFIBUS-compliant LEDs that indicate module and network status.

- The green PROFIBUS OK LED indicates the presence of power, and completion of backplane reset.
- The bicolor Network LED is yellow when Module is able to transmit PROFIBUS telegrams. It is red if a critical communications problem has occurred.
- The bi-color Mod Status LED indicates module status. When this LED is steadily green, Module is configured and has established a connection with the network master. If it is flashing green, Module may be waiting for a configuration or may have a firmware problem. If it is flashing yellow, Module is in boot loader mode, downloading firmware, or has a non-recoverable error. The rate of LED flashing provides additional status information as described in the *RX3i PROFIBUS Modules User's Manual*.


# 16.19.2 Specifications: PBS301

| PBS301             | Specifications                                                                               |
|--------------------|----------------------------------------------------------------------------------------------|
| Backplane current  | 440mA at 3.3Vdc                                                                              |
| consumption        |                                                                                              |
| Data rates         | Supports all standard data rates (9.6 kbps, 19.2 kbps, 93.75 kbps, 187.5 kbps, 500 kbps, 1.5 |
|                    | Mbps, 3 Mbps, 6 Mbps and 12 Mbps)                                                            |
| Status information | Slave Status Word                                                                            |
| available          |                                                                                              |

For product standards and general specifications, refer to Appendix A:.

#### 16.20 PROFINET Controller Module: IC695PNC001

# Figure 409: IC695PNC001 (-Bxxx version)



The PACSystems RX3i PROFINET Controller (PNC) module, IC695PNC001<sup>97</sup>, connects a PACSystems RX3i controller to a high-speed PROFINET local area network. It enables the RX3i controller to communicate with IO-Devices on the LAN. The PNC module provides all the functions, services, and protocols required for certification as a PROFINET IO Version 2.2 IO Controller, running at both 100 Mbps and 1 Gbps.

The PNC supports 10/100/1000 Mbps Copper, 100/1000 Mbps Multimode Fiber, and 100/1000 Mbps Single-mode Fiber. The LAN can include media interfaces of more than one type. PROFINET communications on the LAN require 100 and 1000 Mbps link speed. 10 Mbps cannot be used for PROFINET communications. However, 10 Mbps can be used for other types of Ethernet traffic such as ping and telnet.

#### 16.20.1 Features:

- Full programming and configuration services for the PROFINET Controller, VersaMax PROFINET Scanner and third-party IO-Devices using PAC Machine Edition.
- Firmware upgrades using the WinLoader software utility (if the host CPU has a serial port) or using a Web-based tool (if the host CPU has no serial port). Instructions are included with the firmware upgrade kit.
- Support for star, ring, and daisy-chain/line network topologies.
- Four switched Ethernet ports two 8-conductor RJ-45 shielded twisted pair 10/100/1000 Mbps copper interfaces and two Small Form-factor Pluggable (SFP) cages for user-supplied SFP devices.
- Internal clock synchronized with the RX3i CPU for time-stamped diagnostics entries.
- Reset pushbutton to manually restart Module without power cycling the system.
- LEDs: OK, LAN, STATUS, CONFIG, ACTIVE, and four banks of Port LEDs.
- Compliant with EU RoHS Directive 2002/95/EC using the following exemptions identified in the Annex: 7c-I and & 7c-III.

For installation instructions and operating details, refer to the following manuals: *PACSystems RX3i PROFINET Controller Manual*, GFK-2571 *PACSystems RX3i PROFINET Controller Command Line Interface Manual*, GFK-2572 *PACSystems HSB Hot Standby CPU Redundancy User's Manual*, GFK-2308.

<sup>&</sup>lt;sup>97</sup> Refer to GFK-2571K or later for details concerning hardware differences between -Ax and -Bxxx versions of PNC001.

# 16.20.2 Specifications: PNC001

| PNC001                                        | Specifications                                                      |                                      |
|-----------------------------------------------|---------------------------------------------------------------------|--------------------------------------|
| PROFINET Support                              | PROFINET Version 2.2 General Class A IO-Controller                  |                                      |
|                                               | Redundantly controlled operation conforms to PROFINET V2.3 Type S-2 |                                      |
|                                               | System Redundancy.                                                  |                                      |
|                                               | Note that the CPE100 / CPE115 is a s                                | implex PROFINET IO-Controller.       |
| CPU Compatibility                             | Requires CPU315, CPU320, CPE302/0                                   | CPE305, CPE310 or CPE330 with        |
|                                               | firmware version 7.0 or higher.                                     |                                      |
|                                               | Simplex or redundantly-controlled P                                 | ROFINET I/O requires CRU320          |
|                                               | release 8.00 or higher.                                             |                                      |
|                                               | For the current status of CPE330 feat                               | tures, refer to PACSystems RX3i and  |
|                                               | RSTi-EP CPU Reference Manual, (GFK-2                                | 222Z or later).                      |
|                                               | Note that CPE400, CPL410, EPXCPE20                                  | 05/210/215/220/240 and               |
|                                               | CPE100/CPE115 feature an embedde                                    | ed PROFINET IO-Controller; these are |
|                                               | standalone CPUs that do not suppor                                  | t IC695PNC001.                       |
| Power Requirements <sup>98</sup> ,            | RevAx:                                                              | RevBxxx:                             |
| with no SFP devices installed                 | 3.3Vdc: 0.5A                                                        | 3.3Vdc: 0.5A                         |
| with two SFP devices installed, 0.35A per SFP | 3.3Vdc: 1.2A maximum                                                | 3.3Vdc: 1.2A maximum                 |
|                                               | 5 Vdc: 1.5A maximum                                                 | 5 Vdc: 0.75A maximum                 |
| Operating Temperature Range98                 | RevAxxx:                                                            | RevBxxx:                             |
|                                               | 0°C to 60°C                                                         | -25°C to 60°C                        |
|                                               | Note: See GFK-2571K, Section 1.4 for de-rating conditions           |                                      |
| Number of PROFINET Port Connectors98          | PNC001 –2 RJ45 and 2 SFP Cages loca                                 | ated on the underside of module      |
|                                               | (SFP devices not included, available separately).                   |                                      |
|                                               | Embedded PROFINET IO-Controller -                                   | - 2 RJ45.                            |
| Front Panel Connectors <sup>98</sup>          | PNC001-Ax: One micro USB for comr                                   | nunication with a computer using     |
|                                               | Command Line Interface.                                             |                                      |
|                                               | PNC001-Bxxx: One RJ45. Disabled.                                    |                                      |
| Command Line Interface Supported              | PNC001-Ax – Yes. PNC001-Bxxx: No.                                   |                                      |
| Embedded PROFINET IC                          |                                                                     | - No.                                |
| LAN <sup>98</sup>                             | IEEE 802.2 Logical Link Control Class                               | I                                    |
|                                               | IEEE 802.3 CSMA/CD Medium Access Control 10/100/1000 Mbps           |                                      |
| Maximum I/O Memory                            | 128 Kbytes of combined input/outpu                                  | t memory per PROFINET Controller     |
|                                               | Note: RSTi-EP CPE100/CPE115 sup                                     | port a maximum of 8 IO Devices.      |
|                                               | The combined input and output mer                                   | nory is equivalent to the input      |
|                                               | /output memory requirements of the                                  | ose 8 devices.                       |
| Hot-swappable                                 | PNC001 – Yes;                                                       |                                      |
|                                               | Embedded PROFINET IO-Controller – No.                               |                                      |

<sup>&</sup>lt;sup>98</sup> For CPE400, CPL410, CPE330 EPXCPE205/210/215/220/240 and CPE100/CPE115, refer to the equivalent product specifications in the PACSystems RX3i and RSTi-EP CPU Reference Manual, (GFK-2222AE or later).

| PNC001                                   | Specifications                                                               |
|------------------------------------------|------------------------------------------------------------------------------|
| CPU Status Bits                          | 32                                                                           |
| PROFINET IO-Device Data Update Rates on  | Configurable: 1ms, 2ms, 4ms, 8ms, 16ms, 32ms, 64ms, 128ms, 256ms             |
| the PROFINET Network                     | and 512ms                                                                    |
|                                          | <i>Note</i> : For CPE100/CPE115, Update Rates below 16ms are not             |
|                                          | recommended.                                                                 |
| Number of IP Addresses                   | One                                                                          |
| Number of MAC Addresses                  | PNC001 – 5. One per external PROFINET port and one internal.                 |
|                                          | Embedded PROFINET IO-Controller – 1.                                         |
| System Maximum Limits                    |                                                                              |
| PROFINET Controllers per RX3i CPU        | Four PNC001 maximum. Must be located in main CPU rack. Cannot be             |
|                                          | located in a remote node.                                                    |
|                                          | CPE330 supports one embedded PROFINET Controller plus up to four             |
|                                          | PNC001.                                                                      |
|                                          | CPE400, CPL410, EPXCPE205/210/215/220/240 & CPE100/CPE115 support            |
|                                          | one embedded PROFINET Controller. Since these are standalone CPUs,           |
|                                          | they do not support any PNC001 in their hardware configuration.              |
| Max IO-Devices per IO-Controller (at the | PNC001 – 128                                                                 |
| maximum update rate interval, 16ms to    | CPE330/CPE400 – 32 (simplex) or 20 (Hot Standby Redundancy)                  |
| 256ms)                                   | CPL410 – 64 (simplex) or 32 (Hot Standby Redundancy)                         |
|                                          | EPXCPE205 – 8                                                                |
|                                          | EPXCPE210/215 - 16                                                           |
|                                          | EPXCPE220/240 - 32                                                           |
|                                          | RSTi-EP CPE100/CPE115 – 8                                                    |
|                                          | For limits at shorter update intervals, refer to PROFINET Controller Loading |
|                                          | Limits in GFK-2571K, Chapter 3.                                              |
| Max MRP Clients when configured as MRP   | PNC001 - 63                                                                  |
| Manager                                  | Embedded PROFINET Controller CPE330/CPE400 – 31                              |
|                                          | Embedded PROFINET Controller CPL410 – 63                                     |
|                                          | Embedded PROFINET Controller EPXCPE205 – 7                                   |
|                                          | Embedded PROFINET Controller EPXCPE210/215 - 15                              |
|                                          | Embedded PROFINET Controller EPXCPE220/240 – 31Embedded                      |
|                                          | PROFINET Controller CPE100/CPE115 <sup>99</sup> – 8                          |
| IO-Devices per Network                   | Maximum of 255 simplex or 255 redundant I/O Devices per network,             |
|                                          | spread across a maximum of 8 I/O Controllers.                                |
|                                          | The actual total number of devices supported per network depends on          |
|                                          | the topology. For details, refer to GFK-2571K                                |
| IO-Devices per RX3i CPU                  | Maximum of 255 simplex or 255 redundant I/O Devices per RX3i CPU,            |
|                                          | spread across up to four PROFINET Controllers. <sup>100</sup>                |

<sup>&</sup>lt;sup>99</sup> Effective with firmware v9.30, CPE100/CPE115 support MRP.

<sup>&</sup>lt;sup>100</sup> In the case of CPE330, with embedded PROFINET activated, it is possible to have five PROFINET Controllers.

| PNC001                                    | Specifications                                                          |
|-------------------------------------------|-------------------------------------------------------------------------|
| IO-Devices per RSTi-EP CPU                | Maximum of 8 simplex I/O Devices for CPE100/CPE115.                     |
|                                           | Maximum of 32 simplex I/O Devices for EPXCPEs.                          |
| IO-Controllers per Network                | Eight maximum                                                           |
| Input and output memory per IO-Controller | Maximum of 128 Kbytes combined input and output memory                  |
|                                           | <i>Note</i> : RSTi-EP CPE100/CPE115 support maximum 8 IO Devices so the |
|                                           | combined input and output memory is equivalent to maximum input         |
|                                           | /output memory supported by 8 devices.                                  |
| Number of PROFINET Slots per device       | 256                                                                     |
| Number of PROFINET Subslots per slot      | 256                                                                     |
| Number of PROFINET Submodules per RX3i    | 2048                                                                    |
| CPU                                       |                                                                         |
| Programmer Limits                         |                                                                         |
| Number of IO-Controllers                  | 128 (32 RX3i CPU targets × 4 IO-Controllers per RX3i CPU)               |
| Number of IO-Devices                      | 2048 (128 per network × 16 PROFINET networks)                           |
| Total number of devices                   | 2176 (does not include backplanes, power supplies, or I/O modules)      |

For product standards and general specifications, refer to Appendix A:.

# 16.21 PROFINET Scanner Module: IC695PNS001/IC695PNS101

Figure 410: IC695PNS001-Bxxx



The PACSystems RX3i PROFINET Scanner (PNS) module, IC695PNS001, connects a remote universal RX3i I/O rack of Series 90-30 or RX3i modules to a PROFINET I/O Controller. The PROFINET Scanner scans Modules in its rack, retrieving input data and providing output data, and exchanges that data on the PROFINET I/O LAN at the configured production rate.

The PNS manages PROFINET communication and module configuration between an I/O Controller and modules in the remote rack. If network communications are lost, the PNS manages I/O states according to the individual module configurations.

The PNS supports 10/100/1000 Mbps Copper, 100/1000 Mbps Multi-mode Fiber, and 100/1000 Mbps Single-mode Fiber. PROFINET communications on the network require 100 or 1000 Mbps link speed. Although 10 Mbps cannot be used for PROFINET communications, 10 Mbps can be used for other types of Ethernet traffic such as PING.

IC695PNS101 provides all the features of IC695PNS001-Bxxx, but has been optimized for the Sequence of Events application. Refer to the *PACSystems RX3i Sequence of Events User Manual*, GFK-3050.

# 16.21.1 Features

- Programming and configuration services for all supported Series 90-30 and RX3i I/O Modules using PAC Machine Edition. Refer to table below for compatibility details.
- Support for daisy-chain/line, star, or ring (PROFINET Media Redundancy Protocol (MRP)) topologies.
- Four switched Ethernet ports two 8-conductor RJ-45 shielded twisted pair 10/100/1000 Mbps copper interfaces and two Small Form-factor Pluggable (SFP) cages for user-supplied SFP devices.
- The network can include media interfaces of more than one type.
- Support for transfer of I/O Device Name to another PNS module using an SD card. This eliminates the need to connect a configuration tool, such as PAC Machine Edition when replacing a module.

#### 16.21.2 Front Panel Port

The front-panel port is used for installing new firmware for the PNS001 module itself, and also for downstream modules which support indirect firmware upgrades. PNS001 revision –Bxxx is equipped with an RJ45 Ethernet port and supports secure firmware upgrade via a web browser. PNS001 revision -Axxx is equipped with a USB port and supports firmware upgrade using the WinLoader tool.<sup>24</sup>

For additional information, please refer to *PACSystems RX3i PROFINET Scanner Manual*, GFK-2737.

# 16.21.3 LED Indications: PNS001

#### **OK LED**

The OK LED indicates whether Module is able to perform normal operation.

| LED | Color     | Status |
|-----|-----------|--------|
|     | Green, on | OK     |
| 0   | Off       | Not OK |

#### **LAN LED**

The LAN LED indicates access to and activity on the Ethernet network. The LAN LED indicates network packets are being processed by the network interface (not just passing through the embedded switch).

| LED | Color       | Status                                    |
|-----|-------------|-------------------------------------------|
|     | Blinking on | The network interface in Module is active |
| 0   | Off         | No activity                               |

#### **STATUS LED**

The STATUS stays Green during normal operation.

| LED | Color         | Status                                                                        |
|-----|---------------|-------------------------------------------------------------------------------|
|     | Green, on     | Normal Operation                                                              |
|     | Red, blinking | A MAC address read from nonvolatile memory is invalid. Ports with invalid MAC |
|     |               | addresses remain disconnected from the Ethernet network.                      |

#### **CONN LED**

The CONN LED indicates the status of PROFINET connections.

| LED | Color           | Status                                                               |
|-----|-----------------|----------------------------------------------------------------------|
|     | Green, on       | At least one PROFINET connection (AR) exists with an I/O Controller. |
|     | Amber, blinking | No device name configured.                                           |
| 0   | Off             | No PROFINET connection (AR) exists.                                  |

#### **ACTIVE LED**

The active LED indicates the Scanner is connected to a PROFINET I/O Controller that is controlling the I/O data for the PNS's I/O modules.

| LED | Color     | Status                                                                                |  |
|-----|-----------|---------------------------------------------------------------------------------------|--|
|     | Green, on | PNS is connected to a PROFINET I/O Controller that is controlling I/O Module IO data. |  |
| 0   | Off       | PNS is not connected to a PROFINET I/O Controller.                                    |  |

Refer to the *PACSystems RX3i PROFINET Scanner Manual*, GFK-2737 for LED indications at power-up.

#### **Port LEDs**

The PROFINET Scanner Port LEDs differ between -Bxxx and -Axxx versions. Refer to the *PACSystems RX3i PROFINET Scanner Manual,* GFK-2737G or later, to understand the differences.

#### **Revision Axxx:**

| LED        | Color            | Status                                                          |
|------------|------------------|-----------------------------------------------------------------|
|            | Blue, on         | Link connected, 1000 Mbps                                       |
|            | Blue, blinking   | Port active, 1000 Mbps                                          |
|            | Green, on        | Link connected, 100 Mbps                                        |
|            | Green, blinking  | Port active, 100 Mbps                                           |
|            | Purple, on       | Link connected, 10 Mbps                                         |
|            | Purple, blinking | Port active, 10 Mbps                                            |
| $\bigcirc$ | Off              | The associated Ethernet port is not connected to an active link |
|            | Red, on          | Port 3 and port 4 only. Incompatible SFP plugged into port.     |

#### **Revision Bxxx:**

Port Number LED (Digit representing Port Number is backlit by an LED)

| LED        | Color   | Status                                             |
|------------|---------|----------------------------------------------------|
|            | Red, on | Port 3 and 4 only: Error such as incompatible SFP. |
| $\bigcirc$ | Off     | No Port error.                                     |

## 1000 Speed LED

| LED | Color          | Status                                                                      |
|-----|----------------|-----------------------------------------------------------------------------|
|     | Green on       | Link connected, 1000 Mbps                                                   |
|     | Green blinking | Port active, 1000 Mbps                                                      |
|     | Off            | The associated Ethernet port is not connected to an active link at 1000Mbps |

## 100 Speed LED

| LED        | Color           | Status                                                                     |
|------------|-----------------|----------------------------------------------------------------------------|
|            | Green, on       | Link connected, 100 Mbps.                                                  |
|            | Green, blinking | Port active, 100 Mbps                                                      |
| $\bigcirc$ | Off             | The associated Ethernet port is not connected to an active link at 100Mbps |

## 10 Speed LED

| LED     | Color           | Status                                                                    |
|---------|-----------------|---------------------------------------------------------------------------|
|         | Green, on       | Link connected, 10 Mbps.                                                  |
|         | Green, blinking | Port active, 10 Mbps                                                      |
| $\circ$ | Off             | The associated Ethernet port is not connected to an active link at 10Mbps |

## **USB LED**

The USB LED indicates activity on the USB port (-Axxx only).

| LED        | Color           | Status                    |
|------------|-----------------|---------------------------|
|            | Green, on       | A USB cable is connected. |
|            | Green, blinking | USB port activity         |
| $\bigcirc$ | Off             | No USB port activity      |

# 16.21.4 Specifications: PNS001

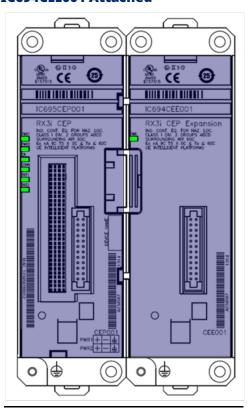
| PNS001                      | Specifications                                                             |                                              |  |
|-----------------------------|----------------------------------------------------------------------------|----------------------------------------------|--|
| PROFINET Support            | PROFINET Version 2.3 Class A IO-Device                                     |                                              |  |
|                             | Redundantly controlled operation conforms to PROFINET V2.3 Type S-2 System |                                              |  |
|                             | Redundancy.                                                                |                                              |  |
| Controller CPU Version      | RX3i CPU315/CPU320 with firmware version                                   | 7.10 or later RX3i CPE302/CPE305/CPE310      |  |
| Required                    | with firmware version 7.10 or later RXi Cont                               | roller with firmware version 7.80 or later   |  |
| PAC Machine Edition Version | Version 8.5 SIM2 or later                                                  |                                              |  |
| Required                    |                                                                            |                                              |  |
| Power Requirements          | Rev. –Bxxx or later:                                                       | Rev. –Axxx:                                  |  |
|                             | 3.3Vdc: 0.6A with no SFP devices installed,                                | 3.3 Vdc: 1.2A with no SFP devices installed, |  |
|                             | 1.3A maximum                                                               | 1.9A maximum                                 |  |
|                             | (two SFP devices installed, 0.35 A per SFP)                                | (two SFP devices installed, 0.35A per SFP)   |  |
|                             | Rev. –Bxxx or later:                                                       | RevAxxx:                                     |  |
|                             | 5 Vdc: 0.7 A maximum                                                       | 5 Vdc: 1.1A maximum                          |  |
| Operating Temperature       | RevBxxx or later:                                                          | RevAxxx:                                     |  |
| Range                       | -25°C to 60°C de-rated to 57°C:                                            | 0°C to 60°C de-rated to 57°C:                |  |
|                             | If 100 Mbps Fiber SFPs installed, or                                       | If 100 Mbps Fiber SFPs installed, or         |  |
|                             | If Copper SFPs operating at 1 Gbps                                         | • If Copper SFPs operating at 1 Gbps         |  |
| Number of PROFINET Ports    | orts Two RJ45 and Two SFP Cages                                            |                                              |  |
|                             | (SFP devices not included, available separat                               | tely.)                                       |  |
| Front Ethernet Port         | Rev. –Bxxx or later:                                                       | Rev. – Axxx:                                 |  |
| (for firmware upgrades)     | One RJ45 supporting 10/100/1000Mbps                                        | One Micro-USB connector. USB 2.0             |  |
|                             | Ethernet for firmware upgrades.                                            | compliant running at full-speed (12 MHz)     |  |
| SD Card                     | Supports SD and SDHC cards.                                                |                                              |  |
| PNS Status and              | 32 input status bits and 32 output control bi                              | its                                          |  |
| Control Bits                |                                                                            |                                              |  |
| PROFINET I/O production     | Configurable selections: 1, 2, 4, 8, 16, 32, 64                            | , 128, 256 or 512 ms                         |  |
| rate (ms)                   |                                                                            |                                              |  |
| (I/O Update Rate)           |                                                                            |                                              |  |
| Number of MAC Addresses     | RevBxxx or later: 6                                                        | RevAxxx: 5                                   |  |
|                             | One per external port (including additional                                | One per external port and one internal.      |  |
|                             | front panel port) and one internal for                                     |                                              |  |
|                             | switched ports.                                                            |                                              |  |
| I/O Station Maximum Limits  | Number of                                                                  | Number of backplane slots in the host RX3i   |  |
|                             | I/O Modules                                                                | rack                                         |  |
|                             | per station                                                                | less one for PNS001 module itself            |  |
|                             |                                                                            | less the number of slots occupied by the     |  |
|                             |                                                                            | RX3i power supply                            |  |

| PNS001                                                                                                                                                                                                                                               | Specifications                           |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|
|                                                                                                                                                                                                                                                      | I/O data                                 | 2880 bytes total                              |
|                                                                                                                                                                                                                                                      | per station                              | 1440 bytes of input data                      |
|                                                                                                                                                                                                                                                      |                                          | 1440 bytes of output data                     |
| Configuration  V2.3 GSDML file.  The file is included with PAC Machine Edition; available for import into  Note: Configuration software that supports GSDML V2.3 Menu List  (such as PAC Machine Edition 8.0 or later) is required to display the co |                                          |                                               |
|                                                                                                                                                                                                                                                      |                                          | n; available for import into 3rd-Party tools. |
|                                                                                                                                                                                                                                                      |                                          | ts GSDML V2.3 Menu List elements              |
|                                                                                                                                                                                                                                                      |                                          | required to display the configuration         |
|                                                                                                                                                                                                                                                      | parameters of most IC695xxx I/O modules. |                                               |

For product standards and general specifications, refer to Appendix A:.

At the time of publication, the following CPU firmware, programming software and backplane hardware versions are required. Refer to the *PACSystems RX3i PROFINET Scanner Manual*, GFK-2737, for updated information.

# 16.21.5 Compatibility: PNS001


| PNS001                      | Compability                                                                       |                                                                                 |  |  |
|-----------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Controller CPU firmware     | CPE400, CPL410 with LAN2 config                                                   | CPE400, CPL410 with LAN2 configured as embedded PROFINET Controller.            |  |  |
|                             | EPXCPE205/210/215/220/240 with                                                    | EPXCPE205/210/215/220/240 with LAN2 configured as embedded PROFINET Controller. |  |  |
|                             | EPSCPE100/115 with LAN2 configured as embedded PROFINET Controller.               |                                                                                 |  |  |
|                             | CPU330 firmware version 8.45 or                                                   | later                                                                           |  |  |
|                             | CPU315/CPU320 firmware versio                                                     | n 7.10 or later                                                                 |  |  |
|                             | CPE302/CPE305/CPE310 firmware                                                     | e version 7.10 or later                                                         |  |  |
|                             | RXi Controller firmware version 7                                                 | .80 or later                                                                    |  |  |
|                             | CRU320 Primary Firmware versio                                                    | n 8.00                                                                          |  |  |
| Programmer software         | PAC Machine Edition version 8.50                                                  | SIM 2 or later                                                                  |  |  |
| RX3i PROFINET Controller    | IC695PNC001 with firmware vers                                                    | ion 1.20 or later (Simplex I/O)                                                 |  |  |
|                             | IC695PNC001 with firmware vers                                                    | ion 2.00 or later (Redundant I/O)                                               |  |  |
| RX3i backplane hardware     | The following <b>minimum</b> backplar                                             | e hardware revision <i>must</i> be used:                                        |  |  |
|                             | IC695CHS012-BAMP                                                                  |                                                                                 |  |  |
|                             | IC695CHS016-BAMP                                                                  |                                                                                 |  |  |
|                             | IC695CHS012CA-BAMP                                                                |                                                                                 |  |  |
|                             | IC695CHS016CA-BAMP                                                                |                                                                                 |  |  |
|                             | or                                                                                |                                                                                 |  |  |
|                             | IC695CHS012-CA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS016-CA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS012CA-CA (or later)                                                       |                                                                                 |  |  |
|                             | IC695CHS016CA-CA (or later)                                                       |                                                                                 |  |  |
|                             | or                                                                                |                                                                                 |  |  |
|                             | IC695CHS007-AA (or later)                                                         |                                                                                 |  |  |
|                             | When installing, operating, or maintaining the IC695PNS001, personnel must ensure |                                                                                 |  |  |
|                             | any electrostatic charge is discharged through the use of a grounded ESD strap or |                                                                                 |  |  |
|                             | other means. This requirement does not apply if the IC695PNS001 is used with the  |                                                                                 |  |  |
|                             | following backplane revisions:                                                    |                                                                                 |  |  |
|                             | IC695CHS012-EA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS016-EA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS012CA-EA (or later)                                                       |                                                                                 |  |  |
|                             | IC695CHS016CA-EA (or later)                                                       |                                                                                 |  |  |
|                             | or                                                                                |                                                                                 |  |  |
|                             | IC695CHS007-BA (or later)                                                         | IC695CHS007-BA (or later)                                                       |  |  |
| Small form-factor pluggable | IC695SPC100A or later                                                             | RX3i 10/100/1000Base-T copper SFP                                               |  |  |
| modules                     | IC695SPF002A or later                                                             | RX3i 100Base-FX (fiber 2 km) SFP                                                |  |  |
|                             |                                                                                   | (Multi-mode fiber - MMF)                                                        |  |  |
|                             | IC695SPF550A or later                                                             | RX3i 1000Base-SX (fiber 550 m) SFP (MMF)                                        |  |  |
|                             | IC695SPF010A or later                                                             | RX3i 1000Base-LX (fiber 10 km) SFP                                              |  |  |
|                             |                                                                                   | (Single-mode fiber - SMF)                                                       |  |  |
| RX3i modules                | For a complete list, refer to PACSystems RX3i PROFINET Scanner Manual, GFK-2737.  |                                                                                 |  |  |

# 16.21.6 Compatibility: PNS101

| PNS101                      | Compatibility                                                                     |                                                                                 |  |  |
|-----------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Controller CPU firmware     | CPE400, CPL410 with LAN2 configured as embedded PROFINET Controller.              |                                                                                 |  |  |
|                             | EPXCPE205/210/215/220/240 wit                                                     | EPXCPE205/210/215/220/240 with LAN2 configured as embedded PROFINET Controller. |  |  |
|                             | EPSCPE100/115 with LAN2 configured as embedded PROFINET Controller.               |                                                                                 |  |  |
|                             | CPU330 firmware version 9.55 or                                                   | later                                                                           |  |  |
|                             | CPU315/CPU320 firmware versio                                                     | n 7.10 or later                                                                 |  |  |
|                             | CPE302/CPE305/CPE310 firmware                                                     | e version 7.10 or later                                                         |  |  |
|                             | RXi Controller firmware version 7                                                 | .80 or later                                                                    |  |  |
|                             | CRU320 Primary Firmware versio                                                    | n 8.00                                                                          |  |  |
| Programmer software         | PAC Machine Edition version 9.50                                                  | SIM 8 or later                                                                  |  |  |
| RX3i PROFINET Controller    | IC695PNC001 with firmware vers                                                    | ion 1.20 or later (Simplex I/O)                                                 |  |  |
|                             | IC695PNC001 with firmware vers                                                    | ion 2.00 or later (Redundant I/O)                                               |  |  |
| RX3i backplane hardware     | The following <i>minimum</i> backplar                                             | ne hardware revision <i>must</i> be used:                                       |  |  |
|                             | IC695CHS012-BAMP                                                                  |                                                                                 |  |  |
|                             | IC695CHS016-BAMP                                                                  |                                                                                 |  |  |
|                             | IC695CHS012CA-BAMP                                                                |                                                                                 |  |  |
|                             | IC695CHS016CA-BAMP                                                                | IC695CHS016CA-BAMP                                                              |  |  |
|                             | or                                                                                | or                                                                              |  |  |
|                             | IC695CHS012-CA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS016-CA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS012CA-CA (or later)                                                       |                                                                                 |  |  |
|                             | IC695CHS016CA-CA (or later)                                                       |                                                                                 |  |  |
|                             | or                                                                                |                                                                                 |  |  |
|                             | IC695CHS007-AA (or later)                                                         |                                                                                 |  |  |
|                             | When installing, operating, or maintaining the IC695PNS101, personnel must ensure |                                                                                 |  |  |
|                             | any electrostatic charge is discharged through the use of a grounded ESD strap or |                                                                                 |  |  |
|                             | other means. This requirement does not apply if the IC695PNS101 is used with the  |                                                                                 |  |  |
|                             | following backplane revisions:                                                    |                                                                                 |  |  |
|                             | IC695CHS012-EA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS016-EA (or later)                                                         |                                                                                 |  |  |
|                             | IC695CHS012CA-EA (or later)                                                       |                                                                                 |  |  |
|                             | IC695CHS016CA-EA (or later)                                                       |                                                                                 |  |  |
|                             | or                                                                                |                                                                                 |  |  |
|                             | IC695CHS007-BA (or later)                                                         |                                                                                 |  |  |
| Small form-factor pluggable | IC695SPC100A or later                                                             | RX3i 10/100/1000Base-T copper SFP                                               |  |  |
| modules                     | IC695SPF002A or later                                                             | RX3i 100Base-FX (fiber 2 km) SFP                                                |  |  |
|                             |                                                                                   | (Multi-mode fiber - MMF)                                                        |  |  |
|                             | IC695SPF550A or later                                                             | RX3i 1000Base-SX (fiber 550 m) SFP (MMF)                                        |  |  |
|                             | IC695SPF010A or later                                                             | RX3i 1000Base-LX (fiber 10 km) SFP                                              |  |  |
|                             |                                                                                   | (Single-mode fiber - SMF)                                                       |  |  |
| RX3i modules                | For a complete list, refer to PACSystems RX3i PROFINET Scanner Manual, GFK-2737.  |                                                                                 |  |  |

# 16.22 RX3i CEP Carrier: IC695CEP001 RX3i CEP Expansion Carrier: IC694CEE001

# Figure 411: IC695CEP001 with IC694CEE001 Attached



The PACSystems RX3i Carrier IC695CEP001 interfaces a remote node, consisting of one RX3i I/O module, to a PROFINET I/O Local Area Network (LAN).

The optional RX3i Expansion Carrier IC694CEE001 attaches to the RX3i CEP001 Carrier and provides the ability to add one additional RX3i IC694 I/O module to the remote node.

The RX3i CEP001 Carrier functions as a PROFINET IO-Device. The RX3i CEP001 Carrier's main Remote I/O functions include:

- Scanning all Modules within the remote node (input and output scan)
- Publishing data on the PROFINET network to a PROFINET IO-Controller at a user-specified production period
- Receiving data from a PROFINET IO-Controller on the PROFINET network at a customer-specified production period
- Managing PROFINET communication and module configuration between a PROFINET IO-Controller and modules within the remote node
- Managing the state of the I/O when communications is lost
- Publishing fault information (alarms, diagnostics, and such) to the PROFINET IO-Controller
- Provides power to the CEE001 Expansion Carrier

The insertion and removal of I/O modules is the same as in an RX3i Universal Backplane.

The RX3i CEP001 Carrier provides two RJ-45 Ethernet receptacles. It supports 10/100BASE-TX Ethernet standard interface.

#### 16.22.1 Features

- Full programming and configuration services for all supported RX3i I/O Modules using PAC Machine Edition. Refer to the section, <u>Supported I/O</u> Modules.
- Support daisy-chain/line, star, or ring (redundant media) network topologies.
- Two switched Ethernet ports: two eight-conductor RJ-45 shieldedtwisted pair 10/100 Mbps copper interfaces.
- USB port for field updates of firmware using WinLoader.
- Supports Hot-standby CPU Redundancy using PROFINET I/O: requires RX3i CEP001 2.01 GSDML version 2.3 or later.
- Supports HART® Pass Through using PROFINET.

**Note**: The USB port is for firmware upgrades only. It is not intended for permanent connection.

**Note**: The CEP001 Carrier requires a user-supplied +24 Vdc power source.

# 16.22.2 Normal Operation of Individual LEDs: CEP001 & CEE001

#### **Power LEDs**

The RX3i CEP001 Carrier has two Power LEDs, PWR1 and PWR2 that indicate whether the power is applied and is within range corresponding to the two power sources.

| LED | Color     | Status                                              |  |  |  |
|-----|-----------|-----------------------------------------------------|--|--|--|
|     | Green, ON | Power is applied at the minimum specified level     |  |  |  |
|     | OFF       | The power supply does not have power or has failed. |  |  |  |

<sup>&</sup>lt;sup>®</sup> HART<sup>®</sup> is a registered trademark of the HART Communication Foundation of Austin, Texas USA. Any use of the term HART hereafter in this document, or any document referenced by this document, implies the registered trademark.

#### **OK LED**

The OK LED indicates whether the CEP001 Carrier is able to perform normal operation.

| LED        | Color                | Status                                                  |  |  |  |
|------------|----------------------|---------------------------------------------------------|--|--|--|
|            | Green, ON            | RX3i CEP001 is OK                                       |  |  |  |
|            | Amber, ON            | Either the RX3i CEP001 Carrier or IO module has a fault |  |  |  |
|            | Amber, blink pattern | Fatal error. Flashes once between error codes.          |  |  |  |
|            | Fast blinking        | CEP001 has no valid MAC addresses                       |  |  |  |
| $\bigcirc$ | OFF                  | CEP001 has an unrecoverable fault                       |  |  |  |

## **Connect LED**

The CONN LED indicates the status of PROFINET connections.

| LED | Color                | Status                                                              |  |  |  |
|-----|----------------------|---------------------------------------------------------------------|--|--|--|
|     | Green, ON            | At least one PROFINET connection (AR) exists with an IO-Controller  |  |  |  |
|     | Amber, blink pattern | Fatal error. Flashes once between error codes blinked on the OK LED |  |  |  |
|     | Amber, blink in 1Hz  | No device name configured                                           |  |  |  |
|     | OFF                  | No PROFINET connection (AR) exists                                  |  |  |  |

#### **Port LEDs**

The RX3i CEP001 has two Port LEDs, PRT1 and PRT2 that indicate link speed, link connection and link activity corresponding to the two external Ethernet ports.

| LED        | Color                | Status                                                                  |  |  |  |  |
|------------|----------------------|-------------------------------------------------------------------------|--|--|--|--|
|            | Green, ON            | Link connected, 100 Mbps                                                |  |  |  |  |
|            | Green, blinking      | Port active, 100 Mbps                                                   |  |  |  |  |
|            | Amber, ON            | Link connected, 10 Mbps                                                 |  |  |  |  |
|            | Amber, blinking      | Port active, 10 Mbps                                                    |  |  |  |  |
|            | Amber, blink pattern | Fatal error. Flashes once between error codes blinked on the OK LED     |  |  |  |  |
| $\bigcirc$ | OFF                  | The associated Ethernet port is not connected to an active link (can be |  |  |  |  |
|            |                      | disabled by configuration)                                              |  |  |  |  |

**Note:** Multiple LEDs can blink in patterns that indicate special conditions, such as a request for module identification. Refer to *PACSystems RX3i PROFINET Scanner IC695CEP001 User Manual*, GFK-2883.

# Power LED (IC694CEE001)

The RX3i Expansion Carrier CEE001 has one PWR LED to indicate whether the power provided by the RX3i CEP001 Carrier is within range.

| LED        | Color     | Status                                            |
|------------|-----------|---------------------------------------------------|
|            | Green, ON | OK                                                |
|            | Amber, ON | Power 24Vdc and/or 5Vdc is not in specified range |
| $\bigcirc$ | OFF       | No power                                          |

# 16.22.3 Ordering Information

| Model       | Description                                              |  |  |
|-------------|----------------------------------------------------------|--|--|
| IC695CEP001 | RX3i CEP001 Carrier with RJ-45 Copper Ethernet Interface |  |  |
| IC694CEE001 | RX3i CEE001 Expansion Carrier                            |  |  |

# 16.22.4 Specifications

| Specification                                        | Description                                                                              |                                    |    |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------|----|--|--|
| PROFINET support                                     | PROFINET Version 2.3 Class A IO-Device                                                   |                                    |    |  |  |
| RX3i Controller version                              | IC695CPU315/CPU320/CPE302/CPE305/CPE310/CPE330/CRU320, firmware v8.50 or later           |                                    |    |  |  |
| required                                             | IC69PNC001 PROFINET IO-controller with firmware version 2.20 or later                    |                                    |    |  |  |
| PAC Machine Edition                                  | Version 8.6 with SIM 3 or later                                                          |                                    |    |  |  |
| version required                                     |                                                                                          |                                    |    |  |  |
|                                                      | IC695CEP001: 5.25W (0.22 A) at 24 Vdc                                                    |                                    |    |  |  |
| Power requirements <sup>101</sup>                    | with or without Expansion Carrier (IC69                                                  | 94CEE001)                          |    |  |  |
|                                                      | DC power supply input range: 19.2 to 3                                                   | 0 Vdc                              |    |  |  |
| Module dimensions                                    | 177.2 x 51 x 35 mm (6.98" x 2.01" x 1.38                                                 | "). Same for CEP001 and CEE001.    |    |  |  |
| Operating temperature                                | 0°C to 60°C (32°F to 140°F) maximum surrounding air temperature                          |                                    |    |  |  |
| Number of Ethernet port                              | ort IC695CEP001: Two RJ-45 10/100Base-TX receptacles                                     |                                    |    |  |  |
| connectors                                           | IC694CEE001: None                                                                        |                                    |    |  |  |
| USB connector (for                                   | IC695CEP001: One Micro-B connector. USB 2.0 compliant running at full-speed (12 MHz)     |                                    |    |  |  |
| firmware upgrades)                                   | in device mode                                                                           |                                    |    |  |  |
| mmware apgrades)                                     | IC694CEE001: None                                                                        |                                    |    |  |  |
| PNS status and control                               |                                                                                          | rol hits                           |    |  |  |
| bits 32 input status bits and 32 output control bits |                                                                                          | TOT DIES                           |    |  |  |
| I/O data update on the                               | Configurable: 1ms, 2ms, 4ms, 8ms, 16r                                                    | ns 32ms 64ms 128ms 256ms and 512ms |    |  |  |
| PROFINET LAN                                         | Configurable: 1ms, 2ms, 4ms, 8ms, 16ms, 32ms, 64ms, 128ms, 256ms and 512ms               |                                    |    |  |  |
| Number of IP addresses                               | One; supports Classless Inter-Domain Routing (CIDR)                                      |                                    |    |  |  |
| Number of MAC                                        | f MAC Three; one per external port and one internal. External MAC addresses are only use |                                    | or |  |  |
| addresses                                            | specialized Ethernet protocols such as MRP or LLDP.                                      |                                    |    |  |  |
|                                                      | Number of I/O modules per station                                                        | IC695CEP001: One                   |    |  |  |
| I/O station maximum                                  |                                                                                          | IC695CEP001 with IC694CEE001: Two  |    |  |  |
| limits                                               |                                                                                          | 1024 bytes total                   |    |  |  |
|                                                      | I/O data per station                                                                     | 512 bytes of input data            |    |  |  |
|                                                      |                                                                                          | 512 bytes of output data           |    |  |  |
|                                                      | Configured using PAC Machine Edition when used with a PACSystems RX3i PROFINET           |                                    |    |  |  |
| Configuration                                        | Controller module as part of an RX3i High-speed I/O LAN system.                          |                                    |    |  |  |
|                                                      | V2.3 GSDML file available for import into 3rd-Party tools.                               |                                    |    |  |  |

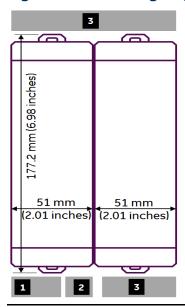
For product standards and general specifications, refer to Appendix A:.

<sup>&</sup>lt;sup>101</sup> Value does not include the power consumption of the installed I/O modules. When calculating the total power requirements, add the power consumption of the I/O modules according to the I/O module datasheet.

# 16.22.5 Quick Start: CEP001 & CEE001

# **Carrier Installation Requirements**

The CEP001 Carrier and optional Expansion Carrier CEE001 can be mounted on a DIN-rail or on a panel.


Adequate installation space is required for:

- Clearance for communications port cables.
- 2. Power wiring.
- 3. Operating the DIN latch.

The RX3i CEP001 Carrier with an I/O module attached requires an enclosure with minimum depth of 165 mm.

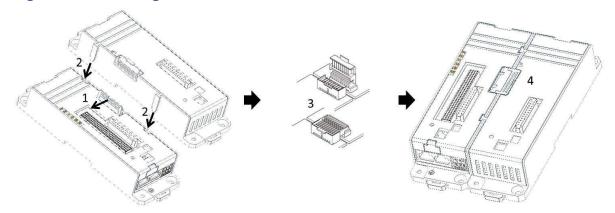

Rated thermal specifications are based on a clearance of 5.1 cm (2") above and below the equipment and 2.54 cm (1") to the left of the RX3i CEP001 Carrier.

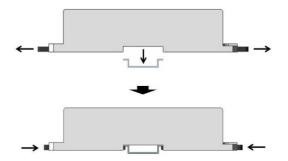
Figure 412: Mounting Diagram CEP001 & CEE001



# Connecting the CEE001 Expansion Carrier to the CEP001 Carrier

Figure 413: Attaching CEE001 to CEP001




- 1. Open the connector cap on the RX3i CEP001 Carrier.
- 2. Slide and install the RX3i CEE001 Expansion Carrier along the guide slots on the RX3i CEP001 Carrier.
- 3. When the Expansion Carrier is aligned with the CEP001 Carrier, engage the expansion connectors.
- 4. Close the connector cap.
- 5. Secure the Expansion Carrier to the DIN rail or panel. Refer to *Installing* an RX3i CEP001 Carrier on a DIN-rail or Panel Mounting.
- 6. Connect the grounding hole on the CEE001 to the panel or enclosure as described in *Grounding* below.

# **Installing an RX3i CEP001 Carrier on a DIN-rail**

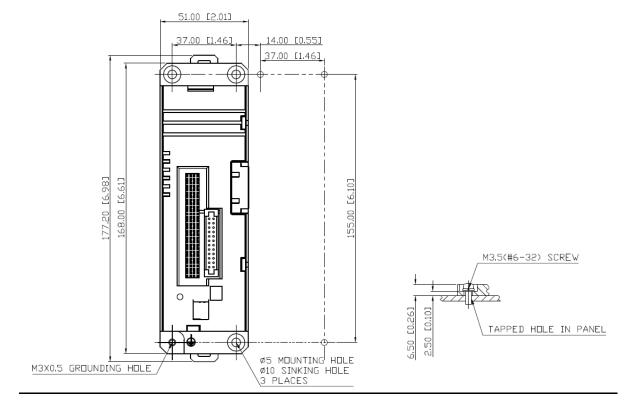
The carrier mounts on a standard EN 50022,  $35 \times 7.5$  mm DIN-rail. Conductive (unpainted) finish is required for proper grounding.

For best resistance to vibration, the DIN-rail should be installed horizontally on a panel using screws spaced approximately 15 cm (6") apart.

Figure 414: DIN Rail Mounting Sequence



- 1. With a small flathead screwdriver, pull out the two DIN-rail latches and stand the carrier on the DIN-rail.
- 2. Push in the two DIN-rail latches so that the latches hold the DIN-rail.


# **Panel Mounting**

For applications requiring maximum or long-term resistance to mechanical vibration and shock, the panel-mounting method is strongly recommended. A minimum panel thickness of 2.4 mm (.093") is required. The mounting diagram (Figure 415 below) applies to both the CEP001 Carrier and CEE001 Expansion Carrier.

**Note 1**: Tolerances on all dimensions are ±0.2 mm (0.078") non-cumulative.

**Note 2**: Apply 1.1 to 1.4 Nm (10 to 12 in/lbs) of torque to M3.5 (#6-32) steel screws threaded into tapped holes in the panel.

Figure 415: Panel Mounting Diagram: CEP001 or CEE001

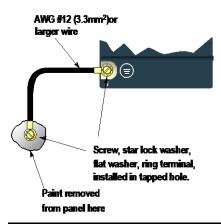


# **Grounding**

#### WARNING

All CEP001 Carriers in a system must be grounded to minimize electrical shock hazard. Failure to do so can result in severe personal injury.

The RX3i CEP001 Carrier and CEE001 Expansion Carrier each provide two grounding connection contacts:


- Grounding clips at the back of the carrier, which require DIN-rail installation
- Grounding screw hole at bottom-left of the carrier

**Note:** When the Carrier is mounted on a DIN-rail, the grounding clips on the back of the Carrier do not provide an adequate ground connection. The Carrier's metal back must also be grounded using a separate conductor.

Ground each Carrier to the panel or enclosure using a minimum AWG #12 (3.3 mm²) wire with ring terminals. Use an M3 screw, star lock washer and a flat washer to connect the wire at the Carrier's grounding hole. Connect the other end of the ground wire to a tapped hole in the grounded mounting panel or enclosure, using a machine screw, star lock washer and flat washer. Alternately, if the panel has a ground stud, use a nut and star lock washer for each wire on the ground stud to ensure adequate grounding. Where connections are made to a painted panel, the paint should be removed so clean, bare metal is exposed at the connection point. Terminals and hardware used should be rated to work with the aluminum carrier material.

**Note:** The star lock washer method is suitable for a shield ground, but not suitable for a safety ground.

**Figure 416: Ground Connection Diagram** 



# **Installing Modules on the Carrier**

The insertion and removal of I/O modules is the same as in an RX3i Universal Backplane.

#### **A** CAUTION

Do not install a Power Supply module on the CEP001 or CEE001 Carrier. Attempting to do so could damage Module and/or the Carrier.

## **Unsupported Modules**

When an unsupported I/O module is inserted into either the RX3i CEP001 Carrier or RX3i CEE001 Expansion Carrier, no alarm is reported to indicate this.

For the latest updated list of supported I/O modules, refer to the section, *Supported I/O Modules*.

Some unsupported I/O modules have the same Distinguishing Class (for example, IC694MDL740 has the same Distinguishing Class as IC694MDL742).

#### **A** CAUTION

If an unsupported module is inserted in the CEP001 or CEE001 Carrier, Module will not be recognized correctly and could cause damage to the Carrier or Module.

# **Connecting Power Supplies**

You will need:

**Note:** Two power supplies are required if using redundant power supplies.

- One 24 Vdc power supply which provides a low voltage/limited current (LVLC) power source. (For example, the combination of an isolated DC supply and a fuse, listed 30 Vdc minimum and 3 A maximum, connected in series with the input.)
- Power cord with 28 to16 AWG / 0.08 to1.32 mm<sup>2</sup> wires
- Ferrules for 28 to16 AWG wires (optional)
- Frame ground wire, 28 to16 AWG
- Input power terminal block; provided (WAGO Part Number 713-1103)
- Small flathead screwdriver (jeweler's size 14)

**Note:** For CE Mark purposes, input power lines to the CEP001 Carrier should be limited 30 m (98 ft) or less.

**Note:** Before inserting the wires into the power connector terminal block, use a small flathead screwdriver to release the spring clamp on the terminal block.

- 1. Using the power cord, attach the power supply to the power terminal block as diagrammed in Figure 417.
- 2. Recommended wire stripping length is 6 to 7 mm (0.25").
- 3. If using redundant power supplies, connect the second power supply to the input power terminal block.
- 4. Insert the input power terminal block into the Input Power connector.

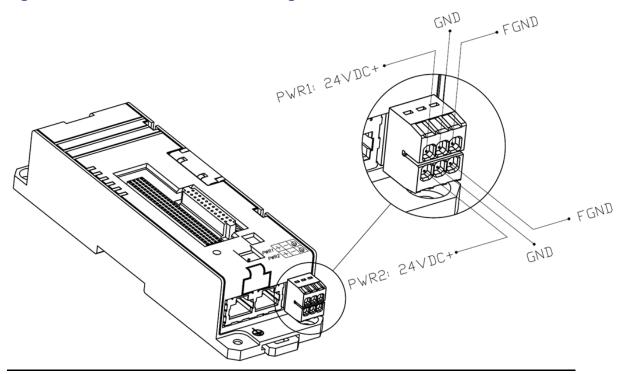

**Note:** There are no user-serviceable fuses in the CEP001 Carrier.

Figure 417: Power Terminal Block CEP001



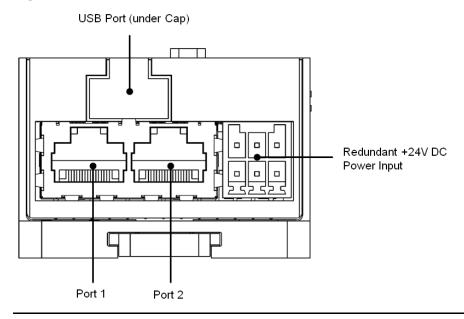
# **Connecting Power to RX3i CEP001 Carrier**

**Figure 418: CEP001 Power Terminal Wiring** 



# **Adding a Redundant Power Supply**

To add a redundant power supply to a system that is already in operation


- 1. Remove power from the primary power supply to the RX3i CEP001 carrier
- 2. Remove the power terminal block from the carrier.
- 3. Without disturbing the primary power supply input lines, connect the redundant power supply input lines to the power terminal block.
- 4. Insert the power terminal block into the Input Power connector.
- 5. Apply power to the redundant power supply. The PWR2 LED on the RX3i CEP001 carrier should turn on.
- 6. Apply power to the primary power supply. The PWR1 LED on the CEP001 Carrier should turn on.

**Note:** For the procedure to swap a redundant power supply, refer to *PACSystems RX3i PROFINET Scanner IC695CEP001 User Manual*, GFK-2883.

# Connecting the CEP001 to the PROFINET Network

The two external RJ-45 Ethernet ports, which provide 10/100 Mbps copper interfaces, are on the bottom of the CEP001 Carrier.

**Figure 419: Locations of Ethernet Ports CEP001** 



Devices connected to the RX3i CEP001 ports should have Ethernet Autonegotiation enabled. The RX3i CEP001 Carriers and other participating devices can be connected in a daisy-chain/line, or star topology.

# **A** CAUTION

Do not connect both ports on the Ethernet interface, directly or indirectly, to the same device so as to form a circular network unless Media Redundancy is enabled with one node actively set up as the Media Redundancy Manager.

## **Supported Network Media Types and Distances**

PROFINET I/O over-wired infrastructure must be 100Mbps full-duplex or faster. The hardware is capable of operating at 10Mbps but should not be used for PROFINET.

| Media Type    | Connector<br>Type | Wavelength<br>(nm) | Media Type      | Core<br>Size<br>(μm) | Modal<br>Bandwidth<br>(MHz – km) | Maximum<br>Distance |
|---------------|-------------------|--------------------|-----------------|----------------------|----------------------------------|---------------------|
| 10/100BASE-TX | RJ-45             | -                  | CAT5/CAT5e/CAT6 | •                    | -                                | 100 m (328 ft)      |

### Assigning an I/O Device Name to the CEP001

Before attempting to connect to or configure the CEP001, the I/O Device Name must be set with a Discovery and Configuration Protocol (DCP) tool.

# Configuring the CEP001/CEE001 Node and Resident I/O Modules on a PROFINET Network

PAC Machine Edition is the primary tool used to configure an RX3i PROFINET network. The GSDML file for the RX3i CEP001 is included with PAC Machine Edition, or may be downloaded from the support website link provided at the end of this document. To obtain the GSDML for import into a 3rd-Party tool, contact Emerson.

### 16.22.6 Supported I/O Modules

For a complete list of Supported I/O modules, refer to PACSystems RX3i CEP PROFINET Scanner User Manual, GFK-2883.

# 16.23 Genius Communications Gateway Module IC695GCG001

The RX3i Genius Communications Gateway, IC695GCG001 (GCG001), interfaces Genius I/O devices on a Genius Serial Bus to a PROFINET IO Controller (IC695PNC001).

The GCG001 operates as a Genius Bus Controller on a Genius network. It scans the Genius I/O devices configured to it, retrieving input data and providing output data. It then exchanges that data with its configured PROFINET IO Controller over its Ethernet interfaces at the configured production rate. The GCG001 can manage communications for up to 31 Genius I/O devices on a single Genius Serial Bus.

The GCG001 also operates as an I/O Device, controlled by the RX3i PROFINET IO Controller (PNC001) to which is attached. Thus, when correctly configured, the entire Genius Bus, including the GCG001 itself, becomes visible to the controlling PLC (in this case an RX3i). Note that the GCG001 operates only with PLC PROFINET IO Controllers.

PROFINET operates on an Ethernet network. If the Ethernet network or Genius serial bus communications are lost, the GCG001 manages IO states according to the individual module configurations.

Both PROFINET and Genius may be set up in Redundant configurations. Genius Communications Gateway features include:

- Attachment of two RJ-45 Ethernet connections (Ports 1 & 2)
- Support for both star (switched) and linear (daisy-chained) network topologies
- Supports Ethernet Media Redundancy Protocol (MRP)
- LEDs to indicate Ethernet status (ACT & LINK)
- Attachment Genius bus connections (marked Genius A).
- Supports Genius Redundancy consisting of a single Genius bus with two GCG001 Gateways, one at SBA #30 and the other at SBA #31.
- LED to indicate Genius Communications Status (COM)
- LEDs to indicate module status (refer to module header)
- Panel-mount (typical). Optional mounting in RX3i expansion slot.
- Cable tie-down loop on underside of module (at front)
- 24Vdc power connector on underside of module
- Secure Digital (SD) Card Slot, accessible at rear of module
- Firmware load pushbutton, accessible at rear of module

Refer to PACSystems RX3i Genius Communications Gateway User Manual, GFK-2892.

Figure 420: IC695GCG001



### 16.23.1 LED Indications: GCG001

The four LEDs in Module header provide a visual indication of the GCG001 module status.

**POWER** — indicates the presence of power to Module.

| LED | Color            | Status                           |
|-----|------------------|----------------------------------|
|     | Green, ON steady | Power supply is good.            |
| 0   | OFF              | Power supply is off or not good. |

**OK** — indicates GCG001 readiness to perform normal module operations.

| LED      | Color                    | Status                                                     |  |
|----------|--------------------------|------------------------------------------------------------|--|
|          | Green, ON steady         | Module able to perform normal operations.                  |  |
| <b>Ø</b> | Green/Amber,<br>blinking | Module loading main operating system                       |  |
|          | Amber, ON steady         | Module loading boot-loader operating system                |  |
| 0        | OFF                      | Module has an unrecoverable fault or power is not applied. |  |

**FAULT** — indicates the detection of faults by Module.

| LED | Color             | Status                                                               |  |
|-----|-------------------|----------------------------------------------------------------------|--|
| 0   | OFF               | No faults present.                                                   |  |
|     | Red, blinking 2Hz | DCP Device Identification Signal received.                           |  |
|     | Red, ON           | A fault or other Ethernet-type diagnostic data exists on the Gateway |  |

**CONNECT** — indicates status of the connection to a PROFINET controller.

| LED           | Color          | Status                                                                     |  |
|---------------|----------------|----------------------------------------------------------------------------|--|
|               | OFF            | One or more connections with PROFINET Controllers have been established to |  |
|               | OFF            | this device.                                                               |  |
| Red, blinking | Dad blinking   | Device trying to connect to a controller.                                  |  |
|               | Red, billiking | Continuous if device has not been assigned a valid station name.           |  |
|               | Red, ON        | No PROFINET Controller connection                                          |  |

The two LEDs associated with each Ethernet port (used here as PROFINET ports) are labelled ACT and LINK. These LEDs provide information about activity on that particular port.

### **PORT 1, PORT 2 LINK** — indicates connection status on Ethernet ports.

| LED | Color            | Status                          |
|-----|------------------|---------------------------------|
|     | Green, ON steady | Ethernet connection established |
|     | OFF              | No Ethernet connection          |

### **PORT 1, PORT 2 ACT** — indicates activity on Ethernet ports.

| LED | Color           | Status                           |
|-----|-----------------|----------------------------------|
|     | Amber, blinking | Communications occurring on port |
| 0   | OFF             | No communication                 |

### **COM** — indicates the status of Genius Bus communications.

| LED | Color            | Status                                                                      |
|-----|------------------|-----------------------------------------------------------------------------|
|     | Green, ON steady | The Genius Bus is configured and operating properly.                        |
|     | Green, blinking  | A Genius Bus error has been detected.                                       |
| 0   | OFF              | The Genius Bus has failed or no Genius Bus configuration has been received. |

### 16.23.2 Specifications: GCG001

| GCG001                      | Specifications                                                                    |  |  |
|-----------------------------|-----------------------------------------------------------------------------------|--|--|
| Communications Support      | Operates only under the control of a PROFINET Controller                          |  |  |
| Power Requirements          | External 24Vdc: (±10%) 0.2 A                                                      |  |  |
| Operating Temperature Range | 0 to 60°C (32 to 140 °F)                                                          |  |  |
| Number of Port Connectors   | Two RJ-45                                                                         |  |  |
| Local Area Network (LAN)    | IEEE 802.2 Logical Link Control Class I                                           |  |  |
| Local Area Network (LAN)    | IEEE 802.3 CSMA/CD Medium Access Control 10/100 Mbps                              |  |  |
|                             | The SD card slot is designed to support a Secure Digital (SD) non-volatile memory |  |  |
|                             | card in standard capacity format. Size: 2Gbyte max.                               |  |  |
| SD Card                     | This optional card has two distinct uses:                                         |  |  |
|                             | (1) Backup storage of some key Ethernet configuration data                        |  |  |
|                             | (2) Loading new GCG001 module firmware.                                           |  |  |
| Status Data                 | 64 (two banks of 32 bits)                                                         |  |  |
|                             | Supports One Genius Bus.                                                          |  |  |
|                             | Serial 1, Serial 2, Shield In and Shield Out, as marked.                          |  |  |
| Genius Bus Support          | Up to 31 additional devices supported per Genius Bus.                             |  |  |
|                             | Selectable Baud Rate, per Genius specifications.                                  |  |  |
|                             | Genius Hot Standby and Duplex Redundancy supported.                               |  |  |
| HHM Compatibility           | IC66*HHM501                                                                       |  |  |
| Other Genius Compatibility  | Refer to PACSystems RX3i Genius Communications Gateway User Manual, GFK-2892,     |  |  |
| Other defilus compatibility | Genius Communications Gateway User Manual                                         |  |  |
|                             | GSDML file is available on the Support website for download and import into PAC   |  |  |
| Configuration               | Machine Edition. The GSDML supporting a firmware release is part of the firmware  |  |  |
|                             | upgrade kit available on the Support website.                                     |  |  |
|                             | Yes (does not draw power from RX3i Backplane). However, cannot be done without    |  |  |
| Hot Swappable               | disconnecting external 24Vdc power. If configured to support Genius Hot Standby,  |  |  |
|                             | the loss of a single GCG001 will be tolerated; otherwise not.                     |  |  |

For product standards and general specifications, refer to Appendix A:.

### 16.24 IC695PRS015 Pressure Transducer Module

**Figure 421: IC695PRS015** 



The PACSystems RX3i Pressure Transducer module expands the serial communications capabilities of the RX3i system to communicate with up to 15 Honeywell LG1237 Smart Pressure Transducer sensors.

The IC695PRS015 module provides an independent, isolated serial port. Up to four Pressure Transducer modules can be located in the main PACSystems RX3i backplane.

Additional module features include:

- Port-to-backplane isolation
- RS-485 communication
- Module fault status reporting (Watchdog, Ram Fail, Flash Fail)
- Module identity and status reporting, including LED status indicators
- Flash memory for future upgrades

These modules must be located in an RX3i Universal Backplane. Module supports insertion into and removal from an RX3i Universal Backplane which is under power. Refer to *Hot Insertion and Removal*.

### 16.24.1 LEDs: PRS015

| PRS015 Status                                                                                        | LED Description                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module OK                                                                                            | Module OK LED indicates the status of Module.                                                                                                               |
|                                                                                                      | Off: Module is not receiving power from the RX3i backplane or Module has failed self-test.                                                                  |
|                                                                                                      | Solid green: Module has been configured.                                                                                                                    |
|                                                                                                      | Blinking green, rapidly: Module is executing power-up diagnostics.                                                                                          |
|                                                                                                      | Blinking green, slowly: Module has not received configuration from the CPU. If configuration is not successful, Module will continue to blink in this mode. |
|                                                                                                      | Blinking amber: If a problem occurs, Module OK LED blinks amber. The blink code (refer to below) indicates the cause of the error.                          |
|                                                                                                      | 1 = watchdog expired                                                                                                                                        |
|                                                                                                      | 2 = RAM error                                                                                                                                               |
|                                                                                                      | 6 = Invalid CPU Master Interface version                                                                                                                    |
|                                                                                                      | 7 = CPU heartbeat failure                                                                                                                                   |
|                                                                                                      | 8 = Failed to get semaphore                                                                                                                                 |
| PORT FAULT                                                                                           | The Port Fault LED indicates the status of the port.                                                                                                        |
|                                                                                                      | Green: There are no faults present on any enabled port.                                                                                                     |
|                                                                                                      | Amber: There is a fault on the port.                                                                                                                        |
| <b>Note:</b> The area below Module LED can be used to record identifying information about the port. |                                                                                                                                                             |
| Port STATUS                                                                                          | The Port Status LED blinks green when there is activity on the corresponding port.                                                                          |

### 16.24.2 Specifications: PRS015

| PRS015                        | Specifications                                             |
|-------------------------------|------------------------------------------------------------|
| Number of Serial Ports        | One                                                        |
| Connectors                    | RJ-45                                                      |
| Number of modules per CPU     | Four in the main CPU backplane                             |
| Backplane power requirements  | 0.7 A maximum at 3.3 Vdc                                   |
| Backplaire power requirements | 0.115 A maximum at 5.0 Vdc                                 |
| LEDs                          | Module OK, Port Fault, Port Status                         |
| Port Type                     | RS-485 four-wire (full duplex)                             |
| Baud rate                     | 375 kBaud                                                  |
| Input Impedance               | Zin > 96 kΩ for RS-485/422                                 |
| Max Over-voltage              | ± 25V                                                      |
| Channel-Channel Crosstalk     | -55dB minimum                                              |
| Isolation                     | Port to Backplane and to frame ground: 250 Vac continuous; |
| Isolation                     | 1500 Vac for 1 minute, 2550 Vdc for one second             |

For product standards and general specifications, refer to Appendix A:.

To meet emission and immunity requirements for the EMC directive (CE mark), shielded cable must be used with this module.

### 16.24.3 PRS015 Configuration

### **Module Parameters**

| Parameter            | Default           | Description                                                                          |
|----------------------|-------------------|--------------------------------------------------------------------------------------|
| Channel Value        | 0/47              | Starting address for the input data of Module.                                       |
| Reference Address    | %AIxxxxx          | This defaults to the next available %AI block.                                       |
|                      | 30 (word oriented |                                                                                      |
| Channel Value        | memory)           | The number of words or bits used for the input data of Module.                       |
| Reference Length     | 480 (bit oriented | Each channel is mapped to 2 words or 32 bits, whether the channel is used or not.    |
|                      | memory)           |                                                                                      |
|                      |                   | In the event of module failure or removal, this parameter specifies the state of the |
| Inches Defectle      | Hald Last Chata   | Channel Value References.                                                            |
| Inputs Default       | Hold Last State   | Force Off: Sets input channel values to 0 and clears all alarm flags.                |
|                      |                   | Hold Last State: Channel Values hold their last state.                               |
| Diagnostic Reference | 0/1               | Starting address for the channel diagnostics status data. This defaults to the next  |
| Address              | %Ixxxxx           | available %I block.                                                                  |
|                      |                   | The number of bits or words required for the Channel Diagnostics data. Default is    |
| Diamartia Dafawana   |                   | 0, which means mapping of Channel Diagnostics is disabled. Change this to a non-     |
| Diagnostic Reference | 0                 | zero value to enable Channel Diagnostics mapping.                                    |
| Length               |                   | 0 or 30 (Word oriented memory)                                                       |
|                      |                   | 0 or 480 (bit oriented memory)                                                       |
| Command Input Data   | %AIxxxxx          | Starting address for the command input data of Module. This defaults to the next     |
| Reference Address    | 70AIXXXX          | available %AI block.                                                                 |
|                      | 6 (word oriented  |                                                                                      |
| Command Input Data   | memory)           | The number of bits or words required for the command input data of Module.           |
| Reference Length     | 96 (bit oriented  | The number of bits of words required for the command input data of Module.           |
|                      | memory)           |                                                                                      |
| Command Output       |                   | Starting address for the command output data of Module. This defaults to the next    |
| Data Reference       | %AQxxxxx          | available %AQ block.                                                                 |
| Address              |                   | available and block.                                                                 |
| Command Output       | 6 (word oriented  |                                                                                      |
| Data Reference       | memory)           | The number of bits or words required for the command output data of Module.          |
| Length               | 96 (bit oriented  | The Hamber of Sits of Words required for the command output data of module.          |
|                      | memory)           |                                                                                      |
| Module Status        | %Ixxxxx           | Starting address for the status data of Module. This defaults to the next available  |
| Reference Address    | 70270000          | block in the selected memory area.                                                   |
|                      |                   | The number of bits required for Module Status data. Default is 0, which means        |
| Module Status        |                   | mapping of Module Status data is disabled. Change this to a non-zero value to        |
| Reference Length     | 0                 | enable Module Status data mapping.                                                   |
|                      |                   | 2 (word oriented memory)                                                             |
|                      |                   | 32 (bit oriented memory)                                                             |
|                      |                   | The scan set, as defined in the CPU Scan Sets tab, to be assigned to this module.    |
| I/O Scan Set         | 1                 | The scan set determines how often the CPU polls the data.                            |
|                      |                   | Valid range: 1 through 32.                                                           |

### **Channel Parameters (Channels 1 through 15)**

| Parameter            | Default   | Description                                                              |
|----------------------|-----------|--------------------------------------------------------------------------|
|                      |           | Disabled, Enabled, Simulation Mode                                       |
|                      |           | When Enabled, the Channel Value will be updated with the value of        |
| Channel Enable       | Disabled  | the associated LG1237.                                                   |
|                      |           | When Simulation Mode is selected the associated LG1237 will              |
|                      |           | simulate a specified pressure reading.                                   |
|                      |           | Pressure value to be reported, in A/D units when Channel Enable is       |
| Simulated Value      | 10.0      | set to Simulation Mode.                                                  |
|                      |           | Valid range: -3.40282E+38 through 3.40282E+38.                           |
|                      | 32-bit    |                                                                          |
| Channel Value Format | Floating- | Read only: 32-bit floating-point                                         |
|                      | point     |                                                                          |
|                      |           | The upper value, in engineering units, used for scaling.                 |
| High Scale Value     | 1024.0    | Valid range: -3.40282E+38 through 3.40282E+38 engineering units.         |
| (Eng Units)          | 1024.0    | Note: Scaling is disabled if High Scale Eng. Units equals High Scale A/D |
|                      |           | Units and Low Scale Eng. Units equals Low Scale A/D Units.               |
|                      |           | The lower value, in engineering units, used for scaling.                 |
|                      |           | Valid range: -3.40282E+38 through 3.40282E+38 engineering units.         |
|                      |           | The Low Scale Value (Eng Units) parameter cannot be equal to the         |
| Low Scale Value      | 0.0       | High Scale Value (Eng Units) parameter. It can be higher than the        |
| (Eng Units)          |           | High Scale Value (Eng Units) parameter for reversed or inverse           |
|                      |           | scaling.                                                                 |
|                      |           | Default is Low A/D Limit of selected range type. Must be lower than      |
|                      |           | the High Scale Value.                                                    |
|                      |           | The upper value, in A/D Units, used for scaling.                         |
| High Scale Value     | 1024.0    | Valid range: 0 through 65535.                                            |
| (A/D Units)          | 1024.0    | Note: Scaling is disabled if High Scale Eng. Units equals High Scale A/D |
|                      |           | Units and Low Scale Eng. Units equals Low Scale A/D Units.               |
| Low Scale Value      | 0.0       | The upper value, in A/D Units, used for scaling.                         |
| (A/D Units)          | 0.0       | Valid range: 0 through 65535.                                            |
|                      |           | When the channel input value reaches or exceeds this value, a High       |
|                      |           | Alarm is triggered.                                                      |
| High Alarm           | 1024.0    | Valid range: Within High Scale Value–Low Scale Value (Eng Units)         |
| (Eng Units)          |           | range. Must be greater than Low Alarm.                                   |
| (Ling Offics)        |           | Note: A channel uses this value only when High Alarm Enable is set to    |
|                      |           | Enabled under Diagnostic Reporting Enable and/or Fault Reporting         |
|                      |           | Enable.                                                                  |

| Parameter                          | Default | Description                                                           |  |
|------------------------------------|---------|-----------------------------------------------------------------------|--|
|                                    | 1.0     | When the channel input value reaches or goes lower than this value, a |  |
|                                    |         | Low Alarm is triggered.                                               |  |
| Low Alarm                          |         | Valid range: Within High Scale Value to Low Scale Value (Eng Units)   |  |
| (Eng Units)                        |         | range. Must be less than High Alarm.                                  |  |
| (Ling Offics)                      |         | Note: A channel uses this value only when Low Alarm Enable is set to  |  |
|                                    |         | Enabled under Diagnostic Reporting Enable and/or Fault Reporting      |  |
|                                    |         | Enable.                                                               |  |
|                                    | 1.0     | A range in Engineering Units below the alarm condition where the      |  |
|                                    |         | alarm status bit remains set even after the alarm condition no longer |  |
| High Alarm Deadband<br>(Eng Units) |         | exists. For the alarm status to clear, the channel input must fall    |  |
|                                    |         | outside the deadband range.                                           |  |
|                                    |         | Valid range: 0 through the difference between High Scale Value and    |  |
|                                    |         | Low Scale Value (Eng Units).                                          |  |
|                                    | 1.0     | A range in Engineering Units above the alarm condition where the      |  |
|                                    |         | alarm status bit remains set even after the alarm condition goes      |  |
| Low Alarm Deadband                 |         | away. For the alarm status to clear, the channel input must fall      |  |
| (Eng Units)                        |         | outside the deadband range.                                           |  |
|                                    |         | Valid range: 0 through the difference between High Scale Value and    |  |
|                                    |         | Low Scale Value (Eng Units).                                          |  |

|                                  |          | Engineering Units offset to change the base of the input channel. This           |  |
|----------------------------------|----------|----------------------------------------------------------------------------------|--|
| User Offset                      | 0.0      | value is added to the scaled value on the channel prior to alarm                 |  |
| (Eng Units)                      | 0.0      | checking.                                                                        |  |
|                                  |          | Valid range: -3.40282E+38 through 3.40282E+38 (Eng Units).                       |  |
| Diagnostic Reporting Enable      |          | The Diagnostic Reporting Enable, and Fault Reporting Enable                      |  |
| If Diagnostic Reporting is       |          | configuration parameters can be used to enable different types of                |  |
| enabled, the additional          | Disabled | responses for individual channel alarms. By default, all responses are           |  |
| parameters listed below can      | Disabled | disabled on every channel. Any combination of alarm enables can be               |  |
| be used to enable specific       |          | configured for each channel. Alarm values are applied to the scaled              |  |
| types of alarms.                 |          | Engineering Units value.                                                         |  |
| Fault Reporting Enable           |          | If <i>Diagnostic Reporting</i> is enabled, Module reports channel faults and     |  |
| If Fault Reporting is enabled,   |          | enabled alarms in reference memory at the Diagnostic Reference                   |  |
| the additional parameters        | Disabled | Address configured for that channel. (Diagnostic Reference Length                |  |
| isted below can be used to       |          | must be greater than 0.)                                                         |  |
| enable specific types of Faults. |          | If <i>Fault Reporting</i> is enabled, Module logs a fault in the I/O Fault table |  |
| chasic specific types of radies. |          | for each occurrence of a channel fault or an enabled channel alarm.              |  |
| Low Alarm Enable                 | Disabled | These additional parameters enable or disable individual diagnostics             |  |
| High Alarm Enable                | Disabled | features of a channel.                                                           |  |
| Open Wire Enable                 | Disabled | When any of these parameters is enabled, Module uses the                         |  |
| New Data Alarm Enable            | Disabled | associated parameters to perform the enabled feature.                            |  |
| Error Response Fault             | Disabled | For example, if Module detects a loss of circuit communication fault,            |  |
| Latched BIT Failure Fault        | Disabled | and Open Wire is enabled for Diagnostic Reporting, Module will set               |  |

| Parameter                 | Default  | Description                                                                   |  |
|---------------------------|----------|-------------------------------------------------------------------------------|--|
| Latched IIC Failure Fault | Disabled | the corresponding bit in the Diagnostic Reference memory for the              |  |
|                           |          | channel.                                                                      |  |
| Latched ICS Failure Fault | Disabled | If any of these parameters is disabled, Module does not react to the          |  |
| Latened ICS Fallure Fault |          | associated alarm conditions.                                                  |  |
|                           |          | For details, refer to the section, <i>Channel Diagnostic Bit</i> Definitions. |  |
|                           |          | Associates the input channel with other channels that have been               |  |
|                           | 1        | assigned the same value. Determines groups of channels to be                  |  |
| Sensor Scan Group         |          | scanned each internal sweep. To scan all sensors every sweep, they            |  |
|                           |          | must be in the same scan group.                                               |  |
|                           |          | Valid range: 1 through 15.                                                    |  |

### 16.24.4 Module Status Data: PRS015

Bit offsets are from Module Status Reference Address.

| Bit Offset | Bit Flag Name     | Description                                                          |  |
|------------|-------------------|----------------------------------------------------------------------|--|
| 0          | Module OK         | Set to 1 when Module is powered up and there are no errors on module |  |
| 0          | Wodule OK         | Cleared when module has failed or is not present                     |  |
| 1–14       | Reserved          | Reserved                                                             |  |
| 15         | Watchdog failure  | Set to 1 when watchdog timeout error has occurred                    |  |
| 16         | RAM failure       | Set to 1 when RAM failure has occurred                               |  |
| 17         | Interface failure | Set to 1 when interface failure has occurred                         |  |
| 18-31      | Reserved          | Reserved                                                             |  |

### 16.24.5 Input Channel Scaling: PRS015

Scaling parameters specify the relationship between the LG1237 reported value (input signal) and the engineering units value.

AL = Low Scale A/D Units AH = High Scale A/D Units

EL = Low Scale Engineering Units EH = High Scale Engineering Units

IS = Input Signal (in signal units)

User Scaled value =  $IS \times \frac{EH - EL}{AH - AL} + EL - AL \times \frac{EH - EL}{AH - AL}$ 

### 16.24.6 Channel Diagnostic Reporting: PRS015

Module reports channel diagnostics in the Diagnostic Reference memory area, which is configured on Module Settings tab. Two words (32 bits) are allocated to each channel.

### **Channel Segments**

| Channel | Starting Reference Address       |  |
|---------|----------------------------------|--|
| 0       | Diagnostic Reference Address +0  |  |
| 1       | Diagnostic Reference Address +2  |  |
| 2       | Diagnostic Reference Address +4  |  |
| 3       | Diagnostic Reference Address +6  |  |
| 4       | Diagnostic Reference Address +8  |  |
| 5       | Diagnostic Reference Address +10 |  |
| 6       | Diagnostic Reference Address +12 |  |
| 7       | Diagnostic Reference Address +14 |  |

| Channel | Starting Reference Address       |  |
|---------|----------------------------------|--|
| 8       | Diagnostic Reference Address +16 |  |
| 9       | Diagnostic Reference Address +18 |  |
| 10      | Diagnostic Reference Address +20 |  |
| 11      | Diagnostic Reference Address +22 |  |
| 12      | Diagnostic Reference Address +24 |  |
| 13      | Diagnostic Reference Address +26 |  |
| 14      | Diagnostic Reference Address +28 |  |

### **Channel Diagnostic Bit Definitions**

Bit offsets are from the start of each channel segment in Diagnostic Reference memory.

| Bit<br>Offset  | Bit Flag Name        | Description                                                                         |
|----------------|----------------------|-------------------------------------------------------------------------------------|
| 0              | Low Alarm fault      | Set to 1 when Low Alarm is detected.                                                |
|                | LOW Alaith fault     | Cleared when Low Alarm off or detection is disabled.                                |
| 1              | High Alarm fault     | Set to 1 when High Alarm is detected.                                               |
| '              | Tilgit Alaitii lault | Cleared when High Alarm off or detection is disabled.                               |
| 2-3            | Reserved             | Used by other analog modules                                                        |
|                |                      | Set to 1 if the LG1237 fails to respond to the most recent attempt to read          |
|                | Loss of circuit      | pressure.                                                                           |
| 4              | communication        | If any of the transducer fault bit (28, 29 or 30) is set for this channel, this bit |
|                | (Open Wire)          | will also be set.                                                                   |
|                |                      | Cleared when the CPU completes an I/O scan.                                         |
| 5-22           | Reserved             | Reserved                                                                            |
|                |                      | Set on every successful reading of pressure from the LG1237.                        |
| 23             | New Data             | Cleared when the CPU completes an I/O scan.                                         |
| 23             | New Data             | This flag allows the application program to detect when new values are              |
|                |                      | available to process.                                                               |
| 24             | Error rosponso fault | Set when the most recent Response Status flags (bits 25–27) sent from the           |
| Z <del>4</del> | Error response fault | LG1237 indicate an error.                                                           |

| Bit<br>Offset | Bit Flag Name                 | Description                                                                 |
|---------------|-------------------------------|-----------------------------------------------------------------------------|
| 25-27         | Response Status bit 0         | Reserved                                                                    |
|               |                               | Set when LG1237 BIT failure is detected. The PRS015 reads this bit from the |
| 28            | Latched Bit Failure fault     | enabled channel on configured download and after a reset command is         |
| 20            | Zo Lattrieu bit Failure fauit | issued.                                                                     |
|               |                               | Cleared when the CPU completes an I/O scan.                                 |
|               |                               | Set when LG1237 IIC (invalid input conditions) failure is detected. The     |
| 20            | Latched IIC Failure fault     | PRS015 reads this bit from the enabled channel on configured download       |
| 29            | 29 Latched IIC Failure fault  | and after a reset command is issued.                                        |
|               |                               | Cleared when the CPU completes an I/O scan.                                 |
|               |                               | Set when LG1237 ICS failure is detected.                                    |
| 30            | Latched ICS Failure fault     | The PRS015 reads this bit from the enabled channel on configured            |
| 30            | Lattried ICS Failure fault    | download and after a reset command is issued.                               |
|               |                               | Cleared when the CPU completes an I/O scan.                                 |
| 31            | Reserved                      | Reserved for future fault                                                   |

### 16.24.7 Command Data: PRS015

The application logic uses the Command Data memory areas defined in the PRS015 configuration profile of Module to send commands to LG1237 transducers and receive the responses from the transducers through the serial port.

The application logic issues a command to the LG1237 by setting the value of the Command field in the Command Output data.

When Module is processing a command, the Command Response field contains the *Processing Command* value.

To issue another command, the application must set the Command field to *No Command* and wait for the *No Command Processing* response.

### **Command Output Data**

The Command Output data consists of six words, starting at the Command Output Data Reference Address.

| Byte Offsets | Field Name | Command Values                                                           |
|--------------|------------|--------------------------------------------------------------------------|
|              |            | 0x0000 0x0000 No Command                                                 |
| 0–3          | Command    | 0x0000 0x0001 RESET                                                      |
|              |            | All other values are reserved.                                           |
|              |            | Specifies the LG1237 channel to be accessed by the RESET command. Can be |
| 4-7          | Address    | changed by the application logic in RUN mode                             |
|              |            | Bits 0–3 Address (0–15 valid; no error checking)                         |
| 8-23         | Reserved   | Reserved                                                                 |

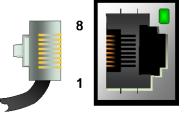
### **Reset Command**

The Reset command addresses the LG1237 channel defined in the Address field. No errors are generated for this command.

To reset all LG1237 transducers, issue the Reset command to the global address, 15.

### **Command Input Data**

When the LG1237 receives a command from the Pressure Transducer module, it returns a command response, which is written to the Command Input Data Reference memory, starting at the Command Input Data Reference Address.


| Byte Offsets | Field Name | Response Values                                                |
|--------------|------------|----------------------------------------------------------------|
|              |            | 0x0000 0x0000 (0 dec) No Command Processing†                   |
|              |            | 0x0000 0x0001 Processing Command†                              |
|              |            | 0x0000 0x0002 Command Complete†                                |
| 0-3          | Command    | 0x1111 0x1111 (-1 dec) Response not received prior to time out |
| 0-3          | Response   | 0x1111 0x1110 Response error: Parity, Address or Response code |
|              |            | 0x1111 0x1101 Detected BIT (Built In Test) Failure             |
|              |            | 0x1111 0x1100 Detected IIC (Invalid Input Conditions)          |
|              |            | 0x1111 0x0111 Command Order Error†                             |
| 4-23         | Reserved   | Reserved                                                       |

### 16.24.8 Wiring: PRS015

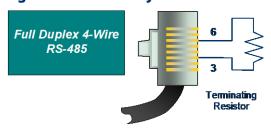
### **Serial Ports**

This port is a standard RJ-45 female connector with the following pin assignments.

Figure 422: RJ-45 Pinout PRS015



| RJ-45 Pin | RS-485/422 Four-Wire Pinouts |
|-----------|------------------------------|
| 8         | GND                          |
| 7         | Termination 2                |
| 6         | Rx- (Input)                  |
| 5         | GND                          |
| 4         |                              |
| 3         | Rx+ (Input)                  |
| 2         | Tx- (Output)                 |
| 1         | Tx+ (Output)                 |


**Note:** There is no shield or frame ground pin on the port connector. To reduce susceptibility to noise, the RX+ and RX- signals should be wired to the same twisted pair. Likewise, the TX+ and TX- signals should be wired to a single twisted pair.

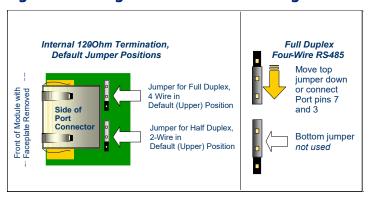
#### **Termination**

By default, each port is set for no termination. Termination is needed if Module is the first or last device on an RS-485 network, even if there is only one other device on the network. Termination can be provided using either an external resistor as displayed in the following figure or the  $120\Omega$  termination resistor built into the port. If line termination other than  $120\Omega$  is required, an appropriate external resistor must be supplied.

User-Supplied Termination for RS-485

**Figure 423: Externally-Mounted Terminating Resistor** 




### Built-in Termination for RS-485

Termination using the built-in  $120\Omega$  resistor can be provided by setting the appropriate RS-485 termination jumper OR by installing shorting jumpers on the RS-485 cable connector that attaches to the serial port.

To set 120  $\Omega$  termination internally

- 1. Remove the faceplate of Module by pressing in on the side tabs and pulling the faceplate away from Module.
- 2. With Module oriented as shown, move either the upper or lower jumper

Figure 424: Using the Internal Terminating Resistor PRS015



# Section 17: Terminal Blocks and Interconnect Cables

This chapter describes the following:

- High-Density Module-Mounted Terminal Blocks (Section 17.1)
- Terminal Block Quick Connect (TBQC) system (Section 17.2)
  - for RX3i and Series 90-30 20-terminal discrete modules
  - for RX3i and Series 90-30 32-point discrete modules with dual
     D-Connectors
  - for RX3i and Series 90-30 Modules with 36 terminals
- Prefabricated interconnect cable suitable for connecting the I/O Modules to the Remote TBQC terminal blocks
- How to build a custom interconnect cable.
- Terminal Block Selection Options

Unless otherwise stated, RX3i I/O modules are provided with a suitable terminal block. Refer to the section in this manual which discusses the specific I/O module of interest.

In the case of high-density discrete I/O modules, the user has some terminal block selection options, so terminal blocks are purchased separately. The user may select:

- A module-mounted terminal block, in which case all field wiring will be directly attached to the I/O module
- An interposing terminal strip with an interconnect cable, allowing all
  field wiring to be landed on the interposing terminal strip, which is
  then attached to the I/O module via a pre-fabricated or custom
  cable. This allows for quick connection of the I/O module to
  previously wired terminal strips. It also provides a solution where
  wiring directly to the I/O module is not possible due to space
  limitations or due to the rigidity or thickness of the wire bundle.

### 17.1 High-Density Module-Mounted Terminal Blocks

| Terminal Block Type                                | Catalog Number |
|----------------------------------------------------|----------------|
| Box-style Terminal Block, 36 Terminals             | IC694TBB032    |
| Spring-style Terminal Block, 36 Terminals          | IC694TBS032    |
| Extended Box-style Terminal Block, 36 Terminals    | IC694TBB132    |
| Extended Spring-style Terminal Block, 36 Terminals | IC694TBS132    |

### 17.1.1 Terminal Blocks for High-Density RX3i Modules

# **Extended High-Density vs. High-Density Terminal Blocks**

Extended High-Density Terminal Blocks IC694TBB132 and IC694TBS132 are functionally identical to High-Density Terminal Blocks IC694TBB032 and IC694TBS032. Both attach directly to the I/O module. The Extended High-Density Terminal Blocks have an outer cover that is approximately 13 mm (½ in) deeper. This is to accommodate wires with thicker insulation, such as wires typically used with AC I/O modules.

Figure 425: Additional Depth due to Extended High-Density Terminal Blocks

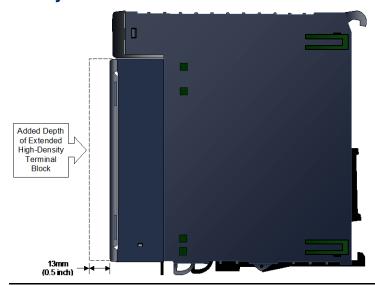
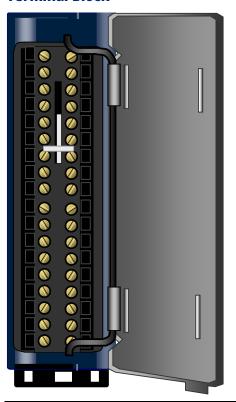



Figure 426 compares the space for wiring on a High-Density Terminal Block (left) and an Extended High-Density Terminal Block (right), seen from the bottom of Module.


Figure 426: Depth Comparison: High-Density vs Extended High-Density Terminal Block





### IC694TBB032 and TBB132 Box-Style Terminal Blocks, 36 Terminals

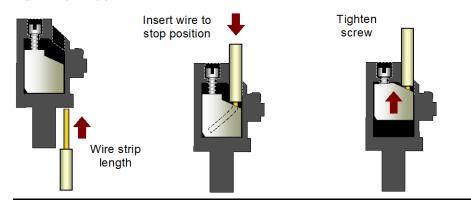
### Figure 427: 36-Terminal Box-Style Terminal Block



Box-Style Terminal Blocks, IC694TBB032 and IC694TBB132, are used with high-density PACSystems RX3i modules and equivalent Series 90-30 PLC modules. These terminal blocks provide 36 screw terminals for field wiring to Module.

Terminal Blocks IC694TBB032 and TBB132 are functionally identical. Terminal Block IC694TBB032 comes with a standard-depth outer cover. When installed, it is the same depth as most other PACSystems and Series 90-30 PLC modules.

Extended Terminal Block IC694TBB132 comes with an outer cover that is approximately 13 mm (½ in) deeper than Terminal Block IC694TBB032, to accommodate wires with thicker insulation, such as that typically used with AC I/O modules.


#### Specifications: TBB032 and TBB132

| Specification         | Description                    |  |  |
|-----------------------|--------------------------------|--|--|
| Torque                | 0.79 Nm (7 in-lb)              |  |  |
| Wire strip length     | 7.87 mm (0.310 in)             |  |  |
| Wire gauges supported | #14-26 AWG (solid or stranded) |  |  |

### Connecting Field Wiring to a Box-Style High-Density Terminal Block

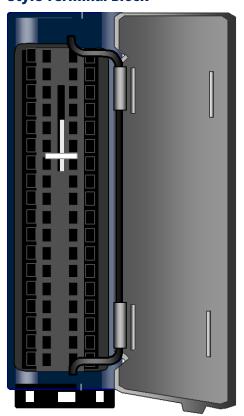

The bottom of the terminal block can be used as a gauge for the wire strip length, as displayed in Figure 428. The stripped wire must be fully inserted into the terminal block so that the insulation meets the stop position inside the terminal, and the end of the wire is bent. Tightening the terminal screw raises the wire and clamps it in place.

Figure 428: Wire Preparation and Insertion into Box-Style Terminal Block



# IC694TBS032 and TBS132 Spring-Style Terminal Blocks, 36 Terminals

Figure 429: 36-Terminal Spring-Style Terminal Block



Spring-Style Terminal Blocks, IC694TBS032 and IC694TBS132, are used with High-Density PACSystems RX3i modules and equivalent Series 90-30 PLC modules. These terminal blocks provide 36 spring style terminals for field wiring to Module.

Terminal Blocks IC694TBS032 and TBS132 are functionally identical. Terminal Block IC694TBS032 comes with a standard-depth outer cover. When installed, it is the same depth as most other PACSystems and Series 90-30 PLC modules.

Extended Terminal Block IC694TBS132 comes with an outer cover that is approximately ½ inch (13mm) deeper than Terminal Block IC694TBS032, to accommodate wires with thicker insulation, such as that typically used with AC I/O modules.

Specifications: TBS032 and TBS132

| Specifications        | Description                    |  |  |
|-----------------------|--------------------------------|--|--|
| Wire strip length     | 7.87 mm (0.310 in)             |  |  |
| Wire gauges supported | #14-28 AWG (solid or stranded) |  |  |

# 17.1.2 Installing and Removing High-Density Terminal Blocks

This section has special installation instructions for High-Density Terminal Blocks. Refer to Chapter 2 for general installation information.

### **WARNING**

Field power must be turned off when installing or removing a Terminal Block assembly.

# Installing or Removing the Terminal Block Assembly of a Module

To install or remove the terminal block module assembly

- Install the small catalog number label (for example: "MDL240") supplied with Module in the slot on the top of the Terminal Block.
- 2. Complete Module wiring and secure the wire bundles to the tie downs on the bottom of the Terminal Block.

### **Inserting a Terminal Block in its Cover**

Figure 430: Inserting Terminal Block into its Cover



To insert a terminal block in the cover

- 1. Align the top of the Terminal Block with the bottom of the cover, making sure that the notches in the Terminal Block match up with the grooves in the cover.
- 2. Slide the Terminal Block upward until it clicks into place.

### **Installing a High-Density Terminal Block Assembly**

To install a high-density terminal block assembly

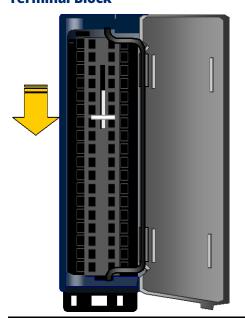

- 1. Press the terminal block assembly straight toward Module until it is partially seated.
- 2. Open the door on the front of the terminal block and push the latch (refer to below) up <u>very</u> firmly until it reaches the top of the slot and clicks into place.
- 3. Check to be sure the terminal block is fully seated.

Figure 431: Installing a High-Density Terminal Block



### **Removing a High-Density Terminal Block from Module**

### Figure 432: Removing a High-Density Terminal Block



To install a high-density terminal block assembly

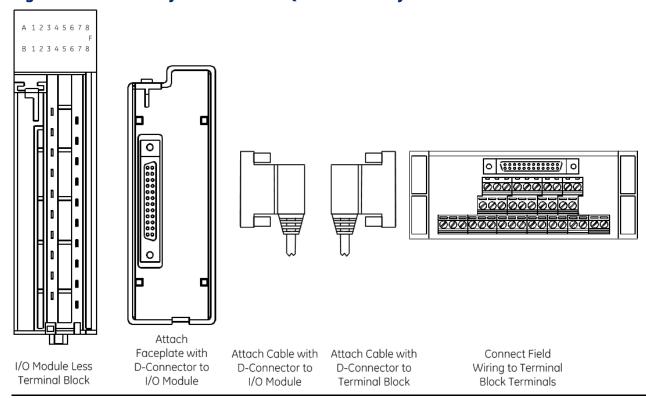
- 1. Open the terminal block door.
- 2. Push the white plastic latch (Figure 432, center) down <u>very</u> firmly until the terminal block is released.
- 3. Pull the terminal block straight out and away from Module until the contacts have separated.

### **Removing a Terminal Block from its Cover**

To remove a Terminal Block from its cover

- 1. Grasp the sides of the Terminal Block cover.
- 2. Pull down on the bottom of the Terminal Block.

### 17.2 Terminal Block Quick Connect (TBQC) System


The optional Terminal Block Quick Connect (TBQC) system allows the listed discrete and analog I/O modules to be quickly connected to external TBQC terminal blocks via an interconnecting cable. The TBQC system significantly reduces wiring costs by reducing wiring time and eliminating wiring errors. The TBQC terminal blocks also have integrated test points to simplify wiring troubleshooting.

There are three distinct TBQC product offerings (not interchangeable):

- The Low-Density TBQC products (IC693ACC329 -333) provide 20-terminal remote connector blocks. They are compatible primarily with Low-Density Discrete I/O Modules that come equipped with a 20-terminal connector header. They connect to the I/O module via an unshielded cable. The original 20-terminal connector may be retained on the I/O module, or may be replaced with a faceplate containing a compatible D-connector (catalog number IC693ACC334). Using the D-connector faceplate greatly simplifies the wiring effort.
- 2. IC693ACC337 is a variant of (1) above. It provides a 24-terminal remote connector and a pair of interconnecting cables that are compatible with those 32-point discrete I/O modules that come equipped with a pair of D-connectors. They connect to the I/O module via a pair of unshielded cables.
- 3. The high-density remote terminal block (IC694RTB032) is compatible with IC694TBC032, which is a 36-terminal module-mounted terminal block. They are interconnected via a shielded cable. This allows it to support analog modules as well as discrete.

### 17.2.1 Low-Density TBQC System Overview

**Figure 433: Low-Density Terminal Block Quick Connect System** 



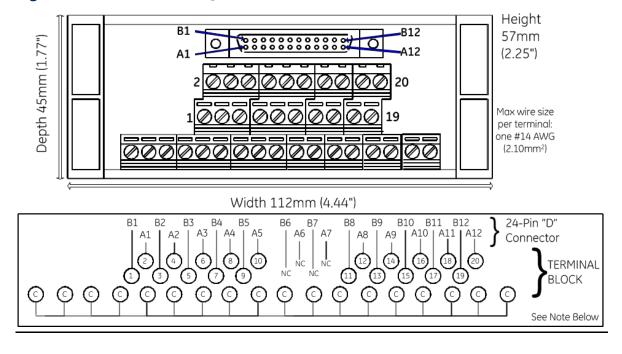
The TBQC terminal block is snapped onto a standard DIN-rail. Then a pre-fabricated cable is connected between the D-connector of the terminal block and the connector of the I/O module. An I/O module normally equipped with terminals needs to be converted to a D-connector type using an adapter faceplate (IC693ACC334) shown above. Alternatively, the interconnecting cable may have wires at the I/O module end and a D-connector at the TBQC end.

Using the pre-fabricated cables (refer to Section 17.2.1, *Components for Low-Density, Unshielded 20-/24-point TBQC*), the 24-conductor cables are wired straight through from the I/O Faceplate to the TBQC terminal block, ensuring that Terminal 1 of the I/O Module maps to Terminal 1 of the TBQC Terminal Block, and Terminal 20 maps to Terminal 20, etc.

The IC693ACC series of terminal blocks have three rows of terminals, arranged in three levels, as displayed in the following figures. These terminal blocks feature an easy to use captive-screw, rising cage type connection system.

The IC693ACC TBQC system is not recommended for use with Analog modules because it does not meet the shielding recommendations for Analog module connections.

# Components for Low-Density, Unshielded 20-/24-point TBQC


| Part Number                | Description                               | Compatibility                        |  |
|----------------------------|-------------------------------------------|--------------------------------------|--|
| IC693ACC334                | Low-Density, 20-point terminal block with | IC693MDLxxx / IC694MDLxxx compatible |  |
|                            | 24-pin D-connector.                       | with 20-point terminal block.        |  |
| IC693ACC329 <sup>102</sup> | Low Dansity 20 point terminal block with  | IC69xMDL645, IC69xMDL646,            |  |
|                            | Low-Density, 20-point terminal block with | IC69xMDL240, IC69xMDL740,            |  |
|                            | 24-pin D-connector.                       | IC69xMDL741, IC69xMDL742             |  |
| IC693ACC332                | Low-Density, 20-point terminal block with | IC69xMDL940 only                     |  |
|                            | 24-pin D-connector.                       |                                      |  |
| IC693ACC333                | Low-Density, 20-point terminal block with | ICCO MDI 240 col                     |  |
| 1C095ACC555                | 24-pin D-connector.                       | IC69xMDL340 only                     |  |
| IC693ACC337                | Medium density, 24-point terminal block   | IC69xMDL654, IC69xMDL655,            |  |
| 1C095ACC557                | with 24-pin D-connector.                  | IC69xMDL752, IC69xMDL753             |  |
| IC693CBL329                | Unshielded 1.0-meter cable with 24-pin    | IC693ACC337 (left side)              |  |
| 1C693CBL329                | D-connector termination on both ends.     | 1C095ACC557 (left side)              |  |
| IC693CBL330                | Unshielded 1.0-meter cable with 24-pin    | IC693ACC334 and IC693ACC329 &        |  |
| 1093081330                 | D-connector termination on both ends.     | IC693ACC337 (right side)             |  |
| IC693CBL331                | Unshielded 2.0-meter cable with 24-pin    | IC693ACC337 (left side)              |  |
| 1093081331                 | D-connector termination on both ends.     | 1C093ACC337 (left side)              |  |
| IC693CBL332                | Unshielded 2.0-meter cable with 24-pin    | IC693ACC334 and IC693ACC329 &        |  |
| 10093081332                | D-connector termination on both ends.     | IC693ACC337 (right side)             |  |
| IC693CBL333                | Unshielded 0.5-meter cable with 24-pin    | IC602ACC227 (loft side)              |  |
|                            | D-connector termination on both ends.     | IC693ACC337 (left side)              |  |
| IC693CBL334                | Unshielded 0.5-meter cable with 24-pin    | IC693ACC334 and IC693ACC329 &        |  |
| 1093081334                 | D-connector termination on both ends.     | IC693ACC337 (right side)             |  |
| IC693CBL327                | Unshielded 3.0-meter cable with 24-pin    | IC694MDL752, IC694MDL753             |  |
|                            | D-connector termination on one end.       |                                      |  |
| IC693CBL328                | Unshielded 3.0-meter cable with 24-pin    | IC694MDL752, IC694MDL753             |  |
|                            | D-connector termination on one end.       | IC693ACC334                          |  |

<sup>&</sup>lt;sup>102</sup> This Terminal Block may be used with most I/O modules that have up to 16 I/O points. It cannot be used with 32-point modules. Jumpers may have to be added at the terminal block; for details of required wiring connections, refer to individual module specifications.

### **Typical IC693ACC Terminal Block**

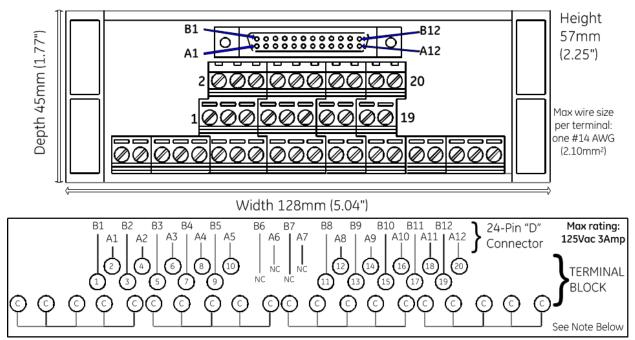
### **IC693ACC329 TBQC Terminal Block**





**Note:** The common row terminals (labeled with the letter C) are provided for wiring convenience. Their use is optional. They are electrically isolated from the numbered terminals. You may use them as is, or jumper them to a numbered terminal.

### Connecting


Refer to cable selection in Section 17.2.1, *Components for Low-Density, Unshielded 20-/24-point TBQC*.

### Mounting

These terminal blocks are mounted on a standard, user-supplied 35 mm DIN-rail.

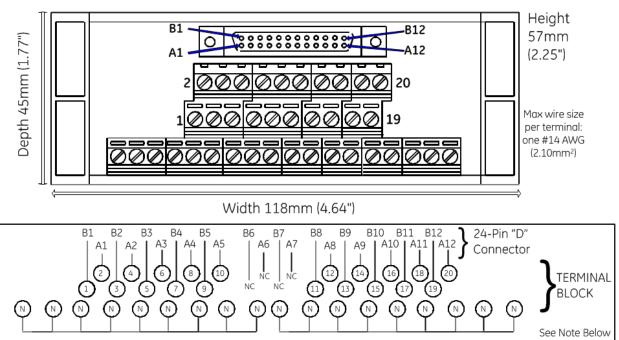
### **IC693ACC332 TBQC Terminal Block**

Figure 436: IC693ACC332 TBQC Terminal Block



**Note:** The common row terminals (labeled with the letter C) are provided for wiring convenience. Their use is optional. They are electrically isolated from the numbered terminals. You may use them as is, or jumper them to a numbered terminal.

### Connecting


Refer to cable selection in Section 17.2.1, Components for Low-Density, Unshielded 20-/24-point TBQC.

#### Mounting

These terminal blocks are mounted on a standard, user-supplied 35 mm DIN-rail.

### **IC693ACC333 TBQC Terminal Block**

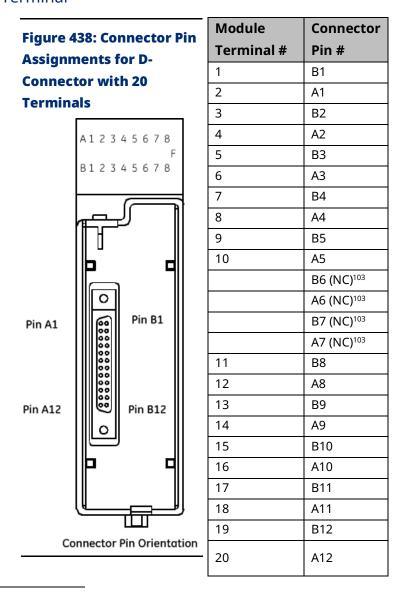
Figure 437: IC693ACC333 TBQC Terminal Block



**Note:** The neutral row terminals (labeled with the letter N) are provided for wiring convenience. Their use is optional. They are electrically isolated from the numbered terminals. You may use them as is, or jumper them to a numbered terminal.

### Connecting

Refer to cable selection in Section 17.2.1, Components for Low-Density, Unshielded 20-/24-point TBQC.


### Mounting

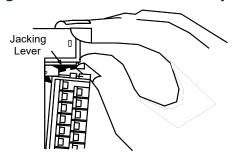
These terminal blocks are mounted on a standard, user-supplied 35 mm DIN-rail.

# I/O Faceplate with D-Connector for 20-Terminal I/O Modules

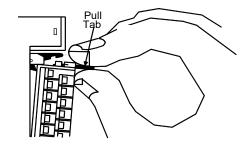
The I/O Faceplate (catalog number IC693ACC334) may be inserted into the I/O Module header in place of the 20-screw type terminal block. IC693ACC334 provides a 24-pin D-connector, which may be connected to the remote TBQC terminal block via a pre-fabricated cable. This Faceplate replaces the standard 20-screw type terminal board on the listed modules.

### Faceplate Connector Pin Orientation and Connection to Module Terminal



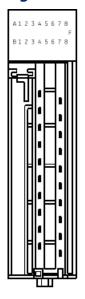

<sup>&</sup>lt;sup>103</sup> Note that there are four "No Connect" pins in the D-Connector.

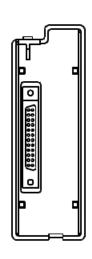
### Installation of I/O Faceplate IC693ACC334

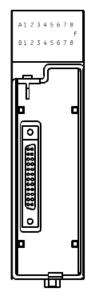

To install the IC693ACC334 I/O faceplate

1. Remove 20-pin terminal assembly from module

Figure 439: IC693ACC334 I/O Faceplate Installation





Open the plastic terminal board cover.
 Push up on the jacking lever to release the terminal block.




- Grasp pull-tab towards you until contacts have separated from module housing and hook has disengaged for full removal.
- 2. Snap the I/O faceplate assembly on module.

#### Figure 440: IC693ACC334 I/O Faceplate Snaps into Place







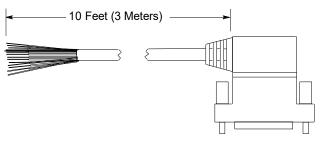
Installing the I/O Faceplate

Module with I/O Faceplate Installed

Install the TBQC terminal block of your choice and run the interconnecting cable between the I/O Faceplate and the D-connector on the TBQC terminal block.

### **Cable Current Rating for Available Interconnect Cables**

Each conductor in the IC693CBL\* 24-conductor cables has a current rating of 1.2 A.


If using cables with a 16-point output module with a higher output current rating, your loads must not draw more than 1.2 A. If you have field devices that require more than 1.2 A, do not use a TBQC assembly; use the standard Terminal Board that comes with Module instead.

A current rating of 1.2 A is more than adequate to handle the current requirement of any of the 32-point I/O modules listed earlier.

### Interconnect Cable Connector & Construction Information

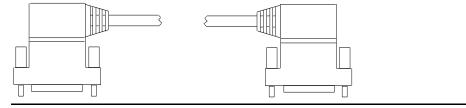
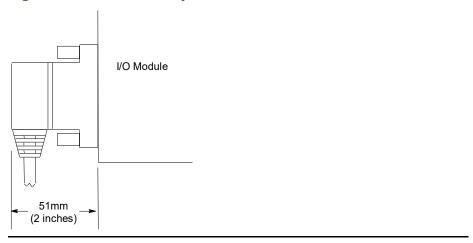

Cables IC693CBL327 and IC693CBL328 each have a right-angle 24-pin connector (Fujitsu FCN-365S024-AU) on one end and a set of stripped wire ends on the other.

Figure 441: IC693CBL327 and IC693CBL328 Cable Construction



All of the other IC693CBL\* cables types have connectors (Fujitsu FCN–365S024–AU) on both ends. These cables are wired pin–to–pin (pin A1 to pin A1, pin A2 to pin A2, and so forth).

Figure 442: Cable Construction for all other IC693CBL\* Cables




Each pin on these connectors has a current rating of 1.2 A.

### **Connector Depth**

The prefabricated IC693CBL\* cables extend 51 mm (2in) out from the face of Modules to which they are connected. The depth of the cabinet that the PLC is mounted in should allow for the 51 mm (2in) depth added by the connector.

Figure 443: Connector Depth for IC693CBL\* Cables



### **Building Custom Length 24–Conductor D-Connector Cables**

Cables similar to IC693ACC\* connecting the I/O module to TBQC terminals can be built to length.

Purchase the mating female (socket type) 24–pin connectors. The 24–pin connector kit can be ordered as an accessory kit from Emerson. Catalog numbers for these connectors and their associated parts are listed in the following table.

The list includes catalog numbers for three types of connectors: solder pin, crimp pin, and ribbon cable. Each accessory kit contains enough components (such as D-connectors, backshells, and contact pins) to assemble ten single-ended cables of the type specified for each kit.

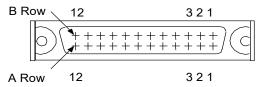
| <b>Emerson Catalog Number</b> | Vendor Catalog Number | Description                           |  |
|-------------------------------|-----------------------|---------------------------------------|--|
| IC693ACC316                   | FCN-361J024-AU        | Solder eyelet receptacle              |  |
| (Solder Eyelet Type)          | FCN-360C024-B         | Backshell (for above)                 |  |
| IC693ACC317                   | FCN-363J024           | Crimp wire receptacle                 |  |
| (Crimp Type)                  | FCN-363J-AU           | Crimp pin (for above, 24 needed)      |  |
|                               | FCN-360C024-B         | Backshell (for above)                 |  |
| IC693ACC318                   | FCN-367J024-AUF       | IDC (ribbon) receptacle, closed cover |  |
| (Ribbon or IDC Type)          | FCN-367J024-AUH       | IDC (ribbon) receptacle, open cover   |  |

Additional tools from Fujitsu are required to properly assemble the crimped contact and ribbon cable type connectors. *The solder eyelet connectors (as provided in IC693ACC316) do not require any special tooling.* 

Crimped Contact Connectors (as provided in IC693ACC317) require:

Hand Crimping Tool FCN-363T-T005/H
Contact Extraction Tool FCN-360T-T001/H

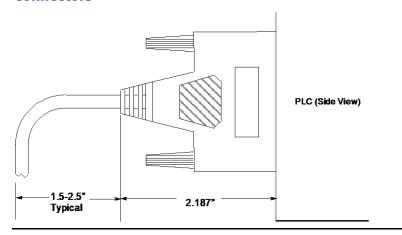
Ribbon Cable Connectors (as provided in IC693ACC318) require:


Cable Cutter FCN-707T-T001/H Hand Press FCN-707T-T101/H Locator Plate FCN-367T-T012/H

These tools must be ordered from an authorized Fujitsu distributor.

Pin connections with color codes are displayed in the following figure. Cables are made of 12 twisted pairs; wire size is #24 AWG (0.22mm<sup>2</sup>). Each pair has a solid color wire and the same color wire with a black tracer.

| Pin Number | Pair # | Wire Color Code  | Pin Number | Pair # | Wire Color Code   |
|------------|--------|------------------|------------|--------|-------------------|
| A1         | 1      | BROWN            | B1         | 7      | VIOLET            |
| A2         | 1      | BROWN/BLACK      | B2         | 7      | VIOLET/BLACK      |
| A3         | 2      | RED              | B3         | 8      | WHITE             |
| A4         | 2      | RED/BLACK        | B4         | 8      | WHITE/BLACK       |
| A5         | 3      | ORANGE           | B5         | 9      | GRAY              |
| A6         | 3      | ORANGE/BLACK     | B6         | 9      | GRAY/BLACK        |
| A7         | 4      | YELLOW           | B7         | 10     | PINK              |
| A8         | 4      | YELLOW/BLACK     | B8         | 10     | PINK/BLACK        |
| A9         | 5      | DARK GREEN       | B9         | 11     | LIGHT BLUE        |
| A10        | 5      | DARK GREEN/BLACK | B10        | 11     | LIGHT BLUE/BLACK  |
| A11        | 6      | DARK BLUE        | B11        | 12     | LIGHT GREEN       |
| A12        | 6      | DARK BLUE/BLACK  | B12        | 12     | LIGHT GREEN/BLACK |


**Figure 444: D-Connector Pinout** 



### **Connector Depth for Custom Built Cables**

If custom-built cables use a straight connector, as indicated above, they will require more space in front of the PLC than the prefabricated cables (refer to Section 17.2.1, *Components for Low-Density, Unshielded 20-/24-point TBQC*), which use right–angle connectors. The depth of the cabinet that the PLC is mounted in should allow for the depth added by the selected connector.

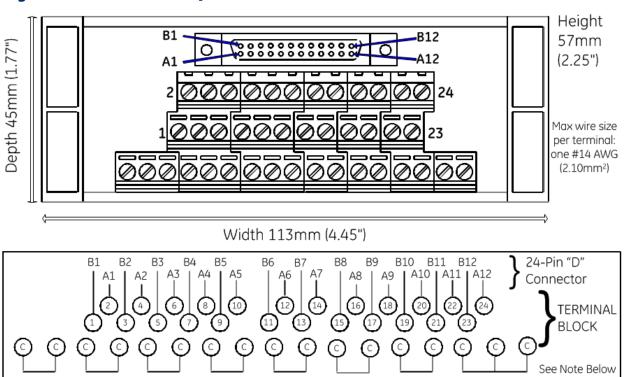
Figure 445: Allowance for Extra Depth using Straight-On Connectors



# 17.2.2 Low-Density TBQC System Variant for 32-Point I/O Modules with Dual D-Connectors

IC693ACC337 provides 24 terminals (versus 20). It is designed for use with those 32-point discrete modules that come equipped with dual D-connectors. This TBQC configuration uses a mated pair of cables (one right-egress and one left-egress) in order to connect the dual D-connectors on the I/O Module to a pair of IC693ACC337 terminal blocks.

The compatible cables connect Pin 1 of the TBQC D-connector to Pin 1 of the corresponding D-connector on the I/O module, and Pin 24 to Pin 24, and such.







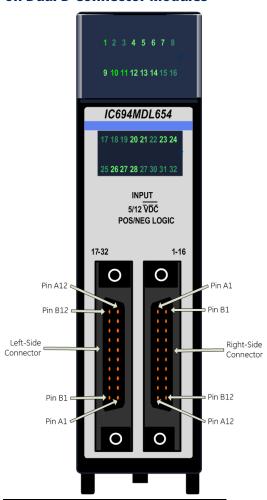

### **IC693ACC337 TBQC Terminal Block**

Figure 447: IC693ACC337 TBQC Terminal Block



**Note:** The common row terminals (labeled with the letter C) are provided for wiring convenience. Their use is optional. They are electrically isolated from the numbered terminals. You may use them as is, or jumper them to a numbered terminal.

### Connecting


Refer to Section 17.2.1, *Components for Low-Density, Unshielded 20-/24-point TBQC* for cable selection. Remember that for interfacing with a 32-point module with dual D-connectors, it will be necessary to pick a left-side cable and a right-side cable.

### Mounting

These terminal blocks are mounted on a standard, user-supplied 35 mm DIN-rail.

### **Connecting TBQC Components to 32-Point Modules**

# Figure 448: Pinout Assignments on Dual D-Connector Modules



Those 32-point modules equipped with a pair of 24-pin D-connectors on their faceplate may be used with TBQC terminal block IC693ACC337. They do not require a substitute faceplate as was described for the 20-terminal modules.

Since each 32-point I/O module provides two 24-pin

D-connectors, they will each require two cables and two IC693ACC337 TBQC terminal blocks.

Additionally, since the two connectors on the I/O module are oriented differently (refer to figure below), the egress for each of the cables is different. Emerson supplies "right side" and "left side" cables to simplify installation. Refer to Section 17.2.1, Components for Low-Density, Unshielded 20-/24-point TBQC for cable selection.

After installation, cables can be secured to the two tie-downs on the bottom of Module.

**Note:** These terminal blocks do not work with 32-point I/O modules that have 50-pin connectors.

# 17.2.3 High-Density TBQC System Overview

The High-Density Compact Remote Terminal Base IC694RTB032 connects to the I/O module faceplate IC694TBC032 via a shielded cable IC694CBL\* (refer to the section, *Components for High-Density, Shielded 36-TBQC*) and supports both analog and discrete I/O modules, as displayed in the following table.

**Figure 449: High-Density TBQC System Overview** 

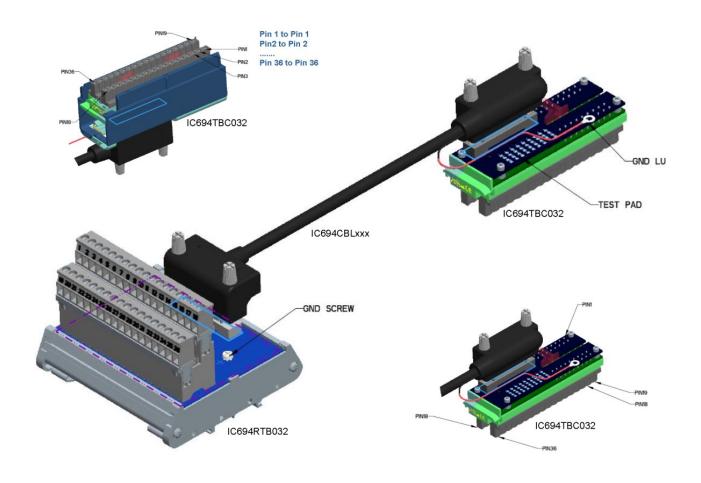
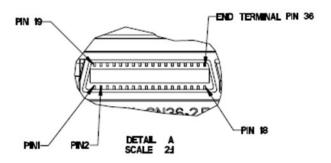
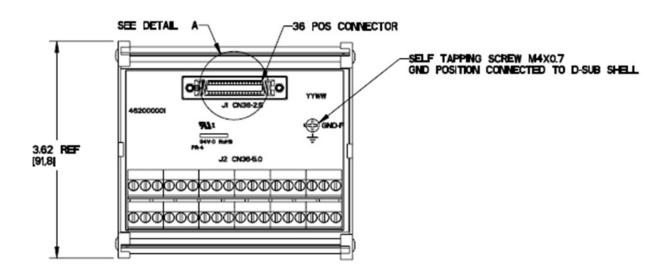
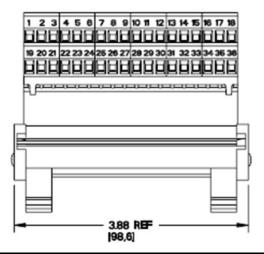



Figure 450: High-Density Compact Remote Terminal Base IC694RTB032 Usage





# **Components for High-Density, Shielded 36-TBQC**


| Part<br>Number | Description                                                                                                                                             | Compatibility                                                                                                              |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| IC694TBB032    | Box-Style 36-point Terminal Block (refer to Section 17.1.1, IC694TBB032 and TBB132 Box-Style Terminal Blocks, 36 Terminals).                            | As listed throughout the manual.                                                                                           |
| IC694TBC032    | High-Density terminal block with single 36-pin D-connector.                                                                                             | IC695ALGxxx, IC69xMDL660 and IC694MDL664 modules only. Discrete output modules and Thermocouple modules are not supported. |
| IC694RTB032    | High-Density remote base, with 36-pin D-connector, shield ground lug and with a 36-point removable terminal block.                                      | IC695ALGxxx, IC69xMDL660 and IC694MDL664 modules only. Discrete output modules and Thermocouple modules are not supported. |
| IC694CBL005    | Shielded 0.5-meter cable with 36-pin D-connector termination on both ends.                                                                              | IC694TBC032 and IC694TBB032 only                                                                                           |
| IC694CBL010    | Shielded 1.0-meter cable with 36-pin D-connector termination on both ends.                                                                              | IC694TBC032 and IC694TBB032 only                                                                                           |
| IC694CBL030    | Shielded 3.0-meter cable with 36-pin D-connector termination on both ends.                                                                              | IC694TBC032 and IC694TBB032 only                                                                                           |
| IC694CBL130    | Shielded 3.0-meter cable with 36-pin D-connector termination on the end that connects to the IC694TBC032 terminal block. The other end is unterminated. | IC694TBC032 only                                                                                                           |

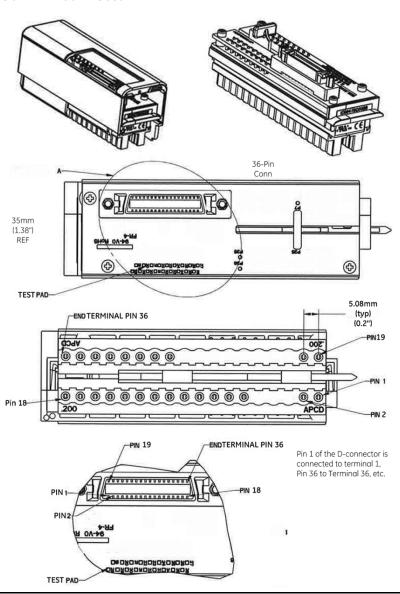
### IC694RTB032 High-Density Remote Base, 36-Terminal

Figure 451: IC694RTB032 High-Density Remote Base, 36-Terminal








Pin 1 of the D-connector is connected to terminal 1, Pin 36 to Terminal 36, etc.

# IC694TBC032 High-Density Terminal Block with Single 36-Pin D-Connector

To connect the remote terminal block IC694RTB032 to an I/O module, the I/O module must be fitted with an IC694TBC032 terminal block.

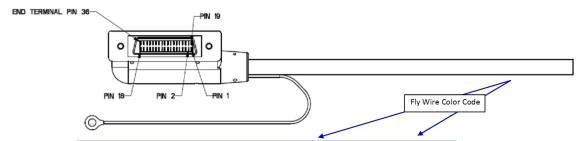

Since both the I/O module and the remote terminal block are fitted with 36-point D-connectors, only one cable is required to interconnect the two. Additionally, both ends are equipped to handle shielded cables. These features provide a significant advantage over the IC693ACC377 TBQC.

Figure 452: IC694TBC032 High-Density Terminal Block with Single 36-Pin D Connector



# IC694CBL\* Cable Wiring Details

Figure 453: IC694CBL\* Cable Wiring Details



| TERMINAL BLOCK /    | MAIN       | ACCENT     |
|---------------------|------------|------------|
| CABLE CONNECTOR PIN | WIRE COLOR | WIRE COLOR |
| SHELL               | BRAID LUG  | -          |
| 1                   | BROWN      | RED        |
| 2                   | LIGHT GRAY | BROWN      |
| 3                   | BLUE       | BROWN      |
| 4                   | ORANGE     | BROWN      |
| 5                   | RED        | BROWN      |
| 6                   | VIOLET     | WHITE      |
| 7                   | GREEN      | WHITE      |
| 8                   | ORANGE     | WHITE      |
| 9                   | BROWN      | WHITE      |
| 10                  | PINK       | -          |
| 11                  | WHITE      | -          |
| 12                  | VIOLET     |            |
| 13                  | BLUE       | -          |
| 14                  | GREEN      |            |
| 15                  | YELLOW     |            |
| 16                  | ORANGE     |            |
| 17                  | RED        |            |
| 18                  | BROWN      | -          |
| 19                  | LIGHT GRAY | RED        |
| 20                  | PINK       | BROWN      |
| 21                  | VIOLET     | BROWN      |
| 22                  | GREEN      | BROWN      |
| 23                  | YELLOW     | BROWN      |
| 24                  | LIGHT GRAY | WHITE      |
| 25                  | BLUE       | WHITE      |
| 26                  | YELLOW     | WHITE      |
| 27                  | RED        | WHITE      |
| 28                  | PINK       | BLACK      |
| 29                  | WHITE      | BLACK      |
| 30                  | VIOLET     | BLACK      |
| 31                  | BLUE       | BLACK      |
| 32                  | GREEN      | BLACK      |
| 33                  | YELLOW     | BLACK      |
| 34                  | ORANGE     | BLACK      |
| 35                  | RED        | BLACK      |
| 36                  | BROWN      | BLACK      |

# Appendix A: Product Certifications and Installation Guidelines for Conformance

This appendix describes the compliance markings that appear on PACSystems RX3i products and the corresponding standards to which the products have been certified. This appendix also provides installation requirements for conformance to standards and additional safety guidelines for installing in the European Union.

# A.1 RX3i Agency Approvals

| Description                                                                                                            | Agency<br>Standard or<br>Marking | Comments                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N.A. Safety for Industrial Control<br>Equipment                                                                        | CUL US LISTED                    | Certification by Underwriter's Laboratories to UL508 standard and equivalent CSA C22.2 No 142 - M1987standard                                                                                                                                                      |
| N.A. Safety for Hazardous Areas<br>Class I, Div. 2, Groups A, B, C, D                                                  | CUL US LISTED                    | Certification by Underwriter's Laboratories to ISA<br>12.12.01 standard and equivalent CSA C22.2 No 213-<br>M1987 standard                                                                                                                                         |
| Low Voltage Directive European Safety for Industrial Control Equipment                                                 | CE                               | Self-Declaration in accordance with European Directives; Refer to Declaration of Conformity found at the Emerson support link located at the end of this document for a complete list of approved products                                                         |
| Electromagnetic Compatibility Directive European EMC for Industrial Control Equipment                                  | CE                               | Certification by Competent Body in accordance with European Directives; Refer to Declaration of Conformity found at the Emerson support link located at the end of this document for a complete list of approved products                                          |
| Explosive Atmospheres Directive European Safety for Hazardous Areas Equipment Group II, Category 3, Gas Groups A, B, C | ⟨£x⟩                             | Certification in accordance with European Directives and Independent 3 <sup>rd</sup> Party Assessment Certificate; Refer to Declaration of Conformity found at the Emerson support link located at the end of this document for complete list of approved products |

**Note:** The agency approvals listed above and on the Declaration of Conformities are believed to be accurate; however, agency approvals for a product should be verified by the marking on the unit itself.

# A.2 UL Class 1 Division 2 Hazardous Areas Requirements

The following statements are required to display for Class I Division 2 Hazardous Locations:

- EQUIPMENT LABELED WITH REFERENCE TO CLASS I, GROUPS A, B, C, and D, DIV. 2 HAZARDOUS LOCATIONS IS SUITABLE FOR USE IN CLASS I, DIVISION 2, GROUPS A, B, C, D OR NON– HAZARDOUS LOCATIONS ONLY.
- 2. WARNING EXPLOSION HAZARD SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2.
- 3. WARNING EXPLOSION HAZARD DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON–HAZARDOUS.
- 4. EQUIPMENT SHALL BE INSTALLED INTO AN ENCLOSURE THAT IS ONLY ACCESSIBLE WITH THE USE OF A TOOL

# **A.3 ATEX Zone 2 Hazardous Areas Requirements**

To maintain compliance with the ATEX Directive, an RX3i system located in a Zone 2 area (Category 3) must be installed within a protective enclosure meeting the following criteria:

- IP54 or greater
- Mechanical strength to withstand an impact energy of 3.5 Joules
- Only accessible with the use of a tool

# **A.4 DNVGL Type Approval Requirements**

DNVGL Type approval covers only hardware listed on certificate. For system applications classed by DNVGL where additional hardware is used, system documentation is to be submitted by system design manufacturer.

For additional information on the DNVGL certificate, please contact us at the Support link located at the end of this document.

### A.5 Standards

### **PACSystems RX3i Environmental Specifications**

| Specification         | Regulation                 | Description                                             |  |
|-----------------------|----------------------------|---------------------------------------------------------|--|
| Vibration             | IEC60068-2-6,<br>JISC0911  | 10 - 57 Hz, 0.0524 mm (0.006 in) displacement peak-peak |  |
| Shock                 | IEC60068-2-27,<br>JISC0912 | 57 - 500 Hz, 1.0 g acceleration 15G, 11ms               |  |
| Operating Temperature |                            | 0 to 60°C: [inlet] (32 to 140 °F)                       |  |
| Storage Temperature   |                            | -40 to +85°C (-40 to 185 °F)                            |  |
| Humidity              |                            | 5 to 95%, non-condensing                                |  |

# A.6 Additional RX3i Specifications

Standards for EMC Emissions, and Immunity, for RX3i products are provided on the following pages. Refer to the listing of module catalog numbers below to determine which set of standards applies to a specific module: Specifications Group 1 or Group 2.

### **Group 1 Table**

| IC694ACC300 | IC694DNM200 | IC694MDL390 | IC694MDL740 |
|-------------|-------------|-------------|-------------|
| IC694ALG220 | IC694DNS201 | IC694MDL632 | IC694MDL741 |
| IC694ALG221 | IC694DSM314 | IC694MDL634 | IC694MDL742 |
| IC694ALG390 | IC694DSM324 | IC694MDL635 | IC694MDL752 |
| IC694ALG391 | IC694MDL230 | IC694MDL645 | IC694MDL753 |
| IC694ALG392 | IC694MDL231 | IC694MDL646 | IC694MDL758 |
| IC694APU300 | IC694MDL240 | IC694MDL648 | IC694MDL930 |
| IC694APU305 | IC694MDL241 | IC694MDL654 | IC694MDL931 |
| IC694BEM320 | IC694MDL250 | IC694MDL655 | IC694MDL940 |
| IC694BEM321 | IC694MDL310 | IC694MDL658 | IC694MDR390 |
| IC694BEM340 | IC694MDL330 | IC694MDL730 | IC694PWR321 |
| IC694BEM341 | IC694MDL340 | IC694MDL732 | IC694PWR330 |
| IC694CHS392 | IC694MDL350 | IC694MDL734 | IC694PWR331 |
| IC694CHS398 |             |             |             |

### **Group 2 Table**

| IC694ALG222 | IC695ALG106        | IC695CMM002                | IC695HSC304      |
|-------------|--------------------|----------------------------|------------------|
| IC694ALG223 | IC695ALG112        | IC695CMM004                | IC695HSC308      |
| IC694ALG232 | IC695ALG306        | IC695CMU310                | IC695LRE001      |
| IC694ALG233 | IC695ALG312        | IC695CMX128                | IC695MDL664      |
| IC694ALG442 | IC695ALG412        | IC695CNM001                | IC695MDL765      |
| IC694ALG542 | IC695ALG508        | IC695CPE302 <sup>104</sup> | IC695NIU001      |
| IC694BEM331 | IC695ALG600        | IC695CPE305 <sup>104</sup> | IC695NIU001 PLUS |
| IC694CEE001 | IC695ALG608        | IC695CPE310 <sup>104</sup> | IC695PBM300      |
| IC694MDL260 | IC695ALG616        | IC695CPE330                | IC695PBS301      |
| IC694MDL660 | IC695ALG626        | IC695CPU310                | IC695PMM335      |
| IC694MDL754 | IC695ALG628        | IC695CPU315                | IC695PNC001      |
| IC694MDL916 | IC695ALG704        | IC695CPU320                | IC695PNS001      |
| IC695ACC302 | IC695ALG708        | IC695CRE311                | IC695PNS101      |
| IC695ACC400 | IC695ALG808        | IC695CRH                   | IC695PRS015      |
| IC695ACC401 | IC695CEP001        | IC695CRU320                | IC695PSA040      |
| IC695ACC650 | IC695CHS007        | IC695ECM850                | IC695PSA140      |
| IC695ACC651 | IC695CHS012        | IC695EDS001                | IC695PSD040      |
| IC695FTB001 | IC695CHS016        | IC695EIS001                | IC695PSD140      |
|             | IC695CHS007PCIONLY | IC695ETM001                | IC695RMX128      |
|             | IC695CHS012PCIONLY | IC695GCG001                | IC695RMX228      |
|             |                    |                            |                  |

IC695CHS016PCIONLY

 $<sup>^{104}</sup>$  Unless otherwise explicitly stated / differentiated all the statements are equally applicable to both the versions Axxx and Bxxx of these controllers.

### **Specifications Group 1**

### **EMC EMISSIONS**

| Emission Type      | Regulation                        | Specification                                          |
|--------------------|-----------------------------------|--------------------------------------------------------|
| Radiated           | CISPR 11/EN 55011/<br>EN55016-2-3 | 30 – 230 MHz 50.4 dBμV/m<br>230 – 1000 MHz 57.4 dBμV/m |
| (Group 1, Class A) |                                   | 30 – 88 MHz 49.5 dBμV/m                                |
| (Group 1, Class A) | 47 CFR 15                         | 88 – 216 MHz 53.9 dBμV/m                               |
|                    | 47 CFR 15                         | 216 -960 MHz 56.8 dBμV/m                               |
|                    |                                   | ≥ 960 MHz 59.9 dBµV/m                                  |

### **EMC IMMUNITY**<sup>105</sup>

| Immunity Type                  | Regulation                                                          | Specification                                                             |
|--------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|
| Electrostatic Discharge        | EN 61000-4-2 <sup>106</sup>                                         | ±8 kV Air, ±4 kV Contact                                                  |
| RF Susceptibility              | EN 61000-4-3 <sup>106</sup>                                         | 10 V <sub>rms</sub> /m, 80 to 1000 MHz, 80% AM, 1 kHz sine-wave           |
|                                |                                                                     | AC/DC Input Power: ±2 kV direct                                           |
| Fast Transient Burst           | EN 61000-4-4 <sup>106</sup>                                         | Discrete I/O, Communication: ±1 kV (clamp) 106                            |
|                                |                                                                     | Analog I/O: ±0.25 kV (clamp)                                              |
| Damped Oscillatory Wave        | ANSI/IEEE C37.90a,<br>EN 61000-4-12 <sup>106</sup><br>EN 61000-4-18 | AC/DC Input Power: +2.5 kV<br>I/O, Communication: +2.5 kV <sup>107</sup>  |
| Voltago Curgo                  | EN 61000-4-5 <sup>106</sup>                                         | AC/DC Input Power: ±2 kV (12 Ω) CM                                        |
| Voltage Surge                  |                                                                     | I/O, Communication: $\pm 1$ kV (42 $\Omega$ ) CM <sup>107</sup>           |
| Conducted RF                   | EN 61000-4-6 <sup>106</sup>                                         | Communication: 10V <sub>rms</sub> , 0.15 to 80 MHz, 80% AM <sup>108</sup> |
| Voltage Dips and<br>Interrupts | EN 61000-4-11 <sup>106</sup>                                        | AC/DC Input Power: 30% and 100% Nominal (10ms)                            |
| Voltage Variation              | EN 61000-4-11 <sup>106</sup>                                        | AC Input Power: ± 10% (10s)                                               |
| Voltage Variation              |                                                                     | DC Input Power: ± 20% (10s)                                               |

<sup>&</sup>lt;sup>105</sup> Although a few modules were tested according to the Voltage Surge test, modules were primarily tested to the Damped Oscillatory Wave test.

 $<sup>^{106}</sup>$  EN 61000-4-x series of tests are technically equivalent to the IEC 61000-4-x series.

 $<sup>^{107}</sup>$  Not applicable to communication or I/O lines with maximum installed length less than 30 m (98 ft).

 $<sup>^{108}</sup>$  Not applicable to communication lines with maximum installed length less than 30 m (98 ft).

### **Specifications Group 2**

### **EMC EMISSIONS**

| Emission Type                   | Regulation                                      | Specification                                                                                            |
|---------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                 | CISPR 11/EN 55011<br>/ EN55016-2-3              | 30 – 230 MHz 50.4 dBμV/m<br>230 – 1000 MHz 57.4 dBμV/m                                                   |
| Radiated<br>(Group 1, Class A)  | 47 CFR 15                                       | 30 – 88 MHz 49.5 dBμV/m<br>88 – 216 MHz 53.9 dBμV/m<br>216 -960 MHz 56.8 dBμV/m<br>≥ 960 MHz 59.9 dBμV/m |
| Conducted<br>(Group 1, Class A) | CISPR 11/EN 55011<br>/ EN55016-2-1<br>47 CFR 15 | 0.15 – 0.5 MHz: 79/66 dBμV (qp/avg)<br>0.5 – 30 MHz: 73/60 dBμV (qp/avg)                                 |
| Harmonic                        | EN61000-3-2                                     | Class A                                                                                                  |

### **EMC IMMUNITY**

| Immunity Type                       | Regulation                  | Specification                                                    |
|-------------------------------------|-----------------------------|------------------------------------------------------------------|
| Electrostatic Discharge             | EN 61000-4-2 <sup>109</sup> | ±8 kV Air, ±4 kV Contact                                         |
|                                     | EN 61000-4-3 <sup>109</sup> | 10 V <sub>rms</sub> /m, 80 to 1000 MHz, 80% AM, 1kHz sine-wave   |
| RF Susceptibility                   |                             | 3 V <sub>rms</sub> /m, 1.0 to 2.7 GHz, 80% AM, 1 kHz sine-wave   |
|                                     | ENV 50140/                  | 10 V <sub>rms</sub> /m, 900 ± 5 MHz, 100% PM, 200 Hz square-wave |
|                                     | ENV 50204                   | 7ms /m, 300 ± 3 mmz, 100 % 1 m, 200 mz square wave               |
| Fast Transient Burst <sup>110</sup> | EN 61000-4-4 <sup>109</sup> | AC/DC Power: ±2 kV direct                                        |
| rast Hansient burst                 |                             | Signal: ±1 kV cap coupled                                        |
|                                     | EN 61000-4-5 <sup>109</sup> | Equipment Power                                                  |
|                                     |                             | AC: ±2 kV CM, ±1 kV DM                                           |
|                                     |                             | DC <sup>111</sup> : ±0.5 kV CM, ±0.5 kV DM                       |
|                                     |                             | I/O Power and Auxiliary Output Power                             |
| Voltage Surge                       |                             | AC: ±2 kV CM, ±1 kV DM                                           |
| voltage surge                       |                             | DC <sup>111</sup> : ±0.5 kV CM, ±0.5 kV DM                       |
|                                     |                             | Shielded Signal <sup>112</sup> : ±1 kV CM                        |
|                                     |                             |                                                                  |
|                                     |                             | Unshielded Communication Signal <sup>112</sup> : ±1 kV CM        |
|                                     |                             | Unshielded I/O Signal <sup>112:</sup> ±1kV CM, ±0.5 kV DM        |

 $<sup>^{109}</sup>$  EN 61000-4-x series of tests are technically equivalent to the IEC 61000-4-x series.

<sup>&</sup>lt;sup>110</sup> Not applicable for communication, I/O, I/O power, Auxiliary power output or DC Input power lines where the maximum installed length is less than 3 m (9.1ft).

 $<sup>^{111}</sup>$  Not applicable to ports limited to 30 m (98 ft) or less.

 $<sup>^{\</sup>rm 112}$  Not applicable to RS232 ports and those ports limited to 30 m (98 ft) or less

| Immunity Type      | Regulation                   | Specification                                                                    |
|--------------------|------------------------------|----------------------------------------------------------------------------------|
|                    | ANSI/IEEE C37.90a,           | 1 MHz, 400 Hz rep rate                                                           |
| Damped Oscillatory | EN 61000-4-12 <sup>109</sup> | AC Power: $\pm 2.5$ kV CM and DM (200 $\Omega$ )                                 |
| Wave               | EN 61000-4-12                | DC Power <sup>110</sup> : $\pm 2.5$ kV CM and DM (200 $\Omega$ )                 |
|                    | LIV 01000-4-18               | Signal: $\pm 2.5$ kV CM (200 $\Omega$ )                                          |
| Conducted RF       | EN 61000-4-6 <sup>109</sup>  | AC/DC Power, Signal: 10 V <sub>rms</sub> , 0.15 to 80 MHz, 80% AM <sup>113</sup> |
|                    |                              | AC Input Power:                                                                  |
| Voltage Dips &     | EN 61000-4-11 <sup>109</sup> | 30% Nominal (0.5 period);                                                        |
| Interrupts         | LIN 01000-4-11               | 60% Nominal (5.50 periods);                                                      |
|                    |                              | >95% Nominal (250 periods)                                                       |
| Voltage Variation  | EN 61000-4-11 <sup>109</sup> | AC Input Power: ±10% (50,000 periods)                                            |
| Voltage Flicker    | EN 61000-3-3                 | AC Input Power: d <sub>max</sub> ≤ 4%                                            |

 $<sup>^{113}</sup>$  Not applicable to communication or I/O lines with maximum installed length 3 m (09.1 ft) or less

# **A.7 Government Regulations**

U.S., Canadian, Australian, and European regulations are intended to prevent equipment from interfering with approved transmissions or with the operation of other equipment through the AC power source.

The PACSystems RX3i family of products has been tested and found to meet or exceed the requirements of U.S. (47 CFR 15), Canadian (ICES-003), Australian (AS/NZS 3548), and European (EN55011) regulations for Class A digital devices when installed in accordance with the guidelines noted in this manual. These various regulations share commonality in content and test levels with that of CISPR 11 and based on this commonality testing to each individual standard was deemed inappropriate.

The FCC requires the following note to be published according to FCC guidelines:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

Industry Canada requires the following note to be published:

**Note:** This Class A digital apparatus complies with Canadian ICES-003.

Modules released after August 2012 require the following information be marked on the unit or appear in user documentation:

CAN ICES-3 (A)/NMB-3 (A)

# **A.8 Installation Guidelines for Conformance to Standards**

To meet U.S., Canadian, Australian, and European regulations for Class A digital devices and maintain CE Mark compliance, RX3i installations that include the products listed in the following table must be installed in a metal enclosure with external wiring routed in metal conduit as described in this appendix. Modules not listed must still be installed in a protective enclosure as described in Chapter 2, Installation.

### **Modules Requiring Installation in a Metal Enclosure**

| Description                                                                   | Catalog Number |
|-------------------------------------------------------------------------------|----------------|
| Series 90-30 Input Analog 4-point Voltage                                     | IC693ALG220    |
| Series 90-30 Input Analog 16sgl Current                                       | IC693ALG223    |
| RX3i Input Analog 16sgl Current                                               | IC694ALG223    |
| Series 90-30 Output Analog 2-point Voltage                                    | IC693ALG390    |
| RX3i Output Analog 2-point Voltage                                            | IC694ALG390    |
| Series 90-30 Output Analog 2-point Current                                    | IC693ALG391    |
| RX3i Output Analog 2-point Current                                            | IC694ALG391    |
| RX3i Analog Output 8-Channel Current/Voltage                                  | IC694ALG392    |
| Series 90-30 Analog Combination Current/Voltage 4in/2out                      | IC693ALG442    |
| RX3i Analog Combination Current/Voltage 4in/2out                              | IC694ALG442    |
| RX3i Analog Module 4-Input 2-Output Current/Voltage with Advanced Diagnostics | IC694ALG542    |
| Series 90-30 I/O Link Module (Slave)                                          | IC693BEM320    |
| RX3i I/O Link Interface Module                                                | IC694BEM320    |
| Series 90-30 I/O Link Module (Master)                                         | IC693BEM321    |
| RX3i I/O Link Master Module                                                   | IC694BEM321    |
| Series 90-30 10-Slot Expansion Backplane                                      | IC693CHS392    |
| RX3i 10-Slot Serial Expansion Backplane                                       | IC694CHS392    |
| Series 90-30 Remote Baseplate, 10 Slots                                       | IC693CHS393    |
| Series 90-30 Remote Baseplate, 5 Slots                                        | IC693CHS399    |
| RX3i Control Memory Xchange Module                                            | IC695CMX128    |
| Series 90-30 DSM314 Motion Controller                                         | IC693DSM314    |
| RX3i DSM314 Motion Controller                                                 | IC694DSM314    |
| RX3i DSM324 Motion Controller                                                 | IC694DSM324    |
| Series 90-30 Mixed I/O 8-point 120 Vac In / 8-point Relay Out                 | IC693MAR590    |
| Series 90-30 Input 120 Vac 8-point Isolated                                   | IC693MDL230    |
| RX3i Input 120 Vac 8-point Isolated                                           | IC694MDL230    |
| Series 90-30 Input 240 Vac 8-point Isolated                                   | IC693MDL231    |
| RX3i Input 240 Vac 8-point Isolated                                           | IC694MDL231    |
| Series 90-30 Input 120 Vac 16-point                                           | IC693MDL240    |
| RX3i Input 120 Vac 16-point                                                   | IC694MDL240    |

| Description                                                         | Catalog Number |
|---------------------------------------------------------------------|----------------|
| Series 90-30 Input 24Vac 16-point                                   | IC693MDL241    |
| RX3i Input 24Vac 16-point                                           | IC694MDL241    |
| Series 90-30 Output 120 Vac 0.5 12-point                            | IC693MDL310    |
| RX3i Output 120 Vac 0.5 A 12 Point                                  | IC694MDL310    |
| Series 90-30 Output 120/240 Vac 2A 8-point                          | IC693MDL330    |
| RX3i Output 120/240 Vac 2 A 8-point                                 | IC694MDL330    |
| Series 90-30 Output 120 Vac 0.5A 16-point                           | IC693MDL340    |
| RX3i Output 120 Vac 0.5 A 16-point                                  | IC694MDL340    |
| Series 90-30 Output 120/240 Vac 2A 5-point Isolated                 | IC693MDL390    |
| RX3i Output 120/240 Vac 2 A 5-point Isolated                        | IC694MDL390    |
| Series 90-30 Input 125Vdc 8-point Pos/Neg Logic                     | IC693MDL632    |
| RX3i Input 125Vdc 8-point Pos/Neg Logic                             | IC694MDL632    |
| Series 90-30 Input 5/12Vdc (TTL) 32-point Pos/Neg                   | IC693MDL654    |
| RX3i Input 5/12Vdc (TTL) 32-point Pos/Neg                           | IC694MDL654    |
| Series 90-30 Output 12/24Vdc 0.5A 8-point Positive Logic            | IC693MDL732    |
| RX3i Output 12/24Vdc 0.5 A 8-point Positive Logic                   | IC694MDL732    |
| Series 90-30 Output 12/24Vdc 0.5A 8-point Negative Logic            | IC693MDL733    |
| Series 90-30 Output 125Vdc 1A 6-point Isolated Pos/Neg              | IC693MDL734    |
| RX3i Output 125Vdc 1 A 6 Point Isolated Pos/Neg                     | IC694MDL734    |
| Series 90-30 Output 5/24Vdc (TTL) 0.5A 32-point Negative Logic      | IC693MDL752    |
| RX3i Output 5/24Vdc (TTL) 0.5 A 32-point Negative Logic             | IC694MDL752    |
| Series 90-30 Solenoid Out 11-point/24Vdc Out 5-point Positive Logic | IC693MDL760    |
| Series 90-30 Output Relay 4A 8-point Isolated                       | IC693MDL930    |
| RX3i Output Relay N.O. 4 A 8-point Isolated                         | IC694MDL930    |
| Series 90-30 Mixed I/O 8-point 24Vdc In / 8-point Relay Out         | IC693MDR390    |
| RX3i Mixed I/O 24Vdc Input (8-point) N.O. Relay Output (8-point)    | IC694MDR390    |
| RX3i Redundancy Memory Xchange Module, Multi-mode fiber             | IC695RMX128    |
| RX3i Redundancy Memory Xchange Module, Single-mode fiber            | IC695RMX228    |

# A.9 Requirements for Installation in a Metal Enclosure

- Backplanes must be mounted in a metal enclosure with a metal-onmetal connection around the door or the equivalent. All surfaces of the enclosure must be adequately grounded to adjacent surfaces to provide electrical conductivity.
- Wiring external to the enclosure must be routed in metal conduit or the equivalent. Using shielded cables and power line filtering, as detailed in the A.10 Shielded Cable Alternative to Conduit, is equivalent to using metal conduit.
- The conduit must be mounted to the enclosure using standard procedures and hardware to ensure electrical conductivity between the enclosure and conduit. The termination for the shielded cable alternative to conduit is detailed in the section, Shielded Cable Alternative to Conduit.

### A.10 Shielded Cable Alternative to Conduit

This section describes the installation requirements for using shielded cable as an alternative to metal conduit for meeting radiated emissions requirements (EN 55011, 47CFR15, and such). The following practices could be used in place of conduit for systems or cables that require conduit or the equivalent.

### **Communication Cables**

All communication lines should be double-shielded. The outside braided shield (85% coverage) must be terminated at the entrance to the enclosure and not continue within the enclosure. The inside shield should be left intact since it shields the communication line from noise within the enclosure and is terminated to the connector shell. The RX3i communication port connector shells are directly tied to frame ground. To prevent ground loop currents, one cable end of the inside shield should be capacitively-coupled to its shell. The outside shield is classified as an RF shield and should be insulated from the inside shield.

An alternative to double-shielded cable for Genius bus communications is Eupen\* CMS cable, equivalent Genius cables with an RF-absorptive material outer coating. The shield should be terminated per standard Genius wiring guidelines.

\*Telephone: 32 87 55 47 71 (Europe), 908-919-1100 (U.S.A.)

### **I/O Cables**

All I/O lines leaving the enclosure must have at least 85% braided shield coverage terminated at the entrance to the enclosure. This 85% RF shield should not continue into the enclosure. Eighty-five percent braided shield is a standard cable available with various wire sizes and quantities from many cable manufacturers.

### **Analog/High-Speed Cables**

Analog or high-speed lines, which require shielded cable for immunity, should be double-shielded. The outside braided shield should be terminated at the entrance to the enclosure and not continue within the enclosure. The inside shield should be terminated per standard installation instructions. The outside shield is classified as an RF shield and should be insulated from the inside shield.

### **Power Input to Enclosure (for IC694 Power Supplies)**

An alternative to shielded input cables is to use RF filters to minimize the noise coupled back onto the power supply inputs. If RF filters are used at the point of enclosure entry, unshielded wires may be used inside and outside the enclosure.

### **AC Power Input RF Filter Requirements**

- Type: Common mode/Differential mode line filter
- Effective range: between 30-300 MHz
- Leakage current: <0.8 mA</li>
- Insertion loss >30 decibels at 30 MHz, >20 decibels at 100 MHz,
   >15 decibels at 300 MHz

### **DC Power Input RF Filter Requirements**

- Type: Feed-through, π type EMI ceramic filter
- Capacitance: 1500 pF (minimum)
- WVDC: 100 V
- Current rating: As needed for application
- Insertion Loss: >50 decibels at 100 MHz

### **Shield Termination**

Termination of RF shields is extremely important in the reduction of RF emissions. The RF shields should be terminated at the entrance to the enclosure with a 360 degree contact between the shield and the enclosure wall.

### **Compression Connectors**

Compression connectors are standard hardware available for the termination of conduit. The diameter of the connectors is not of significant importance other than to make sure the wires can actually fit through them. The compression connector provides a metal ring for shield termination and compression.

Figure 454: Unshielded I/O Cable, Single Shield (Side View)

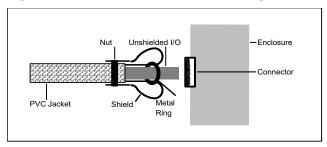
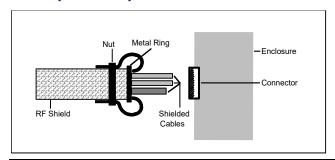




Figure 455: Multiple Communication/High-Speed Cables, Single RF Shield (Side View)



### **Specialty Shielded Cable Vendors**

**Eupen** specializes in RF-absorptive material outer coating cables (CMS cables). Ask for equivalent Genius cables.

**Glenair, Inc.** specializes in convoluted tubing (Series 72 and 74) and in flexible metal-core conduit (Series 75). They also carry various kinds of shield termination connectors.

**Zippertubing Co.** specializes in after installation zip-on shielding where different types of shielding can be selected. Recommended types of shielding are SHN-3, SH1, and SH3 to provide 85% coverage.

### Safety-Related Guidelines for Installation in the European Union

This section provides safety-related guidelines specifically for control system products to be installed in the European Union. It is assumed that personnel who install, operate, and maintain automation systems that include products are trained and qualified to perform those functions:

### 1. General:

Emerson product manuals provide information required for the intended use of these products. The product manuals are written for technically qualified personnel such as engineers, programmers, or maintenance specialists who have been specifically trained and are experienced in the field of automation control. Such personnel must possess the knowledge to correctly interpret and apply the safety guidelines provided in the product manuals. If you require further information or face special problems that are not covered in sufficient detail in the product manuals, please contact your local sales or service office, or authorized distributor.

### 2. Qualified Personnel:

Only qualified personnel should be allowed to specify, apply, install, operate, maintain, or perform any other function related to the products described in the product manuals. Examples of such qualified persons are defined as follows:

- System application and design engineers who are familiar with the safety concepts of automation equipment.
- Installation, startup, and service personnel who are trained to install and maintain such automation equipment.
- Operating personnel trained to operate automation equipment and trained on the specific safety issues and requirements of the particular equipment.

### 3. **Proper Usage:**

The equipment/system or the system components may be used only as described in the product manuals. Our control system products have been developed, manufactured, tested, and the documentation compiled in keeping with the relevant safety standards. Handling instructions and safety guidelines described for planning, installation, proper operation and maintenance must be followed to ensure safe application and use of the products.

### 4. Guidelines for the Application Planning and Installation of the Product:

RX3i control system products generally form part of larger systems or installations. These guidelines are intended to help integrate RX3i control system products into systems and installations without constituting a source of danger. The following precautions must be followed:

- Compliance with EN292-1 and EN292-2 (Safety of Machinery) as well as EN60204/IEC204 (Electrical Equipment of Industrial Machines) must be observed during the design phase.
- Opening the housing or the protective cover exposes certain parts of this equipment/system, which could have a dangerously high voltage level.
- Only qualified personnel should be allowed access to this equipment/system. These persons must be knowledgeable of potential sources of danger and maintenance measures as described in the product manuals.
- Personnel must strictly adhere to applicable safety and accident prevention rules and regulations.
- A suitable isolating switch or fuses must be provided in the building wiring system. The equipment must be connected to a protective ground (PE) conductor.
- For equipment or systems with a fixed connecting cable but no isolating switch that disconnects all poles, a power socket with the grounding pin must be installed.
- Before switching on the equipment, make sure that the voltage range setting on the equipment corresponds to the local power system voltage.
- In the case of equipment operating on 24Vdc, make sure that proper electrical isolation is provided between the main supply and the

- 24Vdc supply. Use only power supplies that meet EN60204 (IEC204) requirements.
- The RX3i control system AC power supply must be supplied through an IEC-rated isolation transformer.
- Power supply to the RX3i control system must be controlled not to exceed over-voltage category II per EN60204-1 (IEC204).
- Do not exceed the input specifications of the power supply.
   Otherwise, functional failures or dangerous conditions can occur in the electronic modules/equipment.
- Emergency shutoff devices in accordance with EN60204/IEC204 must be effective in all operating modes of the automation equipment.
   Resetting the emergency off device must not result in any uncontrolled or undefined restart of the equipment.
- Automation equipment and its operating elements must be installed in such a manner as to prevent unintentional operation.
- Suitable measurements must be taken to ensure that operating sequences interrupted by a voltage dip or power supply failure resume proper operation when the power supply is restored. Care must be taken to ensure that dangerous operating conditions do not occur even momentarily. If necessary, the equipment must be forced into the *emergency off* state.
- Negative Logic Input and Output Modules cannot be used.
- Cable shielding and grounding are the responsibility of the machine builder. Applicable installation instructions and guidelines must be followed.
- Install the power supply and signal cables in such a manner as to prevent inductive and capacitive interference voltages from affecting automation functions.
- When interfacing the inputs and outputs of the automation equipment, measures must be taken to prevent an undefined state from being assumed in the case of a wire break in the signal lines

# Appendix B: Calculating Heat Dissipation

This section explains how to find the total heat dissipation of PACSystems RX3i equipment.

PACSystems RX3i equipment must be mounted in a protective enclosure. The enclosure must be able to properly dissipate the heat produced by all the devices mounted inside. This includes Modules, discrete output devices, and discrete input devices. Each device manufacturer publishes these values. If an exact value is not available for a device, you can make a close estimate by obtaining the value for a similar device.

# **B.1 Module Heat Dissipation**

For each backplane and module except power supplies (discussed separately), look up the power in Watts from the table in Section 4.2, Module Load Requirements. If Module uses more than one voltage type (for example, 3.3V and 24V relay), find its total power requirement. Then, add together the heat dissipation values for all Modules in the enclosure.

### **Example:**

The Load Requirements table shows that the 12-Slot Universal Backplane IC695CHS012 draws:

- 1.98 Watts from the 3.3Vdc supply
- +1.20 Watts from the 5Vdc supply
- =3.18 Watts total heat dissipation of backplane IC695CHS012

## **B.2** Power Supply Heat Dissipation

In general, power supplies are 66% efficient. The power supply dissipates approximately 1 Watt of power in the form of heat for every 2 Watts of power it delivers to the PLC.

After finding the total power requirement for all of Modules in the backplane served by a power supply above, divide the total by 2 to find the power supply dissipation value. Do not use the rating of the power supply (such as 30 W) for this calculation because the application may not use the full capacity of the power supply.

If the +24Vdc output on an Expansion Power Supply is being used, calculate the power drawn, divide the value by 2, and add it to the total for the power supply.

### **Heat Dissipation for Discrete Output Modules**

In addition to Module power calculations done above, discrete solidstate output modules require a calculation for their output circuits, which are powered from another supply. (This calculation is not required for Relay Output modules.) To calculate output circuit power dissipation:

- In the specification table of Module, find the value for Output Voltage Drop.
- Using the manufacturer's documentation or other reference information, find the required current value for each device (such as a relay, pilot light, solenoid, etc.) connected to an output point on Module. Estimate the percent of "on-time" of each device based on its intended use in the application.
- Multiply the Output Voltage Drop times the current value times the estimated percent of on-time to arrive at average power dissipation for that output.

Repeat these steps for all outputs on Module, and then for all discrete output modules in the backplane.

### **Example:**

The specifications table for the IC694MDL340 16-Point Discrete 120 Vac Output Module lists its Output Voltage Drop as: 1.5 V maximum

Use that value for all of the calculations for Module.

In this example, two output points drive solenoids that control the advance and retract travel of a hydraulic cylinder. The solenoid manufacturer's datasheet shows that each solenoid draws 1.0 Amp. The cylinder advances and retracts once every 60 seconds that the machine is cycling. It takes 6 seconds to advance and 6 seconds to retract. Because the cylinder takes equal time to advance and retract, both solenoids are on for equal lengths of time: 6 seconds out of every 60 seconds, which is 10% of the time. Therefore, since both solenoids have equal current draws and on-times, one calculation can be applied to both outputs.

Use the formula Average Power Dissipation = Voltage Drop x Current Draw (in Amps) x Percent (expressed as a decimal) of on-time:

1.5 
$$\times$$
 1.0  $\times$  0.10 = 0.15 W per solenoid

Then multiply this result by 2 for two identical solenoids:

 $0.15 \text{ W} \times 2 \text{ Solenoids} = 0.30 \text{ W}$  total for the two solenoids

Also in this example, the other 14 output points on the 16-point module operate pilot lights on an operator's panel. Each pilot light requires .05 Amps of current. Seven of the pilot lights are on 100% of the time and seven are on an estimated 40%.

For the seven lights that are on 100% of the time:

$$1.5 \times .05 \times 1.00 = 0.075 \text{ W per light}$$

Then multiply this value by 7:

 $0.075 \text{ W} \times 7 \text{ lights} = 0.525 \text{ W} \text{ total dissipation for the first 7 lights}$ 

For the 7 lights that are on 40% of the time:

$$1.5 \times .05 \times 0.40 = .03 \text{ W per light}$$

Then multiply this value by 7:

 $0.03 \text{ W} \times 7 \text{ lights} = 0.21 \text{ W}$  total dissipation for the other 7 lights

Adding up the individual calculations, we get:

0.30 + 0.525 + 0.21 = 1.035 W for the total output calculation for Module.

### **Heat Dissipation for Discrete Input Modules**

In addition to Module power calculations described above, a discrete input module requires another calculation for its input circuits, because the power dissipated by the input circuits comes from a separate power source. This calculation assumes that all input circuit power delivered to these modules is eventually dissipated as heat. The procedure is:

- In the specification table of Module, find the value for Input Current.
- For DC input modules, multiply the input voltage times the current value times the estimated percent of on-time to arrive at average power dissipation for that DC input.
- For AC input modules only, multiply the input voltage times the current value times the estimated percent of on-time times 0.10 to arrive at average power dissipation for that AC input.

Repeat these steps for all inputs on Module, and then for all discrete input modules in the backplane.

### **Example:**

The Specifications table for the IC693MDL240 16-Point Discrete 120 Vac Input Module gives the following information:

Input Current: 12 mA (typical) at rated voltage

Use this value for all of the input calculations for this module.

In this example, eight of the input points are used for switches that, for normal operation, stay on (closed) 100% of the time. These include the Emergency Stop, Over Temperature, Lube Pressure OK, and similar switches.

Use the formula Average Power Dissipation = Input Voltage x Input Current (in Amps) x Percent (expressed as a decimal) of on-time:

120 x .012 x 1.0 = 
$$1.44$$
 W per input

Then multiply this result by 8:

 $1.44 \text{ W} \times 8 \text{ inputs} = 11.52 \text{ W} \text{ total for the 8 inputs}$ 

Also in this example, two input points on this 16-point module are for the Control On and Pump Start pushbuttons. Under normal conditions, these pushbuttons are only pressed once per day for about one second – just long enough to start up the control and pump. Therefore, their effect on our power calculation is negligible:

0.0 Watts total for two inputs

For the remaining six inputs of the 16-point module, it is estimated that they will be on for an average of 20% of the time. So, the following calculation is made for these 6 inputs:

Using the formula of Average Power Dissipation = Input Voltage x Input Current (in Amps) x Percent (expressed as a decimal) of on-time:

```
120 \times .012 \times 0.20 = 0.288 \text{ W per input}
```

Then multiply this result by 6:

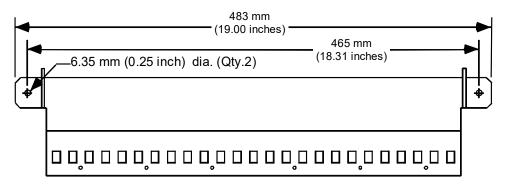
0.288 W x 6 inputs = 1.728 W total for the 6 inputs

Finally, add up the individual calculations:

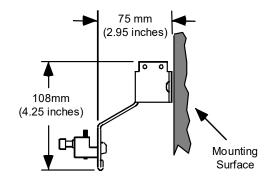
11.52 + 0.0 + 1.728 = 13.248 W for the total input calculation for Module.

### **Total Heat Dissipation**

After the individual power dissipations have been calculated, add them together to obtain total PLC heat dissipation. It is usually not necessary to include analog modules because their power dissipation values are negligible when compared with the total.


# Appendix C: Cable Shield Clamping Assembly

Cable Shield Clamping Assembly, IC697ACC736, contains the parts necessary for providing higher EMC immunity for shielded cables in severe industrial environments. Shield grounding is provided by the ground plate and cable clamps in the kit.


The Cable Shield Clamping Assembly package includes:

- · One ground plate
- Six cable clamps
- Four #6 self-tapping screws

Figure 456: Cable Clamp IC697ACC736 Diagrams



### **Front View with Mounting Dimensions**



Side View with Spacing Requirements



(Six cable clamps included with assembly.)

\* Additional cable clamps available (12 per package), catalog number IC697ACC737.

# **C.1 Installing the Cable Clamp Assembly**

The ground plate should be mounted near the baseplate. The cable clamp provides mechanical relief as well as electrical grounding. The cable clamp attaches to the ground plate by sliding it into two adjacent slots at the selected cable location. The cable is inserted between the ground plate and the cable clamp after removing the required section of the outer cover of the cable. Tighten the cable clamp by turning the thumbscrew clockwise. *Do not over-tighten the thumbscrew: hand-tighten or tighten lightly with a tool.* 

If you are installing the ground plate on a painted surface, the paint must be removed where the ground plate is to be mounted to ensure a good ground connection between the plate and mounting surface.

### **C.2** Cable Diameter

The largest diameter cable that can be used with the cable clamp is 0.51 inches (13mm). The smallest cable diameter that can be used with the clamp is 0.24 inches (6mm). Multiple cables can be placed in the clamp if the cable diameter is smaller than the minimum.

Ground
Plate

Cable
Maximum
Diameter
.51" (13mm)

Minimum
Diameter
.24" (6mm)

Figure 457: Cable Diameter Maximum with Cable Clamp

### **Removing the Insulating Cover**

The insulating cover on the shielded cable must be removed to allow maximum contact between the cable shield and the cable clamp as displayed in Figure 458.

**Figure 458: Insulation Cover Removal** 

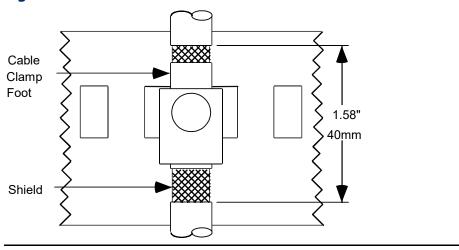
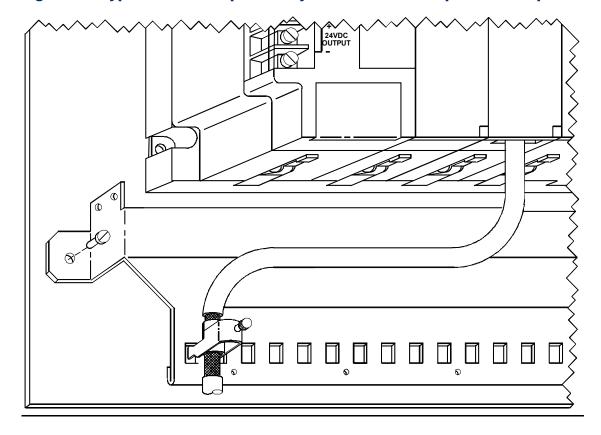




Figure 459: Typical Cable Clamp Assembly installation with Expansion Backplane



# **General Contact Information**

Home link: <a href="http://www.emerson.com/industrial-automation-controls">http://www.emerson.com/industrial-automation-controls</a>

Knowledge Base: <a href="https://www.emerson.com/industrial-automation-controls/support">https://www.emerson.com/industrial-automation-controls/support</a>

# **Technical Support**

### **Americas**

Phone: 1-888-565-4155

1-434-214-8532 (If toll free option is unavailable)

Customer Care (Quotes/Orders/Returns): <a href="mailto:customercare.mas@emerson.com">customercare.mas@emerson.com</a>

Technical Support: <a href="mailto:support.mas@emerson.com">support.mas@emerson.com</a>

**Europe** 

Phone: +800-4444-8001

+420-225-379-328 (If toll free option is unavailable)

+39-0362-228-5555 (from Italy - if toll-free 800 option is unavailable or dialing from mobile)

Customer Care (Quotes/Orders/Returns): <a href="mailto:customercare.emea.mas@emerson.com">customercare.emea.mas@emerson.com</a>

Technical Support: <a href="mailto:support.mas.emea@emerson.com">support.mas.emea@emerson.com</a>

Asia

Phone: +86-400-842-8599

+65-6955-9413 (All other Countries)

Customer Care (Quotes/Orders/Returns): <a href="mailto:customercare.cn.mas@emerson.com">customercare.cn.mas@emerson.com</a>

Technical Support: support.mas.apac@emerson.com

Any escalation request should be sent to: <a href="mas.sfdcescalation@emerson.com">mas.sfdcescalation@emerson.com</a>

**Note:** If the product is purchased through an Authorized Channel Partner, please contact the seller directly for any support.

Emerson reserves the right to modify or improve the designs or specifications of the products mentioned in this manual at any time without notice. Emerson does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson product remains solely with the purchaser.

**EMERSON** 

© 2022 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective